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Introduction

By a Lorentzian (n+1) -space form M7t (¢) we mean a Minkowski space
R7*1, a de Sitter space S*Y(¢) or an anti-de Sitter space H7}%'(c), according as
¢>0, ¢=0 or ¢<0, respectively. That is, a Lorentzian space form M7+Yc) is
a complete connected (n-+1)-dimensional Lorentzian manifold with constant cur-
vature c.

A hypersurface in a Lorentzian manifold is said to be space-like if the in-
duced metric on the hypersurface is positive definite. On a space-like hyper-
surface, the first fundamental form, the second fundamental form and the mean
curvature are defined in the same way as those on a hypersurface in a Rie-
mannian manifold [§1].

It has been proved by Bernstein and others that the only entire minimal
hypersurface in a Euclidean space R™*! is a linear hyperplane for n<7, but
there are other examples for n>7. So, Calabi proposed to study a Lorentzian
analoge, called the Bernstein type problem, in Minkowki space R%*', and this
was solved by Cheng and Yau [4] for every x.

More precisely, a space-like hypersurface in a Lorentzian manifold is said
to be maximal, if the mean curvature is zero. The Bernstein type problem has
led to the conclusion that the only entire maximal space-like hypersurface in
R1** is a linear hyperplane. In order to prove this, Cheng and Yau [4] esta-
blished the following result:

(*) If an entire space-like hypersurface M in R™ has a constant mean curvature
H, then the induced Loventzian metric on M is a complete Riemannian metric
and the length of second fundamental form of M is bounded from above by
n|H|.

It follows from this result that if M is maximal, then it is totally geodesic.
Moreover, Nishikawa [11] studied the Bernstein type problem for complete

maximal space-like hypersurfaces in other Lorentzian maniflolds, and Ishihara
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[8] found a similar result for complete maximal space-like submanifolds M™* in
a semi-Riemannian space form M73*?(c).

On the other hand, in the theory of relativity, certain space-like hyper-
surfaces with constant mean curvature in arbitrary space-times are also investi-
gated. For instance, Choque-Bruhat, Fischer and Marsden [5] studied the
Bernstein type problem in a space-time M4(c) (¢=0) in connection with the
positivity of mass, and proved that a compact maximal space-like hypersurface
in M4(c) (¢=0) must be totally geodesic.

We shall consider, in this paper, complete space-like hypersurfaces with
non-zero constant mean curvature in a Lorentzian space form M7%7*(¢). The
well-known standard models of these are the totally umbilical space-like hyper-
surfaces and the following product manifolds :

Hk(Cl)XMn_k((k)

. 1
HHe)XS™He) in ST@)  [4a=, 0],
Cy Co C
={ H*(c,)XR""* in R7+ [c=c,=0],
k n-k ; n+1 1 1 —_— 1
H*e)xH™*(cy) in HY(c) [—+—_—, c2<o]
Cy Co c
where k=1, ---, n—1. HY¥c)XM" *(c,) is, in particular, called a hyperbolic
cylinder.

Goddard [6] conjectured that the only complete space-like hypersurfaces of
constant mean curvature in M4(¢c) (¢=0) are the above standard models. How-
ever, it is proved by Treibergs [16] that many other examples of complete
space-like surfaces with constant mean curvature exist in R}. Thus, conversely,
it seems to be interesting to characterize the above standard models among
these space-like surfaces.

In this direction, Akutagawa [2], Ramanathan [14] and Cheng and Naka-
gawa [3] obtained the conditions for a complete space-like hypersurfaces with
constant mean curvature in S7*'(¢) to be totally umbilical.

On the other hand, K. Milnor [10] and Yamada [17] characterized the
hyperbolic cylinder H'(¢;)X R' in R} as the only complete “uniformly” non-um-
bilical space-like surface with non-zero constant mean curvature. In particular,
K. Milnor proved this result by making use of the Cheng-Yau result (*).

The purpose of this paper is to prove a certain extension of the Cheng-
Yau result (*) as stated in Theorem 1 [§2]. This theorem means that a com-
plete space-like surface with constant mean curvature in M3(¢) is totally um-
bilical, or the Gaussian curvature is non-positive. Furthermore, by applying
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theorem 1, a characterization of the hyperbolic cylinder H'(¢,) X M(c,) in M¥(c)
is obtained in Theorem 2 [§ 3].

THEOREM 1. Let M be a complete space-like surface with constant mean cur-
vature H in a Lorentzian 3-space form M¥c). Let a be the second fundamental
form of M. Then the following hold :

(1) If ¢ is non-positive, then |a|*<4H?—2c.

(2) If ¢ is positive, then M is totally umbilical or |a|*<4H?—2c.

THEOREM 2. The hyperbolic cylinder is the only complete space-like surface
in M¥(c) with non-zero constant mean curvature whose principal curvatures A and
u satisfy inf (2—p)?>0.

The author would like to thank Prof. Hisao Nakagawa for his guidance
and advice.

1. Space-like hypersurfaces in a Lorentzian manifold.

Let M be an (n+1)-dimensional Lorentzian manifold and M be a space-
like hypersurface in M. Throughout this paper, manifolds are always as-
sumed to be connected and geometric objects are assumed to be smooth, unless
otherwise stated. We choose a local field of Lorentzian orthonormal frames
{E }={E,, E,, -+, E,} defined on a neighborhood of M in such a way that,
restricted to M, {E,, ---, E,} are space-like and tangent to M and FE, is time-
like and normal to M. Let V (resp. V) denote the Levi-Civita connection of M
(resp. M).

We use the following convention on the ranges of indices throughout this
paper, unless otherwise stated:

A; B) ”.:OJ 1,"',”; Z.r ]‘1 :1) ., N

With respect to the frame field {E,}, let {wa}={w,, w;} denote its dual frame
field. Then the Lorentzian metric tensor g of M is given by g=3c 0,Qwy,
where ¢4 is defined by e;=—1 and ¢;—=1. The connection forms on M are de-
noted by wup, that is, wsp is defined by w.z(Ec)=g(E 4, ﬁECEB). The canonical
forms w, and the connection forms w,z of the ambient space satisfy the struc-
ture equations

(1.1) dws+Xepwap N wp=0, Wip+wps=0,
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(12) d(()AB'i‘ZEc(J)Ac/\(DcB:QAB ’
~ 1 ~
Qup=— 52503DRABCDCUC/\CUD .

where 0,5 is called the Riemannian curvature form on A7I, and ﬁABcp denotes
the component of the Riemannian curvature tensor R on M. That is, Bagop is
defined by

ﬁABCD_:g(ﬁ(EA: Ep)E¢, Ep),

ﬁ(EA, EB>EC:6EAﬁEBEC’“ﬁEBﬁEAEC_vEEA.EB]EC .
Restricting these forms to the hypersurface M, we have
(1.3) CUOZO ,

and the Riemannian metric g of M induced from the Lorentzian metric g on M
is given by g=3w;Qw;. Then, with respect to this metric, {E,} becomes a
local orthonormal frame field and {w;} is a local dual frame field of {F,}.
Further, w;; is the connection form on A/ satisfying w.(E.)=g(E;, Ve, ).
From the structure equations of M it follows that the structure equations for
M are given by

1.4) dw;+Zwi;;Aw;=0, 0+ 0;=0,
(1.5) dw;+2wi Awy; =245,
1
Qij:'_ngijklwk/\wl ,

2

where £,; is the Riemannian curvature form on M and R, is the component
of the Riemannian curvature tensor R on M. That is, R;;, is definded by

Rim=g(R(E;, E)E,, 1),
R(Ei, Ej>Ek:inijEk—ijinEk—V[Ei,Ej]Ek-

It follows from (1.3) and Cartan’s lemma that the exterior derivative of (1.3)

gives rise to

(1.6) W =33 hi;0;,  hi=hj.

On the other hand, the second fundamental form a of M is defined by
VeV =YxY +a(X, V),

where X and Y are local vector fields on M. Then a is the symmetric bilinear
form with values in the normal bundle and it can be written as

a=e, 2 h;;0,0;E, .
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It follows from (1.2), (1.5) and (1.6) that the Gauss equation is given by
1.7 Rija=Rijutelhahp—hahy).
The components of a Ricci tensor S are given by
(18) Sl‘j:}]Rkijk:Zﬁkijk+thhij_50h%j1
where h=trace h=3}h,, is n times the mean curvature function H of M and
}l%jzzhikhkj.

Now, the components h,; of the covariant derivative Va of the second
fundamental form a of M are given by

2oy =d ;= wps+ hgw,) .

Then, by substituting dh,; in this definition into the exterior derivative of (1.6),
we obtain the Codazzi equation

(1.9 hijk'—"hikj:iéoij/w

Similarly, the components /., of the second covariant derivative V2o of a
can be defined by

zhz‘juwl"—“dhijk"'EUlzjkwli+/'lilkwtj+hz‘;‘lwzk) ,
and the simple calculation gives rise to the Ricci formula
(1.10) /’lmz—'hijszZ(/lijmuk—i—/lszmsz»)~

In particular, let the ambient space M be a Lorentzian space from A{7*Y(c)
of conmstant curvature c¢. In this case, the Riemannian curvature £ of M is
given by

K’ABCD:65A53(5A05Bc—5405317) .
Then the Gauss equation and the Codazzi equation are given by
(L.1D) Riju=c(0ud,;—0ub )+ el huhj—hyhy),
(1.12) hip=hu;.
The Ricci curvature is given by
(1.13) Si=c(n—1)0:;+eohhy;—eoh?;.

By means of (1.9) and (1.10), the Laplacian Ahy ;=3 hij, of the function N is
given by

Ahij:(h)ij—!—c(nhij—/25i,«)—solzghij—i—sghh?j,
where (h)ij:VEjVEih and h, is a function on M defined by he=la*=33h%,=
2hishi;. Then the Laplacian Ah, of the function h, is given by
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Ahy=23(h)i;h i+ 2c(nhy—h®)—2e4(he)*+2e0h hy+2 |V |?,

where hg':Zh“hjkhki and IVaIZZZh“kh”k.
Now, let the mean curvature H' of M be constant. Then, since (h):;=0,
the Laplacian of h, is given by

(1.14) Ahy,=2c(nh,—h?)—2e4(hy)?+2e0hhs+2|Val?.
These formulas are obtained by Cheng and Yau [4].

2. Proof of Theorem 1.

Let M be a space-like surface with constant mean curvature H in a Lorent-
zian 3-space form M?3(c), and let 2 and g be the principal curvatures of M. We
can choose a local field of Lorentzian orthonormal frames {E,, E;, E.} on M¥c)
in such a way that, restricted to M, {E,, E,} are tangent to M and

2.1 hi=2, hiz=hs;=0, hos=pt .

In this case, the Gaussian curvature G=R;s, of M is given by
(2.2) G=c—iy,

and the constant mean curvature H is represented as

h

2.3) H= o h=A+p.
The function h,=|a|* is given by
(2.4) hy=2+p*=2G+h*—2c (=0).

It follows from (1.14) that the Laplacian of h, is calculated as
(2.5) Ahy=2GQA—p)+2|Na |?Z2G(A—pn)*.

In this section, we prove Theorem 1 which gives the estimate of the func-
tion h, on a complete space-like surface with constant mean curvature in M3(c).
For this purpose, the following generalized maximum principle due to Omori
[12] and Yau [18] is needed for the estimate of the Laplacian of the function
of class C2.

THEOREM (Omori and Yau). Let N be a complete Riemannian manifold
whose Ricci curvature is bounded from below and let F be a function of class C*
on N. If Fis bounded from below, then for any >0 there exists a point q such
that

(2.6) IVF(g)| <, AF(g)>—s¢, F(g)<inf F+e.
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In fact, since M is a complete space-like surface with constant mean cur-
vature H, it follows from (1.13) that the Ricci curvature tensor Sij=§ Ry is
given by

(2.7) Su=Sn=CG=c—p=c—Ah—)=c—hi+P=c+(A—H2—H*>c—H?,
5122521:0 .

implying that the Ricci curvature is bounded from below by constant ¢—H?2
Accordingly, we can apply this theorem to prove Theorem 1.

PROOF OF THEOREM 1. Given any positive number g, we define a smooth
function F on M by (h,+a)'?, which is positive and is also bounded from
above by positive constant a~/2. So we can apply the generalized maximum
principle due to Omori and Yau to F.

First, we compute the gradient and the Laplacian of F:

VF=— %(hz—}-a)‘a’ZVhZ:—%Fs’th ,

AF:——%FZVFth——;—FaAhz =3FVF|* — %F%hz -

Consequently, the following inequality
(2.8) F'G(A—p»<3|VF|*—FAF

is obtained by (2.5).

For a convergent sequence {s,} such that ¢, >0 and &,—0 (m—c0), by the
theorem due to Omori and Yau, there is a point sequence {¢,} such that F
satisfies (2.6) at each ¢, for e, :

(2.6 INE(gm)| <em,  AF(gu)>—¢em,  inf FEF(gn)<inf Fte,.

Then the sequence {F(g,)} converges to inf F, which implies by the definition
of F that hy(gm)—sup ho(m—co). We shall prove that 4, is bounded.

Suppose sup hy=+oco. Since hy=2+p*=2(A—H)*+2H?, the sequence {A(g.)}
then diverges to positive infinity, by taking a subsequence if necessary. More-
over, we have

#gn) 4

A(gm) (=),
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for p/A+1=(p+2)/A=h/2. On the other hand, from the inequality (2.8), we
get the relation

2.9) Flgn)' G(gm){Agm)— p(gm)}* <3eh+enf(gm) »

in which the right hand side converges to 0, because the function F is bounded.
Hence the left hand side of (2.9) converges to a non-positive number. But, since
the left hand side is

2gan’®
{6 — 2@ @m)} {Agm)— 12(ga))? {Aqmv x(qm>}{1 gm))

{Agm)+plgn)+al? o g a’ ’
S )
it should converge to 1 as m—oco. This is a contradiction. Accordingly, k. is
bounded.
This implies that the sequence {G(g»)} converges to sup G which is bounded.
So we have

{’qu)_ﬂ(Qm)}z —> Sup (l—ﬂ)2<oo (m—o0),

since (A—p)f=A+p)?—4ap=h>+4G—4c. Then if follows from (2.9) that we
have

(2.10) sup G-sup (A—p)=0.

Hence, if sup (—p)* is positive, then G is non-positive. On the other hand,
when sup (1—p)*=0, 21— is identically zero. In consequence, under the assump-
tion of Theorem 1, M is either totally umbilical or G<0. Note that, when ¢
is non-positive, if M is totally umbilical then G is non-positive, for G=c-—Ap
=¢—%. Finally, it follows from (2.4) that the condition G=0 is equivalent to
ho=|a|?<4H*—2c¢. g.e.d.

REMARK 1. Cheng and Nakagawa [3] extend the Cheng-Yau result and
give an estimate of |a| for a complete space-like hypersurface with constant
mean curvature in M?*%(¢), ¢<0. In the case ¢=0, Theorem 1 is equivalent to
of their result, but the method of proof is different from theirs.

REMARK 2. In the case ¢>0, a totally umbilical surface S%c,) in S¥(¢) has
positive Gaussian curvature ¢,, and the other surfaces in S¥(¢) have non-positive
curvature. On the other hand, Akutagawa [2] gave the condition for a com-
plete space-like hypersurface M™ in S7*'(c) to be totally umbilical. In the case
n=2, Akuatgawa’s theorem can also be proved by Theorem 1:
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COROLLARY (Akutagawa). Let M be a complete space-like surface with con-
stant mean curvature H in Si(c). Suppose ¢=H?, then M is totally wmbilical.

PROOF. Since the Gaussian curvature G is given by C=c—2p=Q—H)+
c¢—H? G is non-negative by the assumption c¢=H?2. Then, it follows from
Theorem 1 that G is positive constant or identically zero. Hence, M is a totally
umbilical surface in S¥(c). g.e.d.

3. Proof of Theorem 2.

In this section, we prove Theorem 2 which characterizes a hyperbolic
cylinder in a Lorentzian space form M3¥(c).

First, it is to be remarked that hyperbolic cylinders are the only flat space-
like surfaces with non-zero constant mean curvature in M¥c). This fact is
proved by the use of a theorem due to Abe, Koike and Yamaguchi [1]. Hence
we have only to prove that the Gaussian curvature of a “uniformly” non-
umbilical space-like surface with constant mean curvature in M3(¢c) is identically
zero. On the other hand, Theorem 1 asserts that if a space-like surface with
constant mean curvature in M3$(c¢) is not totally umbilical, then the Gaussian cur-
vature is mon-positive. Accordingly, Theorem 2 will follow immediately from
the following lemma.

LEMMA. Let M be a complete space-like surface with constani mean curva-
ture H in Mi(c). If the principal curvatures 2 and p of M satisfy

inf (A—p)*>0,

then the Gaussian curvature G of M is non-negative.

In order to prove this lemma, the generalized maximum principle due to
Omori [12] and Yau [18] is used here again. So, we are going to compute
the Laplacian of the Gaussian curvature G of M.

Now, since the mean curvature H=h/2 and c¢ are constant, the relation
Ah,=2AG is obtained from (2.4). Then it follows from (2.5) that the Laplacian
AG is given by

(3.1) AG=G(A—py—+|al?,

where [Va|*=(h111)+3(hee) +(hoss)? +3(h112)?.  Since the principal curvatures A
and p are mutually different everywhere by the assumption inf (A—p)»>0, it is
known that they are both smooth functions on M (see Szabé [157], for example).
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Recalling the definition of the components #;;, the derivatives of 1 and p are
given by

dA=dh=h,;0,+ 000, ,

dp:dhzz:hzz1ﬂ)1+hzzzﬂ)z-

Since h is constant, the derivative dh=d2+4-dp is identically zero, and hence
the following relations are obtained;

hii+hs =0 and  hip+hse=0.
Also, from (2.2), the derivative of G is given by

VG=dG=—d)p—Adm)=A—p)d2.

Hence we have

4
2 __ 2 2] — A 2
INa |?=4{(h11)" +(h112)*} =4 d 1] ~—~—<2_#)2 ING|?,
which combined with (3.1), implies that the Laplacian AG is given by
4
3.2 AG=GA—p)+-———=IVG|®.

PrROOF OF LEMMA. It follows from (2.7) that we can apply the generalized
maximum principle due to Omori and Yau to a smooth function F bounded from
below. Here, we define F to be exp[aG] for any given positive number a.
Note that F is a smooth function bounded from below by a positive constant
Fy=exp[a(c—H?)], because of (2.7).

The gradient and the Laplacian of F are then given by

VF=aexp [aGING=aFVG,
AF=aVFNG+aFAG=a*F|VG|*+aFAG .

Further, it follows from (3.2) that the Laplacian AF is given by

4a
(A—p)?
We put k=inf (4—p)?, which is positive by the assumption of the lemma. Let
a be greater than 4/k. Then

(3.3) AF:aFG(l—y)2+{2a2—(a2— )}FNG 2.

az—u—ia#—)zgaz—%:a(a—%>>0.

Accordingly, from (3.3), the Laplacian AF is evaluated by

AF<aFG(A—p)+2a*FIVG|?,
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which implies, since VF=aFVG and F>0, the following inequality ;
3.4) aF*GQA—p)=FAF—2|VF|?.

For a convergent sequence {em} such that &,>0 and e,—0 (m—o0), the
theorem due to Omori and Yau implies that there is a point sequence {¢,} such
that F satisfies (2.6’). Then the sequence {F(gn)} converges to inf F, which
satisfies inf F=F,>0. So the definition of F implies that G(gn)—inf G (m—coo),
where inf G is bounded.

Moreover, by taking subsequences if necessary, A(g.) and #(gn) tends to
some numbers ;

Z(GmD I /21; ﬂ(Qm) —— #12/’1—21 (771*’?00) .

This is proved in the following way. Suppose {A(g.)} is not bounded. Then
we can regard {A(gn)} and {p(q,)} as sequences which diverge to positive in-
finity and negative infinity, respectively. It follows from (2.2), that G(g) must
diverge to positive infinity. This contradicts the fact that G(gn) converges to
its infimum. Thus {A(g,)} is bounded and hence it containes a subsequence
converging to some finite number.

On the other hand, from the inequality (3.4), the following relation is ob-
tained;

aF(qn)Ggn){Aqn)—p(gm)} > —en{ F(qu)+2em},

in which the right hand side converges to 0 as m tends to co, since the func-
tion /' is bounded. Accordingly, we get

(3.5) a(inf FY(nf GY (A, —py)?=0.

Since a>>0, inf F>0 and (Ai—p)?= k>0, the inequality (3.5) now implies that
inf G is non-negative. Hence the Gaussian curvature G is non-negative every-
where. g.e.d.

As mentioned above, Theorem 2 is proved by this lemma and Theorem 1
immediately.

REMARK 1. Recently, various kinds of surfaces of revolution with constant
mean curvature in Minkowski space R? are constructed by Hano and Nomizu
[7] and Ishihara and Hara [9], which shows that the condition inf (A—p)*>0
in this theorem cannot be omitted in the case ¢=0.

REMARK 2. The examples given by Akutagawa [2], each of which is a
space-like rotation surface in S(c), are complete space-like surfaces with con-
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stant mean curvature and negative Gaussian curvature. They are not totally
umbilical and satisfy inf(A—g)*=0. This shows that there are many surfaces
with constant mean curvature in Si(c) such that G=0 which are different from
the hyperbolic cylinders.

Finally, it is to be noted that the fact that all the above examples of com-
plete space-like surfaces in R} and Si(c) have negative Gaussian curvature leads
us to the following conjecture: Let M be a complete space-like surface with
constant mean curvature in M3(¢). If there is a point p in M at which the
Gaussian curvature is zero, the Gaussian curvature is identically zero on M.

References

1] Abe, N., Koike, N. and Yamaguchi, S., Congruence theorems for proper semi-
Riemannian hypersurfaces in a real space form, Yokohoma Math. J. 35 (1987),
123-136.

[27 Akutagawa, K., On spacelike hypersurfaces with constant mean curvature in the
de Sitter space, Math. Z. 196 (1987), 13-19.

[3] Cheng, Q.-M. and Nakagawa, H., Totally umbilic hypersurfaces, Hiroshima Math.
J. 20 (1990), 1-10.

[4] Cheng, S.Y. and Yau, S.T., Maximal space-like hypersurfaces in the Lorentz-
Minkowski spaces, Ann. of Math. 104 (1976), 407-419.

[5] Choque-Bruhat, Y., Fisher, A. E. and Marsden, J.E., Maximal hypersurfaces and
positivity of mass, Proc. of the Enrico Summer School of the Italian physical
Soc., J. Ehlers (ed.), North-Holland, 1979.

[6] Goddard, A.J., Some remarks on the existence of spacelike hypersurfaces of con-
stant mean curvature, Math. Proc. Cambridge Philos. Soc. 82 (1977), 489-495.

[77 Hano, J. and Nomizu, K., Surfaces of revolution with constant mean curvature in
Lorentz-Minkowski space, Téhoku Math. J. 36 (1984), 427-437.

[87] Ishihara, T., Maximal spacelike submanifolds of a pseudoriemannian space of con-
stant curvature, Michigan Math. J. 35 (1988), 345-352.

[ 9] Ishihara, T. and Hara, F., Surfaces of revolution in the Lorentzian 3-space, J.
Math. Tokushima Univ. 22 (1988), 1-13.

[10] Milnor, T.K., Harmonic maps and classical surface theory in Minkowski 3-space,
Trans. Amer. Math. Soc. 280 (1983), 161-185.

[11] Nishikawa, S., On maximal spacelike hypersurfaces in a Lorentzian manifold,
Nagoya Math. J. 95 (1984), 117-124.

[12] Omori, H., Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan 19
(1967), 205-214.

[13] O’Neill, B., Semi-Riemannian Geometry, Academic Press, New York, London, 1983.

[14] Ramanathan, J., Complete spacelike hypersuafaces of constant mean curvature in
de Sitter space. Indiana Univ. Math. J. 36 (1987), 349-359.

[15] Szabd, Z..1., Structure theorems on Riemannian spaces satisfying R(X, Y)-R=0,
]. Differential Geometry 17 (1982), 531-582.

[16] Treibergs, A.E., Entire spacelike hypersurfaces of constant mean curvature in
Minkowski 3-space, Invent. Math. 66 (1982), 39-56.

[177 Yamada, K., Complete space-like surfaces with constant mean curvature in the



On Complete Space-like Surfaces 247

Minkowski 3-space, Tokyo J. Math. 11 (1988), 329-338.
[18] Yau, S.T., Harmonic functions on complete Riemannian manifolds, Comm. Pure
Appl. Math. 28 (1975), 201-228.

Added in proof.

1. There are also many complete space-like surfaces with constant mean
curvature in Hj(c), which are not totally umbilical and satisty inf (A—p)*=0.
These examples are constructed by the method similar to Akutagawa’s one.

2. Recently, Ki, Kim and Nakagawa [19] gave an estimate of la| for a
complete space-like hypersurface with constant mean curvature in M2*(¢) for
any ¢ and n=2. If n=2, their result are equivalent to Theorem 1.

[19] Ki, U.-H., Kim, H.-J. and Nakagawa, H., On space-like hypersurfaces with con-
stant mean curvature of a Lorentz space form, Tokyo J. Math. 14 (1991),
205-216.

Institute of Mathematics
University of Tsukuba
Ibaraki 305

Japan



