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Introduction

■ By a Lorentzian (n + 1) -space form Af +1(c) we mean a Minkowski space

i?i+1, a de Sitter space S?+1(c) or an anti-de Sitter space //?+1(c),according as

c>0, c=0 or c<0, respectively. That is, a Lorentzian space form M^+Xc) is

a complete connected (n + l)-dimensional Lorentzian manifold with constant cur-

vature c.

A hypersurface in a Lorentzian manifold is said to be space-likeif the in-

duced metric on the hypersurface is positive definite. On a space-like hyper-

surface, the firstfundamental form, the second fundamental form and the mean

curvature are defined in the same way as those on a hypersurface in a Rie-

mannian manifold [§1].

It has been proved by Bernstein and others that the only entire minimal

hypersurface in a Euclidean space Rn+1 is a linear hyperplane for n^7, but

there are other examples for n>7. So, Calabi proposed to study a Lorentzian

analoge, called the Bernstein type problem, in Minkowki space i??+1, and this

was solved by Cheng and Yau [4] for every n.

More precisely, a space-like hypersurface in a Lorentzian manifold is said

to be maximal, if the mean curvature is zero. The Bernstein type problem has

led to the conclusion that the only entire maximal space-like hypersurface in

i? +1 is a linear hyperplane. In order to prove this, Cheng and Yau [4] esta-

blished the following result:

(*) // an entire space-like hypersurface M in R"+l has a constant mean curvature

H, then the induced Lorentzian metric on M is a complete Riemannian metric

and the length of second fundamental form of M is bounded from above by

n＼H＼.

It follows from this result that if M is maximal, then it is totally geodesic.

Moreover, Nishikawa [11] studied the Bernstein type problem for complete

maximal space-like hypersurfaces in other Lorentzian maniflolds, and Ishihara
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[8] found a similar result for complete maximal space-like submanifolds Mn in

a semi-Riemannian space form M^+P(c).

On the other hand, in the theory of relativity,certain space-like hyper-

surfaces with constant mean curvature in arbitrary space-times are also investi-

gated. For instance, Choque-Bruhat, Fischer and Marsden [5] studied the

Bernstein type problem in a space-time M＼(c) (c^O) in connection with the

positivity of mass, and proved that a compact maximal space-like hypersurface

in M＼(c) (c^O) must be totallygeodesic.

We shall consider, in this paper, complete space-like hypersurfaces with

non-zero constant mean curvature in a Lorentzian space form M^+Xc). The

well-known standard models of these are the totally umbilical space-like hyper-

surfaces and the following product manifolds:

Hk(Cl)xMn~＼c2)

Hk(Cl)xSn-＼c2) in Sr＼c)
＼-+-=-,

c2>0~|,
Lei c2 c J

= : H"(c1)xRn-k in Rn,+1 [c=c2=0],

Hk(Cl)xHn-＼cz) in H^Xc)
[―+―=―,

c8<0~|.
Lei c2 c J

where k ―1, ■･■, n ―1. Hl{c1)xMn~＼c2) is, in particular, called a hyperbolic

cylinder.

Goddard [6] conjectured that the only complete space-like hypersurfaces of

constant mean curvature in M＼(c) (cS^O) are the above standard models. How-

ever, it is proved by Treibergs [16] that many other examples of complete

space-like surfaces with constant mean curvature exist in R＼. Thus, conversely,

it seems to be interesting to characterize the above standard models among

these space-like surfaces.

In this direction, Akutagawa [2], Ramanathan [14] and Cheng and Naka-

gawa [3] obtained the conditions for a complete space-like hypersurfaces with

constant mean curvature in Si+1(c) to be totallyumbilical.

On the other hand, K. Milnor [10] and Yamada [17] characterized the

hyperbolic cylinder H＼d)xRl in R＼ as the only complete "uniformly" non-um-

bilicalspace-like surface with non-zero constant mean curvature. In particular,

K. Milnor proved this result by making use of the Cheng-Yau result (*).

The purpose of this paper is to prove a certain extension of the Cheng-

Yau result (*) as stated in Theorem 1 [§2]. This theorem means that a com-

plete space-like surface with constant mean curvature in M＼(c) is totally um-

bilical,or the Gaussian curvature is non-positive. Furthermore, by applying
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theorem 1, a characterization of the hyperbolic cylinder H1(c1)xM＼c2) in M＼{c)

is nhf-ainedin Thporpm ?.F8 31

Theorem 1. Let M be a complete space-likesurface with constant mean cur-

vature H in a Lorentzian 3-space form M＼(c). Let a. be the second fundamental

form of M. Then the following hold:

(1) If c is non-positive,then ＼a＼2^4H2―2c.

(2) If c is positive,then M is totallyumbilical or a 2<iH2―2c.

Theorem 2. The hyperbolic cylinder is the only complete space-like surface

in M＼(c) with non-zero constant mean curvature whose principal curvatures X and

n.satisfv inf(2.―it)2">0.

The author would like to thank Prof. Hisao Nakagawa for his guidance

1. Space-like hypersurfaces in a Lorentzian manifold.

Let M be an (n+l)-dimensional Lorentzian manifold and M be a space-

like hypersurface in M. Throughout this paper, manifolds are always as-

sumed to be connected and geometric objects are assumed to be smooth, unless

otherwise stated. We choose a local field of Lorentzian orthonormal frames

{EA} ―{E<),Eu ■■■, En) defined on a neighborhood of M in such a way that,

restricted to M, {Eu ■■■, En) are space-like and tangent to M and Eo is time-

like and normal to M. Let 7 (resp. V) denote the Levi-Civita connection of M

(resp. M).

We use the following convention on the ranges of indices throughout this

A, B, -=0, 1, ■･･,n; i,j, -=l, ■■■, n.

With respect to the frame field{EA}, let {(Oa}= {<o0,<*>;}denote its dual frame

field. Then the Lorentzian metric tensor g of M is given by J^Se^G^R^,

where sA is defined by £0= ―1 and sf= l. The connection forms on M are de-

noted by (s)ab,that is, o)Abis defined by <s)AB{Ec)^g{EA, ^ecEb). The canonical

forms (da and the connection forms a)AB of the ambient space satisfy the struc-

ture equations

(1.1) d(!)4-＼-y,£riQ)AnA(l)ii= 0 . (0jnJr0)nA=0 .
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(1.2) d(t)AB+ TlSc(t)AcAQ)CB~RAB,

1
@AB=― ~^-^]ScSDRabCDO)CA(t)D.

where QAB is called the Riemannian curvature form on M, and Rabcd denotes

the component of the Riemannian curvature tensor R on M. That is, Rabcd is

defined by

RABCD=g(R(EA, EB)EC, ED),

R{EA, Eb)Ec=%a%bEc-%j$eaEc-%ea.ebiEc ■

Restricting these forms to the hypersurface M, we have

(1.3) <yo=O,

and the Riemannian metric g of M induced from the Lorentzian metric g on M

is given by g = °2>(0j(8)(0j.Then, with respect to this metric, {E,) becomes a

local orthonormal frame field and {a)j}is a local dual frame field of {Ej}.

Further, gjo is the connection form on M satisfying a)ij{Ek)=g(Ei> !EkEj).

From the structure equations of M it follows that the structure equations for

M are given by

(1.4) dtWi+S^o-AtWj―O, a)irJro)ji=0,

(1.5) ^+Sffli*Afl)*j=fli,-,

Qij= ―^-l>±RiJki(i)kf＼(i)i,

where Qij is the Riemannian curvature form on M and Raki is the component

of the Riemannian curvature tensor R on M. That is, Riih, is definded by

Rim=g(R(Ei,Ej)Ek,El),

R(EU Ej)Ek=lE^EjEk-lEpEiEk-ltEitEjlEk.

It follows from (1.3) and Cartan's lemma that the exterior derivative of (1.3)

gives rise to

(1.6) o>oi=1^hijQ)j, hij=hJt.

On the other hand, the second fundamental form a of M is defined by

lxY=lxY+a{X,Y),

where X and Y are local vector fieldson M. Then a is the symmetric bilinear

form with values in the normal bundle and it can be written as

a = e0y＼hiiQ)i6^a)iE0.
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It follows from (1.2),(1.5) and (1.6) that the Gauss equation is given by

(1.7) RiM=ftijki+eo{liiihJk―hikhji).

The components of a Ricci tensor S are given by

(1.8) S^J=^Rkm='E!tkm+sohhtJ-eohh,

where h = trace h―J}hkk is n times the mean curvature function H of M and

h＼i=Hhikhkj.

Now, the components hijk of the covariant derivative la of the second

fundamental form a of M are given by

'£hijk(ok--=dhij―J!:(hkja)ki+ hik(Dkj).

Then, by substituting dh^ in this definitioninto the exterior derivative of (1.6),

we obtain the Codazzi equation

(1.9) hijk hikj―Roijk-

Similarly, the components hiJkiof the second covariant derivative V2≪ of a

can be defined by

'EhiJkiQ)i= dhijlt―y^(hijlfi)u+hiik(Uij-＼-hiji(Oik),

and the simple calculation gives rise to the Ricci formula

(1.10) hijkl―hijik= '%j(hmjRmiik-＼-himRmjlk)･

In particular,let the ambient space M be a Lorentzian space from Mnx+＼c)

of constant curvature c. In this case, the Riemannian curvature R of M is

given by

RABC'Z>―CSaSb(0ADOBC―5aC§Bd)■

Then the Gauss equation and the Codazzi equation are given by

(1.11) Rijki= c{diidjk--5ikdji)+e<){hilhjk―hikhjl),

(1.12) hijk=hikj.

The Ricci curvature is given by

(1.13) Sij=c(n ―l)8ij+s0hhij―e0hlj.

By means of (1.9) and (1.10), the Laplacian AhiJ='Ehijkk of the function /il7is

given by

Ahi^Wij+cinhij―hdid―eohzhij+eohhtj,

where {h)ij―lEpEih and h2 is a function on M defined by h2―l≪l2l-S/if;―

y＼hnhii. Then the Laplacian A/z, of the function h9 is given by
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Ah2=2^(h)ijhij+2c(nh2-h>)-2eo(h2)2+2£ohh3+2＼Va＼2>

where hs=5}htJhjkhki and ＼T7a＼2=^hijkhiJk.

Now, let the mean curvature H of M be constant. Then, since (/i)t;-=0

the Laplacian of h2 is given by

(1.14) Ah2=2c(nh2-h2)-2Uh2)2+2e0hh3+2＼Va＼2.

These formulas are obtained bv Chens and Yau F4"I.

2. Proof of Theorem 1.

Let M be a space-like surface with constant mean curvature H in a Lorent-

zian 3-space form M＼{c), and let X and p.be the principal curvatures of M. We

can choose a local fieldof Lorentzian orthonormal frames {Eo, Ex, E2] on M＼(c)

in such a way that, restricted to M, {Eu E2} are tangent to M and

(2.1) hn=X, h12= h21=0, h22=[i.

In this case, the Gaussian curvature G = R1221 of M is given by

(2.2) G=c-Xp,

and the constant mean curvature H is represented as

(2.3) H = J> h=X-＼-fi.

The function h2=＼a＼zis given by

(2.4) h2=X2+fi2=2G + h2-2c (^0).

It follows from (1.14) that the Laplacian of h2 is calculated as

(2.5) Ah2=2G(X-[i)2+2＼Va＼2^2G(X--ptY.

In this section, we prove Theorem 1 which gives the estimate of the func-

tion h2 on a complete space-likesurface with constant mean curvature in M＼(c).

For this purpose, the following generalized maximum principle due to Omori

[12] and Yau [18] is needed for the estimate of the Laplacian of the function

of class C2.

Theorem (Omori and Yau). Let N be a complete Riemannian manifold

whose Ricci curvature is bounded from below and let F be a function of class C2

on N. If F is bounded from below, then for any s>0 there exists a point q such

that

(2.6) |VF(<7)|<s, AF(o)>-e, F{q)<inf F+e.
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In fact, since M is a complete space-like surface with constant mean cur-

vature H, it follows from (1.13) that the Ricci curvature tensor Sij=^Rkijk is

kgiven by

(2.7) S11=SzZ=G=c-A/ji=c-X(h-X)=c-hX+A2=c+a-H)2-H^c-H2,

s,.=s,,=o.

implying that the Ricci curvature is bounded from below by constant c―H2

Accordingly, we can apply this theorem to prove Theorem 1.

Proof of Theorem 1. Given any positivenumber a, we definea smooth

function F on M by (/z2+ a)~1/2,which is positiveand is alsobounded from

above by positiveconstant a"1/2. So we can apply the generalized maximum

principledue to Omori and Yau to F.

First,we compute the gradient and the Laplacian of F:

lF=-^(ho+aYs'27h,=-^FNh,.

AF=-^F27F7h2~^-FsAhz=3F-1＼7F＼2-jF3Ah2.

Consequently, the following inequality

(2.8) F4G(X-fif£3＼7F＼2-FAF

is obtained by (2.5).

For a convergent sequence {£m} such that sm>0 and em―>0 (m―>°o),by the

theorem due to Omori and Yau, there is a point sequence {qm＼ such that F

satisfies(2.6) at each qm for sm:

(2.6') ＼lF(qm)＼<em, AF(qm)>-em, inf F^F(qm)<inf F+sn.

Then the sequence {F(qm)＼ converges to inf F, which implies by the definition

of F that h2(qm)―>suph2(m―>°o). We shall prove that h2 is bounded.

Suppose sup h2= + °°.Since h2―/i2jrfi2l=2(X―H)2+2Hz, the sequence {X(qm)}

then diverges to positive infinity,by taking a subsequence if necessary. More-

over, we have

(1. >
_1 (7W->co),

A(am)
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for fi/X+l―(ftJrX)/A=h/X. On the other hand, from the inequality (2.8), we

get the relation

(2.9) F(^m)4G(^m){^m)-^m)}2<3£2m+£mF(gm),

in which the right hand side converges to 0, because the function F is bounded.

Hence the left hand side of (2.9) converges to a non-positive number. But, since

the left hand side is

{c~X{qra)n{qm)}{X{qm)~n{qn)Y __

{Z(qmf + u(qm)2+a}2

f c ft(gm)＼ r-,_Kqjn)＼2

U(gm)a JL(qm)n XjqmV

t1 ' k(qmy+Kqm)2$

it should converge to 1 as m―>co. This is a contradiction. Accordingly, h2 is

bounded.

This implies that the sequence {G(qm)} converges to sup G which is bounded.

So we have

{X(qm)―fi(qvi)}2―> sup{X―[if<oo (m->oo),

since U-[iy=(X+[t)2-Up> = hz+4G-4c. Then if follows from (2.9) that we

have

(2.10) supG-sup(X-pf^0.

Hence, if sup {X―[if is positive, then G is non-positive. On the other hand,

when sup(?.―fiy=0, X―p.isidenticallyzero. In consequence, under the assump-

tion of Theorem 1, M is either totally umbilical or G^O. Note that, when c

is non-positive, if M is totally umbilical then G is non-positive, for G = c―Xfi

--=c―Az. Finally, it follows from (2.4) that the condition G.^0 is equivalent to

h,= a＼2^4H2-2c. q.e.d.

Remark 1. Cheng and Nakagawa [3] extend the Cheng-Yau result and

give an estimate of ＼a＼for a complete space-like hypersurface with constant

mean curvature in M^Xc), c^O. In the case c^O, Theorem 1 is equivalent to

of their result, but the method of proof is different from theirs.

Remark 2. In the case c>0, a totallyumbilical surface S2(cz)in Sl(c) has

positive Gaussian curvature c2, and the other surfaces in Sf(c) have non-positive

curvature. On the other hand, Akutagawa [2] gave the condition for a com-

plete space-like hypersurface Mn in S7l+1(c)to be totally umbilical. In the case

n―2, Akuatgawa's theorem can also be proved by Theorem 1:
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Corollary (Akutagawa). Let M be a complete space-like surface with con-

stant mean curvature H in SKc). Suppose c>Hz, then M is totallyumbilical.

Proof. Since the Gaussian curvature G is given by G=c―/ift=(?,―H)2jr

c―H2, G is non-negative by the assumption c^H2. Then, it follows from

Theorem 1 that G is positiveconstant or identicallyzero. Hence, M is a totally

umbilical surface in Sl(c). q.e.d.

3. Proof of Theorem 2.

In this section, we prove Theorem 2 which characterizes a hyperbolic

cylinder in a Lorentzian space form M＼{c).

First, it is to be remarked that hyperbolic cylinders are the only flatspace-

like surfaces with non-zero constant mean curvature in M＼{c). This fact is

proved by the use of a theorem due to Abe, Koike and Yamaguchi [1]. Hence

we have only to prove that the Gaussian curvature of a "uniformly" non-

umbilical space-like surface with constant mean curvature in M＼{c)is identically

zero. On the other hand, Theorem 1 asserts that if a space-like surface with

constant mean curvature in M＼(c)is not totally umbilical, then the Gaussian cur-

vature is non-positive. Accordingly, Theorem 2 will follow immediately from

the following1 lemma.

Lemma. Let M be a coynplete space-likesurface with constant mean curva-

ture H in M＼{c). If the principal curvatures X and fi of M satisfy

infU-[i)2>0,

then the Gaussian curvature G of M is non-negative.

In order to prove this lemma, the generalized maximum principle due to

Omori [12] and Yau [18] is used here again. So, we are going to compute

the Laplacian of the Gaussian curvature G of M.

Now, since the mean curvature H―h/2 and c are constant, the relation

A/z2=2AG is obtained from (2.4). Then it follows from (2.5) that the Laplacian

AG is given by

(3.1) &G = G{X-{if+＼la＼2,

where |Va|2=(/ziii)2+3(/222i)2+(/2222)2+3(/zii2)2.Since the principal curvatures X

and fi are mutually different everywhere by the assumption inf {X―[i)2>0, it is

known that they are both smooth functions on M (see Szabo [15], for example).
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Recalling the definition of the components hiJk,the derivatives of X and pt are

given by

d/L=dhn=hniO)i + hn2(oz,

d[i―d/i22=hiiiQ)i-＼-h222(t>2･

Since h is constant, the derivative dh = dX+dp. is identically zero, and hence

the following relations are obtained;

hin + h22i=0 and h112 + h222::=:0

Also, from (2.2), the derivative of G is given by

Hence we have

VG=dG=-(dX)u-X(du)=(X-u)dX.

|Va|2=4{(/*m)2+(/*112)2}=4|^l2 =
4

a-vy

which combined with

(3.2)

IVGI2,

(3.1),implies that the Laplacian AG is given by

AG=G{X-nf+
4

i≪)2

IVGI2.

Proof of Lemma. It follows from (2.7)thatwe can apply the generalized

maximum principledue to Omori and Yau to a smooth functionF bounded from

below. Here, we define F to be exp＼_aG~＼for any given positivenumber a.

Note that F is a smooth functionbounded from below by a positiveconstant

F0=exp [g(c-//2)], because of (2.7).

The gradientand the Laplacianof F are then given by

7F=a exp [gG]VG = gFVG ,

AF=alFlG + aFAG = a2F＼lG＼z+ aFAG .

Further, it follows from (3.2) that the Laplacian AF is given by

(3.3) AF=aFGa-p?^2a*-(a*-j^^)}F＼VG＼＼

We put k=inf{X―n)z, which is positiveby the assumption of the lemma. Let

a be greater than 4/k. Then

a2
4a

U-i≪)2
>a2- ― = fl(a-T)>0.

Accordingly, from (3.3), the Laplacian AF is evaluated by

AF'£aFG(X-fi)2+2a2F＼lG＼2,
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which implies, since IF―aFIG and F>0, the following inequality;
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(3-4) aFzGtt-{i)2^FAF-2＼VF＼＼

For a convergent sequence {em} such that sm>0 and sm^0 (m->oo), the

theorem due to Omori and Yau implies that there is a point sequence {qm} such

that F satisfies(2.6'). Then the sequence {F(qm)＼ converges to inf F, which

satisfiesinf F^F0>0. So the definitionof F implies that G{qm)^inf G (m~^oo),

where inf G is bounded.

Moreover, by taking subsequences if necessary, X{qm) and fi{qm) tends to

some numbers;

KQm)―> ^1, ft(qm)―> fii-h-h {m->co).

This is proved in the following way. Suppose {X{qm)} is not bounded. Then

we can regard {k(qm)} and {fi(qm)＼as sequences which diverge to positive in-

finity and negative infinity,respectively. It follows from (2.2), that G(qm) must

diverge to positiveinfinity. This contradicts the fact that G(qm) converges tc

its infimum. Thus {X{qm)} is bounded and hence it containes a subsequence

converging to some finitenumber.

On the other hand, from the inequality (3.4), the following relation is ob-

tained;

aF(qmTG(qm)U(qm)-[i(qm)＼2>~sm{F(qm)+2em},

in which the right hand side converges to 0 as m tends to co, since the func-

tion F is bounded. Accordingly, we get

(3.5) a(inf F?(inf GX^-fiiY^O.

Since a>0, inf F>0 and Ui―//i)2^&>0, the inequality (3.5) now implies that

inf G is non-negative. Hence the Gaussian curvature G is non-negative every-

where, q.e.d.

As mentioned above, Theorem 2 is proved by this lemma and Theorem ]

Remark 1. Recently, various kinds of surfaces of revolution with constant

mean curvature in Minkowski space Rl are constructed by Hano and Nomizu

[7] and Ishihara and Hara [9], which shows that the condition mf(/t―pt)2>0

in this theorem cannot he omittprlin thp rasp r―Q

Remark 2. The examples given by Akutagawa [2], each of which is a

soace-like rotation surface in S3,(c).are comnlete soace-like surfaces with con-
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stant mean curvature and negative Gaussian curvature. They are not totally-

umbilical and satisfy inf(k―[t)2=Q. This shows that there are many surfaces

with constant mean curvature in S＼(c)such that G^O which are different from

the hyperbolic cylinders.

Finally, it is to be noted that the fact that all the above examples of com-

plete space-like surfaces in Rl and S＼(c)have negative Gaussian curvature leads

us to the following conjecture: Let M be a complete space-like surface with

constant mean curvature in M＼{c). If there is a point p in M at which the

Gaussian curvature is zero, the Gaussian curvature is identicallv zero on M.
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Added In proof.

1. There are also many complete space-like surfaces with constant mean

curvature in H＼(c), which are not totally umbilical and satistyinf(2.―fi)2=0.

These examples are constructed by the method similar to Akutagawa's one.

2. Recently, Ki, Kim and Nakagawa [19] gave an estimate of ＼a＼for a

complete space-like hypersurface with constant mean curvature in Mnx+1(c) for

any c and n>2. If n=2. their result are equivalent to Theorem 1.

[19] Ki, U.-H., Kim, H.-J. and Nakagawa, H., On space-like hypersurfaces with con-

stant mean curvature of a Lorentz space form, Tokyo J. Math. 14 (1991),
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