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ON THE LENGTH OF PROOFS IN FORMAL SYSTEMS

By

Tohru MIYATAKE

§0. Introduction.
This paper is concerned with an aspect of lengths of proofs in formal

systems. For a first order system 7, by J%A, we will mean that A is provable

in T with at most % applications of rules of inference. Let PA* be a system
for Peano arithmetic with only one function symbol S for successor and two
predicate symbols which represent addition and multiplication respectively.

In [2] R. Parikh proved:
(1) For any given formula A and natural number k, it is decidable whether

k
I PA* A holds or not.

VxA(x) iff there is a k such that (Vn) ).

k

@ | pgo par Al

In this paper we shall prove an analogue of (2) for systems which have a
finite number of function symbols and a finite number of axiom schemata, and
are complete with respect to formulas [in Presburger arithmetic i.e. formulas
which have only S, 4, = other than logical symbols.

Let T be any one of such systems. By 7', we mean the subsystem of T
which has only axioms containing at most 2 occurrences of bound variables and

critical explicit terms (these will be defined in §1) Now our claim is:

- VxA(x) iff there is a k£ such that (Vn) l E”A(ﬁ).
T Tk

This implies Parikh’s result (2), for it is easy to see that (Vn) -A(#)

_k
i PA*
iff there exists 7 such that (V) | par A

T. Yukami has proved an analogous result as (2) for a system of natural
numbers with two function symbols for successor and addition, with one predi-
cate symbol which represents multiplication.

This system has as its axioms not only usual ones, but also all valid
equations f=wu. Since his system does not fall under a system with finitely
many axiom schemata, we cannot treat his system by the method in this paper.
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§1. System G(e,, -+~ €,).

We consider first order systems with finitely many axiom schemata in
Hilbert style or in Gentzen style. We shall give a proof for only systems in
Gentzen style, but it is easy to see that for the other systems mentioned a
similar argument works.

In the following £ is a first order language with constant symbols 0, ---,

finitely many function symbols S, ---, and predicate symbols =, P,, P;, P,, -+
(countable). _£* is the language obtained from £ by adding n-ary predicate
variables for n=0; 0, 0.(a), 0x(a, b), ---. Formulas in * (L*-formulas) are

formed in the usual way. We use A, B, C, --- for formulas in £, and ¢, --- for
L*formulas unless otherwise stated. Semi-terms are defined similarly as terms,
but admitting bound variables in it.

DEFINITION. Substitution S is an assignment of formulas in £ to certain
predicate variables. S will induce a map, also called S, from certain .£*-formulas
to formulas in .£ defined uniquely by;

(1) If e is an atomic formula in £, then S(¢)=e.

(2) If ¢ is an atomic o(t, -+, t,) with predicate variable o, and S(o(a,, -, an))
=4, then S(e)=A@{r») Where A(fr%») is the formula obtained from A by
substituting f; for a;.

(3) S(erAen)=S(e1) ANS(er)

1) S(Vxe)=VxS(e), etc.

Of course, if it is necessary, we replace bound variables.

DEFINITION. Measure 6, for terms and formulas
(1) 6.,0)=6,(a)=0, where a is a free variable.
(2) 0,(x)=1, where x is a bound variable.

3) 6,(f(ty - ta))= i 0,(1;), where {; are terms and f is an n-ary function symbol.

-1
4) 06,(P(, - t,))=max {d;(t;)}, where t; are terms and P is an n-ary predicate
symbol.
5) 6,(ANB)=0,(AV B)=08,(ADB)=max {3,(4), 6,(B)}
6) 8,(QxA)=6,(T1A)=6,(A), where Q is V or 3.

DEFINITION.
(1) Formula A (in .£) is an instance of a L£*-formula ¢ if there is a substitution
& such that S(e)=A.
(2) For each symbol occurrence of S in a £*-formula ¢, we call these occurrences
explicit occurrences of S in e. If A is an instance of this ¢ by &, we also call
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occurrences of S in A corresponding to those in e explicit occurrences with
regard to ¢ and S.

(Example)
() AVx(a(x)De(S(x)))DVxe(x) has one explicit occurrence of S in it. And if
S(o)=A(a) A\ B(a), then all occurrences of S denoted in (A(0) A B(0)) AYx((A(x) A\ B(x))
D(ASx)AB(Sx)DVx(A(x) AB(x)) are explicit occurrences of S.
(3) For an r*-formula ¢, we call a term occurrence ¢ in ¢ a critical (explicit)
occurrence if:
(i) ¢ is a maximal semi-term occurrence in ¢ and
(i) the outermost function symbol of ¢ is S.
If A is an instance of ¢ by &, then we also call term occurrences in A cor-
respoding to those in ¢ critical occurrences with regard to ¢ and S. (We often
call semiterms simply by the word “terms”.)

(Example)
(i) In the above example, all occurrences of Sx are critical in (A0)AB(0))
AVx((A(x) ABx)D(ASX) A B(Sx) DV x(A(x) AB(x)).
(i) Let ¢ be Vx(o,(SHA o(f(x))Do,(t)) and

S(e)=ASSa)AB(a), S(o)=C(b).

Then in Vx((A(SSSH) AB(SHAC(f(x)D(ASSHAB(1))) occurrences of St in A(SSSt)
and B(St) are critical and if ¢ is of the form Swu, then occurrences of ¢ in A(SSt)
and B(#) are also critical.

Let ¢y, -, & be L*formulas. G(e,, -+, ¢,) is the system obtained by adding
following inference rules to LI
(EQ-rules)
t=t, =4
I'—4
L= A= ug AP - 1) D P - 1), T4
I'—4
t=ug A o b= U Of (o )=y e ug), I—d
I'—4

where |, t;, v; are terms, P is an n-ary predicate symbol and f is an n-ary
function symbol.
(Critical rules)
A -4 where A is an instance of some ¢; (0=i=r) by some sub-
“_’1'_—%1 stitution S.
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In this schema we define
0(A)=0,(A)+the number of critical term occurrences in A.

In the following we only consider systems (e, -, &) which have
Vx(1(Sx=0)), VxVy(Sx=SyDx=y) in &, ---, ¢,. Henceforth we only write & for
G<607 Tty 57‘)'

DEFINITION. System &, is the sub-system of & in which critical rules are
admitted under the condition d(A)=k.

DEFINITION. Suppose there exists a formula A(a, b, ¢) with only free vari-
able a, b, ¢ such that (1), (2) and (3) are provable in G.

(1) Va¥ydlzA(x, v, 2)

(2) VxA(x, 0, x)

(3) VaVyVz(A(x, y, 2DA(x, Sy, Sz))
Then we can extend G to &* by introducing new function symbol +, and new
axiom VxVyA(x, y, x+y). G* is a conservative extension of &. If —G—;B for all

valid formulas B in Presburger arithmetic, then we say that & is complete with
respect to Presburger arithmetic (complete w.r.t. PAR for short).
Now our purpose is to give a proof of the following theorem.

THEOREM. Let G be complete w.r.t. PAR, then the following (1) and (2)

are equivalent.

D g L(a)—4(a)

(2) For some number k,

a term \S(_‘i(-;g(o)) ).)

n-times

G I'()—d(n) for all natural number n. (Where # 1is
k

§2. Proof of the theorem.

That (1) implies (2) is trivial. So we only prove that (2) implies (1).

Let P, be proof figures of I'(f)— 4(#%) in G, with at most k inference rules.
We can assume without loss of generality that
(1) Ps are all cut free, and
(2) In all basic sequents A—A in B,, A is an atomic formula. This can be
done by the same way as in Parikh [2; proof of lemma B and theorem 2] or
in Yukami [3; §1]. We only change the number % by a suitable &’.
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DEFINITION. For each term occurrence in B, we define,
(1) If an atomic formula F(¢t,---f,) is a subformula occurrence of a formula
occurrence in PB,, then each occurrenc ¢; is a normal occurrence.
(2) If f(¢,--- t,) is a normal occurrence and f is not S, then each #; is a normal
occurrence.
(3) If S(S(--- (S(t)---) is a normal occurrence and ¢ is not of the form S(u), then
t is a normal occurrence.

NoOTATION. For terms of the form S(S(--- (S(¢) --+), we write S¥(¢) for short.
i-times
Now we mark each P, with # from end-sequent [(#)— 4(n) up to basic
sequents as follows.
(1) For each term occurrence ¢ in end-sequent, we mark it according to its
structure. For each minimal normal occurrences,

SH0)=> £S5 4(0)
SHa)=> £S"#(a)
SUx)> 4S5 #(x)
If 1=0 or its outermost symbol is not S, then we don’t mark it.
. ~ . . . -/_\/
For t, we write ¢ for its marked occurrence. Then inductively, j{¢; - )
. . —~ - ) .
is f(t,--t,) and S%¥) is #S"#(t), where S%?) is normal and ¢ is not of the form
S(u).
Finally we add # to enclose those occurrences of S® of 7 which are sub-
stituted for a in /(a)— 4(a).
(2) For rules of LK
We assume that lower sequents of inference rules have already been marked.

4 I,—4, Ti—4,

(21) - Hi-:/ji or — -4

is an inference of LK other than V- or d-rules.
In this case we can naturally transfer the marks of the lower sequent to
the upper sequent. (Note that no cut rules appear in P,.)

=4, A

@2) 4, QxA(x)

where Q is V or 3.

~ ~ Fama Nrg
Let the marked sequent corresponding to the lower sequent to I'— 4, QxA(x).
Then for the upper sequent, we take '—4, ﬁ(f) where ﬁ(f) is the result of

. . S~ .. . .
substituting # for x in A(x) and { is a marked occurrence of ¢+ which is marked
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as in (1).
(2.3) The dual inferences of (2.2) are treated similarly as in (2.2).
(3) For the rules not of LK

(38.1) EQ-rules

- t:—t’gzj» where [—J

is for the lower sequent. In this case we take for the upper sequent, :=:, { —.l.

A - A= AP ) DP( ), T=4
I'—4

In this case we take for the upper sequent,
L= A oo Ng=Tin APy -+ E)DP(il, - f1,), T— 4.

tlzul/\ tn:uan(tl tn):f(ul un)y F—j_:{,a
r—4

In this case we take for the upper sequent,
L=t A o Np= 0, D, T )=f(fy - fig), [— 1

if fis not S and F=aD#SE{)=4S§(@), [—4 if f is S.
(3.2) Critical rules

A T—4

I'—4

We have I'— 4 for the lower sequent. Now we make A as in (1), and
further we enclose the explicit occurrences of S and critical term occurrences
as follows. Let #S'4#(f) be an occurrence which is marked in ﬁ, and S%i) be
S(--- (S5(S --- S(1) ---), where i, S’s are consecutive explicit occurrences of S or
——— ———

i1-times 4z-times

S(--- (S(#) --+) is a critical term occurrence. Now we add # to #S'#(f) and make

#S514S2¢(7). In this way we make %f, and take for the upper sequent A, I'— 4.

NoTATION. We write 8, for the maked proof figure.

DerFINITION. In B, we call occurrences of consecutive S’s enclosed by #
blocks. And,
(1) The blocks produced at the stage of the end-sequent, we call $S™# in £S™#(0),
where S™0) is the occurrence of 7 in I'(fi)— 4(7#) substituted for a in I'(a)— 4(a),
designated blocks. All the other blocks in the end-sequent are called invariant
blocks.
(2) In (3.1) for EQ-rules for the function symbol S, outermost blocks #S#’s in
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£S#(f) and #S#(#) are also invariant.
(3) In (3.2) additional blocks £S%f in £S“1£S%# () are also invariant.
(4) Designated blocks (d-blocks) and invariant blocks (i-blocks) are transfered
from a lower sequent to upper sequents at each stage.
(5) The blocks which are neither designated nor invariant are called neutral
blocks (n-blocks).

Now we transform each §I~3n to a proof figure B} in an extended system G*
with a function symbol + and construct a set of equations.

Let ¢ be defined as follows;

@(0)=0

pla)=a

pln=x

e(#S #(D)=¢()+7;

e(f(t - ta))=F(p(t)) - (tn))

according to its structure. In the above

a, if $S'4 is a d-block

;=1 7 if $S%% is an i-block
by if #S5% is an n-block

where {aq, by, by, ==+, bj, -} is a set of new free variables.

REMARK. Reflections on the marking procedures tell us that each normal
occurrence has at most three blocks in its outermost part.

We write ¢(A) for the formula which is obtained from a marked formula A
by replacing each term occurrence ¢ in A by (), and ¢(I'—4) for the sequent
which is obtained from a marked sequent /4 by replacing each formula A in
I'—4 by ¢(A).

Let P(¢ --- t,)— P(ty -+~ t,) be a basic sequent in ifsn. Observe that two oc-
currences of ¢; in this sequent may have different marks, so we distinguish
these two occurrences by denoting P(# --- t1)— P(#} --- t2).

We construct a finite set of equations for each pair (¢}, t;) as follows. Let
ub and u} are two corresponding normal subterm occurrences in t} and ¢}, then
we construct Q(u!, u?) such that Q(u}, u)=80}, vHJE@u}, u3), where E(ul, u3) is
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& If ujis 1lv}, u} is 2v} v} and v} are normal, (1] and 3
consist of the same™ blocks.
(*) with regard to also their kinds (d-block, i-block or n-block)
h(a,, b)=gla,, b) Otherwise. Where 4 and g are corresponding terms of fij
and 2. For instance, if [0 is #$S“#S%% and 3] is
$S1BS4S%, then  hlaq, b) is ti,+7,, and olay, b) is
Tyt T T,

— 1 g
“(“)pu}wz}p *P(:}-w%ﬁ"ls\ijgnQ(iz, )

gﬂ:U‘QP(Li slpmpaderd) where P(t} --- th)—P(t3 -~ £})
ranges over all basic sequents in P,.

By gp(iﬁn) we denote the figure obtained from T, by replacing each sequent
I'-4in §, by o(I'— 4). Although inferences in go(’Bn) are correct derived rules
in G*, top sequents in go(fs',,) are not basic sequents. But for each such sequent

we can construct a proof figure in G* of

n, Plp(t}) -+ @(ti))— Plo(t3) -+ o(t2)) .

From these figures and @(%n), we obtain a proof figure of the segent
24, o(I'(7))— o(A(11)) .

It is easy to see that this sequent is equivalent in G* to £2,, [(a,)— Xa,). So
we get the proof figure of 2,, [(a,)— 4(a,).
2, is a set of equations h(a,, b)=g(a,, b), and h, g are of the form a,+ - +a;
(1=j=3) where «a; is one of the followings:
(i) free variables a,, b,, -
(ii) numerals (bounded depending only on I(a)— 4(a) and schemata
Now we define

& LR &
=0y ’ vr)

Culay=33], A, Uila, H=gla D}].

h

(In the above we write b for some finite sequence b, -+, b;,, which are ele-
ments of {by, by, -} and 3% for Jx;Ix;, -~ Ix;,.) Then we get the proof figure
PB% of Culay), Ia,)—d(a,). (Note that free variables b,, by, -+ do not appear in
F(ao)_’d((lo)-)

We claim that the number of equations in £, is bounded by some number
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uniformly in n. If it is the case, then {C,(a,)} can be divided into finite classes
by their logical equivalence in G*.
Let C, (a,), -, C,(a,) be their representatives, then

————— Crlag), I'(a)—d(ag) for all 1=j<s.

Now \j/ C,j(a(,) isTa valid formula in Presburger arithmetic.
1758

In fact for each n, C,(#) is valid (suitable numbers m;,, --- can be read off
from B, such that h(#i, iy, ---)=g(#, M, ---) is true for all h=g in 2,). Culay)
is equivalent to C, [a,) for some r;. So C,(7) is valid. From these and that G

is complete w.r.t. PAR and G* is conservative over G, we get 7;77»[ (ao)— d(ay).

Now we show the following claim.

Claim: The number of equations in 2, is bounded uniformly in 7.

Let us ignore term occurrences in P, and look at the logical structure of
each sequent and kinds of inference rules in $,. Let’s call this a skeleton of
B,. Since lengths of P,’s are bounded by k, B,’s are cut free and basic sequ-
ents in B,’s are all atomic, all the skeletons arising from P,’s are finite.

We call [_| of blocked normal term occurrence |[_|¢, a building (blg.) of this
occurrence (¢ is normal and not of the form Su). A blg. is said to be regular if
it consists of only one n-block. Now if E(u}, u}) becomes non-empty, then at
least one of [0 or [2] is not regular. (u! and u} are two corresponding normal
occurrences in a basic sequent and u} is @v} and u} is [2lv}, where v} and v} are
normal occurrences not of the form Sw.) Observe that all non-regular blg.’s are
produced at one of the following stages.

(i) End-sequent ['(7)— 4(71)

At this stage, only d-blocks and i-blocks are produced. The number of the
non-regular blg.’s depends only on [ (a)— 4(a).

(i) V-left or J-right rules in which a bounded term ¢ is of the form S (u is
normal and 1>0).

In I'—4, At At), =4

T—4,3xA(x) % Vi), I—4

if there are normal occurrences which include a bonded term occurrence ¢ as

their subterm and are of the form S%¢, then #S7#S%#u arise in the upper sequent
and non-regular blg.’s #S7#S'# arise. Since §,(A(x)) is at most k,=max {k, the
number of bound variable occurrences in I'(¢)— 4(a)}, the number of these non-
regular blg.’s=<k;.

: . t=uDSt=Su, I'=4
(iii) EQ-rules A

in which ¢ or u is of the form S (v is
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normal and not of the form Sw) and 1=0.

In this case at most 2 non-regular blg.’s arise.
. .. A, I'—4
(iv) Critical rules LA

In this case, if A contains normal occurrences ShS%1¢, -+, S«S7¢, (4, -, 1,
are normal, not of the form Sw) and S'»’s are explicit occurrences of S or
Simt,’s are critical term occurrences, then non-regular blg.’s #SmgSing’s
arise. Since (A)=<k, the number of non-regular blg.’s arising from critical term
occurrences is at most k. Here we cannot estimate the blg’s arising from explicit
S’s. But we must observe that such a non-regular blg. consists of only one
i-block (note that if i,+#0, S'mS’nt, is a critical term) and for all i-blocks
£S’'#’s, j's are bounded by some number which depends only on [(a)— 4(a) and
schemata ¢, -+, €.

Now we trace sequents in B, from the end-sequent up to basic sequents and
count the number of non-regular big.’s.

A path in 9B, will mean a sequence of sequents S, --- , S, in P, such that
(i) S, is a basic sequent, (ii) S, is the end-sequent, and (iii) S; is one of upper
sequents of some inference rule (/;) in 2I~3n and S;,, is the lower sequent of I;
(1=i<r). Since skeletons arising from PB,’s are finite, the number of paths in
each P, is bounded uniformly in n, and further, for each path the number of
V-left, 3-right, EQ-rules and Critical rules in it is bounded uniformly in n. Now
for a path in 8., the number of non-regular blg.’s in S, (the end-sequent) depends
only on I'(a)— 4(a).

In tracing from S;,, up to S;,

(i) if I; is one of the structural rules or propositional rules or EQ-rules not
for the function symbol S, then the number of non-regular blg.’s in S; is the
same as in Siii.

(ii) if I; is one of V-left or J-right or EQ-rules for the function symbol, S,
then the number of non-regular blg.’s in S; is greater than in S;;; by at most
max {k,, 2}.

(iii) if I; is a critical rule, then the number of non-regular blg.’s which arise by
way of the critical terms in S; is at most 2. All the other non-regular blg.’s
are one of the i-blocks £S5 (i<m), where m depends only on I(a)— 4(a) and
schemata e, '+, &,

For any basic sequent in $,, {(ub, ud): u} is [ vj and uj is v} and (] or
or [2] is non-regular} is divided into M, and M, such that (i) M, consists of the
pairs such that (1] and don’t consits of only one i-block and (ii) M, consists
of the pairs such that one of [I] or [2] consists of only one i-block. Clearly the
number of the pairs in M, is bounded uniformly in n. For the pairs in M, with
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non-regular and [2], the number of such ({1, [2])’s is also bounded uniformly
in n. For the pairs with a regular or [2], the equations arising from these
are one of the followings: b;=1, i=b; (1=<m), where m is independent of n.
From the above considerations we can conclude that the number of the
equations in £, is bounded uniformly in n. This completes the proof of the
claim. Q.E.D.

COROLLARY-1. On the same assumptions as in the theorem, »——~—>Vx A(x) iff

there is a k such that (Vn)%G— — A(7).
k

COROLLARY-2. (Parikh [2; Theorem 3])
P4 —VxA(x) iff there is a k such that (Vn)——— PA* A(n).

(proof) We can prove the claim for the following formulation of P4*, We
omitt the EQ-rules and instead take the schema :

VEVI(ti=y:1 A - Axp=yaAo(xy - x)D0(y1 - Yn)

Observe that (Yn)|- -A(7) implies an existence of » such that (Vn)— - A(#).

k
PA*

PA*
(This is because of the fact that PA* has only one unary function symbol S.
cf. Parikh [2: Theorem 2].) So if we take k’=max {k, }, then (Vn) PA* - —A(n).
Hence the result follows from the theorem. Q.E.D.
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