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1. Intreduction.

Let R be a ring with identity and P be a special subring of M,(R) (7)),
i.e. P is of the form

P={AeM,(R); Ai;=0 for (7, j)&p},

where p is a (reflexive and transitive) relation on the set {1, 2, ---, n}, and M,(R)
is the ring of nXn matrices over R.

In this paper we study the group D2®(P) of all R-derivations of order s ([5],
[81—T[11]) of P. We prove (Theorem 5.3) that every element d<DZP) has a
unique representation of the form d=d®*d®, where d® is an inner derivation
in DEP) ([8]), and d® is an element of a certain abelian subgroup of DE(P)
whose simple description is given in Section 3 (by * we denote the multiplication
in the group DZ(P)). This theorem plays a basic role in our further considera-
tions.

Moreover, in Section 4, we give some necessary and suffiecient conditions for
a ring P to have all R-derivations (all derivations) of order s of P to be inner.

In Sections 7,8,9 we investigate s’-integrable R-derivations of order s (where
s<s’) i.e. such R-derivations of order s which can be extended to R-derivations
of order s’ (comp. [4]). We show in Example 7.4 that, in general, there are
non-integrable R-derivations of P. We prove (Theorem 9.6) that if the homology
group H,(I") of the simplicial complex I” of the relation p (Section 2) is free
abelian, then every usual R-derivation is 3-integrable, and if, in addition, H,(I")
=0 then every R-derivation of order s is s’-integrable for any s<s’ (Theorem
8.6).

At the end of this paper, we formulate three open problems.

2. Preliminaries.

Throughout this paper R is a ring with identity, n is a fixed natural number
and p is a reflexive and transitive relation on the set I,={1, 2, ---, n}.
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We denote by M,(R) the ring of nXn matrices over R and by Z(R) the
center of R.
Moreover, we use the following conventions:

S=a segment of N={0, 1, ---}, that is, S=Nor S={0, 1, ---, %} for some
integer k=0
s=sup(S)=co,
Aij=ij-coefficient of a matrix A,
Eii=the element of the standard basis of M,(R),
7=the diagonal matrix whose all coefficients on the diagonal are equal
to reR,
M,(R),=the set {AeM,(R); A;;=0 for (, DEFIR

It is clear, that M,(R), is a subring of M,(R). (Conversely, if ¢ is a re-
flexive relation on I, and M,(R), is a subring of M,(R), then o is transitive).
We say that the subring P=M,(R), of M(R) is special with the relation p.

Let P be an arbitrary ring with identity. A sequence d=(dm)mes of map-
pings dn:P—P is called a derivation of order s of P (see [5], [8], 791, (107,
[117) if the sollowing properties are satisfied :

(]-) dwz(a+h):dm(a)+dm(b):
@) dnlab)= 3 dia)db),
3) do@)=a,

for all meS and a, beP.
The set D(P) of all derivations of order s of P is a group under the multi-
plication * defined by the formula

(d*d,)mT Z di°d})
i+j=m
wehre d, d’eDy(P) and meS ([9], [10], [4D).

If eeP and 2=S\{0} then by [a, k] we denote the element of Dy (P) de-
fined by
X, if m=0,
[a, kln(x)=30, it BYym,

ax—axa, if m=kr>0,
for meS, x=P ([8)).

If a=(an)mesua iS a sequence of elements of P then by A(g) we denote the
inner derivation of order s of P with respect to g ([8]), i.e., A(ag) is a derivation
of order s of P such that
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A(@)n=(lay, 11% -+ *[am, mDn

for all meS. The set of inner derivations of order s of P, denoted by ID,(P),
is a normal subgroup of D,(P) ([8] Corollary 3.3).

Recall that the usual derivation of P is an additive mapping ¢:P—P such
that 6(ab)=06(a)b-+ad(b), for all a, b P.

The set of usual derivations of P corresponds bijectively to the set D.(P),
namely if deD,(P) then d, is an usual derivation of P.

We now assume that P is a special subring of M,(R) with the relation p.

Observe that we can extend every derivation of order s of R to a derivation
of order s of P.

Indeed, if dD,(R) then the sequence d=(dn)mes Of mappings dn:P—P
defined by dn(A);=0n(A:;) (for AP, meS) is a derivation of order s of P
such that d,(F)=0,() for any reR, meS.

Look also on a generalization of the above fact.

ExaMPLE 2.1. Let 7 be the smallest equivalence relation on I, containing
p, T a fixed set of representatives of equivalence classes of g, and v: I,—T the
mapping defined by :
v(p)=t iff ppt.

Moreover, let d=(d);er be a sequence of elements of D(R). Consider the
sequence &(d)=(dn)mes of mappings from P to P defined as follows

dm(A>ij:d7(;,}(i))(Aij)
for all meS, AsP.
It is easy to verify that @(d) belongs to D (P).

If a derivation deD,(P) satisfies following equivalent two conditions :

4) dn(FA)=Fd,(4) for all meS, reR, AP,
(5) dn(F)=0 for all meS\{0}, rER,

then d is called R-derivation of order s of P, and the set of all such derivations
is denoted by DE(P).

We define similarly an usual R-derivation, an inner R-derivation and the set
IDS(P). 1t is clear, that DE(P) is a subgroup of D,(P), and (by [8] Corollary
3.3) IDE(P) is a normal subgroup of D¥P). An inner derivation A(A), where
A=(A), csua IS a sequence of matrices of P, belongs to ID{P) iff A™e
M (Z(R)) for any m.
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LEMMA 2.2, If d=DX(P) then dn(E?%);;eZ(R) for any meS and all i, j, p, g
e, such that ppq.

ProOOF. Let r&R. Sinde FEP—[EPi¥=( then
O=d,(FEPI—E?F),;
= 2 (du(P)dE")—d (EPDd 7))

=(Fdm(EP")—~dn(EP))F) s
7'dm(qu)ij_'_d«’WL(Eﬁq)ij7’

Usual derivations and usual R-derivations of P are investigated in [6], [1],
[2], [7]. In this paper (Section 5) we give a description of the group DE(P).

Let s<Coo, and S’ be a segment of N such that S&S’. We say (comp. [4])
that an R-derivation deDF(P) is s'-integrable (where s'=sup(S)=<oo) if there
exists an R-derivation d’€DZE(P) such that dl,=d,, for all meS. We will study
such derivations in Sections 7, 8, 9.

Now we will define the graph I’ of the relation p. Let ~ be the equivalence
relation on 7, defined by :

x~y iff xpy and wypx.

Denote by [x] the equivalence class of xeI, with respect to ~, and let I, be
the set of all equivalence classes. We define a relation o’ of partial order on 7,
as follows :

Lxlp’ly] iff xpy.

We will denote the pair (I7, p’) by I' (or I'(p)) and calle it the graph of p.
Elements of I, we calle vertices of I and pairs (a, b), where ap’b and a#b,
arrows of I

Let us imbed the set of the vertices of /" in an Euclidean space of a suffi-
ciently high dimension so that the vertices will be linearly independent.

If a,, a;, -, a; are elements of I, such that a;p’a;y; and a;#a;, for i=
0,1, -, k=1, then by (a,, a;, -, a;) we denote the k-dimensional simplex with
vertices aq, -+, @, ([3]). The union of all 0, 1, 2 or 3-dimensional such simplicies
we will denote also by I. Therefore, I is a simplicial complex of dimension
=3.

Let Ci(I"), for k=0, 1, 2, 3, be the free abelian group whose free generetors
are k-dimensional simplicies of the complex I” We have the following standard
complex of abelian groups:
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0y s 0
> Co(I) CI) G C(l) ———0,

0 —

where

o\(a, by=(b)—(a),
d:(a, b, )=(b, )—(a, 0)+(a, b),
os(a, b, ¢, )=, ¢, d)—(a, ¢, d)+(a, b, d)—(q, b, ¢).
Then H,(I"y=Ker 0,/Im 0., Hy(I")=Ker d,/Im 9, and (by the Kiinneth formulas)
HYI', G)y=Hom (H,(I"), G)

for an arbitrary abelian group G (see [3]).

In the sequel P denotes a special subring of M,(R) with the relation p.

3. Transitive mappings.

Recall from [7] that a mapping ¢: p—Z(R) is called transitive if o(p, r)=
olp, ¢)+o(g, r) for ppg, gor. In this paper such mappings will be called usual
transitive mappings from p to R.

DEFINITION 3.1. A sequence f=(fn)nes Of mappings [, :p0—Z(R) is called
a iransitive mapping of order s from p to R if the following properties are
satisfied :

@ fuolp, ¢)=1 for all ppgq,
0) fulp, )= 3 filb, 9filg, 7) for all meS and pogor.

We denote by TM(p, R) the set of transitive mappings of order s from p
to R.
By the above definition it follows that if feTM(p, R) then
f1(p, ) —1(p, @)—fi(q, )=0,
i.e. f, is an wvsual transitive mapping from p to R, and
Folp, M)—1:p, @—Sola, r)=1i(p, @)f:(q, 7)),
Ity 1)=1s(p, @ —Tsg, V=11(p, O)f g, V)+1p, ¢)f3lq, ¥)
for all pogpr.

It is easy to prove

LeMMA 3.2, (1) fulp, p)=0, for all pl,, meS\{0}.
(2) If ppg and qpp, and fup, )= =fa(p, @=0 for some m=2, then
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Filp, Q)=(—D*f(p, O)¥=Ff:lq, p)* for k=0, ---, m.

ExaMPLE 3.3. If QSR and ¢:p—Z(R) is an usual transitive mapping then
the sequence (fn)mesr Where fn(p, @)=m D™ ¢(p, @™, is a transitive mapping of
order s from p to K.

ExampPLE 3.4. Let
1—>2
o= \ /
3

Put fn(l, 2)=fn(, 3)=1 and fn(2, 3)=0 for all m=S\{0}. Then f=frn)mes
belongs to TAM(p, R).

ExamMpLE 3.5. Let

E—

D ——

If fm, for any me=S\{0}, is an arbitrary mapping from p to Z(R) then (fi)mes
is a transitive mapping of order s from p to R.

Let f, geTM,(p, R). Denote by f+g the sequence (Ay)mes of mappings from
o to Z(R) defined by
i+j=m

for all meS and ppg.
Then fxg belongs to TM(p, R) and it is easy to check that the set TM(p, K),
under the multiplication *, is an abelian group.

For every f€TM(p, R) we will denote by A’ the sequence (4f),=s of map-
pings Af, : PP defined by the following formula

A%L(A)pq:fm(ﬁ; @ Apg,
for all A=P and ppq.
Then we have

LEMMA 3.6. The sequence AY is an R-derivation of order s of P.

ProoOF. Every Al is obviously an R-additive mapping. Let A, BeP and
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ppg. Then

3 AL(A) i (B)ig

0=

Ms

(2 arai-um) =

k=0 k

-

Il
Ms
Ma=

Felp, D fm-2(i, @)Ap:Big

e
il
)
o,
il

1
=35 /b, DAnBig

=fm(p, ONAB)pq

=AL(AB),, -
Therefore

ALAB)= 3 A[(A)AL-(B),
for all meS and A, BEP.

PROPOSITION 3.7. The mapping f—A7 is a group monomorphism from
TMp, R) to DEP).

PrROOF. The condition AT¢=A’xA# follows from definition of multiplications.
Suppose now that A’=AZ? for some f, g TM,(p, R). Then, for ppg and meS,
we have

b, Q=AR(E?D) pq=A5(E?)pe=8gn(b, @),
ie. f=g.

4. Inner derivations.

Recall from [7] that if f is an usual transitive mapping from p to R then f
is called #rivial iff there exists a mapping o : [,—Z(R) such that f(p, @)=ao(p)—
o(g) for all ppg. We say that the relation p is regular over R iff every usual
transitive mapping from p to R is trivial.

Combining [8] Theorem 4.2 with results of the paper [7] we obtain the
following two theorems

THEOREM 4.1. Let P be a special subring of My(R) with the relation p.
The following conditions are equivalent

(1) Every R-derivation of order s of P is inner,
(2) Every usual R-derivation of P is inner,

(3) The relation p is regular over Z(R),

(4) The relation p’ is regular over Z(R),
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(5) H'I'(p), Z(R)=0.

THEOREM 4.2. Let P be a special subring of ML(R) with the relation p.
Denote by w, ws, 1, u’ the following senlences:

w=%FEverv usual derivation of R is inner”,

wy=%“Every derivation of order s of R is inner”,

u=“The relation p is regular over Z(R)”,

1’ =“The relation p’ is regular over Z(R)”.

Then the following conditions are equivalent :

(1) Every derivation of order s of P is inner,
(2) Every usual derivation of P is inner,

B) w and u,

@ ws and u,

G) wand v,

6) ws and v,

(7 w and H (p), Z(R))=0,

® ws and H'I'(p), Z(R))=0.

ExaMPLE 4.3, If P=M,(R), where

a) n=3, or

b) the graph ['(p) is a tree, or

¢) the graph I'(p) is a conne (i.e. there exists b, such that bpa or apb
for any a=l,) in particular P=M,(R) or P is the ring of triangular nXn matrices
over R, or

d) the graph ['(p) is of the form

then every R-derivation (or every derivation, if every usual derivation of R is
inner) of order s of P is inner (see [7]).

5. The group D¥P).

In this section we give a description of the group DE(P).
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We start from the following two lemmas.

LEMMA 5.1. Let deDE(P), meS\{0}. Assume that dp(£%),,=0 for k=
1,2, -, m and all p#q. Then

(1) du(E??),,=0 for k=1,2, -, m and any pel,,
and

(1) dp(E)pe=0 for k=1, 2, ---, m and all ipj, ppq such that (p, )+, ).

Proor. (by induction with respect to m). If m=1 then this lemma follows
from [7] Lemma 3.1. Let m>>1 and suppose that the conditions (i) and (ii)
hold for any k<m. We show that then

(1) dulE¥)p,=0 for i#p, j+q,
(2) dn(E??),,=0 for any pel,,
@) dnlE??)p;=0 for p+#j,
4) dnp(EP9,,=0 for p+#i,
B) dn(E?9,,;=0 for q#j.

For example we verify (1) and (2). The proofs of the conditions (3)-(5) are
similar.
(1) Let ¢#p, j+#q, and ppg, ipj. Then

dm(EU)pq:dm(E“Eﬁ)pq
= 3 (BB,

= E E dk(Eij)ple(Ejj)'rq .

EiTmm T
Hence, by induction, we have
dm(EU)png(do(EU>prdm(Ejj)rq'l—de(Eij>prdo(Ejj)rq)
=273 (0d w(E¥)pgtdm(E")5,0)=0.
(2) Let pel,. Then
dn(EPP)pp=d(EPPE?P)
= 2 (di(EP?)d(EP?))pp

i+j=m

= 3 SddEP)dE?),,

t+j=m 1

:2 (do(Epp)prdm(Epp)rp"JFdm(Epp)prdo(Epp)rp>

:dm<Em)>pp'*'dm(Epp)p-p .
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Hence d,(E??),,=0.

LEMMA 5.2. Let d=DEP). Assume that d,(E"),,=0 for all meS\{0} and
all ppq. Then the sequence f=(fn)mes of mappings from p to R defined by
Falp, @=dn(EP))y, for ppq is a transitive mapping of order s from p to R.

PROOF. Lemma 2.2 implies that f.(p, 9)€Z(R) for all ppog. Now let ppqpr,
meS. By Lemma 5.1 we have

Jalp, 1) =dn(EP) py=d n(EPIET),,
=(, 2 A(EPd(E™),,

:; i+§mdi(qu)pzdj(Eqr)tr
=, 2 QlEPDpqd j(E)q
=2, S i, 1),

ie. feTMp, R).
Now we can prove the following

THEOREM 5.3. Let P be a special subring of Mu(R) with the relation p.
Every R-derivation d of order s of P has a unique representation :

0) d=A(A»A/,
where

(1) A=(A"™)nesun 7S a sequence of matrices A™ e PN\M(Z(R)) such that
AP =0 for i=1,2, -, n,

(2) [ is a transitive mapping of order s from p to R.

Proor. (I). Let deDF(P). We define matrices A, A®, ... inductively

as follows:

Az(nlq) =d1(E9) g,
and

A =dm (E) . for 1<m<s,
where

d(m):<[A(l), 1]* e *I:A(m)’ 7ﬂ])~1*d .
Put 6=00n)mes, Where d,=idp and d,=d{™ for m=1. Let A=(A"™),csun and
let f=(fm)mes be the sequence of mappings from p to R defined by

Fulp, @=0m(EP)p,
for all meS, ppg.
We show that A and f satisfy conditions (0), (1) and (2) of this theorem.

Observe first that
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a) di™w=d{®» for any k=m,
b) 6 is an R-derivation of order s of P,
¢) d=A(A)«0.
Now we prove that
d) 0n(E19),,=0 for meS\{0} and p+#q.
In fact, for m=1 we have

0(E") pg=d (" (E")pq
=([A®, I17*d)i(EY)p,
=—[AY, 11(E") p+d:i(EY)p,
=—(AWEU—EYAW), 4 AR
=— A+ Af=0
and, if m>1 then
On(E™)q=d P (E),
=A™, m] +d ™) ()
=( B [A™, mI3'ed ™ D)E®),,

i+j=m
m=-1
=LA, M E=) (S 0d im0 J(E®) - dip = (B,
:_(A(m)qu_.quA(m))pq_i_A%L)
=—AMW 4+ A =0,
Using b), d), a) and Lemma 5.1 we have
e) AR =dPP=d(E??),,=0 for m=2.
Moreover, AS)=0, since
Apy=d,\(EP?)p,=d,(EPPEPP)p=Ah+ AL .
Observe also that
f) A™eM,(Z(R)NP (by Lemma 2.2),
and

g) f is a transitive mapping of order s from p to R (by b), d) and Lemma
5.2).
It remains to show that

h) o=A7.
If XeP, meS and ppq then

am(X)pq:5m(iZj XijEij)pq
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= Xiibm(ED)pq
=2 Xifn(E)n,
=Xpfm(E?9)y, (by d) and Lemma 5.1)

?:qu'fm(p; Q)

=AL(X) g, ie, o0=A7.
(II). Suppose that
A(A)AT =A(B)+A®

where A, f and B, g satisfy conditions (1) and (2).
Then, for p+#gq,

AG) =(A(AAT)((E®) py=(A(B)*A*)(E*) p= By -

So AW=B®,
Suppose that AV =B® ... A™=B™ for some m<s. Then

A(()’ 0’ A(m+1), A(m+2)’ .,.)*Af::([A(J)’ 1 - ¥[A™), m])"l*/-‘\(f_l)*Af
::(I:B(l)’ l]* _-k[B(m), Tn’])—l*A(,B)*Ag
ZAQ, -+, 0, B BUDL)4Ae

hence
A)(ﬁ“):(A(O, T ()’ A(m+1)’ A(m+2), "')*Af)m+1(qu)pq
:(A(O, e 0’ B(WLH)’ B(m+2)’ _,,)*Ag)mH(qu)pq
=p{mn for p+#gq,
and hence

A(m+1) :B(mH)

Therefore’ bY induction, A:‘B,
Further we have
AT =A(A) +(A(A)*A7)
=A(B)"*(A(B)*A*%)=A%

hence, by Proposition 3.7, we obtain that f=g. This completes the proof.

6. Corollaries to Theorem 5.3.

Let S’ be a segment of N such that SCS’ and let s'=sup(S’)=co. We say
that a transitive mapping f€ TM,(p, R) is s'-integrable if there exists a transitive
mapping f'€TMp, R) such that f,,=f, for all meS.

As an immediate consequence of Theorem 5.3 we have
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COROLLARY 6.1. The following conditions are equivalent :
(1) Every R-derivation of order s of P is s’-integrable,

(2) Every transitive mapping of order s from p to R is s’-integrable.

If Uis an ideal in P, then U=[U,;], where U,; are ideals of R for any i, 7
(see [7] Lemma 2.1). Therefore from Theorem 5.3 we get

COROLLARY 6.2. If d€DEP) and U is an ideal in P then d (NS U for all

meS.
Observe also that from Theorem 5.3 follows

COROLLARY 6.3. If d=DE(P) and C is the center of P, then d(C)=0 for all
meS\{0}.

Denote by I(P) the set of all matrices A<P such that A,p=0 for all pel,.
It is easy to verify the following two lemmas.

LEMMA 6.4. The folowing conditions are equivalent :

(1) I(P) is an ideal in P,

(2) I(P)is a left-ideal in P,

(3) I(P) is a right-ideal in P,

(4) ABeI(P) for all A, B€I(P),

(5) AB—BAeI(P) for all A, BeI(P),

(6) AB—BAeI(P) for all AcI(P), BEPF,
(7) The relation p is partial order.

LEMMA 6.5 The following two conditions are equivalent:

(1) AB=0 for all A, B€I(P),
(2) There do not exist three different elements a, b, cE1, such that apboc.

Combining Lemma 6.4 with Theorem 5.3 and Lemma 3.2(1) we obtain

COROLLARY 6.6. Let d=D®P). If the relation p is a partial order then
d(PYSI(P) for all meS\{0}.

We end this section with

COROLLARY 6.7. Assume that there do not exist three different <lements
a, b, ce1l, such that apbpc. Let d=(dn)mes be a sequence of mappings from P to
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P such thot dy=idp.
Then d is an R-derivation of order s of P if and only if every mapping dnm
(for meS\{0}) is an usual R-derivation of P.

Proor. If d=DE(P) then, by Corollary 6.6 and Lemma 6.5, d;(A)d;(B)=0
for ;>0 or ;>0 and any A, B€P. Therefore d,(AB)=Ad(B)+d.(A)B, for
any meS\{0} and 4, BeP. Conversely, if any d, is an usual R-derivation of
P then, by Corollary 6.6, d,(AYSI(P) for any A<P, hence, by Lemma 6.5,
d;(A)d;(B)=0 for any A, BEP and ¢>0 or j>0. Therefore

dn(AB)=Adn(B)+dn(A)B
= 3 d(A)dyB), e d=DHP).

7. Integrable R-derivations.

Let S’ be a segment of N such that SCS’ and let s’=sup(S’)=oo.

In the sequel we shall study s’-integrable R-derivations of order s of P.

In this section, we give some examples of such R-derivations and we show
that in general there are non-integrable R-derivations.

Notice first that, by Corllary 6.1, we may reduce our investigations and to
study only s’-integrable transitive mappings of order s from p to R.

Observe also, that it suffices to consider the case where p is a partial order.

It follows from the following

LEMMA 7.1. The following conditions are equivalent :

(1) Every transitive mapping of order s from p to R is s'-integrable,
(2) Every transitive mapping of order s from p’ to R is s’-integrable.

Proor. Denote by W some fixed set of representatives of the cosets with
respect to~.

(1)=(2). Let g&TM,(p’, R). Consider the sequence f={(fn)nes of mappings
from p to Z(R) defined by fu(x, ¥)=gn([x], [¥]) for all meS and xpy. If
xpypz then [x]p'[y]p’[z] and we have

Inlx, 2)=gu((x], [z])
=i+JZ:}mgi([x], [yDely], [zD)

:i«)—;mfi(x, y)f](y,v Z)

for all m=S. Therefore f=TM,(p, R), and, by (1), there exists f'€TMy(p, R)
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such that fr,=f, for all meS.
Put gi({al, [b)=fia, b) for /€5 and a, b=EW.

Then g'=(glies is a transitive mapping of order s’ from o’ to R. Indeed, if
Lalo’[blp’[c], then apbpc and we have

gillal, [cD=Tila, )
= 2 fula, b)fb, o
= 2 go(lal, [bDgillb], [cD)  forall iS".
Moreover, if meS, [alp’[b] then

gn(lal, [b)=fn(a, b)="1nla, by=gn(la], [b]),

ie. gn=gn for all meS.
(2)=(). Let feTMp, R). We define the element g&=TMp’, R) by

gn(lal, [bD)=/nla, b),

where meS and q, be W.
Let g’ be such an element in TM,(p’, R) that gn=gn for all meS. We
shall construct (by induction) a sequence f'&TM,(p, R) such that

(i) fr=fm  forall meS,
and
(ii) fila, b)=gilal, [b])  for all aq bW and keS’.

If t<s then we put fi=f..
Now let s=t<s" and assuume that (fs, f1, -, fi)€TM,(p, R) and the map-
pings fi, f1, -+, f: satisfy the condition (ii). If xpy then we put

Jinlx, ¥)=gi:([al, [b])
= 3fix, Oftn-ia, )

= 2, Oftnilb, )

+ 3 f4a, D) teanilb, ),

where a, b are elements of W such that x~a, y~b. Lemma 3.2 implies that
fiala, b):gin([(ll [b]) for a, beW.
It remains to show that
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t
fraalx, z)— fialx, V)= fraa, Z):igfé(x; W fte1-1(¥, 2)
for xpypz.
For this purpose we introduce the following notices :
t
(%1, X», xs):iglf%(xl, x0)fte1-i(xe, xs)  fOr xipxspxs,
Alxy, X5 X3, Xa)=(Xg, Xs, x)— (%1, X, x.)

+(x1, Xo, X9)—(x5, X, X3) for Xi10XoP X3 X4
Observe that

(iii) Alxy, X9y X3, x,)=0.

In fact,

Alxy, Xgp Xa, x4):——i§t%(f;(xh xs)“f%(xm X)) f1a1-i(%s, Xg)

¢
+i§f§(—‘fn xz)(,ﬁﬂ—f,(xz, xa)_fgﬂ-i,(xz, X3))

31 ¥, %)
=2 pxs, x2)f4(x, x3)f1(xs, 24)
S CHENINICHED
FE Sl #) filen 2 f 1w )

=0.

Ohserve also that if a, b, ¢ are such elements of W that apbpc then, by (i),
we have

@iv) gia(fald, [eD—giwiLal, [b])—giwi([b], [eD=(a, b, ¢).
In fact, since g’eTMy(p’, R) we have

gin(fad, [eD)—gin(lal, (b)) —gin(lb], Lel)
= 2 gilal, [bDgis1-4([b], [cD

=1
t
:‘L}_;—‘llf;(ay b)f;,—#—l—i(b) C)

=(a, b, ¢).

Now, let xpypz and let g, b, ¢ be such elements of W that a~x, b~y, c~z.
Then, by (iii), (iv) and by the fact thet (y, y, 2)=0 (Lemma 3.2) we obtain
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Jialx, 2)—fin(x, )= fiaa(y, 2)

=(a, b, ¢)
+(x, a, 2)—(z, ¢, 2)+(a, ¢, 2)
—(x, a, )+, b, v)—(a, b, v)
—(y, b, 2)+(z, ¢, 2)—(b, ¢, 2)

=((a, y, 2)—(x, y, 2)+(x, a, 2)—(x, a, ¥))
—((b, ¢, 2)—(a, ¢, z)+(a, b, 2)—(a, b, ¢))
+(b, v, 2)—(a, 3, 2)+(a, b, 2)—(a, b, y))

+(x, 3, 2)—(3, 9, 2)
=A(x, a, v, z)—Ala, b, ¢, z)+A(a, b, v, 2)—A(y, b, v, z)
+(x, 3, 2)—(y, 9, 2)
=(x, 3, 2—(y, 3, 2)
=(x, 3, 2).
This completes the proof.

ExAMPLE 7.2. Let P be such as in Example 4.3. Since DE(P)=ID¥P) then
every R-derivation of order s of P is s’-integrable (for any s’).

ExaMPLE 7.3. Let P=M/(R), where

L g RO RR
. 10 RRR

o=| [ ie Py g R0l
de—2 000 R

There exist R-derivations of order s of P which are not inner ([7]). But, by
Corollary 6.1 and Example 3.5, every K-derivation of order s of P is s’-integrable,
for any s’<co (see also Corollary 6.7).

ExAMPLE 7.4. Consider the following relation p on the set I,
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4 3 2 1
Owywy//l
EAVAZAR
| N
Ly el

\y\/o
0 /O 0/(0\0«

1 2 3 4 (see [7] Section 5).

\

1] 1

Let R=Z, and let f,:p—Z, be the usual transitive mapping from p to Z,
defined by the numbers at the arrows (for example f,(14,1)=1, f,(10,2)=0).

Let fola, b)=1 for all apb. Then f=(f,, f1) is a transitive mapping of order
1 from p to Z,. We show that f is not 2-integrable. Suppose that there exists
fs: p—Z, such that

faola, e)=fs(a, b)+1u(b, o)+ fila, b)f.(b, ),

for any apbpc.
Denote f,(a, b) by (a, b). Then we have

1=/1(14, 1)f.(1, 6)
=(14,6)+(14, D+(1,6)

=[(14,12)+(10, 12)4-(10, +(1, 2)+3, 2)+(3, H)+6, 4H)-+5, 6)]
+[(1,2)+(3,2)+3, H)+6, H+6, 6)+(1, 6)+(10, 1)+(10, 12)+(14, 12) ] 471, 6)
=0.

The above example and Corollary 6.1 show that there exist non-integ.able R-
derivations of P.

8. A necessary condition for s’-integrability.

Let I'=I"(p)=(I}, p’) be the graph of the relation o (see Section 2), and
FeTM,(p’, R).

If a, b, ¢ are such elements in [; that ap’bp’c then by #aq, b, ¢) we denote
the element (a, ¢)—(a, b)—(b, ¢) of C(I"), and by fnula, b, ¢), for meS, we
denote the element

3 £, b fmir-ilb, ©)

1=1
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of Z(R).
For example :

fila, b, =0,

Fia, b, O=fila, b)f:(b, €,

fsla, b, e)=fila, b)f3(b, &)+ fala, b)fi(b, ©) .
Consider the following equality (in the group C,(I"):

(%) 2 zit(ay, by, ¢)=0,

i=1

where kEN: 21 ZkEZ and aiplbiﬂici for Z':l, 2, e, k.

DeFINITION 8.1. Let s<<oo. We say that ' is an s-graph over R if for any
transitive mapping f of order s from p’ to R and for any equality of the form
() holds

k

> Zi]?s 11(@y sy c)=0.

i=1
For example, I"is a l-graph over R if for every usual transitive mapping
¢:p'—Z(R) and for every equality () holds

k
2 ziplas, ba)plds, ¢)=0,

and I is a 2-graph over R if for every f=(f,, f1, fo€TM,(p’, R) and for every
equality (*) holds

éozf(f‘(““ ba)falbs, c)+folas, ba) f1(bs, c))=0.

In Section 9 we prove that every graph [ is a l-graph and is a 2-graph over
an arbitrary ring R.

ExAMPLE 8.2. Let

We show that I'=(/,, p) is an s-graph over an arbitrary ring R, for any s€AN.
Observe, that for /" we have only one equality of the form (x). Namely,

[, 4—@1,2)—2 H]—-[1,3)—(1,2)—(2,3)]
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+02,4)—2,3)—G,H]-[1,4)—1,3)—-3,4H]=0,
ie. 1(1,2,4)—1(1,2,3)+1(2,3,4)—1(1,3,4)=0.
If seN, f&eTMp, R), then we have
FenrL, 2, )= F0(1, 2, 3)+ F1:(2, 3, 4)— f5:a(1, 3, 4)

Il

S A2 1@ D= F1(L, D) er4(2,3)
+fk(2: 3)fs+1—k(3) 4)_fk(], 3)f3+]~}3(3, 4)]

L HBD12.3)

It

2L 2(f i@ DF

~ 3 (A0 S LLDF2D)f rn-a3,H=0.
= P

Now we prove a necessary condition for any R-derivation of order s of P to
be (s+1)-integrable.

PROPOSITION 8.3. Let P=M,(R),. If every R-derivation of order s of Pis
(s+1)-integrable then I'=I'(p) is an s-graph.

ProOF. Consider in C,(I") the equality of the form (x) and let f =TM(p’, R).
There exists, by Corollary 6.1 and Lemma 7.1, a transitive mapping f’€TM;..(p/,
R) such that f,,=f, for all m=0, 1, ---, s. Observe that, for =1, 2, -+, k,
we have

f§+1(ai; ci)— fsrias, b)—fers(bs, Ci):]?ﬁd(aiy bi, €i) .

Let ¢: C(I")—Z(R) be the group homomorphism defined (for free generators) by
€0(07 b):fg’rl(a) b)'
Then we have

- k
> zifenlay, by, Ci):igzi(f;+l(ai; ci)— fserl@i, b)— fs41(bs, ci))

1=

-

= zdplas bo—play, by—olbs, c)

k
=ol> z.Ha. b. c:
sﬁ(ﬁlzlt(au bi, Cz))
=¢(0)
=0. This completes the proof.

We obtain some examples of s-graphs by the following
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LEMMA 8.4. If H,(I')=0 then I is an s-graph over R for any natural s.

PrROOF. Suppose that in C;(I”) the equality () holds, and let f € TM(p’, R).
We must to show that élzifm(a.,;, by, ¢)=0.

Consider the group homomorphism ¢ :Cy(I")—R defined for free-generators
by ¢(a, b, ¢, )=Fs(a, b, ¢). Since ?‘;zi(ai, b;, ¢c;)€Ker 9, and Ker d,=Im d;, (see
Section 2) then

k l
2 7ilas, biy c= Zully vy w)—(x5 35 1)+ wh, 1= (95 wy 1))

for some uy, -+, w,€Z and x;0’y;0'w;p’t;, 7=1,2, -, L
Therefore, by Example 8.2, we have
k

. k
> zifselay, by, Ci):§0(§12i((li, bi, Ci))

=1
! - -
:Jguj[féwl(xj; Vi wj)"*fsﬂ(?\’j, Yir 1)
+f-s+1(xj’ wj, tj)_f—s+l(yjy Wi, tj)]

l
= Z;ujO::O. This completes the proof.
=

REMARK 8.5. The necessary condition for any R-derivation of order s of P
to be (s41)-integrable given in Proposition 8.3 is not sufficient. For example.
let I” be such as in Example 7.4. Then [ is one-dimensional triangulation of
the projective plane, and therefore H,(I")=0 (see [3]). So, by Lemma 8.4, [ is
a l-graph over Z,. But, by Example 7.4, there exists an R-derivation d of
order 1 of P=M,(R), (where R=Z,) such that d is not 2-integrable.

THEOREM 8.6. Let P be a special subring of M, (R) with the relation p, and
let I'=I"(p) and s<s'Zoo. If Hy(I"=0 and H(I') is a free abelian group then

every R-derivation of order s of P is s'-integrable.

Proor. It follows from Corollary 6.1 and Lemma 7.1 that it is sufficient to
prove that every transitive mapping of order s from p’ to R is (s+1)-integrable.

Let feTMyp’, R) and consider a group homomorphism ¢ :Im8,—Z(R)
defined (for generators) by ¢(9(a, b, ¢))=— Fsea(a, b, ¢). Observe that, by Lemma
8.4, ¢ is a well defined mapping. Since H,(I') is free then ¢ we can extend to
a group homomorphism ¢’ :Kerd,—Z(R). Further, by [7] Lemma 5.5, we can
extend ¢’ to a group homomorphism ¢”:C,([)—Z(R). Put fla, b)=¢"(a, b)
for all ap’b. We show that, for any ap’bp’c, holds
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Ssaila, ©) EHfi(G, b)fj(b, ¢)

itj=$

=1 ausay D)4 Suaalb, )+ 3374, ) sor-ilby 0).
In fact
Jeula, D)= fsia, b)— (b, ¢)
=¢"(a, O)—¢"(a, D)—¢"(b, ¢
=—0"(@(a, b, c))
=—¢(0(a, b, )
=Feula, b, ¢

il
Mo

fila, D) fsin-i(b, ©).

7

il
-

Therefore (1, fi. -+, fs, fs41) i a transitive mapping of order (s+4-1) from p’ to
R, 1Le. f is (s--1)-integrable. This completes the proof.

9. s-graphs.

In this section, using some additional properties of s-graphs, we describe
(for fixed s<s’) a new class of special subrings of M,(R) in which every R-
derivation of order s is s’-integrable.

Let I'=(I}, p’) be the graph of the relation p and let W(U")=Z[X .1 ; ap’b]
be the ring of polynomials over Z in commuting indeterminates, one for each
pair (a, b), where ap’b. Denote by T(I") the ring W(I")/I(I"), where I(I") is
the ideal in 1V({") generated by all elements of the form

X(a.c)"'}{(n,b)"‘txrfbm)
for ap’bp’c.
Moreover, denote by {a, bp the coset of the element X (.5 in TU).

The following lemma plays a basic role in our further considerations.

LEMMA 9.1. Let n be a power of a prime number p. If in the proup C;(I')
holds the equaliiy of the form (%), then in the ring T(') the following equality
holds

i3 n-l n . .
325 W/( " )<an boXbi, cdmI=0.
i=1 j= )
Proor. Observe that the equality (x) is equivalent to an equality of the form

2 v N
(%) 2 (@i, et 2 ((af, b5) 05, £5))
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= 3i(a}, e+ FCah B+ e,

where aip’bip’ci, a’lp’bjp’c} for some integers u, v and 7=1, -, u, j=1, -, v.
Hence it suffices to prove that, in the ring T(I"), we haxe

(5 3 5 /(] Kal bpRp, et
= X5 /(] )a, bR, et

Let a, 8:C(I")—-W (F ) be the group homomorphisms defined, for free generators,
as follows :

ala, b)y=Xaq, v
and

Bla, b)=XP,n -
Further we denote X, 5 by (g, b) (for all ap’b).
Applying « to the equality (+*) we obtain the equality (+x) in the ring W({I").
Applying S to the equality (xx) we obtain the following equality in W({I'):

(1) :Z:(ai, ‘72)"+J§((a,, BB, ¢
= 33(al, et Ba brH el <.
Let
Ai=(ai, ¢i),
Bi=(dh, b+, ¢ for i=1,2 -, u,
and

Cj:(a_,j,y c‘}l) ’
D;=(a}, b))+ (Y, ¢4) for j=1,2, -, v

Rise both sides of the equality (+x) in W(I") to the n-th power and apply (1).
Then we have

@ 53 ai, b0 corr— 33 al, o, eprr

= N G, i) (A Afe Bl ]

o2 (G, JolDI e DG G]
]!-r +Jv
Jts ]D*”

FEEA) Er) -G (o).
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where (7, -+, 7.), (73, -+ J») are Newton symbols, i.e.
(ny, -, Np)=—— for integers mn,, -+, n,=0.

Since n is a power of a prime number p then every Newton symbol in the
equality (2) is divisible by p, and therefore, since W(I) is a ring with no Z-
torsion, we can divide both sides of the equality (2) by p. We obtain the new
equality in W(I"), we denote it by (3).

Observe, that the right side of the equality (3) is an element of the ideal
I(I"). Therefore, in the ring T(I"), we have the equality (+++). This completes
the proof.

As a consequence of Lemma 9.1 we obtain
THEOREM 9.2. FEvery graph I' is a l-graph over an arbitrary ring R.

Observe, that this theorem is obvious if R is a 2-torsion-free ring. In fact.
Let f;:p'—Z(R) be an usual transitive mapping and suppose that in C,(I") the
equality of the form (+) holds. Consider the group homomorphism ¢ :C{M)—
Z(R) such that o(a, b)=f,(a, b)*, for all ap’s. Then we have

23 z0fi(an bOfilbe ¢
= $2(f s b+ 1ilb, ¢ —fHa, b)—Filbi, )]

k
= Ezz'[gﬁ(az, Ci)*@(ah b?‘,)*é&(bi, ci)]

i=1

:P(F}: ziHa;, b;, Ci))

Proor or THEOREM 9.2. Let f=TM(p’, R) and suppose that in C.([") the
equality of the form () holds. Let h:W(I[)—Z(R) be the ring homomorphism
such that h(X . »)=/,1(a, b) for all ap’b. Since f, is an usual transitive mapping
then 4 induces a ring homomorphism 4 : T(I")—Z(R) such that A({a, bY)=f.(a, b).
From Lemma 9.1, for n=2, we have

k k&
7;2:12'1'](1((11', b fi(bs, Ci):h<§12a<am bi><bi, Ci>>

=h(0)=0.  This completes the proof.
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LeEMMA 9.3. If in C(I') the equality (*) holds then in the ring T(I") we have

k

>} 2@y, biy<bsi, cy<as, ¢ip=0.

...

=
PrROOF. From Lemma 9.1, for n=3, we get

0= S2iCas, by*bi, c>+<as, b)bi ¢

= 2 2as by, cd(Cas, bid+<bi, ¢)

k

= X,z:{a;, bi<bs, cila;, ¢ .

i=1
THEOREM 9.4. Every graph I' is a 2-graph over an arbitrary ring R.

PrOOF. Let feTMyp’, R) and suppose that in C,(I") holds (x). Consider
the group homomorphism ¢ : C,({")—Z(R) such that

ola, b)=f(a, b)fa, b)
for all ap’b.
Then we have

0=¢(0)
= Bzdolar, co—glas, b)—glb, )
= Zallfi(es b+ Filbs, o, b+ /ilbs, ¢
+ i@, bi)fbs, c))—filaq, bi)folbs, ¢i)]
2L F i@ bOFiby, i+ Filas b fulby, 0]

Il
-

3
+iz._122if1<ai; bi)f1(bi, €i)f+(as, ¢i) .

Since, by Lemma 9.3,

e

thl aq, b)f bz; 4 fl((lu i :

1

.
It

then

k

glzi[fz(af, b:) [ 1(bs, c)+ filas, bi)fo(be, ¢)3=0.
This completes the proof.

Using a similar method we can prove the following
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THEOREM 9.5. Let I’ be a graph and R be a ring.

a) If R is 2-torsion-free then I' is a 3-graph over R,
b) I is a 4-graph over R,

¢) If R is 6-torsion-free then I' is a S5-graph over R,
d) I'is a 6-graph.

Using the above theorems and arguments from the proof of Theorem 8.6 we

obtain

THEORREM 9.6, Let P be a special subring of My(R) with the velaiion p.
Assume that the homology group H(I(p)) is free abelian. Then

(1) Every R-derivation of order s<3 of P is 3-integrable.

@) If R is 2-torsion-free then every R-derivation of order s<5 of P is 5-
integrable.

(3) If R is 3\-torsion-free then every R-derivation of order s<7 of P is 7
integrable.

~
'

We end this paper with the following open problems :

1). Let I'=(I,, p) be a fixed graph (i.e. p is a partial ordering relation on
I,) and let s<s’. Suppose that for every R any R-derivation of order s of
M,(R), is s'-integrable. Is H,(I") a free group?

2). Find numbers n, s, a ring R, and a partial order p on [, such that the
graph I'=(I,, p) is not s-graph over K.

3). Is every graph a 3-graph over an arbitrary ring?
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