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THE CYCLIC EXTENSIBILITY OF ESSENTIAL

COMPONENTS OF THE FIXED POINT SET
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Yasushi Yonezawa

1. Introduction.

All spaces considered in this paper are separable metric and every mapping

is continuous unless otherwise stated. Let X be a continuum1'. If every con-

tinuous mapping /: X-≫X has at least one fixed point, X is called to have the

fixed point property (/.p.p.). In this paper we investigate the existence of

essential components of the fixed point sets and the property f*p.p., which

are defined as follows: a component C of the fixed point set of / is called

essential,if for any s>0 there exists <5>0 such that every continuous mapping

/': Z-^Zwith ＼f'―f＼<d has a fixed point in the s-neighborhood Ug(C) of C,

and if otherwise it is called non-essential; and X has ffp.p., if X has f.p. p.,

and the fixed point set of every continuous mapping /: X―>X has at least one

essential component (see [2], [7]). Note that there exists a space which has

f.p. p., but does not have f*p.p. (see [6]).

The Hilbert cube Iw has ffp.p. and the property ffp.p. is invariant under

retractions. Hence every compact absolute retract has ffp.p. (see [2]). Further,

if X and Y are two continua with f*p.p. and Xr＼Y is a single point, then

XUY has f*p.p. (see [1], [4], [5]). The last statement has been extended to

the special case where the number of continua is countably infinite (see [5]).

The purpose of this paper is to extend the above property to a more general

setting; we prove that a continuum X has f*p.p. whenever it can be expressed

as the union of a null sequence of subcontinua Xa's with f*p.p. such that any

pair of Xa and Xp (a^/3) has at most one point in common and that the

boundary of each component of X―Xa consists of a single point for every a

(see the Main Theorem). When X is locally connected, it means the cyclic

extensibility of f*p.p. (see [3], [4] and the Corollary).
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1) A continuum means a compact, connected metric space.
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l/'-/l=supd(/'(*),/(*))･

A : the closureof A.

Bdry A: the boundary of A.

Int A: the interiorof A.

diam(^4):the diameter of A.

Notation

2. Cyclic Extensibility and the Main Theorem.

The cyclic extensibility of f.p. p. was proved by K. Borsuk [1]. We will

generalize it to our setting in Lemma 3.

Definition 1. A point s of a connected topological space X is called a

separating point of X if X―s is the union of two disjointsets and neither of

them contains a limit point of the other.

Definition 2. A point p^X of order one in a continuum X is called an

endpoint of X, i.e., p is an endpoint of ^ provided there exist arbitrarily

small open neighborhoods V(p)'$ each boundary of which consists of a single

point (see [4], p. 64).

Definition 3. In a metric space X we shall call a subset A of X an

A-set provided that X―A=＼JaGa, where (1) Ga is open, (2) Gar＼Gp=;$ for

a^/3, (3) Bdry Ga contains at most one point, and (4) diam(Gj)-*0 (*―>oo)for

any infinitesequence <G*> of Ga, i.e., X―A is the union of a finite number

of or a null sequence of disjoint open sets each having at most one boundary

point (see [4], p. 67).

Definition 4. An
^4-set
is a true A-set if either (1) it is non-degenerate,

or (2) it is a separating point or an endpoint of X (see [4], p. 68).

Main Theorem. Let X be a continuum and {Xa} a null sequence of true

A-sets of X which satisfy the following conditions:

(1) X=VaXa,

(2) whenever Xar＼X^<f) (a^fi), Xar＼Xp is a separating point of X, and

(3) Xa has ffp.p. for every a.

Then, X has ffp. p.

Remark 1. Note that Int Xn mav contain a separating noint of X.
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Definition 5. Let I be a locally connected continuum and {Xa} a null

sequence of true ^4-setsof X which satisfy the following conditions:

(1) Int Xa contains no separating point for every a,

(2) I=UJ≪, and

(3) whenever Xar＼X^<j>{ai^^), Xar＼Xp is a separating point of X.

Then, each Xa, together with each separating point and endpoint, is called a

cyclic element of X. A topological property P is said to be cycliclyextensible,

if X has the property P whenever each cyclic element has the property P(see

[3], [4]).

Corollary. f*p.p. is cycliclyextensible.

3. Some Preliminaries to the proof of Main Theorem.

In the following discussions, we assume that X contains at least two Xa's.

We always mean by sv a separating point of X not contained in the interior

of anv Xn.

Definition 6. Let z be a point of X. For two points x, jgI, define the

partial order with base point zgZ as follows:

(1) let x―y, if x and y are contained in the interior of the same Xa, or
2

x and jy are the same separating point or the same endpoint of X.

(2) let x>j>, if x and y satisfy
2
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(ii)
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x--£y,
?.

X is the union of two subcontinua A and B with Ar＼B ―sv where

A contains x and B contains both y and z, and

(iii) whenever y=FZ, X is not the union of two subcontinua A' and B'
z

with A'r＼B'= sv where A' contains both x and z, and B' contains y.

Now, for the convenience of the proofs, we assign some special points of

X for base points of the above partial order. Let c be a point of sv's and xa

a point of Int Xa for each non-degenerate Xa. Then, we will use the partial

order with the four kinds of base points listed below:

sv: a separating point of X not contained in the interior of any Xa.

c

p

xa:

the pre-assignedsv of X.

an endpoint of X.

the pre-assignedpoint of Int Xa for each non-degenerate Xn

Definition 7. We define the subspaces RvU)

Let RuU)={x＼x^sv}, and KpM be the closure

X―sv.

We also define the retractions rvM

Xa by

and KftW of X as follows:

of one of the components of

X^>Rv(e), raw : X->Kum and ra : X-*

C x for xei?y(C),

{ sv for x<=X―RvM,

( x for xeKpto ,
fti<.v)＼X)―＼

{ sv for x&X―Kf1(V'),and

f x for xgZ,,,

ra(x)=＼
{ sv for xGi?,,U(i),where s^eBdry Ztt.

Note that X-Xa={JvRvUa).

From above definitions,we have immediately the following two Lemmas.

Lemma 1. Any open neighborhood U(sv) of sv contains almost all KpW but

a finitenumber of u's.

Lemma 2. // the boundary sv of K^^ is not contained in any non-degenerate

XadKfKV), the point sv is an endpoint of Kaw (see [4], p. 64).

First, we generalize the Borsuk's theorem of cyclic extensibility of f.p.p.

to our setting (see [4], p. 242).
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Lemma 3. Let X be a continuum and {Xa} a null sequence of true A-sets

of X which satisfy the following conditions:

(1) X=＼JaXa,

(2) whenever Xar＼Xp^d>(a^fi), Xar＼Xp is a separating point of X, and

(3) Xa has f.p. p. for every a.

Then, X has f.p.p.

Proof. Assume on the contrary that there exists a mapping /: X-*X

which has no fixed point. If there exists non-degenerateXa such that every

sueBdryXa satisfiesf(sv)^sv, then raf＼Xa-Xa-^Xa has no fixedpoint,which
X,

is a contradiction. Hence, we consider the case where for every non-degenerate

Xa there exists s^eBdryX, with f(sv)>sv.

Letting c be the initialpoint, we construct the ordered set (sx} (X is a

countable ordinal) of sv by the following procedure. Let KvUx) be such that

1. Define the immediate successor of sx as follows:

Case 1. sx is a boundary point of non-degenerate Xx contained in Kmu)-

In this case there exists syeBdry Xx with /(sj > sv. Let sv be the immediate

successor of sx-

Case 2. sx is an endpoint of Kma)- Then, by the continuity of /, there

exists sv(±sx) in a neighborhood of s,*in Kmcx) such that /(sj > sv. Let sw

be the immediate successor of sx-

2. When X converges to v, let sv be the limit point of (sx} if it is not an

endpoint of X. We add sv to (sx)- Note that s≫satisfiesf(sv)>sv.
r

By the construction of this ordered set, it is easy to see that (sx) and

(.Km(X)} satisfy the following conditions:

(1) f(sx)>sx for every X

c

(2) Kma^K'ma-> (*<*'), and

(3) either <s^> ends in se which is the single boundary point of Xa, or

<s,!>converges to an endpoint p of X.

Applying the above ordered set, we now prove the Lemma.

Case 1. isx> ends in se which is the single boundary point of Xa. In

this case, raf＼Xa'- Xa-^Xa has no fixed point, which contradicts to the assump-

tion that Xa has f.p.p.

Case 2. <s;.>converges to an endpoint p of X. It is easy to see that p

is fixed by /, which contradicts to our assumption.
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Next, we state some lemmas on essential components of the fixed point set

of a mapping /: X ―>X.

Lemma 4. Let X and Y be compact metric spaces such that XZDY. Assume

that there exists a retraction r: X-+Y. Then, if a mapping f: X―>X is con-

tinuous,for every s>0 there existsd>0 such that every continuous mapping f :

X―X with ＼f'―f＼<d satisfies＼rf'-rf＼<e.

Proof. By the uniform continuity of r, for given e>0 there exists <5>0

such that ＼rf'(x)―rf(x)＼<6 for any pair of /'(*) and /(x) with ＼f'(x)―f(x)＼

<8. Then, if ＼f'(x)-f(x)＼<8 for every x^X, we have ＼rf'{x)-rf(x)＼<e

for every igI

Lemma 5. Let Cr be a component of the fixed point set of a mapping f:

X―*X such that CrdlntXa for a non-degenerate Xa. If Cr is a non-essential

component of the fixed point set of f, then Cr is a non-essentialcomponent of the

fixed point set of raf＼Xn'- Xa―>Xa.

Proof. Since Cr is a non-essential component of the fixed point set of /,

Cr has an open neighborhood U such that for each n there exists a mapping

/, : X ―>X which satisfies

(i) ＼fn-f＼<Vn, and

(ii) /, has no fixed point in Ur.

Since Cr is contained in Int Xa, there exists a neighborhood U' of Cr such that

U'dUr＼lnt Xa. Then for each n' there exists rafn＼Xa '･Xa―>Xa which satisfies

(10 ＼rafn＼xa-rJ＼Xa＼<l/n', and

(iiO rafn＼xa has no fixed point in U

where condition( i')follows from Lemma 4

Lemma 6. Let Cr be a component of thefixedpoint set of a mapping f:

X-+X such that Crr＼BdryXa― {sv} for a non-degenerateXa. Assume thatCr

has an open neighborhoodU such that for each n there existsa mapping /,:

X―>X which satisfies

(i) ＼fn-f＼<l/n,

(ii) /, has no fixedpointin U, and

(iii) fn{sv)̂ sv for every sve£/nBdry Xa.
xa

Then, Crr＼Xa is a non-essential component of the fixed point set of raf＼Xa-

Xa-^Xa.
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Proof. Note that any sve£/PtBdryxa is not fixed by rafn＼Xa: Xa―>Xa.

Hence for each n' there exists rafn＼xa- Xa-*Xa which satisfies

(i) ＼rafn＼xa-raf＼Xa＼<lln', and

(ii) rafn＼xa has no fixed point in Ur＼Xa.

Lemma 7. Let f: X-^X be a mapping and p an endpoint of X. Assume

that there exist arbitrarily small open neighborhoods V(p)'s (V(p)^c) such that

Bdry V{p) is a single point sv which satisfiesf(sv)>sv. Then, p is an essential
c

component of the fixed point set of f.

Proof. Assume on the contrary that p is a non-essential component of

the fixed point set of /. Then, p has an open neighborhood U such that for

every 5>0 there exists a mapping /': X ―*X which satisfies

(i) ＼f'-f＼<d, and

(ii) /' has no fixed point in U.

By the assumption of the lemma, we can choose sv such that RvWdU and

f(s,)>sv. Let d(f(s≫),sv)―a and 8=a/2. By condition (i), we have f'(sv)>sv.
c c

Since /' has no fixed point in RvMdU, rV(c)f'＼iivM>Rvm~^Rvu) has no fixed

point. Note that i?v(c)has f.p.p. by Lemma 3. Hence we have a contradiction.

Lemma 8. Let f: X^X be a mapping and p an endpoint of X such that

f(p)―p. Assume that p belongs to a non-essential component C of the fixed point

set of /; i.e., C has an open neighborhood U(C) such that for each n there exists

a mapping fn : X-^X with ＼fn―f＼<l/n which has no fixed point in U(C). Then,

there exists an open neighborhood V(p) such that every sv^V(p) satisfies either

(a) f(sv)>sv, or

V

(b) f(sv)=sv, and fn: X―*X which has no fixed point in U(C) satisfies
v

fn{sv)>S≫.
V

Proof. Since p is an endpoint of X, we can choose s*0 such that i?Vo(oC

U(C). Then, our statement follows from the fact that RVnu) has f. p. p.

Remark 2. Above Lemmas 7 and 8 can be applied to the endpoint sv of

Kfi(v)and TftirtflKpM '･Kfi(v)^Kfiiv)-

Lemma 9. Let f: X-+X be a mapping, sv an endpoint of K^^ (bc) and C

the component, containing sv, of the fixed point set of f. Assume that there exist

arbitrarilysmall open neighborhoods V(su)'s(V(sv)^c) whose boundary in Ku(V) is
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a single point sv- which satisfies

(1) f{sv<)=sv>,and

(2) C has an open neighborhood U(C) such that for each n there exists a

mapping f■≫:X―>X which satisfies

(i)

(ii)

(iil)

|/B-/|<l/n,

fn has no fixed point in U{C), and

J n＼Sv')P'Sii'･
c

Then, the component Cr＼Rvu) of the fixed point set of r^o/l^co : Rvio-* Rvio

k -nnn-accontinl

Proof.

fn satisfies

Choose V(su) such that V(sv)clU(C) in the assumption. Then each

fn(sv)>sv because Rv> u)-~Rvw> has f.p. p. Hence our conclusion

follows immediately.

Lemma 10. Let Cr be a non-essential component of the fixed point set of a

mapping f: X―>X such that Crr＼sv^<p. Then, there exist Km(p) and an open

neighborhood Umiv) of CrC＼Km{il) in Km(V) such that for each n there exists a

mapping fn: X -^X which satisfies

(i) ＼fn-f＼<l/n,

(ii) fn has no fixed point in Um(ll), and

(in) fn(sv)^KmM ―sVf

i.e., Crr＼Km(V) is a non-essential component of the fixed point set of rmMf＼Km{v)'-

Proof. Since Cr is non-essential, Cr has an open neighborhood U such

that for each n there exists a mapping /,: X-^X which satisfies

(iO ＼fn-f＼<l/n, and

(ii') /, has no fixed point in U.

If there exists n such that fn(sv)^KltWC.U for a K^^, then by Lemma 4, /,

has a fixed point in U, which contradicts to above condition (ii'). Hence, we

are only to consider the case where, for each n, fn(sv) belongs to some K^^

not contained in U. By Lemma 1, the number of Kfllu) not contained in U is

finite. Then there exists KmM which contains fn(sv) for infinitely many n.

Let Umi,A=Ur＼K-mt,A. Then we have our conclusion.

4. Proof of Main Theorem.

Assume on the contrary that there exists a mapping /: X―>X whose fixed

point set has no essential component. Then, each component Cr of the fixed
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point set of / has an open set Ur such that for each n there exists a mapping

/, : X^X satisfying

( i) ＼fn-f＼<l/n, and

(ii) /, has no fixed point in Ur.

Since the fixed point set of / is compact, we can choose a finiteopen covering

{Wt} of this fixed point set such that (1) Wt(zUri and (2) Wir＼Wj=$ (≫=#/).

Let CTi be a component of the fixed point set of / with CTiaWiCiUri.

Let 5 be the set of all sv of X and define the correspondence F: S-^X as

follows:

Case 1. sv is not fixed by /. In this case, let F(sv)=f(sv).

Case 2. sv is fixed by /. Then, by Lemma 10, for the neighborhood Wt

containing sv, there exists KvUv) such that for each n there exists a mapping

fn: X―≫X satisfying

(i) l/n-/l<l/n,

(ii) /, has no fixed point in Wi} and

(iii) fn(sv)^KmM―sv.

Whenever there exists Kmiv)czRi,(c)with the above conditions, we choose this

KmW, and let F(sv)=km, where km is a point of ＼ntKmiv).

First, we assume that there exists a non-degenerate Xa such that every

su<=Bdry Xa satisfiesF(sv)^su. It follows from Lemmas 5 and 6 that CrnXa

is a non-essential component of the fixed point set of raf＼Xa'- Xa-≫Xa if

C-)r＼Xai^(J},which contradicts to our assumption that Xa has ffp.p. Then,

we consider the case where for any non-degenerate Xa there exists sueBdry Xa

such that F(sv) > sv.
xa

Letting c be the initial point, we construct the ordered set (sx? (^ is a

countable ordinal; of sv by the following procedure. Let Kmu) be such that

FCsj)e/Cm(;i.

1. Define the immediate successor of s; as follows:

Case 1. Sj is a boundary point of non-degenerate Xi contained in Kma}.

Then, there exists s^eBdry.Y; with F(sv)>sv. Let sv be the immediate suc-

cessor of s;.

Case 2.

Case (1)

sx is an endpoint of Kma)-

f(sx)>sx. By the continuity of /, there exists sv(^sx) in a

neighborhood of s* in Kma) such that f{sv) > sv.

Case (2). f(sx)―sx- By Lemma 8, there exists sv(--itsx)in a neighborhood

of sx in Km{-A) such that F{sv)>sv.
Si
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In the both cases, let each sy be the immediate successor of s*.

2. When X converges to v, let sv be the limit point of {sx} if it is not an

endpoint of X. We add sv to <.sx>. Note that sv is an endpoint of K^^ con-

taining c and sv. Then, by Lemma 7 or 9, sv belongs to a non-essential com-

ponent of the fixed point set of r^o/l^to : Rvu)-^Rv<,o- Hence, in this case,

sv satisfiesF(sv) > sv.
c

From the construction of this ordered set, it is easy to see that <,sx}and

<Kmu)> satisfy the following conditions:

(1) F(sx)>sx for every X,
c

(2) Kma)^Km-a>>tt<K), and

(3) Either <s^> ends in se which is the single boundary point of Xa, or

(sx> converges to an endpoint p of X.

Applying the above ordered set, we are going to complete our proof of

the Main Theorem.

Case 1. (sx} ends in se which is the single boundary point of Xa. From

Lemmas 5 and 6 it follows that Xa does not have f*p.p., which contradicts

to the assumption of the Main Theorem.

Case 2. (sx) converges to an endpoint p of X. In this case, there exists

sx in any neighborhood of p such that F(sx)>sx- On the other hand, by our
c

assumtion, p belongs to a non-essential component of the fixed point set of /.

Then, by Lemma 8 we have a contradiction. Thus our proof is complete.

Example. By letting Xa be a disk with a spiral about its boundary, which

is shown to have f*p.p. in [6], we obtain the following example of a not

Figure 2

p
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locally connected continuum with ffp.p. in our Main Theorem
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