ON PROPER HELICES AND EXTRINSIC SPHERES IN PSEUDO-RIEMANNIAN GEOMETRY

By
Hwa Hon Song, Takahisa Kimura and Naoyuki Koike

Abstract

In this paper, we define the notion of a proper helix of order d in a pseudo-Riemannian manifold and investigate those curves in a totally umbilical pseudo-Riemannian submanifold.

Introduction.

In Riemannian geometry, properties of regular curves are well discribed by the Frenet formula. In [8], K. Sakamoto called a regular curve which has constant curvatures of osculating order d a helix of order d. Note that a helix of order one (resp. two) is a geodesic (resp. circle). The research of geodesics, circles and helices (of order three) in Riemannian submanifold theory, has been done by K. Nomizu and K. Yano ([5]), H. Nakagawa ([2]), K. Sakamoto ([7]) and other geometricians. Furthermore, K. Sakamoto also has investigated helices of general order in the theory (cf. [8]). For regular curves in a pseudoRiemannian manifold, we can not necessarily define a formula corresponding to the Frenet formula. Especially, we call a regular curve with a formula corresponding to the Frenet formula a proper curve. Furthermore, we call a proper curve which has constant curvatures of osculating order d a proper helix of order d. N. Abe, Y. Nakanishi and S. Yamaguchi defined general circles and helices (of order three) in a pseudo-Riemannian manifold. They investigated those curves in a pseudo-Riemannian submanifold (cf. [1], [3], [4]). We shall investigate proper helices of general order in a totally umbilical pseudoRiemannian submanifold.

The authors would like to express his hearty thanks to Professor S . Yamaguchi for his constant encouragement and various advice. They also wish to express sincere gratitude to thank Professor N. Abe for his valuable suggestions.

[^0]
§1. Notations and Basic Equations.

In this paper, the differentiability of all geometric objects will be C^{∞}. Let M be a pseudo-Riemannian submanifold in pseudo-Riemannian manifold \bar{M} isometrically immersed by f and denote by g (resp. \bar{g}) the pseudo-Riemannian metric of M (resp. \bar{M}). For all local formulas and calculations, we may assume f as an imbedding and thus we shall often identify $p \in M$ with $f(p) \in \bar{M}$. The tangent space $T_{p} M$ at p is identified with a subspace $f_{*}\left(T_{p} M\right)$ of the tangent space $T_{p} \bar{M}$. We put $\|X\|:=\sqrt{|\bar{g}(X, X)|}$ for $X \in T_{p} \bar{M}$. We denote the tangent bundle of M by $T M$ and the normal bundle by $T^{\perp} M$. Let $\bar{\nabla}$ and ∇ be the Levi-Civita connections of \bar{M} and M, respectively. Then the Gauss formula is given by

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+B(X, Y), \tag{1.1}
\end{equation*}
$$

where X and Y are tangent vector fields of M and B is the second fundamental form of M. The Weingarten formula is given by

$$
\begin{equation*}
\bar{\nabla}_{x} \xi=-A_{\xi} X+\nabla_{x}^{\perp} \xi, \tag{1.2}
\end{equation*}
$$

where X (resp. ξ) is a tangent (resp. normal) vector field of M and A (resp. ∇^{\perp}) is the shape operator (resp. the normal connection) of M. Clearly A is related to B as

$$
g\left(A_{\xi} X, Y\right)=\bar{g}(B(X, Y), \xi) .
$$

The mean curvature vector field H of M is defined by

$$
H:=\frac{1}{n} \sum_{i=1}^{n} g\left(e_{i}, e_{i}\right) B\left(e_{i}, e_{i}\right),
$$

where $n=\operatorname{dim} M$ and $\left\{e_{1}, \cdots, e_{n}\right\}$ is an orthonormal frame of M. If the second fundamental form B satisfies

$$
B(X, Y)=g(X, Y) H
$$

for every tangent vector fields X, Y of M, then M is called a totally umbilical submanifold. The mean curvature vector field H is said to be parallel if $\nabla_{X}^{\perp} H=0$ for every tangent vector field X of M. A totally umbilical submanifold with the parallel mean curvature vector field is called an extrinsic sphere. If the second fundamental form B vanishes identically, then M is called a totally geodesic submanifold of \bar{M}.

Next we shall define the notion of a proper helix of order d in a pseudoRiemannian manifold N. Let $\sigma: I \rightarrow N$ be a non-null curve in N parametrized by the arclength s, where I is an open interval of the real line R. We denote the
tangent vector field of σ by v_{0}. We assume that σ satisfies the following Frenet formula:
where

$$
\left\{\begin{array}{l}
\lambda_{1}:=\left\|\nabla_{\nabla_{0}} v_{11}\right\|>0, \\
\lambda_{i}:=\left\|\nabla_{v_{0}} v_{i-1}+\varepsilon_{i-2} \varepsilon_{i-1} \lambda_{i-1} v_{i-2}\right\|>0, \quad(2 \leq i \leq d-1) \\
\varepsilon_{j}:=g\left(v_{1}, v_{i}\right)(= \pm 1) \quad(0 \leq j \leq d-1) \quad \text { on } I .
\end{array}\right.
$$

We call such a curve a proper curve of order d, λ_{i} the i-th curvature and v_{0}, \ldots, v_{d-1} the Frenet frame field. Furthermore, if $\lambda_{i}(1 \leq i \leq d-1)$ are constant along σ, then we call this curve a proper helix of order d.

§2. Proper helices in a totally umbilical pseudo-Riemannian submanifold.

Let M be a totally umbilical pseudo-Riemannian submanifold in a pseudoRiemannian manifold \bar{M} isometrically immersed by f and σ a proper helix of order d in M. We denote a curve $f \circ \sigma$ in \bar{M} by $\bar{\sigma}$. Assume that $\bar{\sigma}$ is a proper helix of order \bar{d}. Let $\lambda_{1}, \cdots, \lambda_{d-1}\left(\right.$ resp. $\left.\bar{\lambda}_{1}, \cdots, \bar{\lambda}_{\bar{d}-1}\right)$ be the curvatures of σ (resp. $\bar{\sigma}$) and v_{0}, \cdots, v_{d-1} (resp. $\bar{v}_{0}, \cdots, \bar{v}_{\bar{d}-1}$) the Frenet frame field of σ (resp. $\bar{\sigma}$). For convenience, let $\lambda_{i}=0, v_{i}=0, \bar{\lambda}_{j}=0$ and $\bar{v}_{j}=0(i \geq d, j \geq \bar{d})$. Set $\varepsilon_{i}:=g\left(v_{i}, v_{i}\right)$ and $\bar{\varepsilon}_{i}:=\bar{g}\left(\bar{v}_{i}, \bar{v}_{i}\right)(i \geq 0)$. We define $\nabla_{v_{0}}^{\perp(i)} H(i \geq 0)$ by $\nabla_{v_{0}}^{\perp(0)} H:=H$ and $\nabla_{v_{0}}^{\perp(i)} H:=\nabla_{v_{0}}^{\perp}$ $\left(\nabla_{v_{0}}^{\perp^{(i-1)}} H\right)(i \geq 1)$. Also, we define $\beta_{i, j}$ and $\bar{\beta}_{i, j}(i \geq j \geq 1, i+j:$ even) by

$$
\left\{\begin{array}{l}
\beta_{1,1}=\lambda_{1}, \quad \bar{\beta}_{1,1}=\bar{\lambda}_{1} \tag{2.1}\\
\beta_{i, i}=\lambda_{i} \beta_{i-1, i-1}, \quad \bar{\beta}_{i, i}=\bar{\lambda}_{i} \bar{\beta}_{i-1, i-1} \quad(i \geq 2) \\
\beta_{2 i+1,1}=-\varepsilon_{1} \varepsilon_{2} \lambda_{2} \beta_{2 i, 2}, \quad \bar{\beta}_{2 i+1,1}=-\bar{\varepsilon}_{1} \bar{\varepsilon}_{2} \bar{\lambda}_{2} \bar{\beta}_{2 i, 2} \quad(i \geq 1) \\
\beta_{i, j}=-\varepsilon_{j} \varepsilon_{j+1} \lambda_{j+1} \beta_{i-1, j+1}+\lambda_{j} \beta_{i-1, j-1} \quad(i>j \geq 2) \\
\bar{\beta}_{i, j}=-\bar{\varepsilon}_{j} \bar{\varepsilon}_{j+1} \bar{\lambda}_{j+1} \bar{\beta}_{i-1, j+1}+\bar{\lambda}_{j} \bar{\beta}_{i-1, j-1} \quad(i>j \geq 2) .
\end{array}\right.
$$

Lemma 2.1. The vector fields $v_{i}(i \geq 0)$ and $\bar{v}_{j}(j \geq 0)$ along σ are related as follows:

$$
\begin{aligned}
& \left(F_{0}\right) \quad \bar{v}_{0}=v_{0}, \\
& \left(F_{2 i-1}\right) \quad \sum_{j=1}^{i} \bar{\beta}_{2 i-1,2 j-1} \bar{v}_{2 j-1}=\sum_{j=1}^{i} \beta_{2 i-1,2 j-1} v_{2 j-1}+\varepsilon_{0} \nabla_{v_{0}}^{\perp(2 i-2)} H \quad(i \geq 1), \\
& \left(F_{2 i}\right) \quad \sum_{j=1}^{i} \bar{\beta}_{2 i, 2 j} \bar{v}_{2 j}=\sum_{j=1}^{i} \beta_{2 i, 2 j} v_{2 j}+\varepsilon_{0} \nabla_{v_{0}}^{\perp(2 i-1)} H \quad(i \geq 1) .
\end{aligned}
$$

Proof. By using (1.1), the Frenet formulas and the assumption that M is totally umbilic, we get

$$
\bar{\lambda}_{1} \bar{v}_{1}=\bar{\nabla}_{v_{0}} v_{0}=\nabla_{v_{0}} v_{0}+\varepsilon_{0} H=\lambda_{1} v_{1}+\varepsilon_{0} H .
$$

Thus we obtain $\left(F_{1}\right)$. Operating $\bar{\nabla}_{v_{0}}$ to $\left(F_{1}\right)$, we get

$$
\bar{\beta}_{1,1}\left(-\varepsilon_{0} \bar{\varepsilon}_{1} \bar{\lambda}_{1} v_{0}+\bar{\lambda}_{2} \bar{v}_{2}\right)=\beta_{1,1}\left(-\varepsilon_{0} \varepsilon_{1} \lambda_{1} v_{0}+\lambda_{2} \bar{v}_{2}\right)-\varepsilon_{0} \bar{g}(H, H) v_{0}+\varepsilon_{0} \nabla_{v_{0}}^{\perp} H,
$$

where we use (1.1), (1.2), the Frenet formulas and the assumption that M is totally umbilic. By noticing $\left\{v_{0}\right\}^{\perp}$-component of this equality, we see that

$$
\bar{\lambda}_{2} \bar{\beta}_{1,1} \bar{v}_{2}=\lambda_{2} \beta_{1,1} v_{2}+\varepsilon_{0} \nabla_{v_{0}}^{\perp} H,
$$

which implies $\left(F_{2}\right)$ by (2.1). Assume that $\left(F_{2 k}\right)$ holds. Operating $\bar{\nabla}_{v_{0}}$ to $\left(F_{2 k}\right)$, we have

$$
\begin{aligned}
\sum_{j=1}^{k} \bar{\beta}_{2 k, 2 j} \bar{\nabla}_{v_{0}} \bar{v}_{2 j}=\sum_{j=1}^{k} \beta_{2 k, 2 j} \nabla_{v_{0}} v_{2 j} & -\varepsilon_{0} \bar{g}\left(\nabla_{v_{0}}^{\perp(2 k-1)} H, H\right) v_{0} \\
& +\varepsilon_{0} \nabla_{v_{0}}^{\perp(2 k)} H,
\end{aligned}
$$

where we use (1.1), (1.2) and the assumption that M is totally umbilic. Furthermore, by using the Frenet formulas and (2.1), we have

$$
\sum_{j=1}^{k+1} \bar{\beta}_{2 k+1,2 j-1} \bar{v}_{2 j-1}=\sum_{j=1}^{k+1} \bar{\beta}_{2 k+1,2 j-1} v_{2 j-1}-\varepsilon_{0} \bar{g}\left(\nabla_{v_{0}}^{\perp(2 k-1)} H, H\right) v_{0}+\varepsilon_{0} \nabla_{v_{0}}^{\perp(2 k)} H .
$$

Therefore, by noticing $\operatorname{Span}\left\{v_{0}\right\}^{\perp}$-component of this equality, we obtain $\left(F_{2 k+1}\right)$. Similarly, by operating $\bar{\nabla}_{v_{0}}$ to ($F_{2 k+1}$) and using the Frenet formulas and (2.1), we also have

$$
\begin{aligned}
-\varepsilon_{0} \bar{\varepsilon}_{1} \bar{\lambda}_{1} \bar{\beta}_{2 k+1.1} v_{0}+\sum_{j=1}^{k+1} \bar{\beta}_{2 k+2,2 j} \bar{v}_{2 j} & =-\varepsilon_{0}\left\{\varepsilon_{1} \lambda_{1} \beta_{2 k+1,1}+\bar{g}\left(\nabla_{v_{0}}^{\perp(2 k)} H, H\right)\right\} v_{0} \\
& +\sum_{j=1}^{k+1} \beta_{2 k+2,2 j} v_{2 j}+\nabla_{v_{0}}^{\perp(2 k+1)} H .
\end{aligned}
$$

Thus, by noticing $\operatorname{Span}\left\{v_{0}\right\}^{\perp}$-component of this equality, we also have $\left(F_{2 k+2}\right)$. Therefore, by the induction, we see that $\left(F_{i}\right)$ holds for every $i \geq 0$.

Now we define column vectors $b_{i}(i \geq 3)$ and matrices $\boldsymbol{B}_{i}(i \geq 1)$ by

$$
\boldsymbol{b}_{2 j-1}:=\left(\begin{array}{c}
\beta_{2 j-1,1} \\
\beta_{2 j-1,3} \\
\vdots \\
\beta_{2 j-1,2 j-3}
\end{array}\right), \quad \boldsymbol{b}_{2 j}:=\left(\begin{array}{c}
\beta_{2 j, 2} \\
\beta_{2 j, 4} \\
\vdots \\
\beta_{2 j, 2 j-2}
\end{array}\right)
$$

and

$$
\begin{aligned}
& \boldsymbol{B}_{2 j-1}:=\left(\begin{array}{cccc}
\beta_{1,1} & 0 & \cdots & 0 \\
\beta_{3,1} & \beta_{3,3} & \ddots & \vdots \\
\vdots & \vdots & \ddots & 0 \\
\beta_{2 j-1,1} & \beta_{2 j-1,3} & \cdots & \beta_{2 j-1,2 j-1}
\end{array}\right), \\
& \boldsymbol{B}_{2 j}:=\left(\begin{array}{cccc}
\beta_{2,2} & 0 & \cdots & 0 \\
\beta_{4,2} & \beta_{4,4} & \ddots & \vdots \\
\vdots & \vdots & \ddots & 0 \\
\beta_{2 j, 2} & \beta_{2 j, 4} & \cdots & \beta_{2 j, 2 j}
\end{array}\right) \quad(j \geq 1) .
\end{aligned}
$$

Also, we define formal column vectors $V_{i}(i \geq 1)$ and $\boldsymbol{H}_{i}(i \geq 0)$ whose components are vector fields along σ by

$$
\boldsymbol{V}_{2 j-1}:=\left(\begin{array}{c}
v_{1} \\
v_{3} \\
\vdots \\
v_{2 j-1}
\end{array}\right), \quad \boldsymbol{V}_{2 j}:=\left(\begin{array}{c}
v_{2} \\
v_{4} \\
\vdots \\
v_{2 j}
\end{array}\right)
$$

and

$$
\boldsymbol{H}_{2 j}:=\left(\begin{array}{c}
H \\
\nabla_{v_{0}}^{\perp(2)} H \\
\vdots \\
\nabla_{v_{0}}^{\perp(2 j)} H
\end{array}\right), \boldsymbol{H}_{2 j+1}:=\left(\begin{array}{c}
\nabla_{v_{0}}^{\perp} H \\
\nabla_{v_{0}}^{\perp(3)} H \\
\vdots \\
\nabla_{v_{0}}^{\perp(2 j+1)} H
\end{array}\right) \quad(j \geq 0) .
$$

Similarly, we define $\bar{b}_{i}(i \geq 3), \bar{B}_{i}(i \geq 1)$ and $\overline{\boldsymbol{V}}_{i}(i \geq 1)$ in terms of $\bar{\beta}_{i, j}$ and \bar{v}_{i} instead of $\beta_{i, j}$ and v_{i}. Note that $\boldsymbol{B}_{i}(i \leq d-1) \bar{B}_{i}(i \leq \bar{d}-1)$ are nonsingular by (2.1). By using these notations, $\left(F_{i}\right)$ is expresses as follows:

$$
\begin{equation*}
{ }^{\prime} \bar{b}_{i} \bar{V}_{\mathrm{i}-2}+\bar{\beta}_{i, i} \bar{v}_{i}=^{\prime} \boldsymbol{b}_{i} V_{\mathrm{i}-2}+\beta_{i, i} v_{i}+\varepsilon_{0} \nabla_{v_{0}}^{\perp(i-1)} H .(i \geq 3) . \tag{2.2}
\end{equation*}
$$

Moreover, the systems $\left(F_{1}\right),\left(F_{3}\right), \cdots,\left(F_{2 i-1}\right)(i \geq 1)$ and $\left(F_{2}\right),\left(F_{4}\right), \cdots,\left(F_{2 i}\right)(i \geq 1)$ are expressed as

$$
\begin{aligned}
& \overline{\boldsymbol{B}}_{2 i-1} \overline{\boldsymbol{V}}_{2 i-1}=\boldsymbol{B}_{2 i-1} \boldsymbol{V}_{2 i-1}+\varepsilon_{0} \boldsymbol{H}_{2 i-2}, \\
& \overline{\boldsymbol{B}}_{2 i} \overline{\boldsymbol{V}}_{2 i}=\boldsymbol{B}_{2 i} \boldsymbol{V}_{2 i}+\varepsilon_{0} \boldsymbol{H}_{2 i-1},
\end{aligned}
$$

respectively. Thus we have

$$
\begin{equation*}
\overline{\boldsymbol{B}}_{i} \bar{V}_{i}=\boldsymbol{B}_{i} \boldsymbol{V}_{i}+\varepsilon_{0} \boldsymbol{H}_{i-1}, \quad(i \geq 1) \tag{2.3}
\end{equation*}
$$

From (2.2) and (2.3), we have

$$
\begin{aligned}
\left(M F_{i}\right) \quad-\bar{\beta}_{i, i} \bar{v}_{i}+\beta_{i, i} v_{i}= & \left({ }^{(} \bar{b}_{i} \bar{B}_{i-2}^{-1} \boldsymbol{B}_{i-2}-{ }^{t} \boldsymbol{b}_{i}\right) V_{i-2} \\
& +\varepsilon_{0}\left({ }^{(} \bar{b}_{i} \overline{\boldsymbol{B}}_{i-2}^{-1} \boldsymbol{H}_{i-3}-\nabla_{v_{0}}^{\perp(i-1)} H\right) \quad(3 \leq i \leq \bar{d}+1)
\end{aligned}
$$

LEMMA 2.2. The inequality $d \leq \bar{d} \leq d+r$ holds, where r is the codimension of M in \bar{M}.

Proof. Suppose $d>\bar{d}$. Then we have $v_{\bar{d}} \neq 0$ and $\bar{v}_{\bar{d}}=0$. Hence, it follows from ($M F_{\bar{d}}$) that

$$
\begin{aligned}
\beta_{\bar{d}, \bar{d}} v_{\bar{d}} & =\left({ }^{(} \overline{\boldsymbol{b}}_{\bar{d}} \overline{\boldsymbol{B}}_{\bar{d}-2}^{-1} \boldsymbol{B}_{\bar{d}-2}-{ }^{\prime} \boldsymbol{b}_{\bar{d}}\right) V_{\bar{d}-2} \\
& +\varepsilon_{0}\left({ }^{(} \bar{b}_{\bar{d}} \overline{\boldsymbol{B}}_{\bar{d}-2}^{-1} \boldsymbol{H}_{\bar{d}-3}-\nabla_{v_{0}}^{+(\bar{d}-1)} H\right) .
\end{aligned}
$$

Since $v_{\bar{d}}$ is linearly independent of $v_{i}(i \leq \bar{d}-2)$ and $\nabla_{v_{0}}^{\perp(i)} H(i \leq \bar{d}-1)$, we have $\beta_{\bar{d}, \bar{d}} v_{\bar{d}}=0$. From (2.1) and $d>\bar{d}, \beta_{\bar{d}, \bar{d}}=\lambda_{1} \lambda_{2} \cdots \lambda_{\bar{d}} \neq 0$ is deduced. Therefore, we have $v_{\bar{d}}=0$. This contradicts $d>\bar{d}$. Thus we have $d \leqq \bar{d}$. The remaining part is trivial.

Lemma 2.3. (i) If $\bar{d}=d(\geq 3)$, then $\nabla_{v_{0}}^{\perp(d-1)} H={ }^{\prime} \boldsymbol{b}_{d} \boldsymbol{B}_{d-2}{ }^{-1} \boldsymbol{H}_{d-3}$ holds.
(ii) If $\bar{d}=d+1(d \geq 2)$, then $\nabla_{v_{0}}^{\perp(d)} H=^{t} \boldsymbol{b}_{d+1} \boldsymbol{B}_{d-1}{ }^{-1} \boldsymbol{H}_{d-2}$ holds.

Proof. (i) By the assumption, $v_{d}=0$ and $\bar{v}_{d}=0$ holds. Substituting these to ($M F_{d}$), we have

$$
\left({ }^{(} \overline{\boldsymbol{b}}_{d} \overline{\boldsymbol{B}}_{d-2}^{-1} \boldsymbol{B}_{d-2}-{ }^{t} \boldsymbol{b}_{d}\right) \boldsymbol{V}_{d-2}+\varepsilon_{0}\left({ }^{\prime} \overline{\boldsymbol{b}}_{d} \overline{\boldsymbol{B}}_{d-2}^{-1} \boldsymbol{H}_{d-3}-\nabla_{v_{0}}^{\mathrm{c}_{0}^{(d-1)}} H\right)=0 .
$$

By noticing the tangential component and the normal component of this equality, we have

$$
{ }^{t} \overline{\boldsymbol{b}}_{d} \overline{\boldsymbol{B}}_{d-2}^{-1}={ }^{t} \boldsymbol{b}_{d} \boldsymbol{B}_{d-2}{ }^{-1}
$$

and

$$
\nabla_{v_{0}}^{\perp(d-1)} H={ }^{-} \bar{b}_{d} \overline{\boldsymbol{B}}_{d-2}^{-1} \boldsymbol{H}_{d-3} .
$$

These imply

$$
\nabla_{v_{0}}^{\perp}{ }^{(d-1)} H==_{d}^{t} \boldsymbol{B}_{d-2}{ }^{-1} \boldsymbol{H}_{d-3} .
$$

(ii) By the assumption, $v_{d+1}=0$ and $\bar{v}_{d+1}=0$ holds. Substituting these to ($M F_{d+1}$), we have

$$
\left({ }^{\prime} \overline{\boldsymbol{b}}_{d+1} \overline{\boldsymbol{B}}_{d-1}^{-1} \boldsymbol{B}_{d-1}-{ }^{\prime} \boldsymbol{b}_{d+1}\right) \boldsymbol{V}_{d-1}+\varepsilon_{0}\left({ }^{\mathrm{t}} \overline{\boldsymbol{b}}_{d+1} \overline{\boldsymbol{B}}_{d-1}^{-1} \boldsymbol{H}_{d-2}-\nabla_{v_{0}}^{\perp(d)} H\right)=0 .
$$

By noticing the tangential component and the normal component of this equality, we have

$$
{ }^{t} \overline{\boldsymbol{b}}_{d+1} \overline{\boldsymbol{B}}_{d-1}^{-1}={ }^{t} \boldsymbol{b}_{d+1} \boldsymbol{B}_{d-1}{ }^{-1}
$$

and

$$
\nabla_{v_{0}}^{\perp(d)} H={ }^{\prime} \bar{b}_{d+1} \overline{\boldsymbol{B}}_{d-1}^{-1} \boldsymbol{H}_{d-2} .
$$

These imply

$$
\nabla_{v_{0}}^{\perp(d)} H=^{t} b_{d+1} \boldsymbol{B}_{d-1}{ }^{-1} H_{d-2} .
$$

Since ${ }^{'} \boldsymbol{b}_{2 i+1} \boldsymbol{B}_{2 i-1}{ }^{-1}(1 \leq 2 i-1 \leq d-1)$ is the solution of the equation $\left(x_{1}, \cdots\right.$, $\left.x_{i}\right) \boldsymbol{B}_{2 i-1}={ }^{t} b_{2 i+1}$, by Cramér formula, we have

$$
\begin{align*}
& { }^{t} \boldsymbol{b}_{2 i+1} \boldsymbol{B}_{2 i-1}{ }^{-1}=\frac{1}{\left|\boldsymbol{B}_{2 i-1}\right|}\left(P_{2 i+1,1}\left(\lambda_{1}, \cdots, \lambda_{2 i}\right), \cdots\right. \tag{2.4}\\
& \left.\cdots, P_{2 i+1, i}\left(\lambda_{1}, \cdots, \lambda_{2 i}\right)\right),
\end{align*}
$$

where $P_{2 i+1, j}\left(\lambda_{1}, \cdots, \lambda_{2 i}\right)(1 \leq j \leq i)$ is the determinant replaced the j-th row of $\left|\boldsymbol{B}_{2 i-1}\right|$ by ' $b_{2 i+1}$. Similarly, we have

$$
\begin{align*}
{ }^{t} \boldsymbol{b}_{2 i} \boldsymbol{B}_{2 i-2}{ }^{-1}=\frac{1}{\left|\boldsymbol{B}_{2 i-2}\right|}\left(P _ { 2 i , 1 } \left(\lambda_{1}, \cdots,\right.\right. & \left.\lambda_{2 i-1}\right), \cdots \\
& \left.\cdots, P_{2 i, i-1}\left(\lambda_{1}, \cdots, \lambda_{2 i-1}\right)\right) \tag{2.5}\\
& (2 \leq 2 i-2 \leq d-1),
\end{align*}
$$

where $P_{2 i, j}\left(\lambda_{1}, \cdots, \lambda_{2 i-1}\right)(1 \leq j \leq i-1)$ is the determinant replaced the j-th row of $\left|\boldsymbol{B}_{2 i-2}\right|$ by ${ }^{'} b_{2 i}$. Then we have the following lemma.

Lemma 2.4. (i) The polynomial $P_{2 i+1, j}\left(\lambda_{1}, \cdots, \lambda_{2 i}\right)(1 \leq j \leq i)$ is a homogeneous
polynomial of degree $\left(i^{2}+2 i-2 j+2\right)$ and $P_{2 i, j}\left(\lambda_{1}, \cdots, \lambda_{2 i-1}\right)(1 \leq j \leq i-1)$. is a homogeneous polynomial of degree $\left(i^{2}+i-2 j\right)$.
(ii) The polynomial $P_{2 i+1,1}\left(\lambda_{1}, \cdots, \lambda_{2 i}\right)$ is expressed as follows:

$$
P_{2 i+1,1}\left(\lambda_{1}, \cdots, \lambda_{2 i}\right)=-\varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{2 i} \lambda_{2} \lambda_{4} \cdots \lambda_{2 i}\left|B_{2 i}\right| .
$$

Proof. (i) By (2.1), we see that $\beta_{i, j}$ is a homogeneous polynomial of degree i with variables $\lambda_{1}, \cdots, \lambda_{i}$. Hence the conclusion is directly deduced from the definitions of $P_{2 i+1, j}\left(\lambda_{1}, \cdots, \lambda_{2 i}\right)$ and $P_{2 i, j}\left(\lambda_{1}, \cdots, \lambda_{2 i-1}\right)$.
(ii) Define $\hat{\beta}_{j, k}(j>k \geq 1, j+k$: even) by

$$
\hat{\beta}_{j, k}= \begin{cases}0 & (j>k=1) \\ \lambda_{k} \beta_{j-1, k-1} & (j>k>1) .\end{cases}
$$

Then, from (2.1), we have

$$
\left(b_{j, k}\right) \quad \beta_{j, k}=-\varepsilon_{k} \varepsilon_{k+1} \lambda_{k+1} \beta_{j-1, k+1}+\hat{\beta}_{j, k} \quad(j>k>2) .
$$

Also, we define a matrix C_{j} of type $(2, j)$ and a matrix D_{j} of type $(j, 2)(j \geq 1)$ by

$$
C_{j}:=\left(\begin{array}{lll}
\beta_{2 j+3,1} & \beta_{2 j+3,3} & \ldots \\
\beta_{2 j+3,2 j-1} \\
\beta_{2 j+5,1} & \beta_{2 j+5,3} & \ldots
\end{array} \beta_{2 j+5,2 j-1} .4\right)
$$

and

$$
D_{j}:=\left(\begin{array}{cc}
0 & 0 \\
\vdots & \vdots \\
0 & 0 \\
\beta_{2 j+1,2 j+1} & 0
\end{array}\right) .
$$

Furthermore, we define matrices A_{j} and $\hat{A}_{j}(j \geq 1)$ by

$$
\begin{aligned}
& A_{1}:=\left(\beta_{3,1}\right), \quad A_{2}:=\left(\begin{array}{ll}
\beta_{3,1} & \beta_{3,3} \\
\beta_{5,1} & \beta_{5,3}
\end{array}\right), \\
& A_{j}:=\left(\begin{array}{ll}
A_{j-2} & D_{j-2} \\
C_{j-2} & \left(\begin{array}{ll}
\beta_{2 j-1,2 j-3} & \beta_{2 j-1,2 j-1} \\
\beta_{2 j+1,2 j-3} & \beta_{2 j+1,2 j-1}
\end{array}\right)
\end{array}\right)(j \geq 3)
\end{aligned}
$$

and

$$
\begin{aligned}
& \hat{A}_{1}:=\left(\hat{\beta}_{3,1}\right), \quad \hat{A}_{2}:=\left(\begin{array}{ll}
\beta_{3,1} & \beta_{3,3} \\
\beta_{5,1} & \beta_{5,3}
\end{array}\right), \\
& \hat{A}_{j}:=\left(\begin{array}{ll}
A_{j-2} & D_{j-2} \\
C_{j-2} & \left(\begin{array}{ll}
\beta_{2 j-1,2 j-3} & \beta_{2 j-1,2 j-1} \\
\beta_{2 j+1,2 j-3} & \beta_{2 j+1,2 j-1}
\end{array}\right)
\end{array}\right)(j \geq 3) .
\end{aligned}
$$

From the definition of $P_{2 j+1,1}\left(\lambda_{1}, \cdots, \lambda_{2 j}\right)$, we have

$$
\begin{aligned}
P_{2 j+1,1}\left(\lambda_{1}, \cdots, \lambda_{2 j}\right) & =(-1)^{j-1}\left|A_{j}\right| \\
& =(-1)^{j-1}\left|\begin{array}{ll}
A_{j-2} & D_{j-2} \\
C_{j-2}
\end{array}\left(\begin{array}{ll}
\beta_{2 j-1,2 j-3} & \beta_{2 j-1,2 j-1} \\
\beta_{2 j+1,2 j-3} & \beta_{2 j+1,2 j-1}
\end{array}\right)\right|
\end{aligned}
$$

Substituting $\left(b_{2 j+1,2 j-1}\right)$ to this equality and using the linearity of the determinant for the final column, we have

$$
\begin{align*}
& P_{2 j+1,1}\left(\lambda_{1}, \cdots, \lambda_{2 j}\right) \\
& =(-1)^{j-1}\left\{\left\{\right\}\right. \tag{2.6}\\
& =(-1)^{j-1}\left\{-\varepsilon_{2 j-1} \varepsilon_{2 j} \lambda_{2 j} \beta_{2,2 j}\left|A_{j-1}\right|+\left|\hat{A}_{j}\right|\right\} \\
& =\varepsilon_{2 j-1} \varepsilon_{2 j} \lambda_{2 j} \beta_{2 j, 2 j} P_{2 j-1,1}\left(\lambda_{1}, \cdots, \lambda_{2 j-2}\right)+(-1)^{j-1}\left|\hat{A}_{j}\right| \quad(j \geq 2) .
\end{align*}
$$

Next we shall show $\left|\hat{A}_{j}\right|=0(j \geq 1)$. Clearly we have $\left|\hat{A}_{j}\right|=\left|\hat{\beta}_{3,1}\right|=0$. Assume that $\left|\hat{A}_{j}\right|=0$ for every $j \leq k$. Substituting $\left(b_{2 k+1,2 k-1}\right),\left(b_{2 k+3,2 k-1}\right), \beta_{2 k+1,2 k+1}=\lambda_{2 k+1} \beta_{2 k, 2 k}$ and $\hat{\beta}_{2 k+3,2 k+1}=\lambda_{2 k+1} \beta_{2 k+2,2 k}$ to

$$
\left.\left|\hat{A}_{k+1}\right|=\left\lvert\, \begin{array}{l}
A_{k-1} \\
C_{k-1}
\end{array} \begin{array}{ll}
\beta_{2 k+1,2 k-1} & \beta_{2 k+1,2 k+1} \\
\beta_{2 k+3,2 k-1} & \beta_{2 k+3,2 k+1}
\end{array}\right.\right) \mid
$$

and adding $\frac{\varepsilon_{2 k-1} \varepsilon_{2 k} \lambda_{2 k}}{\lambda_{2 k+1}}$ multiple of the final column to the k-th column, we obtain

$$
\left|\hat{A}_{k+1}\right|=\left\lvert\, \begin{array}{cc}
A_{k-1} & D_{k-1} \\
C_{k-1} & \left(\begin{array}{ll}
\hat{\beta}_{2 k+1,2 k-1} & \beta_{2 k+1,2 k+1} \\
\hat{\beta}_{2 k+3,2 k-1} & \hat{\beta}_{2 k+3,2 k+1}
\end{array}\right) .
\end{array}\right.
$$

Expanding this determinant with respect to the final column and using the assumption of the induction, we obtain

$$
\begin{aligned}
\left|\hat{A}_{k+1}\right|=-\beta_{2 k+1,2 k+1} & \left|\left(\begin{array}{ccc}
& A_{k-2} & D_{2 k-1,1} \\
\cdots & \beta_{2 k-1,2 k-5} \\
\beta_{2 k+3,1} & \cdots & \beta_{2 k+3,2 k-5}
\end{array}\right) \quad\left(\begin{array}{cc}
\beta_{2 k-1,2 k-3} & \beta_{2 k-1,2 k-1} \\
\beta_{2 k+3,2 k-3} & \hat{\beta}_{2 k+3,2 k-1}
\end{array}\right)\right| \\
& +\hat{\beta}_{2 k+3,2 k+1}\left|\hat{A}_{k}\right|
\end{aligned}
$$

$$
=-\beta_{2 k+1,2 k+1}\left|\left(\begin{array}{ccc}
& A_{k-2} & D_{k-2} \\
\beta_{2 k-1,1} & \cdots & \beta_{2 k-1,2 k-5} \\
\beta_{2 k+3,1} & \cdots & \beta_{2 k+3,2 k-5}
\end{array}\right)\left(\begin{array}{cc}
\beta_{2 k-1,2 k-3} & \beta_{2 k-1,2 k-1} \\
\beta_{2 k+3,2 k-3} & \hat{\beta}_{2 k+3,2 k-1}
\end{array}\right)\right|
$$

By repeating the same process, we can obtain

$$
\begin{aligned}
\left|\hat{A}_{k+1}\right| & \left.=(-1)^{k-2} \beta_{7,7} \beta_{9,9} \cdots \beta_{2 k+1,2 k+1} \left\lvert\, \begin{array}{c}
A_{1} \\
\beta_{5,1} \\
\beta_{2 k+3,1}
\end{array}\right.\right) \left.\left(\begin{array}{cc}
\beta_{5,3} & D_{1} \\
\beta_{2 k+3,5} & \hat{\beta}_{2 k+3,5}
\end{array}\right) \right\rvert\, \\
& =(-1)^{k-2} \beta_{7,7} \beta_{9,9} \cdots \beta_{2 k+1,2 k+1}\left|\begin{array}{ccc}
\beta_{3,1} & \beta_{3,3} & 0 \\
\beta_{5,1} & \beta_{5,3} & \beta_{5,5} \\
\beta_{2 k+3,1} & \beta_{2 k+3,3} & \hat{\beta}_{2 k+3,5}
\end{array}\right| \\
& =(-1)^{k-1} \beta_{5,5} \beta_{7,7} \cdots \beta_{2 k+1,2 k+1}\left|\begin{array}{cc}
\beta_{3,1} & \beta_{3,3} \\
\beta_{2 k+3,1} & \hat{\beta}_{2 k+3,3}
\end{array}\right| \\
& =(-1)^{k} \beta_{3,3} \beta_{5,5} \cdots \beta_{2 k+1,2 k+1}\left|\hat{\beta}_{2 k+3,1}\right| \\
& =0 .
\end{aligned}
$$

Thus, by the induction, we can conclude $\left|\hat{A}_{j}\right|=0$ every $j \geq 1$. Substituting $\left|\hat{A}_{j}\right|=0$ to (2.6), we have

$$
P_{2 j+1,1}\left(\lambda_{1}, \cdots, \lambda_{2 j}\right)=\varepsilon_{2 j-1} \varepsilon_{2 j} \lambda_{2 j} \beta_{2 j, 2 j} P_{2 j-1,1}\left(\lambda_{1}, \cdots, \lambda_{2 j-2}\right)(j \geq 2)
$$

After all we can obtain

$$
\begin{aligned}
& P_{2 i+1,1}\left(\lambda_{1}, \cdots, \lambda_{2 i}\right) \\
& =\varepsilon_{3} \varepsilon_{4} \cdots \varepsilon_{2 i} \lambda_{4} \lambda_{6} \cdots \lambda_{2 i} \beta_{4,4} \beta_{6,6} \cdots \beta_{2 i, 2 i} P_{3,1}\left(\lambda_{1}, \lambda_{2}\right) \\
& =-\varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{2 i} \lambda_{2} \lambda_{4} \cdots \lambda_{2 i} \beta_{2,2} \beta_{4,4} \cdots \beta_{2 i, 2 i} \\
& =-\varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{2 i} \lambda_{2} \lambda_{4} \cdots \lambda_{2 i}\left|B_{2 i}\right| .
\end{aligned}
$$

Also, we have the following lemma.
Lemma 2.5. (i) The normal vector field $\nabla_{v_{0}}^{\perp(2 i)} H(i \geq 1)$ along σ is written as

$$
\begin{aligned}
\left(H_{2 i}\right) \quad \nabla_{v_{0}}^{\perp}{ }^{(2 i)} H=\sum_{j=1}^{i-1} Q_{2 i, 2 j-1}\left(\lambda_{1}, \cdots, \lambda_{2 i-2}\right) \nabla_{v_{2 j-1}}^{\perp} H & +\lambda_{1} \lambda_{2} \cdots \lambda_{2 i-1} \nabla_{v_{2 j-1}}^{\perp} H \\
& +N_{2 i}\left(\lambda_{1}, \cdots, \lambda_{2 i-2}\right),
\end{aligned}
$$

where $Q_{2 i, 2 j-1}\left(\lambda_{1}, \cdots, \lambda_{2 i-1}\right)(1 \leq j \leq i-1)$ is a homogeneous polynomial of degree
$(2 i-1)$ and $N_{2 i}\left(\lambda_{1}, \cdots, \lambda_{2 i-2}\right)$ is a normal vector field-valued polynomial of degree at most $(2 i-2)$,
(ii) The normal vector field $\nabla_{v_{0}}^{\perp}{ }^{(2 i+1)} H(i \geq 1)$ along σ is written as

$$
\begin{array}{r}
\left(H_{2 i+1}\right) \quad \nabla_{v_{0}}^{\perp(2 i+1)} H=\sum_{j=0}^{i-1} Q_{2 i+1,2 j}\left(\lambda_{1}, \cdots, \lambda_{2 i-1}\right) \nabla_{v_{2 j}}^{\perp} H+\lambda_{1} \lambda_{2} \cdots \lambda_{2 i} \nabla_{v_{2 j}}^{\perp} H \\
\\
+N_{2 i+1}\left(\lambda_{1}, \cdots, \lambda_{2 i-1}\right)
\end{array}
$$

where $Q_{2 i+1,2 j}\left(\lambda_{1}, \cdots, \lambda_{2 i}\right)(0 \leq j \leq i-1)$ is a homogeneous polynomial of degree $2 i$ and $N_{2 i+1}\left(\lambda_{1}, \cdots, \lambda_{2 i-1}\right)$ is a normal vector field-valued polynomial of degree at most $(2 i-1)$.

PROOF. Define a normal bundle-valued $(0, j)$-tensor field T_{j} on M by $T_{1}:=\nabla^{\perp} H \quad$ and $\quad T_{k}\left(X_{1}, \cdots, X_{k}\right):=\left(\bar{\nabla}_{X_{1}} T_{k-1}\right)\left(X_{2}, \cdots, X_{k}\right)(k \geq 2)$ for $X_{1}, \cdots, X_{k} \in T M$, where $\bar{\nabla}$ is the connection induced from ∇ and ∇^{\perp}. We shall show $\left(H_{3}\right)$. By using the definition of T_{j} and the Frenet formula, $\nabla_{v_{0}}^{{ }^{(3)}} H$ is rewritten in terms of T_{j} as follows:

$$
\begin{aligned}
\nabla_{v_{0}}^{\perp(3)} H & =\nabla_{v_{0}}^{\perp}{ }^{(2)}\left(T_{1}\left(v_{0}\right)\right)=\nabla_{v_{0}}^{\perp}\left(T_{2}\left(v_{0}, v_{0}\right)+\lambda_{1} T_{1}\left(v_{1}\right)\right) \\
& =T_{3}\left(v_{0}, v_{0}, v_{0}\right)+\lambda_{1} T_{2}\left(v_{1}, v_{0}\right)+2 \lambda_{1} T_{2}\left(v_{0}, v_{1}\right) \\
& -\varepsilon_{0} \varepsilon_{1} \lambda_{1}^{2} \nabla_{v_{0}}^{\perp} H+\lambda_{1} \lambda_{2} \nabla_{v_{0}}^{\perp} H \\
& =Q_{3,0}\left(\lambda_{1}\right) \nabla_{v_{0}}^{\perp} H+\lambda_{1} \lambda_{2} \nabla_{v_{0}}^{\perp} H+N_{3}\left(\lambda_{1}\right)
\end{aligned}
$$

where we set $Q_{3,0}\left(\lambda_{1}\right):=-\varepsilon_{0} \varepsilon_{1} \lambda_{1}^{2}$ and $N_{3}\left(\lambda_{1}\right):=T_{3}\left(v_{0}, v_{0}, v_{0}\right)+\lambda_{1} T_{2}\left(v_{1}, v_{0}\right)+2 \lambda_{1} T_{2}$ $\left(v_{0}, v_{1}\right)$. Thus $\left(H_{3}\right)$ is shown. Similarly, $\left(H_{i}\right)(i \geq 4)$ is also shown.

By using these lemmas, we can prove the following theorem.
THEOREM 2.6. Let M be a totally umbilical pseudo-Riemannian submanifold in \bar{M} isometrically immersed by f. Assume that for every proper helix σ of order d in $M, \bar{\sigma}(:=f \circ \sigma)$ is a proper helix of order d in \bar{M}, where d is a positive integer. Then
(i) if d is odd, then M is totally geodesic,
(ii) if d is even, then M is an extrinsic sphere.

Proof. Assume that $d \geq 3$. Fix $p \in M$. For any orthonormal system $X_{0}, X_{1}, \cdots, X_{d-1}$ of $T_{p} M$ and any positive numbers $\lambda_{1}, \cdots, \lambda_{d-1}$, there exists a proper helix σ of order d through p with the curvatures $\lambda_{1}, \cdots, \lambda_{d-1}$ whose Frenet frame field $v_{0}, v_{1}, \cdots, v_{d-1}$ coincide with $X_{0}, X_{1}, \cdots, X_{d-1}$ at p. Since $\bar{\sigma}(:=f \circ \sigma)$ is a proper
helix of order d in M, by Lemma 2.3, we have

$$
\begin{equation*}
\nabla_{\boldsymbol{v}_{0}}^{\frac{(d-1)}{} H==_{d}^{\prime} \boldsymbol{B}_{d-2}{ }^{-1} \boldsymbol{H}_{d-3}{ }^{\text {. }} .} \tag{2.7}
\end{equation*}
$$

(i) Let $d=2 i+1$. It follows from (2.4) and Lemma 2.5 that

$$
\begin{aligned}
& \nabla_{v_{0}}^{\perp}{ }^{(d-1)} H=\nabla_{v_{0}}^{\perp}{ }^{(2 i)} H \\
& =\sum_{k=1}^{i-1} Q_{2 i, 2 k-1}\left(\lambda_{1}, \cdots, \lambda_{2 i-2}\right) \nabla_{v_{2 k-1}}^{\perp} H+\lambda_{1} \lambda_{2} \cdots \lambda_{2 i-1} \nabla_{v_{2 i-1}}^{\perp} H \\
& +N_{2 i}\left(\lambda_{1}, \cdots, \lambda_{2 i-2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& { }^{t} \boldsymbol{b}_{d} \boldsymbol{B}_{d-2}{ }^{-1} \boldsymbol{H}_{d-3}=\frac{1}{\left|\boldsymbol{B}_{d-2}\right|} \sum_{j=0}^{i-1} P_{d, j+1}\left(\lambda_{1}, \cdots, \lambda_{d-1}\right) \nabla_{v_{0}}^{\perp(2 j)} H \\
& =\frac{1}{\left|\boldsymbol{B}_{d-2}\right|}\left\{P_{d, 1}\left(\lambda_{1}, \cdots, \lambda_{d-1}\right) H+\sum_{j=1}^{i-1} P_{d, j+1}\left(\lambda_{1}, \cdots, \lambda_{d-1}\right)\right. \\
& \left.\left\{\sum_{k=1}^{j-1} Q_{2 j, 2 k-1}\left(\lambda_{1}, \cdots, \lambda_{2 j-2}\right) \nabla_{v_{2 k-1}}^{\perp} H+\lambda_{1} \lambda_{2} \cdots \lambda_{2 j-1} \nabla_{v_{2 j-1}}^{\perp} H+N_{2 j}\left(\lambda_{1}, \cdots, \lambda_{2 j-2}\right)\right\}\right\}
\end{aligned}
$$

Substituting these equalities to (2.7) and noticing the point p, we have
(2.8) $=P_{d, 1}\left(\lambda_{1}, \cdots, \lambda_{d-1}\right) H+\sum_{j=1}^{i-1} P_{d, j+1}\left(\lambda_{1}, \cdots, \lambda_{d-1}\right)$

$$
\left\{\sum_{k=1}^{j-1} Q_{2 j, 2 k-1}\left(\lambda_{1}, \cdots, \lambda_{2 j-2}\right) \nabla_{X_{2 k-1}}^{\perp} H+\lambda_{1} \lambda_{2} \cdots \lambda_{2 j-1} \nabla_{X_{2,-1}}^{\perp} H+N_{2 j}\left(\lambda_{1}, \cdots, \lambda_{2 j-2}\right)\right\}
$$

Since the degrees of $\left|\boldsymbol{B}_{d-2}\right|, Q_{2 j, 2 k-1}\left(\lambda_{1}, \cdots, \lambda_{2 j-1}\right)(j>k \geq 1)$ and $P_{d . j}\left(\lambda_{1}, \cdots, \lambda_{d-1}\right)(j \geq 1)$ are $i^{2},(2 j-1)$, and $\left(i^{2}+2 i-2 j+2\right)$, respectively, the left-hand side of (2.8) is a polynomial of degree $\left(i^{2}+2 i-1\right)$, the first term $P_{d .1}\left(\lambda_{1}, \cdots, \lambda_{d-1}\right) H$ of the righthand side is of degree $\left(i^{2}+2 i\right)$ and other terms of the right-hand side are of degree at most $\left(i^{2}+2 i-1\right)$. Hence, since (2.8) holds for every positive numbers $\lambda_{1}, \cdots, \lambda_{2 i-1}$, we obtain $P_{d, 1}\left(\lambda_{1}, \cdots, \lambda_{d-1}\right) H=0$. From Lemma 2.4-(ii), $P_{d, 1}\left(\lambda_{1}, \cdots\right.$, $\left.\lambda_{d-1}\right) \neq 0$ holds. Therefore, we see that $H=0$ at p. By the arbitrarity of $p \in M$, we see that $H \equiv 0$, that is, M is totally geodesic. In case of $d=1$, it is directly deduced from Lemma 2.1 that so is M.
(ii) Let $d=2 i$. It follows from (2.5), (2.7) and Lemma 2.5 that

$$
\begin{aligned}
& \left|B_{d-2}\right|\left\{\sum_{k=0}^{i-2} Q_{2 i-1,2 k}\left(\lambda_{1}, \cdots, \lambda_{2 i-3}\right) \nabla_{X_{2 k}}^{\perp} H+\lambda_{1} \lambda_{2} \cdots \lambda_{2 i-2} \nabla_{X_{2 l-2}}^{\perp} H+N_{2 i-1}\left(\lambda_{1}, \cdots, \lambda_{2 i-3}\right)\right\} \\
(2.9) & =P_{d, 1}\left(\lambda_{1}, \cdots, \lambda_{d-1}\right) \nabla_{X_{0}}^{\perp} H+\sum_{j=1}^{i-2} P_{d, j+1}\left(\lambda_{1}, \cdots, \lambda_{d-1}\right) \\
& \left\{\sum_{k=0}^{j-1} Q_{2 j+1,2 k}\left(\lambda_{1}, \cdots, \lambda_{2 j-1}\right) \nabla_{X_{2 k}}^{\perp} H+\lambda_{1} \lambda_{2} \cdots \lambda_{2 j} \nabla_{X_{2 j}}^{\perp} H+N_{2 j+1}\left(\lambda_{1}, \cdots, \lambda_{2 j-1}\right)\right\} .
\end{aligned}
$$

Since the degrees of $\left|\boldsymbol{B}_{d-2}\right|, Q_{2 j+1.2 k-1}\left(\lambda_{1}, \cdots, \lambda_{2 j-1}\right)(j>k \geq 0)$ and $P_{d, j}\left(\lambda_{1}, \cdots, \lambda_{d-1}\right)$ $(j \geq 1)$ are $\left(i^{2}-i\right), 2 j$ and $\left(i^{2}+i-2 j\right)$, respectively, both sides of (2.9) are polynomials of degree $\left(i^{2}+i-2\right)$. Hence, since (2.9) holds for every positive numbers $\lambda_{1}, \cdots, \lambda_{2 i-2}$, terms of degree $\left(i^{2}+i-2\right)$ of the both sides are mutually equal, that is,

$$
\begin{aligned}
& \left|\boldsymbol{B}_{d-2}\right|\left\{\sum_{k=0}^{i-2} Q_{2 i-1,2 k}\left(\lambda_{1}, \cdots, \lambda_{2 i-3}\right) \nabla_{X_{2 k}}^{\perp} H+\lambda_{1} \lambda_{2} \cdots \lambda_{2 i-2} \nabla_{X_{21-2}}^{\perp} H\right\} \\
& =P_{d, 1}\left(\lambda_{1}, \cdots, \lambda_{d-1}\right) \nabla_{X_{0}}^{\perp} H+\sum_{j=1}^{i-2} P_{d, j+1}\left(\lambda_{1}, \cdots, \lambda_{d-1}\right) \\
& \left\{\sum_{k=0}^{j-1} Q_{2 j+1,2 k}\left(\lambda_{1}, \cdots, \lambda_{2 j-1}\right) \nabla_{X_{2 k}}^{\perp} H+\lambda_{1} \lambda_{2} \cdots \lambda_{2 j} \nabla_{X_{2},}^{\perp} H\right\} .
\end{aligned}
$$

Furthermore, since this equality holds for every orthonormal system $X_{0}, X_{2}, \cdots, X_{2 i-2}$ of $T_{p} M$, we see that $\left|B_{d-2}\right| \lambda_{1} \lambda_{2} \cdots \lambda_{2 i-2} \nabla_{X_{2 i-2}}^{\perp} H=0$, that is $\nabla_{X_{2 i-2}}^{\perp} H=0$. By the arbitrarity of $X_{2 i-2}$, we see that $\nabla^{\perp} H=0$ at p. Furthermore, from the arbitrarily of $p \in M, \nabla^{\perp} H \equiv 0$ is deduced. Thus M is an extrinsic sphere. In case of $d=2$, it is directly deduced from Lemma 2.1 that so is M.

In the case where M and \bar{M} are Riemannian manifolds, this theorem is written as follows.

COROLLARY 2.7. Let M be a totally umbilical submanifold in a Riemannian manifold \bar{M} isometrically immersed by f. Assume that for every helix σ of order d in $M, \bar{\sigma}(:=f \circ \sigma)$ is a helix of order d in \bar{M}, where d is a positive integer. Then
(i) if d is odd, then M is totally geodesic,
(ii) if d is even, then M is an extrinsic sphere.

Also, we can prove the following theorem.
Theorem 2.8. Let M be a totally umbilical pseudo-Riemannian submanifold in M isometrically immersed by f. Assume that for every proper helix σ of order d in $M, \bar{\sigma}(:=f \circ \sigma)$ is a proper helix of order $d+1$ in \bar{M}, where d is a positive
integer. Then d is odd and M is an extrinsic sphere.
Proof. Assume that $d \geq 2$. Fix $p \in M$. For any orthonormal system $X_{0}, X_{1}, \cdots, X_{d-1}$ of $T_{p} M$ and any positive numbers $\lambda_{1}, \cdots, \lambda_{d-1}$, there exists a proper helix σ of order d through p with the curvatures $\lambda_{1}, \cdots, \lambda_{d-1}$ whose Frenet frame field $v_{0}, v_{1}, \cdots v_{d-1}$ coincide with $X_{0}, X_{1}, \cdots, X_{d-1}$ at p. Since $\bar{\sigma}(:=f \circ \sigma)$ is a proper helix of order $d+1$ in M, by Lemma 2.3, we have

$$
\begin{equation*}
\nabla_{\boldsymbol{v}_{0}}^{\perp(d)} H==_{d+1} \boldsymbol{b}_{d-1} \boldsymbol{B}_{d-2}^{-1} \boldsymbol{H}_{d-} . \tag{2.10}
\end{equation*}
$$

Suppose that d is even. Let $d=2 i$. It follows from (2.4), (2.10) and Lemma 2.5 that

$$
\begin{align*}
& \left|\mathbb{B}_{d-1}\right|\left\{\sum_{k=1}^{i-1} Q_{2 i, 2 k-1}\left(\lambda_{1}, \cdots, \lambda_{2 i-2}\right) \nabla_{X_{2 k-1}}^{\perp} H+\lambda_{1} \lambda_{2} \cdots \lambda_{2 i-1} \nabla_{X_{2 i-1}}^{\perp} H+N_{2 i}\left(\lambda_{1}, \cdots, \lambda_{2 i-2}\right)\right\} \\
& =P_{d+1,1}\left(\lambda_{1}, \cdots, \lambda_{d}\right) H+\sum_{j=1}^{i-1} P_{d+1, j+1}\left(\lambda_{1}, \cdots, \lambda_{d}\right) \tag{2.11}\\
& \left\{\sum_{k=1}^{j-1} Q_{2 j, 2 k-1}\left(\lambda_{1}, \cdots, \lambda_{2 j-2}\right) \nabla_{X_{2 k-1}}^{\perp} H+\lambda_{1} \lambda_{2} \cdots \lambda_{2 j-1} \nabla_{X_{2 j-1}}^{\perp} H+N_{2 j}\left(\lambda_{1}, \cdots, \lambda_{2 j-2}\right)\right\} .
\end{align*}
$$

Since (2.11) holds for every positive numbers $\lambda_{1}, \cdots, \lambda_{2 i-1}$, by noticing the term of the highest degree, we have $P_{d+1,1}\left(\lambda_{1}, \cdots, \lambda_{d}\right) H=0$. From Lemma 2.4-(ii), $P_{d+1,1}\left(\lambda_{1}, \cdots, \lambda_{d}\right) \neq 0$ holds. Therefore, we obtain $H=0$ at p. By the arbitrarity of $p \in M$, we see that $H \equiv 0$, that is, M is totally geodesic. This implies $\bar{d}=d$. Thus a contradiction results. Therefore, d is odd. Let $d=2 i+1$. It follows from (2.5), (2.10) and Lemma 2.5 that

$$
\left|\boldsymbol{B}_{d-1}\right|\left\{\sum_{k=0}^{i-1} Q_{2 i+1,2 k}\left(\lambda_{1}, \cdots, \lambda_{2 i-1}\right) \nabla_{X_{2 k}}^{\perp} H+\lambda_{1} \lambda_{2} \cdots \lambda_{2 i} \nabla_{X_{2 i}}^{\perp} H+N_{2 i+1}\left(\lambda_{1}, \cdots, \lambda_{2 i-1}\right)\right\}
$$

(2.12) $=P_{d+1,1}\left(\lambda_{1}, \cdots, \lambda_{d}\right) \nabla_{X_{0}}^{\perp} H+\sum_{j=1}^{i-1} P_{d+1, j+1}\left(\lambda_{1}, \cdots, \lambda_{d}\right)$

$$
\left\{\sum_{k=0}^{j-1} Q_{2 j+1,2 k}\left(\lambda_{1}, \cdots, \lambda_{2 j-1}\right) \nabla_{X_{2 k}}^{\perp} H+\lambda_{1} \lambda_{2} \cdots \lambda_{2 j} \nabla_{X_{2 j}}^{\perp} H+N_{2 j+1}\left(\lambda_{1}, \cdots, \lambda_{2 j-1}\right)\right\}
$$

Since (2.12) holds for every positive numbers $\lambda_{1}, \cdots, \lambda_{2 i-1}$, by noticing terms of the highest degree, we have

$$
\begin{aligned}
& \mid \boldsymbol{B}_{d-1}\left\{\sum_{k=0}^{i-1} Q_{2 i+1,2 k}\left(\lambda_{1}, \cdots, \lambda_{2 i-1}\right) \nabla_{X_{2 k}}^{\perp} H+\lambda_{1} \lambda_{2} \cdots \lambda_{2 i} \nabla_{X_{2 i}}^{\perp} H\right\} \\
& =P_{d+1,1}\left(\lambda_{1}, \cdots, \lambda_{d}\right) \nabla_{X_{0}}^{\perp} H+\sum_{j=1}^{i-1} P_{d+1, j+1}\left(\lambda_{1}, \cdots, \lambda_{d}\right) \\
& \left\{\sum_{k=0}^{j-1} Q_{2 j+1,2 k}\left(\lambda_{1}, \cdots, \lambda_{2 j-1}\right) \nabla_{X_{2 k}}^{\perp} H+\lambda_{1} \lambda_{2} \cdots \lambda_{2 j} \nabla_{X_{2 i}}^{\perp} H\right\} .
\end{aligned}
$$

Furthermore, since this equality holds for every orthonormal system $X_{0}, X_{2}, \ldots, X_{2 i}$ of $T_{p} M$, we see that $\left|B_{d-1}\right| \lambda_{1} \lambda_{2} \cdots \lambda_{2 i} \nabla_{X_{2 i}}^{\perp} H=0$, that is, $\nabla_{X_{21}}^{\perp} H=0$. By the arbitrarity of $X_{2 i}$, we see that $\nabla^{\perp} H=0$ at p. Furthermore, from the arbitrarity of $p \in M, \nabla^{\perp} H \equiv 0$ is deduced. Thus M is an extrinsic sphere. In case of $d=1$, it is directly deduced from Lemma 2.1 that so is M.

In the case where M and \bar{M} are Riemannian manifolds, this theorem is written as follows.

Corollary 2.9. Let M be a totally umbilical submanifold in a Riemannian manifold M isometrically immersed by f. Assume that for every helix σ of order d in $M, \bar{\sigma}(:=f \circ \sigma)$ is a helix of order $d+1$ in \bar{M}, where d is a positive integer. Then d is odd and M is an extrinsic sphere.

§3. Proper helices in an extrinsic sphere.

Let M be an extrinsic sphere in a pseudo-Riemannian manifold \bar{M} isometrically immersed by f and σ a proper helix of order d in M. We put $\bar{\sigma}:=f \circ \sigma$. Assume that $\bar{\sigma}$ is a proper curve of order \bar{d}. Let $\lambda_{1}, \cdots, \lambda_{d-1}$ (resp. $\lambda_{1}, \cdots, \lambda_{\bar{d}-1}$) be the curvatures of $\sigma($ resp. $\bar{\sigma}), v_{0}, \cdots, v_{d-1}$ (resp. \bar{v}_{0}, $\left.\ldots, \bar{v}_{\bar{d}-1}\right)$ the Frenet frame field of $\sigma($ resp. $\bar{\sigma})$. For convenience, let $\lambda_{i}=0, v_{i}=0$, $\bar{\lambda}_{j}=0$ and $\bar{v}_{j}=0(i \geq d, j \geq \bar{d})$. Set $\varepsilon_{i}:=g\left(v_{i}, v_{i}\right)$ and $\bar{\varepsilon}_{i}:=\bar{g}\left(\bar{v}_{i}, \bar{v}_{i}\right)(i \geq 0)$. Also, we define $\beta_{i, j}$ and $\beta_{i, j}(i \geq j \geq 1, i+j:$ even $)$ as (2.1).

Lemma 3.1. The curve $\bar{\sigma}$ is a proper helix in \bar{M} and the vector fields $v_{i}(i \geq 0)$ and $\bar{v}_{j}(j \geq 0)$ along σ are related as follows:
(F_{0}^{\prime}) $\quad \bar{v}_{0}=v_{0}$,
(F_{1}^{\prime}) $\quad \bar{\beta}_{1}, \bar{v}_{1}=\beta_{1}, v_{1}+\varepsilon_{0} H$,
($F_{2 i-1}^{\prime}$) $\sum_{j=1}^{i} \bar{\beta}_{2 i-1,2 j-1} \bar{v}_{2 j-1}=\sum_{j=1}^{i} \beta_{2 i-1,2 j-1} v_{2 j-1} \quad(i \geq 2)$,
($F_{2 i}^{\prime}$) $\sum_{j=1}^{i} \bar{\beta}_{2 i, 2 j} \bar{v}_{2 j}=\sum_{j=1}^{i} \beta_{2 i, 2 j} v_{2 j} \quad(i \geq 1)$.

Proof. From (1.1), the Frenet formulas and the assumption that M is totally umbilic, we get

$$
\bar{\lambda}_{1} \bar{v}_{1}=\bar{\nabla}_{v_{0}} v_{0}=\nabla_{v_{0}} v_{0}+\varepsilon_{0} H=\lambda_{1} v_{1}+\varepsilon_{0} H .
$$

Thus we obtain $\left(F_{1}^{\prime}\right)$. Furthermore, from this equality, we get

$$
\bar{\varepsilon}_{1} \bar{\lambda}_{1}^{2}=\varepsilon_{1} \lambda_{1}^{2}+\bar{g}(H, H)
$$

Since M is an extrinsic sphere, $\bar{g}(H, H)$ is constant. Therefore, $\bar{\lambda}_{1}$ is constant. Operating $\bar{\nabla}_{v_{0}}$ to $\left(F_{1}\right)$, we get

$$
\bar{\beta}_{1,1}\left(-\varepsilon_{0} \bar{\varepsilon}_{1} \bar{\lambda}_{1} v_{0}+\bar{\lambda}_{2} \bar{v}_{2}\right)=\beta_{1,1}\left(-\varepsilon_{0} \varepsilon_{1} \lambda_{1} v_{0}+\lambda_{2} v_{2}\right)-\varepsilon_{0} \bar{g}(H, H) v_{0}
$$

where we use (1.1), (1.2), the Frenet formulas and the assumption that M is an extrinsic sphere. By noticing $\operatorname{Span}\left\{v_{0}\right\}^{\perp}$-component of this equality, we see that

$$
\bar{\lambda}_{2} \bar{\beta}_{1,1} \bar{v}_{2}=\lambda_{2} \beta_{1.1} v_{2},
$$

which implies (F_{2}^{\prime}) by (2.1). Furthermore, from this equality, we get

$$
\bar{\varepsilon}_{2} \bar{\lambda}_{2}^{2} \bar{\beta}_{1,1}^{2}=\varepsilon_{2} \lambda_{2}^{2} \beta_{1,1}^{2},
$$

which implies that $\bar{\lambda}_{2}$ is constant. Assume that ($F_{2 k}^{\prime}$) holds and $\bar{\lambda}_{i}(1 \leq i \leq 2 k)$ are constant. Since $\beta_{2 k, 2 j}\left(\right.$ resp. $\left.\bar{\beta}_{2 k, 2 j}\right)(1 \leq i \leq k)$ are polynomials with variables $\lambda_{1}, \cdots, \lambda_{2 k}$ (resp. $\bar{\lambda}_{1}, \cdots, \bar{\lambda}_{2 k}$), these are constant along σ. Hence, operating $\bar{\nabla}_{v_{0}}$ to ($F_{2 k}^{\prime}$), we have

$$
\sum_{j=1}^{k} \bar{\beta}_{2 k, 2 j} \bar{\nabla}_{v_{0}} \bar{v}_{2 j}=\sum_{j=1}^{k} \beta_{2 k, 2 j} \nabla_{v_{0}} v_{2 j}
$$

where we use (1.1) and the assumption that M is an extrinsic sphere. Applying the Frenet formulas and (2.1) to this equality, we obtain ($F_{2 k+1}^{\prime}$). Furthermore, from ($F_{2 k+1}^{\prime}$), we get

$$
\sum_{j=1}^{k+1} \bar{\varepsilon}_{2 j-1} \bar{\beta}_{2 k+1,2 j-1}^{2}=\sum_{j=1}^{k+1} \varepsilon_{2 j-1} \beta_{2 k+1,2 j-1}^{2},
$$

that is,

$$
\begin{equation*}
\bar{\varepsilon}_{2 k+1} \bar{\beta}_{2 k+1,2 k+1}^{2}=\sum_{j=1}^{k+1} \varepsilon_{2 j-1} \beta_{2 k+1,2 j-1}^{2}-\sum_{j=1}^{k} \bar{\varepsilon}_{2 j-1} \bar{\beta}_{2 k+1,2 j-1}^{2} . \tag{3.1}
\end{equation*}
$$

Since $\beta_{2 k+1,2 j-1}(1 \leq j \leq k+1)$ are polynomials with variables $\lambda_{1}, \cdots, \lambda_{2 k+1}$ and $\bar{\beta}_{2 k+1,2 j-1}(1 \leq i \leq k)$ are polynomials with variables $\bar{\lambda}_{1}, \cdots, \bar{\lambda}_{2 k}$, these are constant along σ, that is, the right-hand side of (3.1) is constant along σ. Also, the lefthand side of (3.1) is equal to $\bar{\varepsilon}_{2 k+1} \bar{\lambda}_{1}^{2} \bar{\lambda}_{2}^{2} \ldots \bar{\lambda}_{2 k+1}^{2}$. Therefore, we see that $\bar{\lambda}_{2 k+1}$ is constant. Since $\beta_{2 k+1,2 j-1}\left(\right.$ resp. $\left.\bar{\beta}_{2 k+1,2 j-1}\right)(1 \leq j \leq k+1)$ are polynomials with variables $\lambda_{1}, \cdots, \lambda_{2 k+1}\left(\right.$ resp. $\left.\bar{\lambda}_{1}, \cdots, \bar{\lambda}_{2 k+1}\right)$, these are constant along σ. Hence, operating $\bar{\nabla}_{v_{0}}$ to $\left(F_{2 k+1}^{\prime}\right)$, we have

$$
\sum_{j=1}^{k+1} \bar{\beta}_{2 k+1,2 j-1} \bar{\nabla}_{v_{0}} \bar{v}_{2 j-1}=\sum_{j=1}^{k+1} \beta_{2 k+1,2 j-1} \nabla_{v_{0}} v_{2 j-1},
$$

where we use (1.1) and the assumption that M is an extrinsic sphere. Applying the Frenet formulas and (2.1) to this equality, we obtain $\left(F_{2 k+2}^{\prime}\right)$. Furthermore, from ($F_{2 k+2}^{\prime}$), we get

$$
\sum_{j=1}^{k+1} \bar{\varepsilon}_{2 j} \bar{\beta}_{2 k+2,2 j}^{2}=\sum_{j=1}^{k+1} \varepsilon_{2 j} \beta_{2 k+2,2 j}^{2},
$$

that is,

$$
\begin{equation*}
\bar{\varepsilon}_{2 k+2} \bar{\beta}_{2 k+2.2 k+2}^{2}=\sum_{j=1}^{k+1} \varepsilon_{2 j} \beta_{2 k+2,2 j}^{2}-\sum_{j=1}^{k} \bar{\varepsilon}_{2 j} \bar{\beta}_{2 k+2,2 j}^{2} . \tag{3.2}
\end{equation*}
$$

Since $\beta_{2 k+2,2 j}(1 \leq j \leq k+1)$ are polynomials with variables $\lambda_{1}, \cdots, \lambda_{2 k+2}$ and $\bar{\beta}_{2 k+2,2 j}(1 \leq i \leq k)$ are polynomials with variables $\bar{\lambda}_{1}, \cdots, \bar{\lambda}_{2 k+1}$, these are constant along σ, that is, the right-hand side of (3.2) is constant along σ. Also, the lefthand side of (3.2) is equal to $\bar{\varepsilon}_{2 k+2} \bar{\lambda}_{1}^{2} \bar{\lambda}_{2}^{2} \ldots \bar{\lambda}_{2 k+2}^{2}$. Therefore, we see that $\bar{\lambda}_{2 k+2}$ is constant. Thus, by the induction, we see that $\left(F_{i}^{\prime}\right)(i \geq 0)$ hold and $\lambda_{j}(j \geq 1)$ are constant (i.e., $\bar{\sigma}$ is a proper helix).

By using this lemma, we can prove the following theorem.
THEOREM 3.2. Let M be an extrinsic sphere in a pseudo-Riemannian manifold M isometrically immersed by f and σ a proper helix of order d in M such that $\bar{\sigma}(:=f \circ \sigma)$ is a proper curve in \bar{M}, where d is a positive integer. Then
(i) if d is odd, then $\bar{\sigma}$ is a proper helix of order d or $d+1$,
(ii) if d is even, then $\bar{\sigma}$ is a proper helix of order d.

Proof. Let $v_{i}(0 \leq i \leq d-1)\left(\right.$ resp. $\left.v_{i}(0 \leq i \leq \bar{d}-1)\right)$ the Frenet frame field of $\sigma($ resp. $\bar{\sigma})$ and, for convenience, $v_{i}=0(i \geq d)$ and $\bar{v}_{i}=0(i \geq \bar{d})$. According to Lemma 3.1, $\bar{\sigma}$ is a proper helix, $\bar{v}_{2 i} \in \operatorname{Span}\left\{v_{0}, v_{2}, \cdots, v_{2 i}\right\}(i \geq 0)$ and $\bar{v}_{2 i+1} \in \operatorname{Span}\left\{v_{1}, v_{3}, \cdots, v_{2 i+1}, H\right\}(i \geq 0)$. The conclusion is directly deduced from these facts.

In the case where M and \bar{M} are Riemannian manifolds, this theorem is written as follows.

COROLLARY 3.3. Let M be an extrinsic sphere in a Riemannian manifold \bar{M} isometrically immersed by f and σ a helix of order d in M, where d is a positive integer. Then
(i) if d is odd, then $f \circ \sigma$ is a helix of order d or $d+1$,
(ii) if d is even, then $f \circ \sigma$ is a helix of order d.

References

[1] Abe, N., Nakanishi Y. and Yamaguchi, S., Circles and spheres in pseudo-Riemannian geometry, Aequationes Mathematicae 39 (1990), 134-145.
[2] Nakagawa, H., On a certain minimal immersion of a Riemannian manifold into a sphere, Kôdai Math. J. 3 (1980), 321-340.
[3] Nakanishi, Y., On curves in pseudo-Riemannian submanifolds, Yokohama Math. J. 36 (1988), 137-146.
[4] Nakanishi, Y., On helices and pseudo-Riemannian submanifolds, Tsukuba J. of Math. 12 (1988), 469-476.
[5] Nomizu K. and Yano, K., On circles and spheres in Riemannian geometry, Math. Ann. 210 (1974), 163-170.
[6] O'Neill, B., Semi-Riemannian geometry, Academic Press, New York, 1983.
[7] Sakamoto, K. , Planar geodesic immersions, Tôhoku Math. J. 29 (1977), 25-56.
[8] Sakamoto, K., Helical immersions into a unit sphere, Math. Ann. 261 (1982), 63-80.
Department of Mathematics
Korea University
1-700 Ogawa-cho Kodaira
Tokyo 176
Japan,
Professional Services
Account Consulting
AT\&T JAPAN
$16-16$, Nampeidai-cho Shibuya-ku
Tokyo 150
Japan
and
Department of Mathematics
Faculty of Science
Science University of Tokyo
26 Wakamiya Shinjuku-ku,
Tokyo 162
Japan

[^0]: Received June 16, 1994

