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ON PROPER HELICES AND EXTRINSIC SPHERES

IN PSEUDO-RIEMANNIAN GEOMETRY

By

Hwa Hon SONG, Takahisa KlMURA and Naoyuki KOIKE

Abstract. In this paper, we define the notion of a proper helix of

order d in a pseudo-Riemannian manifold and investigate those

curves in a totallyumbilical pseudo-Riemannian submanifold.

Introduction.

In Riemannian geometry, properties of regular curves are well discribed by

the Frenet formula. In [8], K. Sakamoto called a regular curve which has

constant curvatures of osculating order d a helix of order d. Note that a helix of

order one (resp. two) is a geodesic (resp. circle). The research of geodesies,

circlesand helices (of order three) in Riemannian submanifold theory, has been

done by K. Nomizu and K. Yano ([5]), H. Nakagawa ([2]), K. Sakamoto ([7])

and other geometricians. Furthermore, K. Sakamoto also has investigated helices

of general order in the theory (cf. [8]). For regular curves in a pseudo-

Riemannian manifold, we can not necessarily define a formula corresponding to

the Frenet formula. Especially, we call a regular curve with a formula

corresponding to the Frenet formula a proper curve. Furthermore, we call a

proper curve which has constant curvatures of osculating order d a proper helix of

order d. N. Abe, Y. Nakanishi and S. Yamaguchi defined general circles and

helices (of order three) in a pseudo-Riemannian manifold. They investigated

those curves in a pseudo-Riemannian submanifold (cf. [1], [3], [4]). We shall

investigate proper helices of general order in a totally umbilical pseudo-

Riemannian submanifold.
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§1. Notations and Basic Equations.

In thispaper, the differentiabilityof all geometric objects will be C°°.Let M

be a pseudo-Riemannian submanifold in pseudo-Riemannian manifold M

isometrically immersed by/ and denote by g (resp. g) the pseudo-Riemannian

metric of M (resp. M). For alllocal formulas and calculations, we may assume /

as an imbedding and thus we shall often identify pe M with f(p)e M . The

tangent space TpM at p is identified with a subspace f,(TpM) of the tangent space

TpM .We put ||X||:= ^＼g(X,X)＼for X e TpM . We denote the tangent bundle of M

by TM and the normal bundle by TLM. Let V and V be the Levi-Civita

connections of M and M, respectively. Then the Gauss formula is given by

(1.1) VXY = VXY + B(X,Y),

where X and Y are tangent vector fieldsof M and B is the second fundamental

form of M. The Weingarten formula is given by

(1.2) V^ = -A^ + V^,

where X (resp. £)is a tangent (resp. normal) vector fieldof M and A (resp. Vx)

is the shape operator (resp. the normal connection) of M. Clearly A is related to

B as

g(A^X,Y) = g(B(X,YU).

The mean curvature vector fieldH of M is defined by

H:=-lg(ei,ei)B(ei,ei),
n i=＼

where n = dim M and {ex,---,en}is an orthonormal frame of M. If the second

fundamental form B satisfies

B(X,Y) = g(X,Y)H

for every tangent vector fields X, Y of M, then M is called a totally umbilical

submanifold. The mean curvature vector fieldH is said to be parallel if V^/f = 0

for every tangent vector fieldX of M. A totallyumbilical submanifold with the

parallel mean curvature vector fieldis called an extrinsic sphere. If the second

fundamental form B vanishes identically, then M is called a totally geodesic

submanifold of M .

Next we shall define the notion of a proper helix of order d in a pseudo-

Riemannian manifold N. Let cj: / ―>Af be a non-null curve in N parametrized by

the arclength s, where / is an open interval of the real line R. We denote the
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tangent vector fieldof G by vQ. We assume that G satisfiesthe following Frenet

formula-

V.oi/2

= V,

where

X

+ eoe,A1vo = X2v2

V^rf-l+£W£rf-lVlV2 =0'

HIV≪!>0'

A
≪-
:=|V≪nyM + e,-_2^-l^/-. V/-2 II> 0. (2</<tf-l)

:=g(vrv)(=±l) (0<j<d-l) on /

We call such a curve a proper curve of order d, A, the i-th curvature and

vQ,...,vd_tthe Frenet frame field.Furthermore, if A.(l</< d-＼) are constant

along G ,then we callthiscurve a proper helixof order d.

§2. Proper helices In a totally umbilical pseiido-MIeraainiIan

submanifold.

Let M be a totallyumbilical pseudo-Riemannian submanifold in a pseudo-

Riemannian manifold M isometricallyimmersed by / and d a proper helix of

orderd in M. We denote a curve f°R in M by o. Assume that G is a proper

helix of order d . Let A,,--- y_,(resp. A,,---,A- ) be the curvatures of G (resp.

a) and vo,---,vd_t(resp. vo,~-,v- ) the Frenet frame field of G (resp. a). For

convenience, let A,.=0,v. =

£,

(U, = 0 and Vj = 0(i > dj > d). Set ei := g(f,,y,) and

:= #(£.,£,■)(/> 0). We define Vi0U)H(i > 0) by V^(0>// := H and V^''1// := V^

(Vt"""//)(/ > 1). Also, we define 0 and #.,(/ > j > 1,/+ j : even) by

(2.1)

A.,=Ap A..=a,

A,-= 4-A-.,-.. Av =
^A-i,--. 0^2)

&
/+1.1
= -f|e2^A,-,2. Ai+1.1 = -e,e2^7A2(.i2 (I > 1)

A,v = -£,-£y+1 A7+1 A-,,./+1 + ^A-KH (l > J^ 2>

A,, = -e,£/+1X/+l
g_,
,+1 +
O_,.,,

0' > i > 2).
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Lemma 2.1. The vector fields v.(i> 0) and

follows:

(Fo)

(^,->)

cy

^0

I A,

vo

-l,2j-l

7=1

V.(/ > 0) along <T are related as

./■=1

2,-= X/W2; + fco v t>0 "
(*■>!)

■

(/ > 1),

PROOF. By using(1.1), the Frenet formulas and the assumption that M is

totallyumbilic,we get

V,=v≫/ 0 V* VQ+£0H = A,lVl+£0H

Thus we obtain (F{). Operating V,o to (/J), we get

where we use (1.1),(1.2), the Frenet formulas and the assumption that M Is

totallyumbilic.By noticing{vn}-*--componentof thisequality,we see that

&2puV2 = X2(3uv2+£XOH,

which implies (F2) by (2.1). Assume that (F2k) holds. Operating VOn to (F7k)

we have

7=1

,2j
*≫o V2j

k

^
H2k,2j v0

v2J-eog(yiol2k-l)HtH)vo

+ eoVvo H>

where we use (1.1), (1.2) and the assumption that M is totally umbilic.

Furthermore, by using the Frenet formulas and (2.1), we have

k+＼―

^P2k+＼,2j~＼V2j-＼=

k+＼

I

7=1

P2WJ-P2H ~eo^(Vio(2W)//, H)V0 + 8XrH

Therefore, by noticing Span {Vq}1 -component of this equality, we obtain (F2k+]).

Similarly, by operating Ve to (F2k+l) and using the Frenet formulas and (2.1),

we also have

-eoe,A1j&24+1Jt;o+ XW2; = -£oM.A*+... +s(<")#.#)K

7=1

+ ^P2k+2,2jV2j+Vt0 H
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Thus, by noticing Span {v^1 -component of this equality, we also have (F2k+2).

Therefore, by the induction, we see that (E) holds for every /> 0. □

Now we define column vectors bt(i> 3) and matrices Bt{i> 1) by

and

v.

KH2j-l,2j-3

V

B2J

V

A,

(Put "

) ＼P2j,2j-2j

0

A,3

A,--i..

ha

ft,2

0 ･･･

A,4

P2JA

0

0

0

P
lj-＼2j-＼

0

Also, we define formal column vectors Vt(i> 1)

are vector fieldsalong G by

and

H2J :=

( Vl ) (V2)

V ･= V ■-V2j-＼■ ; ' V2j ■ ;

Vy2/-lJ ＼V2j)

f H ＼

x:2"H

t

0">2)

U * l)

and //,(/> 0) whose components

0" > 1)

C/>0).

Similarly, we define £■(/> 3),/?,･(/> 1) and Vt(i > 1) in terms of /3,-7-and v. instead

of P;j and vr Note that Bt{i < d-l)B;(i < d-＼) are nonsingular by (2.1). By

using these notations, (F) is expresses as follows:
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'^-2 + A/,= W-2+&&+£<><"'"**. (i>3).

Moreover, the systems (Fl),(F3),---,(F2i_l)(i>＼) and (F2),(F4),---,(F2(.)(i> 1) are

expressed as

*2/-.V2l-_,= B2i_]V2i_i+e0H2i_2,

B2iV2i=B2iV2i+eQH2i_lt

respectively. Thus we have

(2.3) BiVi=B,Vi +

From (2.2) and (2.3), we have

(ME) M + b*

£0^/-l' (I>1).

= ('biBi-:2Bi_2-'bi)Vi_2

+ £0('^M(_3-Vf('-1)/f)

LEMMA 2.2. The inequality

of M in M .

Proof. Suppose

from (MF-)that

(3<i<d +1).

d <d <d + r holds, where r is the codimension

d> d . Then we have v-
d
*0 and y-=0. Hence

d

Since u7
a

ft,-≫j = <'*i?B£A-l-I*,->v≪

, it follows

is linearly independent of v,.(i<d-2) and VtJ"(')/f(i< d-l), we have

p--v- =0. From (2.1) and J>rf,j3-- = XxX2---)i-d*Q is deduced. Therefore, we

have v-;
a

trivial.

= 0. This contradicts d> d .Thus we have d*=kd. The remaining part is

□

Lemma 2.3. (i) If d = d(> 3), then Viid~l)H =' bdBd_^Hd_3 holds.

(ii) // d = d + l(d > 2), then V,1(d)H =' bMBd_-*Hd_2 holds.

PROOF, (i) By the assumption, vd = 0 and vd = 0 holds. Substituting these to

(MFd), we have

(' >; ]2Bd_2 -%)Vd_2 + eo{'bdBjl2Hd_3 - V^"""//) = 0

By noticing the tangential component and the normal component of this equality,

we have
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'W2

vy~i)H

v0 n

= 'bdBd_2 '

_t

'dBd_2Hd_j

-'bJBd-2 Hd-3-
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(ii) By the assumption, vJ+l = 0 and vd+l = 0 holds. Substituting these to

(MF,^), we have

('
'd+lBd **-x -'hd+]W^+£o('KA;＼Hd_2-Vi0(d)H) = 0

By noticing the tangential component and the normal component of this equality,

we have

and

These imply

K^＼

v,V"≪

vv n ―

=%+^d_r

%, d-＼Hd-2

'bd.,Bd~ H,_2 □

xi

Since '*2,+i^2/-i'(1 ^ 2/-1 < d-1) is the solution of the equation (>,,･･･

)#,,-_■=' ^9/+i'by Cramer formula, we have

'*
2,-+.*2/-,

(2.4)

(2.5)

x#2, ■'

(^2i+l.l(^l'""'^2i)."-

/>,,,_,(A,, ･■･A,-,))

(2<2i-2<d-l),

1

＼B

2i-＼

I

･･･^2,+l,,(V-a2,)X

where P2MJ(A,l,---,X2j)(l <j < i) is the determinant replaced the y'-th row of #2;-i|

by 'b2M . Similarly, we have

- T^ 1(P2i,l (^1 '･ ･･'
^2,-1 )'""

*

P2/-2I

where P2ij{X{,---,X2j_x){l<j<i-l) is the determinant replaced the j-th row of

＼B2i_2＼by 'b2i.Then we have the following lemma.

Lemma 2.4.(i) The polynomial P2i+](A,,---,A2/)(l< j </) is a homogeneous
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polynomial of degree (i2 +2i-2j + 2) and F2/J(A,,---,A2._1)(1< j < j-1). is a

homogeneous polynomial of degree (i2 + i ―2j).

(ii)The polynomial />2,-+n(A1,･■･,X2i)is expressed as follows:

P7,+11(A1,---,A7.)= -£1e7---£?XA4---A,,.|JB7;|.

Proof, (i) By (2.1), we see that /3,
y
is a homogeneous polynomial of degree i

with variables A,,---,A(..Hence the conclusion is directly deduced from the

definitionsof P2My.(A,,･･･,A2/) and P2jj(A,,･･･,A2._,).

(ii)Define J3jkU >k> 1,j + k: even) by

K -
1°

Then, from (2.1), we have

(bj*) PjJk= -ekek+lXk+iPHMl + fij<k (j>k>2).

Also, we define a matrix C} of type (2,j) and a matrix Dj of type (j,2)(j > 1) by

and

DJ

V

0

0

H2j+＼,2j+＼

Furthermore, we define matrices A- and A-

A :=(A,

A;

and

A

*i

1 ), 4

'AJ-2

V

(A..).

'AJ-2

V

(

K

(

0

0

(7 > 1) by

(A..
Ia.

DJ-2

(A..

Ia.

D.2

&A
&J
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From the definition of P2j+＼＼(A>＼>'">A.2j)'we have

(-ir1

AJ-2

CJ-

v-2

P2j-l,2j-3 Plj-l,2j-＼

Plj+＼,2i-l Plj+＼,2j-＼

)
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Substituting (b2j+]2･_,)to this equality and using the linearity of the determinant

for the finalcolumn, we have

^2;+i.i(^i'"''^2/)

(2.6)

c-iy-1

I

= (-ty-l{-e2He2jX2j(32j,2j＼AJ_l＼+Aj＼}

= e2He2jX2^2]2jP2j_u(Xv---,X2j_2) + (-＼y-x＼A] (j>2).

Next we shall show
＼kj
=0(j>l). Clearly we have aJ = |j831=0. Assume that

141

and

0
for every j<k. Substituting {b2k+U2k_x),(b2k+32k_,＼P2M2M = A2jt+I^2.2jt

H2k+3,2k+＼ -
Kk+＼Plk+2,2k t0

At+i
~

4m A-,

H2k+＼,2k-＼

P2k+3.2k-l

r2k+l,2k+l

H2k+l,2k+＼

)

P Pa
and adding lk~x2k 2k multiple of the final column to the

At+i

4-,

h

A-.

*+l,2Jt-l

P2k+3,2k-＼

Pi
k
k+],2k+＼

A+3.2A+1

Expanding this determinant with respect to the final

assumption of the induction, we obtain

At+i ~ P2k+＼,2k+]
(

A-2

k

)

th column, we obtain

column and using the

A
-2

H2k-＼,2k-3 Plk-＼,2k-＼

P2k+3,2k-2
H2k+3,2k-l

)

"*"P2k+i,2k+＼ k
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"" H2k+＼,2k+＼

(
&*-...

At-

H2k+3,＼

A-2

P2k-＼,2k-5＼
(H2k-＼,2k-3

H2k-l,2k-＼

&*+3,2*-5/
＼A*+3,2*-3 P2k+3,2k-＼

By repeating the same process, we can obtain

At+1
""
(~1)

Fl,lF9,9 '" H2k+＼,2k+＼

= (-l)k-2P7JP9yP2k+h2M

(-D*-'i35A7-A*+.^+.

(

A,

Plk+iA

A

..

A
..

F2ft+3,1

A
.,

A*2fc+3,1

= (-l)*jW5V"&t+U4+1|j82*+3..

= 0

Thus,

kJ

)

01

( A,3 A,5

＼H2k+i,3 H2k+3,5

A,3 0

P2*+3,3

/3,3

P2k+3,3

P2k+1.5

)

)

by the induction, we can conclude AyJ = 0 every j>l. Substituting

= 0 to (2.6), we have

P2j+＼,＼(^1'"" ''
Kj )
- e2j-＼£2j^2jP2j,2jPl2j-＼,＼ (V *"'

After all we can obtain

K3-i) t/^2).

^2/+l,l(^l'""'^2/)

= £3e4 ･･･ £2
A^6

'"'
^2/^4,4^6,6

'''
A/,2/^3,1 (^1' ^2 )

= -£,£2 ･ ･･£2;A2A4 ･･ ･
A2,&,2j34,4

■･･
(32i2i

= ―£,£2 ･･･£2/A2A4 ･･･ A2- B2- .

Also, we have the followinglemma.

Lemma 2.5

□

(i) The normal vectorfield Vf "'H(i>＼) along O is written

as

(H2i) vi(2')/f = ie2,.2j_1(Air-a2,_2)v4.iH+A1A2--a2Mv4--^

7=1

+ 7V2,(A,,---,A2,._2),

where Q2j2j__l(Xl,---,X2i_i)(l< j <i ―l) is a homogeneous polynomial of degree
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(2/-1) and N2i(Xl,---,X2i_2)is a normal vector field-valued polynomial of

degree at most (2/ - 2),

(ii) The normal vector field V^n "' H(i > 1) along (J is written as

CW vV2'+l>H =
|e2,+1,2/A,,.-sA2,_l)V^/f

+ AlA2-.-A2X^

+ ^2/+1(A,,-,A2l._i).

where Q2i+l2j(?il,---,X2i)(O<j <i-l) is a homogeneous polynomial of degree 2i

and N2i+l(Xl,---,X2i_i)is a normal vector field-valued polynomial of degree at

most (2/-1).

Proof. Define a normal bundle-valued (OJ)-tensor field Tj on M by

Tl:=V1H and Tk(Xl,―,Xk):=(yXjTk_l)(X2,--,Xk)(k>2) for Xi,―,Xk e TM,

where V is the connection induced from V and V1. We shall show (H3). By

using the definitionof T- and the Frenet formula, V≫o' H is rewritten in terms of

Tj as follows:

= TJvn,vn,vn) + XlT?(vl,vn)+ 2XiTJvn,vl)

where we set QXO{XX):= -£0£,A,2and Ni(Xl):=Ti(vQ,vQ,vQ)+X^v^Vq)+2X

(Vn,v,).Thus (//,)is shown. Similarly,(H:)(i>4) is also shown.
T2

□

By using these lemmas, we can prove the following theorem.

THEOREM 2.6. Let M be a totallyumbilical pseudo-Riemannian submanifold

in M isometrically immersed by f. Assume thatfor every proper helix G of

order d in M, a(:= f° d) is a proper helix of order d in M, where d is a positive

integer. Then

(i) if d is odd, then M is totallygeodesic,

(＼i)if d is even, then M is an extrinsic sphere.

Proof. Assume that d>3. Fix peM. For any orthonormal system

XQ,Xx,---,Xd_＼of TpM and any positive numbers A,,-･■,Arf_,,there exists a proper

helix d of order d through p with the curvatures A,,･･･,Xd_}whose Frenet frame

field v v,,---,v,_,coincide with Xn,X.,---,Xtl, atp. Since a(:-f oa) is a proper
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helixof orderd in M, by Lemma 2.3,we have

(2.7)

and

V^-X)H=>bdBd^Hd_,

(i) Let d = 2i + l.lt follows from (2.4) and Lemma 2.5 that

XO2,,2,-1(A1,-,A2(,2)Vi_H + A,A2-A2,_1V4_H

+ N7i{L,---,X2i_ 2)

Prf-2 >°

1

＼Bd-2

,{

7=1

aP-,A,_,)

{xG2J,2Hal^^A2J,2)Vi.H + A1A2■42HVi.l// + iV2Jal,.■.,A2i_2)}}.

Substitutingtheseequalitiesto(2.7)and noticingthepointp, we have

|*rf-2|{lG2W*-l(V^^

(2.8) = Prfl(A1,-,Arf_1)≪ +
lI/>rf,/+iai,-,Arf_1)

U=i " J

Since the degrees of ＼Bd_2[Q2jak_l(^l,---,^2j_l)U> k > 1) andP^CAp-'-.A^Xy'^l)

are i2, (2j-＼),and (i2 + 2i-2j + 2), respectively, the left-hand side of (2.8) is a

polynomial of degree (/2+2/-l), the firstterm Prfl(A1,--,A(/_1)^/'of the right-

hand side is of degree (i2 + 2i) and other terms of the right-hand side are of

degree at most (/2+2i ―1). Hence, since (2.8) holds for every positive numbers

A,,"-,A2(._1,we obtain Frfl(A,,---,A(/_1)/f= 0. From Lemma 2.4-(ii), Pdy{Xx,---,

Aj_|)^0 holds. Therefore, we see that H = 0 at p. By the arbitrarityof peM,

we see that H = 0, that is, M is totallygeodesic. In case of d = 1, it is directly

deduced from Lemma 2.1 that so is M.

(ii)Let d = 2i.It follows from (2.5),(2.7) and Lemma 2.5 that
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Bd.21

{
Z Qu-w (K

■■■,
K-i)VL H + A, A2 ･ ･･ A2,_2Vi2i_s H + N2i_, (A,,

･･ ･,A2,_3)j

{^G
2;+,.2*(^^■^V.)Vi^ + ^･■■＼■Vi2/// + ^.+1(A1,.■^V.)}

275

Since the degrees of ＼Bd_2＼,Q2j+l2k_l(A.l,---,A2H)U>k -°) and ^■(^"･.Vi)

(_/>!) are (i2-i), 2/ and (/2+i-2j), respectively,both sides of (2.9) are

polynomials of degree (/2+/-2). Hence, since(2.9) holds for every positive

numbers A,,---,A2,_2,terms of degree (z"2+/-2) of the both sides are mutually

emial.thatis.

K42^
-,,2*(V-a2,-3)v y

H +
At A-J * ' ' A0

: 9

V

y

H＼

A -ii^ ＼ L Ll―L A 2i~2 I

= ^1aP--,v1)vio/f+i2p,y+l(A1,-,A,_1)

{1
Q2j+l2k (A,, ･･ ･,A2H )VJ // + A,A2 ･･･ A2/Vi, //}

Furthermore, since this equality holds for every orthonormal

0,X2,---,X2i_2 of TpM, we see that ＼Bd_2＼llA2―A2i_2V^i,H = 0,

system

that is

V^. H = 0. By the arbitrarilyof X2i_2, we see that V±H = Q at p. Furthermore,

from the arbitrarilyof pe M,V±H = 0 is deduced. Thus M is an extrinsic sphere.

In case of d = 2, itis directly deduced from Lemma 2.1 that so is M.

In the case where M and

writtenas follows.

M

□

are Riemannian manifolds, this theorem is

COROLLARY 2.7. Let M be a totally umbilical submanifold in a Riemannian

manifold M isometrically immersed by f. Assume that for every helix G of

order d in M, ≪7(:=/ °a) is a helix of order d in M, where d is a positive integer.

Then

(i) if d is odd, then M is totally geodesic,

(ii) if d is even, then M is an extrinsic sphere.

Also, we can Drove the following theorem.

THEOREM 2.8. Let M be a totallyumbilical pseudo-Riemannian submanifold

in M isometrically immersed by f. Assume thatfor every proper helix <J of order

d in M, (T(:=/o(7) is a proper helix of order d + 1 in M , where d is a positive



276 Hwa Hon SONG, Takahisa KlMURA and Naoyuki KOIKE

integer. Then d is odd and M is an extrinsic sphere.

Proof. Assume that d>2. Fix peM. For any orthonormal system

XQ,Xx,---,Xd_x of TpM and any positive numbers A,,---,Arf_,,there exists a proper

helix O of order d through p with the curvatures A,,･■･,Arf_,whose Frenet frame

field yo'yi'"<i;</-icoincide with XQ,Xx,---,Xd_x at/?. Since G(:=f°o) is a proper

helix of order d + 1 in M, by Lemma 2.3, we have

(2.10) V^H^'b^B^H^.

Suppose that d is even. Let d = 2i.It follows from (2.4), (2.10) and Lemma 2.5

that

flrf-inIG2i,2*-i(^P"">^2

u=i
,,2)viH_]/f+A1A2-A2/_1vi2;i/f+^2,.a1,-a2,_2)}

(2.11) = WV--,Ajff+XPrf+u+1(V.-,Arf)

＼Ji
Q2i2k.x(A,,･･･,v2 >VL, h+w2- V. vi,H ^+^- (V ･･.a2;-2)}

Since (2.11) holds for every positive numbers A,,---,A2/_,,by noticing the term of

the highest degree, we have Pd+lA(Xl,---,Xd)H= 0. From Lemma 2.4-(ii),

Pd+ll(X],---,Xd)^0 holds. Therefore, we obtain H = 0 at p. By the arbitrarilyof

peM, we see that H = 0, that is, M is totally geodesic. This implies d=d.

Thus a contradiction results.Therefore, d is odd. Let d = 2i + 1. It follows from

(2.5), (2.10) and Lemma 2.5 that

u=o 2* 2l J

(2.12)

(

/>rf+1.,(A1,-,Arf)Vio^+I/>rf+1J.+1(A1,...,A</)

x^+.,2,ap･･^v.)vi^+A.A2"･^vil;/f+iv2,+1a1,･･･,v.)
}

A=0 J

Since (2.12) holds for every positive numbers A,,---,A2/_,,by noticing terms of the

highest degree, we have

K-1|{x02,+1,2,ai,-,A2M)V^H + A1A2--A2,Vi,,H}
u=o J

^+,1(A1,-,Arf)vio≫+li!prf+1J+1aP...,A(l)

7=1

{^G
2,+..2*(V".Vi)v i

2A//
+ A1A2---A2/Vi2///|
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Furthermore, since this equality holds for every orthonormal system

X0,X2,...,X2i of TpM,we see that K_,|A,A2 ･･･A2,.V^/H = 0, that is, V^// = 0.

By the arbitrarityof X2j, we see .that V1// = 0 at p. Furthermore, from the

arbitrarilyof pe M,V±H = 0 is deduced. Thus M is an extrinsic sphere. In case

of d = 1.itis directlvdeduced from Lemma 2.1 that so is M. D

In the case where M and

writtenas follows.

M are Riemannian manifolds, this theorem is

COROLLARY 2.9. Let M be a totallyumbilical submanifold in a Riemannian

manifold M isometrically immersed by f. Assume thatfor every helix O of order

d in M, a(:= fo(j) is a helix of order d + 1 in M , where d is a positive integer.

Then d is odd and M is an extrinsic suhere.

§3. Proper helices In an extrinsic sphere.

Let M be an extrinsic sphere in a pseudo-Riemannian manifold M

isometrically immersed by / and 0" a proper helix of order d in M. We put

G := f°G. Assume that & is a orooer curve of order d. Let

A,,---,Arf_,(resp. Aj, -*-,A-_() be the curvatures
of cr(resp.cr), t/0,---,v(/_1(resp.v0

...,y- )the Frenet frame field of cr(resp. a). For convenience, let X- =0,^=0

= 0 and vj - 0 (i > dj > d). Set e(.:= ^(V/,y/)and e(.:= giv^v^i > 0). Also, we

define /3jj and Ptj(i >j>l,i + j: even) as (2.1)

LEMMA 3.1. The curve G is a proper helix in

^,(/>0) and Vj(j>0) along (J are related as follows.

W vQ=vQ,

(FA B,.A=8,.,vt+£nH.

C^'-i)
iAw^Vi

=
i/32i^2j.lv2j_l

(i>2),
7-i y=i

(FD UuA-
7=1

2jV2j
(I > 1).

M and the vector fields

PROOF. From (1.1), the Frenet formulas and the assumption that M is totally

A, y, = V,o v0 = VVo vo+eoH = X]vl+ e0H.

Thus we obtain (F/). Furthermore, from this equality, we get
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eX =sX+g(H,H).

Since M is an extrinsicsphere, g(H,H) is constant.Therefore,

Operating Vv to (/</),we get

A, is constant.

where we use (1.1), (1.2), the Frenet formulas and the assumption that M is an

extrinsic sphere. By noticing Span {v0}1'-component of thisequality, we see that

which implies (F2) by (2.1). Furthermore, from thisequality, we get

^2^2 A.I =£lKPu＼>

which implies that A2 is constant. Assume that (F2k) holds and A(.(l<i<2&) are

constant. Since fi2kaj(resp.(32k2j)(l<i<k) are polynomials with variables

A,,---,A2,,(resp.A,,-",A2.), these are constant along G. Hence, operating V≫n to

(Fu)
'
we have

k

X

7=1 7=1

where we use (1.1) and the assumption thatM is an extrinsic sphere. Applying the

Frenet formulas and (2.1) to this equality, we obtain (F2"A+1).Furthermore, from

(F'), we get

that is,

(3.1)

s

^2k+lH2k+l,2k+＼ ~

k+l

lH2k+＼,2j-i ^£2j-＼P2k+＼,2j-＼-

ince P2k+I2j_l(l<j <k + l) are polynomials with variables A,,---,A2/t+1 and

)32A+12-_i(!</<£)are polynomials with variables A,,-",A2A, these are constant

along O, thatis, the right-hand side of (3.1) is constant along O. Also, the left-

hand side of (3.1) is equal to s2k+lXfXl-"X^k+r Therefore, we see that A2A.+1is

constant. Since j82t+li2/_,

variables A,,---,A2,.+I(resp.

p

2k+i,ij-＼
)0 -./ - ^ +1) are polynomials with

,A2A.+1), these are constant along G. Hence,

operating V≫o to (F^ ,), we have
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*+l― ― Ar+1
2-H2k+＼,2j-＼^"o ^2j-＼= ^ H2k+l,2j-l

% V2j-＼'
7=1 y=I

where we use (1.1) and the assumption that M is an extrinsic sphere. Applying the

Frenet formulas and (2.1) to thisequality, we obtain (i^,,). Furthermore, from

(FS..-,).we set

that is,

^^2jH2k+2,2j
~

7=1

<t+l
s

7=1

^2jH2k+2,2j'>

(3 -2) Cik+iPLiaM =
feijPLiu

-
i
£2j

Since B2. 72i(l<j<k + l) are polynomials with

P2k+2,2j-

variables A,,---,A2jt+2 and

P2k+22j(l<i<k) are polynomials with variables 2,,---,A2jt+1,these are constant

along (7, thatis, the right-hand side of (3.2) is constant along G. Also, the left-

hand side of (3.2) is equal to 82k+2X^Xl ･･･A>lk+2
■
Therefore, we see that X2k+2 is

constant. Thus, by the induction, we see that (F')(i>0) hold and X(j>l) are

constant(i.e.,a is a proper helix). □

By using thislemma, we can prove the followingtheorem.

THEOREM 3.2.Let M be an extrinsicsphere in a pseudo-Riemannian manifold

M isometricallyimmersed by f and ≪7a proper helixof order d in M such that

O(:= f off)is a proper curvein M , where d is a positiveinteger.Then

(i) ifd is odd, then G is a proper helixof order d or d + 1,

(ii)ifd is even,then R is a Drover helixof order d.

Proof. Let v.(O<i<d-l)(resp. v.(0<i<d-l)) the Frenet frame field of

C7(resp.a) and, for convenience, vi = 0(i>d) and v.=0(i>d). According

to Lemma 3.1. <7 is a proper helix, v2i e Span {vo,v2,---,v2i}(i>O) and

v,,,.e Span {f,,y,,---,y7:.,,//}(/>0).The conclusion is directly deduced from

these facts. □

In the case where M and M are Riemannian manifolds, this theorem is

COROLLARY 3.3. Let M be an extrinsic sphere in a Riemannian manifold M

isometrically immersed by f and 0 a helix of order d in M, where d is a positive

intt>ot>rThe>n
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(i) ifd is odd, then f °O is a helixof order d or d + 1,

(ii)ifd is even,then f°G is a helixof order d.
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