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ON PROPER HELICES AND EXTRINSIC SPHERES
IN PSEUDO-RIEMANNIAN GEOMETRY

By

Hwa Hon SONG, Takahisa KIMURA and Naoyuki KOIKE

Abstract. In this paper, we define the notion of a proper helix of
order d in a pseudo-Riemannian manifold and investigate those
curves in a totally umbilical pseudo-Riemannian submanifold.

Introduction.

In Riemannian geometry, properties of regular curves are well discribed by
the Frenet formula. In [8], K. Sakamoto called a regular curve which has
constant curvatures of osculating order d a helix of order d. Note that a helix of
order one (resp. two) is a geodesic (resp. circle). The research of geodesics,
circles and helices (of order three) in Riemannian submanifold theory, has been
done by K. Nomizu and K. Yano ([5}), H. Nakagawa ([2]), K. Sakamoto ([7])
and other geometricians. Furthermore, K. Sakamoto also has investigated helices
of general order in the theory (cf. [8]). For regular curves in a pseudo-
Riemannian manifold, we can not necessarily define a formula corresponding to
the Frenet formula. Especially, we call a regular curve with a formula
corresponding to the Frenet formula a proper curve. Furthermore, we call a
proper curve which has constant curvatures of osculating order d a proper helix of
order d. N. Abe, Y. Nakanishi and S. Yamaguchi defined general circles and
helices (of order three) in a pseudo-Riemannian manifold. They investigated
those curves in a pseudo-Riemannian submanifold (cf. [1], [3], [4]). We shall
investigate proper helices of general order in a totally umbilical pseudo-
Riemannian submanifold.

The authors would like to express his hearty thanks to Professor S.
Yamaguchi for his constant encouragement and various advice. They also wish to
express sincere gratitude to thank Professor N. Abe for his valuable suggestions.

Received June 16, 1994



264 Hwa Hon SONG, Takahisa KIMURA and Naoyuki KOIKE

§1. Notations and Basic Equatibns.

In this paper, the differentiability of all geometric objects will be C”. Let M
be a pseudo-Riemannian submanifold in pseudo-Riemannian manifold M
isometrically immersed by f and denote by g (resp. g) the pseudo-Riemannian
metric of M (resp. M ). For all local formulas and calculations, we may assume f
as an imbedding and thus we shall often identify pe M with f(p)e M. The
tangent space T M at p is identified with a subspace J.(T,M) of the tangent space
TPIW. We put | X||:=|g(X,X)| for X e T,,M. We denote the tangent bundle of M
by TM and the normal bundle by T*M. Let V and V be the Levi-Civita
connections of M and M, respectively. Then the Gauss formula is given by

(1.1) V.Y =V,Y+B(X,Y),

where X and Y are tangent vector fields of M and B is the second fundamental
form of M. The Weingarten formula is given by

(1.2) ViE=-AX+ViE,

where X (resp. &) is a tangent (resp. normal) vector field of M and A (resp. V)
is the shape operator (resp. the normal connection) of M. Clearly A is related to
B as

8(AX.Y)=g(B(X,Y),8).
The mean curvature vector field H of M is defined by

1=
H:=—% g(e;,¢)B(e;e),
ni=l
where n = dim M and {e,---,e,} is an orthonormal frame of M. If the second
fundamental form B satisfies

B(X,Y)=g(X,Y)H

for every tangent vector fields X, ¥ of M, then M is called a totally umbilical
submanifold. The mean curvature vector field H is said to be parallel if VyH =0
for every tangent vector field X of M. A totally umbilical submanifold with the
parallel mean curvature vector field is called an extrinsic sphere. If the second
fundamental form B vanishes identically, then M is called a totally geodesic
submanifold of M .

Next we shall define the notion of a proper helix of order d in a pseudo-
Riemannian manifold N. Let 6:/ — N be a non-null curve in N parametrized by
the arclength s, where 7 is an open interval of the real line R. We denote the
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tangent vector field of 0 by v,. We assume that 0 satisfies the following Frenet
formula:

Vo, v = 47,

Vo, U, + €8 AY, = 4,0,

Vo, vy +€84,0, = Av,

Vvovzl~2 €€ hyaVs = A vy
Vl’ovd—l + gd—zgd—l)”d—l vy, =0,
where
[ 3y =V, > 0,
A= Vo, Vi + €08 Ay, |>0, (@<i<d-1
16_,. =gy, v (=) 0<j<d-1 on 1.

We call such a curve a proper curve of order d, 2, the i-th curvature and
Vgs---»V,, the Frenet frame field. Furthermore, if 1, (1<i<d-1) are constant
along 0, then we call this curve a proper helix of order d.

§2. Proper helices in a totally umbilical pseudo-Riemannian
submanifold.

Let M be a totally umbilical pseudo-Riemannian submanifold in a pseudo-
Riemannian manifold M isometrically immersed by f and 0 a proper helix of
order d in M. We denote a curve foo in M by G. Assume that & is a proper

helix of order d. Let 4,,---,4,_, (resp. I],---,IJ_I) be the curvatures of O (resp.
0)and vy,---, v, (resp. Dy,---, - ) the Frenet frame field of 0 (resp. 7). For
convenience, let 4, =0,v,=0,4;, =0 and 7, =0(i2d,j=d). Set €, :=g(v,,v,) and
& =8(5,5,)(i20). We define Vy "H(i=0)by V, "H:=H and V."H:=V}
(Vi H)i21). Also, we define B, and B, (i>j21i+j:even) by

Bu=h. Bu=4
Bi=ABoi  Bi=AB.. (22
2.1 Brivs = —€€0Bs2s  Boiniy = —EE By, (21)
By =—€€mA B+ 2B (>)22)
EiJ = —EjEjH/TM _1—1.j+1 + ’Tj.ﬁ—i—l‘./—l (i>j22)
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LEMMA 2.1. The vector fields v,(i=20) and Ej(j >0) along O are related as
follows:
(F)  V,=v,,

P B i L (2i-2) .
(F) 21 ﬁZi—l,Zj—IUZj—I = Z| ﬂZi—l.ijlv2j~l + Sovvo H (izD,
j= =

i~1)

i - i 2i .
(F) Z 2i2;Y2; = Z .Bzi.zjvzj +80Vio( H (i21).

PROOF. By using (1.1), the Frenet formulas and the assumption that M is
totally umbilic, we get

A, =V 0y =V, vy + 8, H = A, + € H.
Thus we obtain (F). Operating V,,o to (F), we get
Bl,l(_goglil Yo+ Zzﬁz) =B (&8 A vy + A, 0,) — €8 (H, H)v, + gOV;,LoH,

where we use (1.1), (1.2), the Frenet formulas and the assumption that M is
totally umbilic. By noticing {vO}J- -component of this equality, we see that

B, = B, + EOV; H,

which implies (F,) by (2.1). Assume that (F,,) holds. Operating V,,u to (F,),

we have

x~

L (2k=1)

k
| 2k,2van v,; = Z}sz.zj'voﬂ Yy — £0g(V% H,H)v,
=

~
I

2k
+&,V, " H,

where we use (1.1), (1.2) and the assumption that M is totally umbilic.
Furthermore, by using the Frenet formulas and (2.1), we have

k+l — k+1 — (2k=1)

5] — =/l 1 (2k)
ZlﬁZkﬂ.Zj—l Vyjo = .21162“1.2/71”2/71 - eOg(V% H,H)V,+ SOV% H.
7= J=

Therefore, by noticing Span {v,}*-component of this equality, we obtain (F,,,,).
Similarly, by operating V,,0 to (F,,,,) and using the Frenet formulas and (2.1),
we also have

—— K+l —
- —_— — L (20)
_goglllﬁﬂﬂ.lvo + zlﬁzmz‘zjvz,' = _EO{SIAHBZI(H,I + g(Vvo H,H)}v,
=

K+l
1 (2k+1)
+ Zlﬁ2k+2,2jv2j +V, o H.
i=
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Thus, by noticing Span {v,}*-component of this equality, we also have (F,,,).
Therefore, by the induction, we see that (F,) holds for every i =0. O

Now we define column vectors b,(i =2 3) and matrices B;(i =21) by

ﬁzjfl,l isz,z
Brj. B, .
b= 0| by (j22)
ﬁ2 j-12j-3 ABz j2j-2
and
ﬂl,l 0 0
__ B, Bss . :
Boa=l 0 0 o |
ﬁzjfl,l ﬁ2j—l,3 o IBZj—l,Zj—l
B., 0 - 0
B, = ﬁ‘."z ﬁf“‘ 0 (j=1).

ﬁZj,2 ﬂzm ﬁZj,Zj

Also, we define formal column vectors V(i 21) and H,(i =20) whose components

are vector fields along 0 by

U Uy
U3 Uy
sz_l s sz:= . gzn
Vyji Vy;
and
H o
VJ_ (2)H Vi (3)H
Yo ?, .
sz = . s sz+1 = 0: (j=0).
1(2) (2j+1)
Ve, H v, "H

Similarly, we define b,(i 23),B;(i21) and V(i 21) in terms of j,; and 7, instead
of ﬂi'j and v,. Note that B,.(iSd—l)Ei(iSE—l) are nonsingular by (2.1). By
using these notations, (F;) is expresses as follows:
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(2.2) BV, +B.7 = bV, + B +eVe H. (i23).

i

Moreover, the systems (F),(F), -, (F, )i=1) and (F).(F),-,(F;)i21) are
expressed as

|

riaVain = By, Vi € H, L,
Ve =B Vs + &H,,

™

respectively. Thus we have

(2.3) BV =BV +¢,H,,, (i=1).

From (2.2) and (2.3), we have

v, =(bB,B,_,—'b)V,_,

i =25

+e,(bBLH ., -Vy "'H)  (3<isd+).

(MF) -B.7+B,

LEMMA 2.2. The inequality d<d <d+r holds, where r is the codimension
of Min M.

PROOF. Suppose d >d . Then we have v; #0 and 7; =0. Hence, it follows
from (MF;)that

‘T - (d-1)
+g,( bEBJ_‘ZFIJ_3 - Vjﬂ H).

Since vy is linearly independent of v,(iSJ—Z) and V,fomH(iSJ—l), we have
. -v;=0.From (2.1) and d > E,ﬁ” =AA, - A; 20 is deduced. Therefore, we
have v; =0. This contradicts d >d . Thus we have d = d. The remaining part is

trivial. O

LEMMA 2.3. () If d =d(23), then V:“""H="b,B, ,"'H,_, holds.
v d=d-2 d-3
(i) If d=d+1(d22), then V:"H="b, B, "H,, holds.

PROOF. (i) By the assumption, v, =0 and &, =0 holds. Substituting these to
(MF,), we have
(Ib_IIEd_—IZB(FZ =b )V, + So(ll;l/l—;z/_}szfz - Volo(d_])H) =0.

By noticing the tangential component and the normal component of this equality,
we have
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and

These imply
V'fo(d_l)H Z[ded-zAlHa—s-

(ii) By the assumption, v,, =0 and ,, =0 holds. Substituting these to
(MF,,,), we have

(Ibd-}-lEd:IIBd—l (I+I )Vll  t 50( bz[+le_—]chI—2 - Vvlo(d)H) =0.
By noticing the tangential component and the normal component of this equality,
we have
’l;aH—lEd_All = Ibd+le—f1
and

These imply
Vi“H='p, B, "'H,,. O

Since 'b,, B, '(1<2i-1<d-1) is the solution of the equation (x,,

2i+l

x)B,, = by, by Cramér formula, we have

'byiB,,., (Bripra Ay Ay ),
(2.4) 2i+ |B'), 1| LIV ™M

’P2i+1.i(A’l"”’l2i))’
where P, (A,"++, 4, )(1<j<i) is the determinant replaced the J-th row of |le._1|

by 'b,,.,. Similarly, we have

IbZIBZFZ (PZII(A'I’ . Azr-l )

|BZI 2|
(2-5) '”’Pzi,i—l(;{'lv'”’}?i—l))
(2<2i-2<d-1),

where P, (A),--,A,, ) )(1<j<i-1) is the determinant replaced the j-th row of
|B,,_,| by 'b,,. Then we have the following lemma.

LEMMA 2.4. (i) The polynomial P, ;(A,"-*,A;)1<j<i) is a homogeneous
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polynomial of degree (i*+2i-2j+2) and P,

Ay A jsi=D). s a
homogeneous polynomial of degree (P +i-2j).
(ii) The polynomial P, (A, -+, A,;) is expressed as follows:

PZi+l,l (2'1" ’ ";LZi) =—§&, "'32."12/14 “'A‘ZilBZil'

PROOF. (i) By (2.1), we see that f§,; is a homogeneous polynomial of degree i
with variables A,,---,A,. Hence the conclusion is directly deduced from the
definitions of Pz,.il‘j(/ll,---,ﬂ,ﬂ) and P, (4, Ay

(ii) Define B;,(j>k=21j+k: even) by

. _{0 (j>k=1)
R VO (G>k>1.

Then, from (2.1), we have
(b,',k) ﬁj,k = _£k£k+llk+l itk TPk (j>k>2).

Also, we define a matrix C; of type (2, ) and a matrix D; of type (j,2)(j 21) by

C = (ﬂzns,l ﬂ2j+3,3 B2j+3,2j—1 ]
! ﬁz,‘+5,1 ﬂ2j+5,3 B2j+5,2j—1
and
0 0
D, = 0 ol
B2j+l,2j+l 0

Furthermore, we define matrices A, and A;(j21) by

ﬂf’ 1 ﬁ3 3 )
A = , A = ’ b
1 (ﬁ3,l) 2 (ﬂi] ﬁ5,3
Aj—2 Djf2
A = c (ﬁZj—l.Zj-3 sz—l.zj-l} (jz3)
=2

ﬂ2j+l,2j—3 ﬁ2j+l,2j—l

and
AAl = (ﬁu)’ Az = (g&l 233.3}
5.1 5.3
Aj—z Dj
A =

-2
;= ﬁZj—l.Zj—Z% ﬁZj—lij-l (j=3).
Ci,

ﬁ2j+1,2j—3 iB2j+1,2j—l
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From the definition of P, (4,,---,4,;), we have
Pyjaa(lv 2y = (DA
A, D

j=2 j-2

=(_1)H C (BZj—I,Zj—,? ﬁZj—l‘Zjﬂlj.

a ﬁ2j+|.2j—3 ' ﬁ2j+|,2j—l

Substituting (b,,,,; ;) to this equality and using the linearity of the determinant
for the final column, we have

132j+l,l(ll"”’2'2j)

Aj—z Dj—z )
= (-1 c (/321—1,2/'—3 0 ) +|A,
(2‘6) i .sz+1,2j—3 _82j—182j2’2jﬁ2j,2j

= (1 =880,2, By, A, | +[A ]
= gzj—lgz,lz,‘ﬁzj.szzj—l,l (A5, A2j—2 )+ (-1 |A/| (j22).

B,
IAj| =0 for every j<k. Substituting (5,4, 2,2 Br326m) Borsroes = AkiiBoiak

Next we shall show l/ij’=0(j2 1). Clearly we have |/ij|= =0. Assume that

and B2k+3,2k+l = }"2k+lﬁ2k+2,2k to

A D,
:Ck—l [ﬁzm,zm ﬁ2k+l.2k+l)

B’lk+3.2k—l ﬁ2k+3.2k+l

|4,

A, . k .
TR Ve TS multiple of the final column to the k-th column, we obtain

and adding £

2k+1

Ak 1 Dk—l

=Ck—l (ﬁzm,qu ﬁzk+|.2k+l}-

’Ak+l
ﬁ2k+3.2k—l B2k+3.2k+1

Expanding this determinant with respect to the final column and using the
assumption of the induction, we obtain

A, D,

k-2 (=
==Brrrane {ﬁzk—l,l o Baciaiss J (ﬂZk—],Zk—3 Baici 2a j
Boisi ﬂ2k+3.2k—5

A

~

A

k+1

ﬁ2k+3,2k—3 ﬁ2k+3.2k‘l

+ Boiazane
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AL, D,
=_ﬁ2k+l kel [BZk—l,l ﬁZk—l,Zk—5] [.sz—l,zkz ﬁZk—l.Zk—I}.

ﬂ2k+3,| ﬁ2k+3_2k—5 ﬁ2k+3,2kf3 ﬁ2k+3,2k-1

By repeating the same process, we can obtain
Al D]
=(‘l)k_zﬂnﬁw"‘ﬂ2k+1,2k+1( B ] ( Bss Aﬁ5~5 j
ﬁ2k+3.l ﬂ2k+3,3 ﬁ2k+3.5

B Bis 0
= (_1)‘(72 B7,7AB9,9 o ﬂ2k+],2k+l ﬂ5,1 ﬁs,s ﬁ5,5
ﬂ2k+3.] ﬁ2k+3,3 ﬁ2k+3.5

ﬁ}.l 133,3
ﬁ2k+3,l 32k+3.3

ﬂ2k+3.l |

|Ak+l

= (—1)k_l ﬂs‘sﬁu o ﬁ2k+l.2k+l

= (“l)k Ba,les,s "'ﬁzk+1,2k+1
=0.

Thus, by the induction, we can conclude |AI| =0 every j=1. Substituting
|1:\}‘ =0 to (2.6), we have
Pyt 2 )) = 8180 B Py (R hyjn) (G22).
After all we can obtain |
1>2H|‘1(,’L]’...’)~2i)
=£,8, .52’_1416 . )inﬁ4,4ﬁb,6 e ﬂz;,zips,l (ll s 12 )

=-§¢&, “'82i2’22’4 .“2'2iB2,2ﬁ4,4 "'ﬁzi,zi
= _8182"'52i)'2;‘~4 "')*2;|Bzi|- U

Also, we have the following lemma.

LEMMA 2.5. (i) The normal vector field V,fum)H(iZI) along O is written

as
; i-1
(H,,) Vio(z 'H= _ZIQinZj—l(/ll"”’/IZi—2 Wagyo H + A2, "'AZi—IVvtj—xH
=
+N2i(ll»""'lzi—2)»

where Q5 (A, Ay YAS j<i—1) is a homogeneous polynomial of degree
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(2i=1) and N,(A,,++, A, ,) is a normal vector field-valued polynomial of
degree at most (2i-2),
(ii) The normal vector field V

1 (2i+1)

2% H(i=1) along C is written as

1 (2i+1)

i-1

(Hy,p) Vvo H= zE)Q2i+I,2j(2'1"”’z’2i—l)Vein+2’I2’2 "'A’Zivvth
=

+ N2i+l(ﬂ’l’”")’2i—l ),

where Q15 (A, -, A, N0 < j<i—1) is a homogeneous polynomial of degree 2i
and N, (A, Ay_)) is a normal vector field-valued polynomial of degree at
most (2i—1).

PROOF. Define a normal bundle-valued (O,j)-tehsor field 7, on M by
T,:=V'H and T,((X,,---,X,():=(Vxl T )Xy, X Nk22) for X, X, eTM,
where V is the connection induced from V and V*. We shall show (H,). By
using the definition of 7, and the Frenet formula, V#om H is rewritten in terms of

Tj as follows:

Vao H = Vi, " (1(2)) = Vay (T, (0, 90) + 4T (0))
=TV, 04, v) + AT, (v, v,) + 24, T, (v, v,)
—€,6, A, Vo, H+ LA,V H
= 0,0(A)Vi, H+ LA,V H+ N,(A,),

where we set Qy,(4,):=-g,6,47 and N,(A)):=T,(vy, v,,05) + AT, (v,,05) +24,T,
(vy,v,). Thus (H,) is shown. Similarly, (H,)(i 2 4) is also shown. O

By using these lemmas, we can prove the following theorem.

THEOREM 2.6. Let M be a totally umbilical pseudo-Riemannian submanifold
in M isometrically immersed by f. Assume that for every proper helix 0 of
order din M, 6(:= foG) is a proper helix of order d in M, where d is a positive
integer. Then

(i) ifdis odd, then M is totally geodesic,

(i) if d is even, then M is an extrinsic sphere.

PROOF. Assume that d>=3. Fix peM. For any orthonormal system
Xy, Xy, X,y of T,M and any positive numbers A,,---,4,_,, there exists a proper
helix 0 of order d through p with the curvatures 4,,---,A, ,whose Frenet frame
field v;,v,,---, v, , coincide with X,,X,,---, X, at p. Since G(:=fo0) is a proper
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helix of order d in M, by Lemma 2.3, we have

Q.7 vi“ H="b,B,,'H, .
(i) Let d =2i+1.1t follows from (2.4) and Lemma 2.5 that
VJ_ (d- I)H Vl (21)
Yo

—ZQ2,2k1(2~|s o 7,2Vl H+/ll 2, Vl H

Yok~ V2i-1

+N2:‘(A'l""’ 2,'72)
and

lded*Z_lHd—s z d}+l(/ll?'“9 I)Vl (2})

IB,“,o

1
Bl

{zszVZk_l(/ll,-- 212) s H A M Ay Ay Vs ,H+N2>,(,11,---,,12j72)}}.
k=1 1 j-

i—1
{1{,,(/11, .. A[H)H+j2=]Pd‘jﬂ()vl,...’,ld_l)

Substituting these equalities to (2.7) and noticing the point p, we have

i-1
IBd—Zl{Z QZI.Zk—l(}‘l""’A'ZiQ )V;HH + ’11/12 "'A'Zi-lVZHH-l_ Nz(()“l""’}”zivz )}
k=1
i-1
.8) = Pd_.()».w',/lfm YH + ZIP‘,JH(/II,...,,%_I)
j=
-1
{:Zj] Q2j,2k—l(2"l"”’)’Zj—Z)VJ);M_,H + )'1’12 ...Azj*lV)L(Z,,|H + sz(ll""”lzj'—z)}

Since the degrees of |B, .0y, 5 1(Ai» Ay, )(j >k 21) and P (A, Ay )21
are i%, (2j—1),and (i* +2i-2;+2), respectively, the left-hand side of (2.8) is a
polynomial of degree (i*+2i—1), the first term P, (4,,---,A,,)H of the right-
hand side is of degree (i*+2i) and other terms of the right-hand side are of
degree at most (i* +2i—1). Hence, since (2.8) holds for every positive numbers
Ao Ay, we obtain P, (A,,--,A,)H=0. From Lemma 2.4-(ii), P, (4, -,
A,.) #0 holds. Therefore, we see that H=0 at p. By the arbitrarity of peM,
we see that H =0, that is, M is totally geodesic. In case of d = 1, it is directly
deduced from Lemma 2.1 that so is M.
(ii) Let d = 2i. It follows from (2.5), (2.7) and Lemma 2.5 that
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]Bd—'_’

{Ig) in—l,Zk (;t| 37T 1254 )V;“ H+ 11/12 o 12f~2V;2,,3 H+ NZ:’—[ (ll [ A2,'—3)}
i-2
(2.9) = P(I,l(/ll"“’ld—l )Vi,,H + g]R],ﬂ-I(A’I"”’ Aier)

j-l
{‘E)QZJ‘H,M(Z’I’”"A’Z]—] )V)l(y H+ ’1|)“2 "‘Azjv)l(z,H + sz+1 ()’w"'s AQH )}

Since the degrees of [B, ;| Q0 (A Ay )i >k 20) and P, (A, A,,)
(j=21) are (i*—=i), 2j and (i’ +i-2j), respectively, both sides of (2.9) are
polynomials of degree (i*+i—2). Hence, since (2.9) holds for every positive
numbers 4,,---,4,.,, terms of degree (i*>+i—2) of the both sides are mutually
equal, that is,

i-2
lB¢1~2 I{/Zb Q2i—l,2k (11 (A Az:‘—a )V)L(U H+ l1/12 . '2'2,'—2V)i(2,,2 H}

i-2
=P (A, Ay )Vf(“H+ ZIPd,jH()”l’“")'d—l)
i

j-
{AZ:() Do jnac Ao oy )Vik H+ A2, "’)‘Ziv’lﬁ/ H}‘

Furthermore, since this equality holds for every orthonormal system
X0 Xy, Xy, of T,M, we see that |B, |44, A, Vx, ,H=0, that is
V,*(MH = 0. By the arbitrarity of X, ,, we see that V*H =0 at p. Furthermore,
from the arbitrarily of pe M,V*H =0 is deduced. Thus M is an extrinsic sphere.
In case of d = 2, it is directly deduced from Lemma 2.1 that so is M. O

In the case where M and M are Riemannian manifolds, this theorem is
written as follows.

COROLLARY 2.7. Let M be a totally umbilical submanifold in a Riemannian
manifold M isometrically immersed by f. Assume that for every helix © of
order d in M, 6(:= fo0) is a helix of order d in M , where d is a positive integer.
Then

(1) ifdis odd, then M is totally geodesic,

(ii) if d is even, then M is an extrinsic sphere.

Also, we can prove the following theorem.

THEOREM 2.8. Let M be a totally umbilical pseudo-Riemannian submanifold
in M isometrically immersed by f. Assume that for every proper helix O of order
dinM, 6(:= fo0) is a proper helix of order d + 1 in M, where d is a positive
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integer. Then d is odd and M is an extrinsic sphere.

PROOF. Assume that d=>2. Fix peM. For any orthonormal system
Xos Xy5s X,y of T,M and any positive numbers A,,---,4,_,, there exists a proper
helix O of order d through p with the curvatures A,,---,A4,, whose Frenet frame
field v,,v,,---v, | coincide with X, X,,---,X, , at p. Since G(:= fo0) is a proper
helix of order d + 1 in M, by Lemma 2.3, we have

(d) t -
(2.10) Va'"H="b,,B, "'H,,.

Suppose that d is even. Let d = 2i. It follows from (2.4), (2.10) and Lemma 2.5
that

il
|Bd—1 !{k}::l Q2i.2k—l(ll >t -’AZI—Z )VZH H+ 11)'2 ”'A'Zi‘lviz,-,, H+ N2i(2’l 7""/12,--2 )}
i-l
2.11) = d+1.l()'1""»)‘d)H+ ZIRi+1,j+1(’1|""»’14)
j=

-1
{:z_‘ QZj.Zk—I(A'l’.”’A‘Zj—Z)V§y‘|H + ’11)'2 "'Azj—|V§3,,,H + NZj(ll"“’A'Zj—Z)}'

Since (2.11) holds for every positive numbers A,,---,4,, ,, by noticing the term of
the highest degree, we have P, (4,,--,4,)H=0. From Lemma 2.4-(ii),
P, (4,--,A;) # 0 holds. Therefore, we obtain H = 0 at p. By the arbitrarity of
peM, we see that H=0, that is, M is totally geodesic. This implies d =d .
Thus a contradiction results. Therefore, d is odd. Let d = 2i + 1. It follows from
(2.5),(2.10) and Lemma 2.5 that

i-l
|Bd—l |{EO Q2i+l,2k(ﬂ'l’“.’)‘2i—l )V;“ H+ /112'2 "'Azivisz + Ny (A’I"“’A'Zi—l )}
i-l
(2.12) = R/+|,l(’11""”ld)V;,H+ Zf‘[)dﬂ,jﬂ(l]"”’ld)
j=

-1
{E) Qz_,'+|,2/< (/11""’12;71 )VZAH + /1112 7"/12;‘7;3,'[1 + N21+| (}'1""’121'—1)}'

Since (2.12) holds for every positive numbers A,,--,4,, ,, by noticing terms of the
highest degree, we have

il
le—l I{EZ) Q2i+l,2k (ll LR ;LzH )V)l(“ H+ '1112 ’ “A’Zivill H}

-1
= z/+l,l(ﬂ'l"n’ﬂ’d)V;nH+j§] PLl+l,j+l(ﬂ’I"“’Ar1)

-1
{E) Q2j+l.2k (;Ll 2T Azpl )V;M H+ /1|'lz ’ "’12,,‘V§2, H}
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Furthermore, since this equality holds for every orthonormal system
Xo: Xyoeon Xy of T M, we see that [B, 44,1,V H=0, that is, Vi H=0.
By the arbitrarity of X,,, we see that V*H =0 at p. Furthermore, from the
arbitrarity of pe M,V'H =0 is deduced. Thus M is an extrinsic sphere. In case
of d = 1, it is directly deduced from Lemma 2.1 that so is M. O

In the case where M and M are Riemannian manifolds, this theorem is
written as follows.

COROLLARY 2.9. Let M be a totally umbilical submanifold in a Riemannian
manifold M isometrically immersed by f. Assume that for every helix © O of order

dinM, 6(:= foo) is a helix of orderd + 1 in M, where d is a positive integer.
Then d is odd and M is an extrinsic sphere.

§3. Proper helices in an extrinsic sphere.

Let M be an extrinsic sphere in a pseudo-Riemannian manifold M
isometrically immersed by f and 0 a proper helix of order d in M. We put
0:=foo. Assume that & is a proper curve of order d. Let
l,,-‘- salresp. A, 4 7.,) be the curvatures of of(resp. ), Vg, o5 U, (resp. T,

b I)the Frenet frame field of o(resp.6). For convenience, let A, =0, v, =0,
;t —O and 7. —O(l>dj>d) Set g :=g(v,,v,)and E, =g(7,5.)(i20). Also, we
deﬁne B, and B, (ij=1,i+j:even) as (2.1).

LEMMA 3.1. The curve G is a proper helix in M and the vector fields
Vi(i20) and 9,(j20) along G are related as follows:

(F)  0,=v,,
(F) Bmﬁ] =161’1v1 +&,H,

(K,) 2352;»1,2,'—1172/4 = ZﬂQi—l,Zj—IUZj—[ (i22),
= =
(£) Zlﬁzi,zjﬁ Zﬂzl 2Y; (21,
= =

PROOF. From (1.1), the Frenet formulas and the assumption that M is totally
umbilic, we get

A8, = Vo, Uy = Vi, vy + €,H = A0, +&,H.

Thus we obtain (K. Furthermore, from this equality, we get



278 Hwa Hon SONG, Takahisa KIMURA and Naoyuki KOIKE

EA =g A2 +g(H,H).

Since M is an extrinsic sphere, g(H, H) is constant. Therefore, Il is constant.
Operating V,,o to (F), we get

Bl,l (—SOEIZIUO + )’2 -2) = ﬁl,l ("8081/‘"17)0 + '12”2 ) EOE(H’ H) Y

where we use (1.1), (1.2), the Frenet formulas and the assumption that M is an
extrinsic sphere. By noticing Span {v,}* -component of this equality, we see that

2251,1772 =487,
which implies (F) by (2.1). Furthermore, from this equality, we get

Ezzgﬁlz.l = 82’122/312.1’
which implies that I is constant. Assume that (F),) holds and Z(l <iL2k) are
constant. Since fB,, 2,(resp B, 2;)A<i<k) are polynomials with variables

- A, (resp. A, 4,,), these are constant along O . Hence, operating Vo, to

(Fz’k) , we have
k — — k
Zlﬂzkz, % 7/ levkzj g 2,’
= =l

where we use (1.1) and the assumption that M is an extrinsic sphere. Applying the
Frenet formulas and (2.1) to this equality, we obtain (F},,,). Furthermore, from
(Fin) s we get

k+1 k+1

Zez, 1ﬂ7k+12, i 282, 1ﬁ2k+12, I

that is,
_ =, k+1 2 k _ =5
3.1) 82k+lﬂ2k+l,2k+l = Z'IEZj—IﬁZkH,Zj—l - Z|£2j—lﬂ2k+l,2j—l'
J= J=

Since  B,,,,,,,(1<j<k+1) are polynomials with variables Aoty Aoy, and
ﬁz,ﬁ,lj_,(lﬁisk) are polynomials with variables I,,---,Iz,(, these are constant
along O, that is, the right-hand side of (3.1) is constant along O . Also, the left-
hand side of (3.1) is equal to &, A°A -+ A,,. Therefore, we see that 1,,,, is
constant. Since f,.,,,,, (resp. [32,”,7] DA< j<k+1) are polynomials with
variables A,,-+-,4,,,, (resp. ).1, - 2M) these are constant along O. Hence,

operating Vs, to (F}, ), we have
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kel — k+1

zﬁzm 2j- 1V v71—1 = ,ZI'BZM,ZHV% Vaj-1s
=1 i=

where we use (1.1) and the assumption that M is an extrinsic sphere. Applying the
Frenet formulas and (2.1) to this equality, we obtain (F/,,,). Furthermore, from
(Fii2)» we get

k+1_ =5 k+1 2
Zlgzjﬂ2k+2,2j = _Zlgzjﬂzmz.z/"
i= =

that is,

x~

- = k1 ) =5
(3.2) £2k+2ﬂ2k+2.2k+2 = Z|82jﬁ2k+2,7j z 2k+22"
=

Since  B,,,,,,(1<j<k+1) are polynomials witE variables Aps Ay, and
Brisra;(1Si<k) are polynomials with variables A,,---,A,,,,, these are constant
along 0, that is, the right-hand side of (3. 2) is constant along O . Also, the left-
hand side of (3.2) is equal to &,,,,A2A%--- A2 Asisz - Therefore, we see that A,,,, is
constant. Thus, by the induction, we see that (F’)(i=0) hold and lj(j >1) are
constant (i.e., & is a proper helix). d

By using this lemma, we can prove the following theorem.

THEOREM 3.2. Let M be an extrinsic sphere in a pseudo-Riemannian manifold
M isometrically immersed by f and G a proper helix of order d in M such that
0 (:= fo0) is a proper curve in M , where d is a positive integer. Then

(i) ifdis odd, then G is a proper helix of order d or d + 1,

(i1) if d is even, then G is a proper helix of order d.

PROOF. Let v,(0<i<d - 1)(resp. vi(OSiSE—l)) the Frenet frame field of
o(resp.0) and, for convenience, v, =0(i=2d) and 17,.=0(i257). According
to Lemma 3.1. & is a proper helix, #, € Span {v,,v,,-,v,}(=0) and
Uyin € Span {v,,vs,,v,,,, H}(i 20). The conclusion is directly deduced from
these facts. ]

In the case where M and M are Riemannian manifolds, this theorem is
written as follows.

COROLLARY 3.3. Let M be an extrinsic sphere in a Riemannian manifold M
isometrically immersed by f and O a helix of order d in M, where d is a positive
integer. Then
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(i) ifdis odd, then foc is a helix of orderdord+ 1,
(i) if d is even, then foG is a helix of order d.
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