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Introduction.

The notion of measuring actions of coalgebras on an algebra unifies the

notions of algebra automorphisms, of derivations and of higher derivations. In

this paper we examine such actions of a &-coalgebra C on an Azumaya k-

algebra A, where k is a commutative ring. In (2.4) we show a 1-1 correspon-

dence between the set of measurings C->End A and the set of certain right C*-

submodules of C*RA Using this result, we show a Noether-Skolem type

theorem (3.1): For example, */ k is a field,then any measuring C-≫End A is

inner for arbitrary C and A.

Throughout the paper we fix a commutative ring k with 1. A linear map,

an algebra, a coalgebra, R, Horn and End mean a ^-linear map, a ^-algebra, a

^-algebra, a ^-coalgebra, (x)*,Horn* and End*, respectively. We fix an algebra

A and a coalgebra C. C* denotes Hom(C, £), the dual algebra of C [9, Prop.

1.1.1, p. 91.

1. Preliminaries.

Let A, £be the structure maps of C and write

A{c)= 2 C(i)0c(2) for ceC.

The ^-module Hom(C, A) is an algebra with the ^-product [9, p. 69]

Hom(C, ^)x denotes the group of units in Hom(C, A).

1.1. Definition. A linear map /: C―>EndA is called a measuring, if a^>

(c^>f{c){a)), /l->Hom(C, A) is an algebra map, or equivalently if

/(c)(l)=e(c)l,

f(c)(ab)= S f(cw){a)f{cm)(b)

CO

for c(EC, a, heiA [9, Def. p. 1381. We denote by
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Meas(C, End A)

the set of measurings C-≫EndA.

For any ueHom(C, AY, the linear map inn u :C―>End A determined by

(1.2)

CO

is a measuring. Thus we have a map

(1.3) inn : Horn (C, AY ―> Meas (C, End A).

1.4. Definition (cf.[2, Def. 1.2, p. 674]). We write

Inn(C, End A)=the image of inn

and call an element of this set an inner measuring.

2. A 1-1 correspondence.

Throughout this section, let A be an Azumaya algebra [6, p. 95]. Thus A

is a progenerator ^-module and

(2.1) ARA^EndA via aRb*-+(x^axb).

Let D be an arbitrary algebra. Alg(A, D(g)A) denotes the set of algebra

maps A-*D<g)A.

2.2. Definition. l(DRA) denotes the set of right £>-submodules / of D(g>A

such that

ie:I<g)A―>D<g)A, *(jcRa)=*(lRa)

is an isomorphism.

2.3. Proposition. Let A, D be as above.

(1) Let f^A＼g(A, DRA) and define

If = {x(EDRA | /(a)x = jc(lRa) for all a^A}.

Then If =I(DRA).

(2) Let / g I(D^i) and suppose ≪-x(lRl)= Sa^at. Define f z e

Hom(A, DRA) by

//(a)―2iXi{l(g)aai), a<=A.

Then fj is an algebra map.

(3) />-*// and I>-*f7 establish a 1-1 correspondence between Alg(^4, D<g)A)

and I(D<g>A).

Proof. We modify the proof of [6, Prop. 1.2,p. 107].
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Let f(D<g)A) denote the ^-module D<g)A with the twisted Abimodule structure

represented by

/(g)l 10(2.1)
ARA > DRA<g)A > Z)(g)EndAdKnd (Dig)A).

Then // is identified with the /1-centralizerof f(D<g>A). This, together with

[6, Cor. 5.3,p. 95], implies /, =1(1)0.4).

// coincides with the composition of algebra maps

A ―> End-ovAV<g)A) _2^> End.mA(DRA)=DRA ,

where the firstmap is a^(x<S>b^x<^ab) and the second is g^>tc°g°tc~＼This is

a unique algebra map making K'.I<g>A^.fl(D^A) into an A-bimodule isomor-

phism, so we have

/=//,, 1=1 f! Q. E. D.

D

2.4. Theorem. Let A be an Azumaya algebra, let C be a coalgebra and let

= C*.

(1) There is a 1-1 correspondence between Meas (C, End .4) and I(D(£)A),

which is given by f1-*!/, />―>/'/in (2.3) through the natural identification

(2.5) Meas(C, End A)=A＼g(A, DRA).

(2) // Z1-*/in (1), then f is inner if and only if I^D as right D-modules.

Proof. (1) By definition(1.1)we have Meas(C, End A)=A＼g(A, Hom(C, A))

by adjointness. Since A is a finitely generated projective ^-module, we have

Z)(g≫l=Hom(C, A). Thus we have (2.5). Then part (1) follows from (2.3)im-

mediately.

(2) We have the correspondences

inn u <―> (a^-^u(l<^a)u~l) in (2.5)

≪―>uD in (2.3)(3)

for h^(D(g)Ay. If h:D-*I, I<e1(D(&A), is a right Z)-module isomorphism with

u ―hil) (so I=uD), then u<={D(&Ay, since we have trieright .D(g)/i-moduleiso-

morphism

D<g>A= DR(DRA) ^^ IR(DRA) _^> DRA
D hRl D K

sending 101 to u. Thus part(2) follows. Q. E. D.

2.6. Fact. Let A, C, D be as in (2.4). Suppose C is cocommutative. Then:

(1) Meas(C, End A) forms a group with respect to the ^-product.
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(2) />-≫//in (2.3)induces an exactsequenceof groups

1 ―> Inn(C, End A) ―> Meas(C, End A) ―> Pic(D)

and

Im0={/<EPic(D) | I(&A^D<g)A as right or left DRA-modules],

where Pic(D) is the Picard group of D.

PROOF. As is easily verified,if C is cocommutative (so D is commutative),

then Meas(C, End A) is a sub-monoid of Hom(C, End A) and the natural bijection

Meas(C, End,4)=Alg(A D(g)^)-Endo_Aig(L≫(g)^)

is a monoid isomorphism. Moreover since D(&A is an Azumaya D-algebra, the

assertions follow from [6, Cor. 5.4, p. 95 and Prop. 1.2,p. 1071. Q. E. D.

3. A Noether-Skolem theorem.

3.1. THEOREM. Let C be a coalgebra and let D=C*. Then any measuring

C―End A is inner for an arbitrary Azumaya algebra A, if either

(a) C is cocommutative and the Picard group Pic(D) of D is trivial,

(b) k, the base ring, is artinian and C is a finitelygenerated k-module, or

(c) k is a field{and C is arbitrary).

Proof in case (a). This follows from (2.6).

Proof in case (b). By (2.4) we have only to show each /eI(D£x);4)is iso-

morphic to D as a right D-module. Multiplying a primitive idempotent, we may

assume k is local artinian. Then A is a free ^-module of finiterank, say n.

We have

In^I^A^D<S)A-Dn

as right D-modules, where ( )" means the direct sum of n copies of ( ). Since

D is right artinian, we can apply the Krull-Schmidt theorem to have I^D.

Q. E. D.

More generally, the conclusion of (3.1)holds true, if k is the direct product

Tiki of finitely many commutative rings kt such that all finitelygenerated

projective &i-modules are free and if each Dkt is contained in the class 3i de-

fined as follows. Let 91 be the class of rings R with 1 satisfying: A right R-

module M is isomorphic to R, if there exists n^l such that Mn^Rn as right R-

modules. All right artinian rings are contained in 5ft.
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3.2. Lemma. (1) // i?/Rad/?G3l, then R<=m, where Rad R is the Jacobson

radical of R.

(2) 5Ris closed under possiblyinfinitedirect products.

Proof. (1) This follows from [1, (2.12) Prop., p. 90].

(2) Let R=URx. Suppose Mn^Rn. Then M^JJMRX, since so is Mn--=Rn.

Suppose i^em for all X. Then MRx~Rx, since Mn~Rn implies {MRx)n-Rnx.

Thus we have

M^UMRx^JlRx = R

as right i?-modules. Hence /?eSft. Q. E. D.

Proof in case (c). By (3.2)(1),it is enough to show D/RadDem. By [5,

2.1.5.Prop, (a), p. 224], D/RadD^CH, where Co is the coradical [9, Del, p. 181]

of C. Since Cf is a direct product of finitedimensional (simple) algebras [5,

p. 223], £>/Rad/)=Cfe91 by (3.2)(2). Q.E.D.

3.3. Remarks. (1) Sweedler [8, Thm. 9.5,p. 236] extended the classical

results of Noether-Skolem and of Jacobson to Hopf algebra actions. His result

cannot be covered by ours, unless D―B in the notation of [8].

(2) Blattner and Montgomery [3, Thm. 2.15] prove a Noether-Skolem theo-

rem for Hopf-Galois extensions, generalizing [7, Thm. 6]. Their result follows

immediately from (3.1)(c),since, in their notation, an action of H on B trivial

on Z gives rise to a Z-linear measuring Z6§H->EndzB.

m
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