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ON THE MICROLOCAL HYPOELLIPTICITY OF
PSEUDODIFFERENTIAL OPERATORS

By

Minoru KoikE

§ 1. Introduction

P. Bolley and J. Camus [1] obtained some results on the microlocal hypo-
ellipticity of differential operators with real analytic coeflicients. One of their
results is as follows. Let X be an open subset of R® and P(z, D) a differential
operator whose coefficients are real analytic in X. Let L’ be a sequence such
that

E+1<Li<Ljn<CL., k=0,1,2, -

and

1
Ly=max (L, k7€), 0<5<p<l, t=g—.

Then
WE i (u) WE (Pu) U( QR n(P), ued'(X).

Here WF.(u) is the wave front set of # with respect to the class C* (Cf. L.
Hormander [5)) and X™,(P) is the complement of the set of all points (zo, §)€ XX
(R*—0) satisfying the following condition: There exist constants C, R and a conic
neighborhood V of (o, &) such that for all multi-indices p, ¢

C|P(z, &) = el™
and
ID?D%I)(.%.’ E)] SCIPIJrIQIq”él-—PIPH-ﬂIQI|P(x.’ g)l
when (z, )¢V, |£|>R. Where Dl=(—+—15/0x)".
In [1] they obtained this result by extending the theory of T. Kotake—M.S.
Narasimhan [6]. In this paper we prove a more general result in which the operator

P belongs to a class of pseudodifferential operators. It contains all the differential
operators whose coefficients are of class C%, not necessarily analytic. The class
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C* is allowed to be larger than the Gevrey classes. Also, it can be quasi-analytic.
Our method is different from that of [1]. We construct approximate parametrices
for the transposed operator, modifying the techniques used in Chapter V of F.
Treves [81.

The author wishes to express his gratitude to Professor M. Matsumura and
Dr. H. Suzuki for valuable advice.

§2. Statement of the results

Let I be a pseudodifferential operator with amplitude «:
Fule)=\ " 0ata, v, utidyds,  ds=(r) s

Let Ly (=0,1,2,---) be a sequence of positive numbers. We shall write Fe
I(Li); p/,0',m), if for every compact set KcXxX there exists a constant Ck
with

|DEDEDsalz, v, £) SCRPHTPIN oy (&)™ e 1PL+13 4]

when (z,9)eK, §eR"—0 (Cf. L. Boutet de Monvel and P. Krée [2]). Here, (&)=
1+&1%)"* and

2.1 Me=Lk.

Note that any differential operator with coefficients of class C* belongs to /(L) ;
1,0, m,) where m, is the order of the operator.

In general, the singular support of the distribution kernel of a pseudodifferential
operator is contained in the diagonal ([4]), so we consider the behavior of the
amplitude in the diagonal. We shall define a set

vos((La) ; FYC XX (R"—0)

as follows: (x,&0)¢ 2% ((Le); F) if and only if there exist constants C, R and a
conic neighborhood V of (x,&) such that for all multi-indices p, ¢,

Cla(z, x, Oz lE]™, if [§|>R, (#,9eV,
|(DEDIDa)(x, 2, ) <CPHTPIM g, (EY P a2, 2, €)]
if [€]=2R(p+q+r|+1)", (x,§)eV.

2mss((Le); F) is a closed cone in XX (R"—0) and decreases when s increases. If
F is a differential operator and if L,=Fk+1, then the set 1™ ((Ls); F) coincides
with Y%,(F) of [1].

We impose the following condition on the sequence L;:
(i) Ly satisfies that
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(2.2) RH1<Ly<Le  <CL,
2.3) log (M/E}) is convex.

The condition (i) implies that the C% is invariant under the C* class coordinate
changes ([7]). We take other sequences:
(ii) T% and T, are sequences of positive numbers such that

2.4) T, Tx also satisfy (i),
(2.5) My <CeH Hy, Hy<Cr*HuyHy,
where He=Tf H,=Tk

For any Ly satisfying (2.2), such sequences Tk, Tx always exist. For example, if

My=¢e*-k!* (i.e. the C" is the Gevrey class of order s), then (i) and (ii) are fulfilled

with Te=Tr=L;. Also we can take Ly=exp (s&°), 0<c<1, ¢s>1 for instance, but

the corresponding space C* is never contained in the Gevrey class of any order.
Assuming that

(iii) 0<d’<p'<l, 0<d<p<l,
we set

1 1 1
(2.6) T= 1-5° o=max (m, ';:’_}:) .

Then we have

TureoreMm. Let Fel((Ly); p’,0',m') be properly supported and the conditions
()-(iii) hold. If Lj is a sequence satisfying (2.2), then

2.7 WE . (u)C WFL’(Fu)C(LQR Tras(La); F)), ued'(X),
where LY =max (L, Tox £).

We prove the Theorem in §3, constructing approximate parametrices microlocally
for the transposed operator ‘F.

Now we remark that the set Y7, ((Ly); F') is independent of the lower order
parts of F. In fact, we have

ProposiTION 1. Let Ly be a sequence of positive numbers and Gel((Lz); p, 8, m),
p<p, 68, If m<m, then

Zoas((Li) s F+G)=X.s(Li) s F)

for any s, F.

ProOOF. If (x0,&0) ¢ 2% s((Ly); ), then we have
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(2.8) (DEDEDGg ), 2, )] SCIEI™ O T pIM |70 oz, 1, )]

for all (z,&) in a conic neighborhood of (o, &) with |£|>R, where ¢ is the ampli-
tude of G. We take R so large that CR™ ™<1/2. Then |a(z, z,&)+g(z, z,&)|>
la(z, 2, &)|/2 (|€|=R), so we obtain (o, &) ¢ 317 ((Ls) ; F+G) from (2.8). Therefore

ras((Le) s FHGYC T0 (L) s ). Replacing F, G by F+G, —G respectively, we
have the conclusion.

§3. Proof of the Theorem

Let @ and b be the amplitudes of F and ‘F respectively. From the definition
of 'F we have b(z,y, n)=a(y, z, —»), thus we obtain

ProrositioN 2 (Cf. [1], Proposition 3.2).

Zrssl(La) s 'F)={(2, —n); (&, n)e Liss((La) s F)} .

If (20, &0) ¢ 22%:s((Li); F'), then there exists a conic neighborhood V of (zo, —&,)
such that

3.1 Clo(z, z, n) =1I5™, if [9I=R, (z,peV,

3.2) [((DYDIDb) e, 2, )| SCPHTPIM gy || =12 B2, 22, )]
if |pl=R(Ip+g+7r|+1), (z,neV.

We set

(3.3) Gr=max (T¢, k%) . .

LEmMa 1. Let
Pz, n)= L il DidibXx, z, plrt,  k>1 (d5=(0/3y)").
There exist constants C, R>0 independent of k such that

(3.4 C|Py(z, P =18z, x, )| when |5 = RG:,

(3.5) |DYDEP(e, | SCPHUPUH g 9] =*171 218 (2, 2, )]

when

3.6) 7| = R(Ge+p+al),  (z.peV.
Proor.

| DYDI(P(z, n)—b(z, 2, )| < Zociri<al (D7 (Da+ Dy D), z, /7!
<CPH P Ll =P P01 bz, 2, )| Bly)

where
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7\ [ CTy,, | 2C \"
B(W)=Zo<[r|<k(p >< ; —> ﬁzlp[ZKm(k( )

pe Ir/|”j" R
in the set
(3.6 Ip=RGe,  (x,peV.
So we have
(3.5) | DYDY P(x, 9)—b(x, x, 7)) S%C"“““P!Hm [p|=1Pt+o bz, 2, 9)| ,

provided that R is large enough. Combining (3.2) with this, we have (3.5). Let
p=¢g=0in (3.5). Then we have (3.4).

LEmMMA 2. For each k=1,2, ---, we can find C functions Qu(x,7), 1=0,1, -+,
k—1 such that

Z D;Pkﬂj(l’, ﬂ)d;Qﬂc(l, 7])/?‘! =0dor, , /l:O, 1, ey, k—1 ,

in the set (3.6),, where 3, denotes the sum for all j, v with j+|r|=h, and dj de-
notes (8/0x)". Moreover, in the set (3.6), the inequalities

(37) ‘DngQj’C(J.y ’])‘ i:cj+I}H‘YIP!H;QHA.,A—P![)IH?\QI* (ﬂ’—&)jlb(‘z/.’ x, )7)’—1

hold, where the constants C and R are independent of j, k.

Proor. For each k, determine recursively the functions @,; by means of the
relations

(3.8)s Qo(x, 7)=1/Pe(x, 7)
and for j=1,2, .-,

(3.8); Qjr(x, )= Zocrrisy PPy or(@, )diQji—im . 1z, )7} .

1t
Pr_f(z, )

We must estimate derivatives of Qjx. By (3.8), and (3.4)

3.7 [DYDiQoi| <CP U pIM g |9 ~*1P1 0140 p| =t (in the set (3.6))

is certainly true when p=¢=0. From there on we reason (3.7), by induction on
|p+q|, assumed to be >1. Differentiating Quw(x,7)Pi(x,n)=1, we have by the
Leibniz formula

where )}’ denotes the sum for all p/, ¢" with [p’+¢’|>0, p’<p, and ¢'<q. The
inductive hypothesis and (3.5) imply



60 Minoru Koike

'DngQo]A SCLP%Q!@I}{}q‘lvl*FIP! + 6\']!/1

where

A:Z'<g,>cm'q’ICEW’qu[{(q'lﬂwq—q’l/lflm
with C in (3.5). Since (Z,)g(’lgll), we obtain, in view of (2.3),
ALY priansol CfC) T

We have A<I, provided that C, is large enough in comparison to C, whence
(3.7),. Therefore, it holds that

3.7 | DEDIQ | SCIP* " 4ipL gy gl =017 0 ]
where |p|>R(Ge+(7+1p+4g1)), (z,peV,
for =0 and for all p, g. It suffices to show that (3.7); holds for j=1, ---, k&, since

Gi+(J+1p+q)) <2 (Ge+|p+gl°) if j<k. From there on we reason by induction
on j, assumed to be >1. By (3.8);, the Leibniz formula implies

! ¢ 1 e
|D;’D§Q1k} SZ"'p/!pu!pw! q’!q”!q”’! ;T |D37 D?ﬁ onH;!

X|DY DY Py ||1D7 DS Qi
where 3" denotes the sum for all p/, p", p"', ¢, ¢", ¢, r with p/+p"+p'"=p,

g +q"+q"=q, 0<|r|<j. In view of (3.5) and (3.7), the inductive hypothesis
implies that

| DIDIQ k| SCIPFa2iply|=temdimeladl|p| =1 3,
B=Y"(CofCYPHINCIC )P+ 37 (" 1)l [p' 1y
X HygnHyqiHyor14 09" q" g
< Higy ;5 (CoCP T 2CIC, )7+ +7!

lg""|¥lql +)t
Since

lalta™ |+t _ k.

T gl +at ~ T g

we have
B<Hy.,,

provided that C, is large enough in comparison to C, and to C. This completes

the proof.
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Now we use the following fact (F. Treves [8], Chapter V).

Lemma 3. There is a constant C, depending only on n, such that given any
open subset W of R, any number d>0, any integer k>0, there is a C° function
gx in R", having the following properties.

0<gs <1 everywhere, gr=1 in W,
giu(x)=0 if dist (x, W)>d,
|D?gy| <(Chld )P for all p such that |p| <k.

Then we have
Lemma 4. Let I', [ be open comes CR"-0, such that [—0cI”. For any
R>0, there exist C* functions pi in R", such that

0<pe<l in R"

pi(n)=1 when |y|>2RGy and nel’,
supp peClnel” 5 Iyl 2 RG} ,

| DPge(p)| <(Ck[|n))"™" when |p|<k,

where the constant C is independent of k.
Proor. There exists a constant d such that 0<d<1/2 and
{n;dist (5, W)<djcl™”, where W={yel;|p/>1/2}.
Let g, be as in Lemma 3. If r«(p)=g«(y/|5]), then we have
|DPr(n)| <(CE[In)'H (1p1<k).

We take another W, d:

W={neR"; |5 >3RG/2}, d=RGy/2.
Let gx be as in Lemma 3 and set si(y)=gs(y). We have

| D?si] <(Ck/Gr)'*'.

Since sk(y)=1 when |y| =2RGx, pu(y)=sk(p)7s(y) has the required properties.
Let ¥ be as in (3.1), (3.2). We take open conic neighborhoods /7, ---, [y of
—¢&, and open neighborhoods U, ---, U, of xz, such that

U, is compact, U;,,cU;, I'j.—0cly, Ux{T—0)cV.
Let gjx, ps be such functions as g«, px in Lemma 3, Lemma 4 respectively, satis-
fying

gix=1in Uy, suppgucU;,
pi(n)=1 when [y|>(2j+1)RG and 5ely;,
supp pieC{nel 2 i; |9 =27 RG} .
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We denote by gi, Ax, %k, Pr, g the functions g, gar, sk, Pk, Pz respectively.
Let Q;; be as in Lemma 2 and let us set

(3.9) Q¥y, C):{]k(y)qk(C)Zj<ijk<2/v 0.

We denote by K, the pseudodifferential operator whose amplitude is @*(x, £)2(y).
Since ‘F and K are properly supported, so is Sy='FK;-—I. We consider the
pseudodifferential equation

(3.10) Fu=fed'(X), wued'(X).
To prove our Theorem, it suffices to show that
(w0, E0)WE(u)  when (0, &) §WEFL(/)U X7 (L) s F)
for some m. Let V be as above. We may assume that
(3.11) (, —n); (v, NeVINWEL(f)=¢.
From (3.10) we have, for any ve P(X),
u, vy =<{u, ‘FKw)—{u, Sy ={f, Kxv)—<{u, Sv) .

In particular we take v(z)=wi(2)e ">, £eR" considered as a parameter. We have

~.

Wil €) =0(8)— (), Tz, )

where
(312) [k(a;, E):Sk,f)k(.])) ’ vk(z):u%(\z)e—i<zwz> ’
(3.13) 0x(&)={f, Kiviy -

Let I' be an open conic neighborhood of I’y such that I'—0c—/",. We shall
TN
estimate wu(€) when éel’.

LEmMA 5. If |pl,lg| <k, then
| DPDR*(y, 1)) < CrplH g [CI717 2 b(y, v, O
where C is independent of k.
Proor. By (3.9) and (3.7) we have
D203, 01 < 2/( 5 )& YCrY ™71 D8 e
XCI(1+Q']+jp/!ICl—ﬁlP'Hﬂ!'I'I|b|—lB
where 3/ denotes the sum for all j, p’, ¢’ with j<k, p'<p, ¢’ <q, and,

B=Hq.,IL] T <CV H g((C[R) .
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As B <hle*<C*H,, we have
|DEDJR¥(y, )| <CPHaiskpl H g | L] e +otel[p] -t
if R is large enough in comparison to C.
Since ypwk(v)zs e~ ? DPy(2)dz, it follows that
(3.14) [0x(n)| <(CE)(k+|9|)7 when j<k, neR".
In view of Peetre’s inequality, it also follows that

(3.15) [0(n+ O <Ci(k+[5)/(k+IC1))  when j<k, 7 {cR".

Now we estimate (3.13). By (3.11), there exists a bounded sequence f;e&’,
J=1,2, --- such that

fo=Fin Uy, |Fo)|<C/Myp~ when ye—I'.
Since f, is bounded, there are constants C, #’ such that
|Fs)l <C&p™  for any neR", J=1,2,---.
As supp Kivpc U,, Parseval’s formula implies
0e(E)= g fJ(’?)chUk( -p)dy

=\ e Q. Dt +ayaz
where d==dyd{. We split the integral into two parts;

0k(5)=s +S =['+1*, say,

cA A

where A={(»C); pe—1I,[C]12< |5 <2[¢]}, CA is the complement of A. In the
integral I', there exists a constant ¢>>0 such that

l+El Ze(inl + 1€
So we have by integration by parts and by Lemma 5, when J<k,
II‘ISSUA C/Unl +1ED) f oI CEH S 1E 1 [Du§ +8)|d 2
where m is as in (3.1). As |{|=k in the support of Q% we have by (3.15)
11| <c A e ey as

where #n’=—(1-68J+N—m+n"+n+1, N<J. The last integral is convergent,
provided that #»”<—n—1. Therefore, we have
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I <C*H KE)™¥ when k>J>tN+C

for some constant C, where r is as in (2.6). It holds by (3.15) that
17212 | 1FOIQH ICT @ @ vaas s | apriceyemas
If —J+N—m<—2(n+1), then the last integral converges. Therefore we have
proved that
10:(6)] <C* max (M}, H,)<¢)™¥ when k>/>tN+C.

Next we estimate <u(z), [i(x,£)>. Since supp. /i(x, &) is contained in a compact
set K independent of k&, £, there exist C, s such that

(3.16) [Kau(e), L, €| <CXo 1oy <mrr SUDerc | DL, €)]
It follows from (3.12) that

3.17) (2, &)= B, ©)—1wilr) -0 |
Bk<x7 E) = tFKkUk(m)

= Sei"'/lk(;v, v, 2, 0dW

Where ¢=¢(.17, Y, Z, 7 C):<$_yy v>+<y~2v C> 7V'<Z’ E>s dI’V:d'?/dsz,
Az, v, 2,9, 0=b(z, y, PR (y, Dwx(2) .

We split the integral into two parts;

Bulx, &)= gewpk(n)/;de+ Sei**(l — ) AdW
=J+]', say.
By Taylor’s formula

B, 9,1 = Een (), 1)+ Eiron v~ b, ,7)

and by the relation
(y— Y esb=(=D,yer,

we have that I=J*+J*+ 1", where
Je= }:'Seiw:( Dbl 4, Py, Cuon(2)AW

Q7 (y, O=0:(1)qe(O)Qx(y, 0)
= Z"Sef"";lrzf'a(;)D:"'pk(v)cl);’d;bm , DRy, Qwi2)d W,
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I'=Z ,~<kSe‘¢pk(n)Pk_j(w, MRy, Dw(2)d W,

' (resp.X;”) denotes the sum for all j, » with j+|r|=Fk and j<k& (resp.j+I|7| <k).
By the Taylor’s formula

At
Py, =T P, 04 Bty =0 P, 1,0
and by integration by parts, it follows that I”=7*+1", where
=5 (e Prk o, ODIRH W, bW

= SeWZ,c(x, Y, 2, Ope(p)dW,

Zk(d?, Y, z, C): Z;”Z'rjk(x, Y, C)wk(z) 3
Zrjix, ¥, Q) =Dt Pe_(z, OdyQ7(y, Or! .

Splitting the integral I” into two parts;
I”=I/H +j'5 R
Ji= Sei“’(ﬁk~1)deW, = Sewz,,dW,

and using the Fourier inversion formula, we obtain
1”/ = Se“}Zk(.‘[,', x, <, C)dZJC N 9:'(:1»", Z, C) = <‘7~7: C> —<Z, $+C> .

Moreover we devide the integral I’” into two parts;
=] 41D

Ji= zf'SeWDZPk,xx, D)~ D@sal(, OOz et

By Lemma 2 we have
[0 =]+ [t wi(x)e 9,

where
]7 = SS ei(”.()(qk(g)rﬂ 1)LT)]C(E+C)JC »

]5=S ,  where S={{eR"; |{| <5RG}.

cs
By (3.17) we have
(3.18) Iz, &)=]"+---+]5.
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We shall estimate each J7. First, note that

(3.19) lp—Cl=ellnl +1¢))  when pesupp (1—p4), {esupp gi

for some constant ¢>0. Using the operator

(3.20)

T_O—:%?Z?:z(w—cﬂg% )
we have (by integration by parts with respect to y-variables)

IDEJ <C*H(E)™  if k=eN+C, |p|<m”
for some constant C, where »” is as in (3.16). Similarly it follows that

|DEJI| <CEHEY ™M if B>oN+C, j=3,5.
It is easily cheked that

|IDET| <C*GEEY™  if k=N+C.
Since
E+L=e(lEl+1C))  if Cesupp(ge—1), €T, (€S,
it also follows that
| DEJ?) <CENKEY=N if k=N+C.
In the integral J¢, it holds that
lx—zl=¢ for some constant ¢>0.

Therefore we can use the operator

9
3,

i
|—$:z‘|727:1(1‘j— z;)

and we get’
|IDETE| <CEHE™™  if k=eN+C.
To estimate J2, we use the operator (3.20) on the set
A={(0,0; Iyl 22I¢] or [§]=2[5]}.

(It holds that |p—C|=(p|+1¢)/4 on A.) Since |y| is dominated by 2|¢{| on the
complement of A, and as

r1
bk, v =11 @, 1+ (=, e,
¢ JO

we can get

|DRT?| <CEH (&Y™ when 2>eN+C.
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It remains to estimate J/*. Note that

[+ A=ty >cll|+A—=D)lyl)  if 0<t<1, pesupp pr, LESUDPD .

Since

P, C>=[,,—7!ISO (@7 P) (@, L=ty +e0)m~dt

we have for >0 and |p] <m”

[DEP (2, 5, O SCH([pl + L]y +om(gymeirt+e,

Using the operator

G}

—i g,
WZF[W dy; °

we have

|IDEJ| <CFH(EY™N,  if k>aN+C.

This completes the proof of the Theorem.
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