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REGULAR GAMMA RINGS

By

Shoji KYUNO, Nobuo NOBUSAWA and Mi-Soo B. SMITH

0. Introduction

Let M and F be additive abelian groups. If for all a,b,c^M and a,^,y^F',

the conditions

(1) aab<=M, aa^F,

(2) (a + b)ac = aac + bac, a(a + fi)b = aab + aPb, aa(b + c) =aab + aac,

(a + /3)ay = aaj + flay, a(a + &)/3 = a<2/3+ a£/3,aa(P + y) =aa^ + aay,

(3) (jaab)Pc = a(a.bP)c = aaQ)Pc)t (aaP)br = a(aPV)r = <*a(JPbf)*

are satisfied, then M is called a w^ gamma ring in the sense of Nobusawa and

denoted by (F, M)wn.

In this note (F, M) denotes (Z1, M~)wn, unless otherwise specified.

A gamma ring (F, M) is regular if for each a^M there exists 8^.F such

that ada ―a. For a left i^-module M, letting .T = Horns (M, K), we have a gamma

ring (F, M). A left i^-module M is called regular, if for any element m^M

there exists /eHomi?(M, R) with (mf)m = m, [8]. Thus, the concept of regular

gamma rings is a natural generalization of regular modules.

In this note, we study various properties of regular gamma rings. In 1, we

obtain a couple of necessary and sufficient conditions that (F, M) is regular, and

then characterize a commutative regular Nobusawa gamma ring as a subdirect

sum of gamma fields (Th. 1.7).

In 2, we define a regular ideal and prove a basic theorem: If J(ZK are two

ideals in M, then, K is regular if and only if J and K/J are both regular (Th.

2.2). If ft.is the class of all regular gamma rings, then this theorem shows that

%. is a radical class. Next, we introduce the concept of a weakly nilpotent ele-

ment, and we obtain that a non-zero subdirectly irreducible regular gamma ring

with no non-zero weakly nilpotent elements is a division gamma ring (Th. 2.11).

In 3, we obtain relations among the regularities of the operator rings L, R

and a gamma ring (F, M) as follows: If (F, M) has the left and right unities,

then the following conditions are equivalent: ( 1 ) L is regular ; ( 2 ) R is regular ;

(3) Mis regular (Th. 3.2). By this theorem, we have that, when Mod-i?^
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Mod-L, R is regular if and only if L is regular (Corollary 3.5). Furthermore,

we show that if (P, M) is a semi-prime gamma ring with min-r and min-Z con-

ditions,every left (right) L-module and every left (right) i?-module are regular.

In particular,L, M and R are regular (Th. 3.8).

In 4, we consider the regularity of a Morita context (Q, R, S, T, p, v), where

fji,v are surjective. Here, it is not assumed that Q, R have unities nor that S, T

are unital. We obtain an extension (Th. 4.1) of Theorem 3.2.

For the definitionsof the following basic notions in gamma rings we refer,

respectively, to [3] for the right operator ring R, the leftoperator ring L, a right

(left, two-sided) ideal of M, ＼a>, [N, O], where NQM and RCir and to [4] for

semiprime ideals,nilpotent elements, the right unity and the left unity.

1. Regular Gamma Rings.

1.1 DEFINITION. A gamma ring (F,M) is regular if for each xgM there

exists 8elF such that xdx=x. We abbreviate this as M is regular, when F is

understood.

1.2 THEOREM. For a gamma ring (F, M) with the left and right unities,

the following conditions are equivalent:

( 1 ) (T, M) is regular.

( 2 ) Every principal right ideal of M is generated by an idempotent of

the left operator ring L.

(2') Every principal left ideal of M is generated by an idempotent of the

right operator ring R.

( 3 ) Every finitelygenerated right ideal of M is generated by an idempo-

tent of the left operator ring L.

(3') Every finitelygenerated left ideal of M is generated by an idempotent

of the right operator ring R.

PROOF. We note that for any a<=M ＼a>=aFM, since ＼a>=Za + aFMCL

aFM. (Z is the set of all integers.)

( 1 )4>(2) : Suppose that for each aE:M there exists 8^.F such that aSa = a.

Then ＼_a,5~＼[_a,5] = ＼_a,5] and so [a, 5] is an idempotent in L. Since aFM=

adaFMQadM, aFM=a8M. Thus, ＼a>=a8M.

(2)=>(3): It sufficesto show that for any a, b(=M, ＼a> + ＼b>=tM, where

t is an idempotent in L. By (2), ＼a> =hM, h2= h<=L, and ＼b> =fM where f2

=/eL. Then, since b-hbg/M+ hM, ＼b-hb> C/M+ hM, and so hM+ ＼b-hb>

QhM+fM. On the other hand, b=hb + b-hb<EhM+＼b-hb>, whence fM=＼b>

QhM+＼b-hb>. Thus, hM+fMQhM+＼b-hb>. Therefore, hM+fM=hM+
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＼b-hb>. Again by (2) ＼b-hb> =sM, where s2= 5<eL. Then, hsM=h＼b-hb>

= 0, and it follows that hs = hs2= Q. So if g=s―sh, then g is an idempotent and

orthogonal to h. Since sg=g and,g"s=s, we see that gM=sM=＼b ―hb>. Therefore,

＼a> + ＼b>=hM+gM. Since h and g are orthogonal, we have ＼a>+ ＼b>= (h+g)M.

(3)^>(1): Suppose that for any xeM, ＼x>=hM, where h2= h<=L. Then,

x = hy = h2y=h(hy)=hx, where jyeAf. On the other hand, hL = [hM, r~＼= [_＼x>,

r^ = [Zx + xrM, T]c[x, r], which implies / =̂ /i2= [x, 5], where S^F. Hence

1.3 DEFINITION. A gamma ring (T1, M) is right semi-hereditary if every

finitelygenerated right ideal of M is a projective .R-module. A right ideal I in

M is called essentialif for every non-zero right ideal A in M, If]A^O. Let <p(M)

be the set of all essentialright ideals in M, and Zr(M) = {x^M＼xri=0 for some

/g^(M)}. (i"1,Af) is called a right nonsingular gamma ring if Zr(ilf)=0. Sim-

ilarly,a left semi-hereditary gamma ring and a left nonsingular gamma ring are

denned.

1.4 COROLLARY. Let (T, M) be a regular gamma ring. Then

( 1 ) All one-sided ideals in M are idempotent.

( 2 ) All two-sided ideals in M are se?ni-prime.

( 3 ) The Jacobson radical of M is zero.

( 4 ) (T, M) with the left and right unities is right and left semi-hered-

itary.

( 5 ) (/"',AT) is right and left nonsingular.

PROOF. Let J be a right ideal of M. Since M is regular, for each x<eJ

xyx = x for some ^ef. Consequently, x=xjx^JTJ and so J=JFJ. Thus, we

have ( 1 ).

Let / be a two-sided ideal of M. If A is a two-sided ideal in M such that

ATA(ZI, then AQI, because by ( 1) A=AFA. Hence we have (2).

To show (3), suppose that e is right quasi-regular and e=ede. Then, there

exists r^R such that [<5,<?]or= r+[<5, e~＼―[_8, e]r = 0. It follows [<5, e] = [<5, e]°0

= [(5, e]°([5, e]or) = ([5, e]o[5, e])or=[5, e]°r = 0. Thus, ^ = e5e = e[5, e] = e0 = 0.

Recall that J(M) = {eeM|<e> is right quasi-reqular}. Since <^>=0, e = 0 and so

/(M)=0.

Now we prove (4). By Theorem 1.2.(3), every finitely generated right

ideal in M may be written as hM, where h2 = h^L. Let A= {x^M＼hx=0}.

Clearly A is a right ideal in M. For any x£M, x=hx+ (x―hx), and M=hM@A>

because if a^hMf]A then ≪= /za= 0. Thus, AM is a direct summand of M and.
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so every finitelygenerated right ideal in M is a projective i?-module. Similarly

it can be proved that (F, M) is left semi-hereditary.

For ( 5 ), let J be an essentialright ideal in M. Suppose that aFJ= 0 for

some aeM, and that there exists 8g.F such that ada = a. Then, adMf]J=0, for

if x^adMdJ then x = a8x = 0. Since J is essential, a8M=0 and so a = 0. Sim-

ilarly we obtain the same result for left ideals. □

Given an ideal / in M, we form a residue class gamma ring (F/I*, Af/7),

where 7* = {ye T ＼MyMQ 7}.

1.5 THEOREM. A gamma ring (jT, il7) is regular if and only if the fol-

lowing ( 1 ), ( 2 ) and ( 3 ) hold.

( 1 ) M. is semi-prime,

( 2 ) The union of any chain of semi-prime ideals of M is semi-prime,

( 3 ) M/P are regular for all prime ideals P of M.

PROOF. Let M be regular. Corollary 1.4 (2) shows that all ideals in Mare

semi-prime, whence (1) and (2) hold. (3) obviously holds, for, (x+P)(y +

P*)(x+P)=xrx+P=x+p.

Conversely, assume that (1), (2) and (3) hold. If M is not regular, then

there is a^M such that a^aFa. By (2), there is a semi-prime ideal 7 in M

which is maximal among semi-prime ideals such that a&aFa+L Note that {0}

is a semi-prime ideal of M such that a^aFa+ {0}. M/I is not regular, because

otherwise, for any xeM, (x+I)(y + I*)(x + I) =x + I would imply x<=xFx + I, a

contradiction. Hence, by ( 3) 7 is not prime. Thus, there are ideals A and B

which properly contain I and AFBQl. Indeed, since A%I and B^I, I^A+I

and I^B + I. If we set A + I=A' and B + I=B', then A'FB' = AFB + I^I+I=I

and I^A' and I^B'. Thus, we can take A, B instead of A', B' from the begin-

ning. Now set P={x<eM＼xFB(ZI} and Q= {x(eM＼PFx(ZI}. Since I is semi-

prime, P and Q are semi-prime. For, KFKClP^KFKrB^I^KFBFKFBcKr

KFBczI^KFBclI^KqP, and UFUcQ^PFUFUQl^PFUFPFUcPFUrU

^I^PFUqI^UcQ.

Since (Pf)Q)F(Pf)Q)^PFQ^I, we have POQ^L Clearly, A^P and BeQ,

and hence P and Q properly contain 7. By the maximality of 7, there exist

elements y, ft)£f such that a ―aya^P and a ―ama^Q. Then, a―a(y + oj―yaco~)a

=a ―aya―(a ―aya)o)aEi.P. Also a ―a(j-＼-(o―yaa>)a = a ―a(oa ―ay(a―a(!)a)^Q.

It follows that a^aFa + POQ^aFa + I, which is a contradiction. Hence, M is

regular. □

1.6 COROLLARY. A gamma ring (F, M) is regular if and only if all ideals
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of M are idempotent and Ml P are regular for all prime ideals P of M.

PROOF. If all ideals of M are idempotent, allideals of M are semi-prime. □

1.7 THEOREM. A commutative regular Nobusazva gamma ring with more

than one element is a subdirect sum of gamma fields.

PROOF. A regular gamma ring has no non-zero nilpotent elements. For,

suppose (aj)na = 0 for any j^F. Then we have a= (ad)ma = O since there exists

d^F such that a=ada. A homomorhpic image of a regular gamma ring is regular,

and so it has no non-zero nilpotent elements. Then, the theorem follows imme-

diately from Theorems 3 and 4 in [5]. □

2. Regular Ideals

2.1 DEFINITION. A two-sided ideal J in M is regular if for each xgJ there

exists f^J* such that xyx = x, where J*= {j&r＼MjM^J}.

2.2 THEOREM. Let JQK be two-sided ideals in M. Then K is regular if

and only if J and K/J are both regular.

PROOF. Let J*= (reF＼MyMcJ] and K*= (rer＼MyMQK}. Then (J*, J),

(K*, K) and (K*/J*, K/J) are gamma rings. Suppose that K is regular. For

each k^K there exists j-eP such that kjk = k. Thus, (k+J)(j + J*)(k + J) =

kyk+J=k+J and so K/J is regular.

Given xeJ, we have xdx = x for some 8^.K*, since JqK. Then, o)= 8x8^J'＼,

for Mo)M=M§x8MqJ3MqJ. Hence, x(dx = x8x8x=x8x = x, and so J is regular.

Conversely, assume that J and K/J are both regular. For a given a^K, a +

J= (a+J) (j + J*)(a + J) = aya+J, where ye K* from the regularity of K/J. Hence,

a ―aya^J, for some y^K*. Consequently, a ―aya=(a ―aya')(o(a―aya), where o)

eJ*. Then,

a = a ―aya + aya

= (a ―aya) w(a ―aya) + ay a

= a(o)―yaw) (a ―aya) + aya

= a(o>―^ao>―way + yaway) a + aya

= a(iw―yaw ―way + yacoay+ y)a

= ala, where X ―o)―yaw ―way + yaway + y^K*,

because J*<^K* and K* is an ideal in P.

Therefore, K is regular. □

2.3 Remark. Let 71 be the class of allregular gamma rings. Theorem 2.2

shows that 71 is a radical class,since other two conditions: 71 is homomorphically
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closed and $ has the inductive property are triviallysatisfied.

(See, for instance, [7]) In fact, a radical N for any gamma ring (/"",M) may

be defined by the conditions in Proposition 2.6.

2.4 PROPOSITION. Any finite subdirect sum of regular Nobusawa gamma

rings is regular.

PROOF. It sufficesto show that a subdirect sum of two regular Nobusawa gamma

rings is regular. Suppose that M has two ideals J and K such that Jf＼K―0. Then

J*nK* = 05 where J*={rGr|MrMcJ} and i£*={re/iMrMcK}. For, if jeJ*

flX*, then MrMc/niv=0 and r = 0. Let the gamma rings (F/J*, M/J) and

(F/K*, M/K) be both regular. Consider the homomorhpism

(<p,0) : (J*, J)^(J*+K*/K*, J+K/K)

where

6 is the natural epimorphism: J-^J+K/K, x8 = x+K and Ker 6=Jf]K=0,

<pis the natural epimorphism: J*-*J* + K*/K*, a<p= a+K* and Ker p=J*flK*

= 0.

Then

(xay)0 = xay + K=(x+KXa + K*')(y + K')=x0apy0, and (axP)p = axP + K*=(a +

K*~)(x-＼-K)(fi+K*)=(x<pxOfi(p. Hence, (<p,6) is an isomorphism from (J*, J) onto

(J*+K*/K*, J+K/K). Since J+K/K is an ideal in M/K, J+K/K is regular.

Theorem 2.2 shows J is regular. Hence, J and M/J are regular, and again by

Theorem 2.2 M is regular. □

2.5 REMARK. A subdirect sum ofinfinitelymany regular Nobusawa gamma

rings need not be regular. For example, (Z, Z) is the subdirect sum of infinitely

many regular Nobusawa gamma rings (Z/(/>), Z/(/>)), where p runs through

all prime numbers.

2.6 PROPOSITION. For a gamma ring(F, M), set N= (xgM|<x> is regular}.

Then,

( 1) N is a regular ideal in M,

( 2 ) N contains all regular ideals of M,

( 3 ) M/N has no non-zero regular ideals.

PROOF. Let x,yE:N. Then <j>> is regular and (x} + (y) /(y} is regular.

Hence by Theorem 2.2 (.x)+ (y} is regular. For any a^(x} + (y}, <a>c<;r> +

(y). Theorem 2.2 shows <a> is regular, and so a&N. Thus, (x) + (y} £N,

whence JV is an ideal in M. For any x^N, since (x) is regular, there exists
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5g<x>*, where (x)* = {■f&r＼MjMcz{x}}, such that x.dx= x. Since TV is an ideal.

(x)<^N and then (x}*QN*. Thus, <5eJV* and N is regular. This completes the

proof of ( 1 ).

To prove (2), let A be any regular ideal in M. For any aeA, <a)cA

Thus, by Theorem 2.2, <<2>is regular and so a^N. Hence Ac,N.

If A/N is a non-zero regular ideal in M/N, A is regular by Theorem 2.2,and

A contains N properly, which contradicts to ( 2 ). □

2.7 DEFINITION. An element <z<ElMis said to be a weakly nilpotent element

if there exist a non-zero element re/7 and an integer n>l such that(ar)n~1a= 0.

2.8 PROPOSITION. In a gamma ring (JP,M) with no non-zero weakly

nilpotent elements, every idempotent commutes with every elernentin M.

PROOF. Let ede = e, <5<E.T, and xElM. If e = 0, edx = 0 = xde. Suppose e^O.

Then <5^0. Since

(edx―edx8e)d(edx―edx8e) = (e8xde―edx8e)(X_d, x] ―＼_d,o:5e])=0 and (F, M) has

no non-zero weakly nilpotent elements, edx―edxde = Q or edx = exde. Similarly, xde

= edxde, and so edx=xde. □

2.9 PROPOSITION. Let (F, M) be a regular gamma ring with no no?i-zero

weakly nilpotent elements. Then

(1 ) Every principal one-sided ideal is generated by an idempotejit which

commutes with any element in M.

( 2 ) Every one-sided ideal is a two-sided ideal.

PROOF. Let a = ada for some 8^F. Then, ＼a> = Za + aFM=a[d, Za^ + aFM

= aFM=adaFM(ZadM, and hence |a> = adM. Proposition 2.8 shows that a com-

mutes with any element in M. Thus we have ( 1 ).

To prove (2), let A be a right ideal in M. For any a^A, ad Me, A, where

ada = a for some 8<=r. By Proposition 2.8 a8M=Mda. Since Mda=MFa, MFa

cA, and so A is a left ideal. □

2.10 DEFINITION. A gamma ring (F, M) is said to be a division gamma

ring if (/＼ Af) has the strong left unity [e, 5] and the strong right unity [_d, e~＼,

and if for each non-zero element a&M there exists b^M such that adb = bda=e.

A gamma ring (F, M) is said to be subdirectly irreducible if the intersection of

all non-zero ideals of M is not zero.

2.11 THEOREM. A non-zero subdirectly irreducible regular gamma ring

with no non-zero weakly nilpotent elements is a division gamma ring.
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PROOF. Let (/＼ M) be a non-zero subdirectly irreducible regular gamma ring

with no non-zero weakly nilpotent elements. For each non-zero element ee.M there

exists d^F such that ede = e. Proposition 2.8 shows that for any x^M e5x.―x§e.

Let us consider two ideals edMand A= {x―edx＼x^M}, whose intersection is zero.

M is subdirectly irreducible, so e8M=0 or A = 0. But edM=l=0, hence A = 0, and

thus edx = xde=x. This means that ＼_e,o] and [<5,e＼are the strong left and right

unities, respectively. Let a be a non-zero element of M. Then, there exists (oe F

such that aa)a = a. By the observation made above, aa)X ―x = xa>a for any x^M

and so aa>e = e―e(s>a,whence {a,8e)u>e = e = ea){e8d) or ab{ea>e) =e= (ewe)da. There-

fore, (jT, Af) is a division gamma ring. □

3. Relations among the regularities of the operator rings and a

gamma ring.

Assuming the existence of the left and right unitiesin a gamma ring (.T, M),

we prove that the left (right) operator ring L(R) is regular if and only M is

regular. From this, we can conclude that the regularity may be considered one

of Morita invariants.

For a ring A we prepare the following :

3.1 PROPOSITION. For a ring A with the unity, the following conditions

are equivalent:

( 1 ) A is regular.

( 2 ) Every principal right (left)ideal of A is generated by an idempotent.

( 3 ) Every finitelygenerated right (left) ideal of A is generated by an

idempotent.

The proofis analogous to the proof of Theorem 1.2. D

3.2 THEOREM. Suppose (F, M) has theleft and right unities.Then, fol-

lowing conditionsare equivalent:

( 1 ) L is regular. ( 2 ) R is regular. ( 3 ) M is regular.

PROOF. ( 2 )=>(3 ): Suppose thatR is regular and letMFm, where raeM,

be a principalleftideal of M. We shallshow that thereexistse^R such that

e2= e and MFm = Me. Let U = S[><, 5t], where ^eM, d^eT. Then, T = TS

[e<,5t]= 2 ^i^cS^i. Clearly,22?5<cr. Hence T = S^<- So, [r, w] =

^jRri, where n = [5i,m]ei?. Sincei? is regularby Proposition3.1 ^Rn = Re,

with eei?, e2= e. Now, MF?n = MRe = Me, as reguired. By Theorem 1.2, M is

regular.



Regular gamma rings 379

(3)^>(2) : Suppose that M is regular, and let Rr be a principal left ideal

of R. Let lij = S[£./,/}], wheresj-Gfand/jeM Then, M=MU = I](Mei/)/jC

EL/,-. Since SL/jcAf, we have M=J}Lfj. Then, Mr = T>Lmh where mj=fjr

gM, Since M is regular, by Theorem 1.2 ^Lnij = Me, with esR, e2= e.

Therefore, Rr = FMr = rMe = Re. By Proposition -3.1,i? is regular.

(1 )<==>( 3) is proved analogously. □

3.3 COROLLARY. Suppose (/＼ M) Aas /Ae /e/t and right unities, and R and

L are the right and left operator rings, respectively. Then, for any positive

integers m, n, Rn is regular if and only if Lm is regular, where Rn and Lm denote

the total matrix rings of nXn matrices over R and of mXm matrices over L,

respectively.

PROOF. Consider the matrix gamma ring (rn,m, Mm,n) over (T, M). Then

Rn=＼_rn,m, Mm,to] and Lto = [Mto,b, rn,m~] are the right and left operator rings of

(rn,m, Mm,n), respectively. □

3.4 REMARK. In Corollary 3.3, put m ―1, then Rn is regular if and only if

L is regular. Also we know L is regular if and only if R is regular. Hence,

we have Rn is regular if and only if R is regular. Likewise, Rn is regular if and

only if Mm,n is regular, and R is regular if and only if M is regular. Hence, M

is regular if and only if Mm,n is regular.

Now, let R and Rf be ordinary rings with the unities. Suppose the categories

Mod-i? and Mod-R' are equivalent, written Mod-.R―Mod-i?'. Then, there exist

bimodules r'Pr, rP'r' and a Morita context (R, R', P, P', r, [£)for which r and

fj.are surjective, so Morita I holds (see [2, p. 178]). Thus, (/-", P) forms a gamma

ring having the right operator ring R and the left operator ring R'. Thus,

Theorem 3.2 shows the following:

3.5 COROLLARY. // R and R' are rings with the unities and Mod-R^

Mod-R', then R is regular if and only if R' is regular.

By thiscorollary,the regularity may be considered as one of Morita invariants.

3.6 DEFINITION. A lefti?-module M is called regular if, given any element

meM, there exists/e Horns (M, R) with (jnf)m = m.

Chung and Luh [1] proved the following:

3.7 THEOREM. Let R be a ring with unity. For unital left R-modulesP

the following conditions are equivalent:
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( 1 ) R is a seme-simple artinian ring.

( 2 ) Every R-module is regular.

( 3 ) Every simple R-module is regular.

Using Theorem 3.7 we have

3.8 THEOREM. Let (F, M) be a semi-prime gamma ring with min-r and

min-l conditions. Let L and R be the left and right operator rings respectively.

Then, every left (right) L-module and every left (right) R-module are regular.

In particular, L, M and R are regular.

PROOF. First we note that by Corollaries 3.6 and 3.7 in [4] M has the left

unity 1l and the right unity 1r. Here, 1l = 2≪[^> ^<]j where ＼_eu5{], ･･･,＼_en,5n~]

are mutually orthogonal primitive idempotents. Similarly for lj?. Thus,

L=@i＼_ei, di]L=@iL[_ei, df＼, where ＼_ei,d{]L and L＼je%,b{＼ are right and left

minimal ideals respectively. Hence, L is left and right artinian. So, we have

L = Ri,j＼_ei,di]L＼_ej,5f＼,where ＼_et,b{＼L＼_ej,<5;] are division rings. Thus, L

is a semi-simple artinian ring. By Theorem 3.7, every left (right) L-module is

regular. In particular, L is regular as s left (right) L-module. Since L has the

unity lx,, L=End (z,L) (End (Lz,)), and so L is regular as a ring, because for any

&eL there exists A'e End(z,L)=L such that hh'h = h. Now by Theorem 3.2 M

is regular. Similarly, every left (right) i?-module is regular, and in particular R

is regular. □

4. Regularity of Morita pairs.

Let (Q, R, S, T, ft,v) be a Morita context, where Q and R are rings, S and

T are bimodules such that S=qSr and T=rTq, and ft and v are mappings such

that ft:S(S)rT^Q and v. T<S)qS->R. For s, s'(eS, and t, t'<=T, denote

rfs'= (5*)s'e5, tst'=(ts)tr<eT.

Due to the associativelaws in a Morita context, the conditions ( 1 ), ( 2 ) and ( 3 )

of 0 are satisfied,and we obtain a gamma ring (T, S).

Conversely, if (T, M) is a gamma ring with the left and the right operator

rings L and R, we obtain a Morita context (L, i?, M, F, ft,v). However, note

that Q and i? of a Morita context are not the operator rings of a gamma ring

(T, S), because S (or T) is not necessarily a faithful module.

For a Morita context, we let ST= {E$tfi}, TS= {S*i5i}. For the case Q = ST

and R = TS we say that Q and i£are related through a Morita context,or simply

(Q, R) is a Morita pair, [61. Let (L, i?) be a Morita pair, where L = ST and
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R = TS. Define Lo= {/ieL|TA = O}, Ro={reR＼rT=O}, and So= {s(eS＼TsT=O}.

Lq and i?o are ideals of L and of R, respectively, and Sq is an L-.R-submodule

of S. It is easy to see that SqTqLo and TSo^Ro- When S is a finitelygenerated

leftL- module, we simply say that lS is finitelygenerated. The same convention

is used for Sr, rT and Tl- With the notations above, we have the following

theorem:

4.1 THEOREM. Suppose that lS, Sr, rT and Tl are all finitelygenerated.

Then, the following conditions are equivalent.

(1 ) L/Lq is a regular ring.

( 2 ) R/Rq is a regular ring.

(3) For any element sElS, there exists an element te.T such that sts^s

mod Sn.

PROOF. The proof consists of the following four steps.

Step 1. Suppose that Tl is finitely generated. Then (1) implies (3).

Proof of Step 1. Suppose that ( 1) holds. Since Tl is finitely generated, we

have T=^tiL, (fjG T). For any element s^S, sT=^stiL. Here stiL are prin-

cipal right ideals of L, and since L/Lo is regular, there exists cgL such that

e2=e mod Lo and ^stiL=eL mod Lo. So, sT=eL mod Lo. Then, there exists an

element toEiT such that s/o=e mod Lq. On the other hand, for any ieT, st=eh

mod Lo with some AeL. Therefore, est~e2h=eh=st mod Lo, (es―s~)t=O mod Lo,

and hence (stoS―s^te.Lo- This implies that T(stos―s)£ = 0 for any t. We have

shown that stos―s^.Sq. So, (3) holds.

Step 2. Suppose that lS is finitely generated. Then, (3) implies (2).

Proof of Step 2. Suppose that ( 3 ) holds. Since lS is finitely generated, S=

^Lui(u%E:S). For any element r^R, Sr = ^]Luir = ^Lsi, where Si= mrG.S. By

( 3 ), there exist tt such that sttiSi=Si mod So- Let ei = tiSi£.R. Then, e＼= tiSit%Si

= tiSt mod Rq, as TSq^Rq. Hence, e＼=et mod RQ. Clearly, Rei=RtiSi = TStiSiCL

TLsi. On the other hand, TLst=TLsitiSi mod Ro, and TLsitiSi = TLsietQRet.

So, TL,Si = Ret mod i?o- Hence, Rr=^Rei mod i^o- By a well known argument

in ring theory, we have that ^Rei = Re mod i?0 with e2=e mod Ro. Thus, every

principal left ideal of R/Rq is generated by an idempotent and hence R/Ro is

regular. Thus, ( 3 ) holds.

Step 3. Suppose that rT is finitely generated. Then, ( 2 ) implies ( 3 ).

Proof of Step 3. The proof is similar to the proof of the step 1, using R in

place of L, and changing the order of multiplication. Namely, let T=*2>Rti and

Ts=T)RtiS. We can show that there exists eeJR such that e2=e mod Rn and
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Ts=Re mod Ro. Then, e~tos mod Ro with some t0. We can also show that

t(stos―s)=O mod Ro, and hence stos=s mod ≫So-

Step 4. Suppose that Sr is finitelygenerated. Then ( 3 ) implies ( 1 ).

Proof of Step 4. The proof is similar to the proof of Step 2. □

4.2 COROLLARY. Suppose that lS and Tl are finitely generated. Assume,

further, that rR = 0 implies r = 0. Then, R is regular if L is regular.
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