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§0. Introduction.

Several authors have investigated minimal totally real submanifolds in a com-
plex space form and obtained many interesting results. Recently F. Urbano [6]
and Y. Ohnita [4] have studied pinching problems on their curvatures and stated
some theorems.

On the other hand, in a (2n+1)-dimensional Sasakian space form of constant
¢-sectional curvature ¢(>—3), if a submanifold M is perpendicular to the structure
vector field, then M is said to be C-totally real. For such a submanifold M, it is
well-known that if the mean curvature vector field of M is parallel, then M is
minimal. 8. Yamaguchi, M. Kon and T. Ikawa [8] obtained that if the squared
length of the second fundamental form of M is less than n(z-+1) (c+3) /4(2n—1),
then M is totally geodesic. Furthermore, D.E. Blair and K. Ogiue [2] proved
that if the sectional curvature of M is a greater than (2—2) (c+3)/4(2n—1), then
M is totally geodesic.

In this paper, we consider a curvature-invariant C-totally real submanifold M
in a Sasakian manifold with 7-parallel mean curvature vector field. Then M is not
necessary minimal. Making use of methods of [3] and [4], we prove that if the
sectional curvature of M is positive, then M is totally geodesic.

In Sec. 1, we recall the differential operators on the unit sphere bundle of a
Riemannian manifold. Sec. 2 is devoted to stating about fundamental formulas on
a C-totally real submanifold in a Sasakian manifold. In Sec. 3, we prove Theo-
rems and Corollaries. Throughout this paper all manifolds are always C=, oriented,

connected and complete. The author wishes to thank Professor S. Yamaguchi for
his help.

§1. A differential operator defined by A. Gray.

Let M be an n-dimensional Riemannian manifold and 7" (M) the Lie algebra
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of vector fields on M. Denote by {, ), pand Rxr:=[pz, pri-prx,r; (X Y
I' (M) the metric tensor of M, the Riemannian connection on M and the curva-
ture tensor of M, respectively. The Ricci tensor p of M is given by

a.n pxy =20 (Re,xY, eay for X, Y € I'(M),

where {e;, -+, ez} is an arbitrary local orthonormal frame field. For m & M we
denote by Mm the tangent space to M at m. Then we write Rusy: in place of
{Ruwzy, 2y for w, z, y, 2 € Mn and shall sometimes use such expressions as Ryays
instead of Rzea(m)yeg(m)-

Now we define the unit sphere bundle S(M) of M by
SWM)={(m, x):m € M, x € Mn, {x, xy)=1}.

For any unit vector x in a fibre Sp we take an orthonormal basis {e,, ---, en} of

M such that x=e;. Denote by (ys -, yu) the corresponding system of normal
coordinates defined on a neighborhood of z in Sp.

LEMMA A [3]. Let F:Sp——R be a function. Then we have

a tota a Fota

2 n 2 n H .
2 = O F(eos Dt (S5 we) @,
CRYCH PO Dug2edu

where we have set ri=37u’

Next we lift the frame {e;, ---, ex} to an orthonormal basis {f;, N £ 0 -0 N
gn} of the tangent space S(M) m,z), where we require that fi, -+, f, are horizontal
and g3, ---, gn are vertical. Denote by (zy, -, Zn;¥2, -+, ¥n) the corresponding

normal coordinate system on a neighborhood of (m, ) in S(M). We define a
second-order linear differential operator L(4, £) by
LA ) emyay :=[20y aaiz— A7 p=2 Pap 8_32_+ 73y qa?a— Jems23s
xi ’ Va0y5 0Ya

where pus(m, ) :=Razpz, qa(M, ) :=paz and 2, p are constants to be chosen
later. This definition is independent of the choice of normal coordinates at (m, x).
Hence L (4, 1) m,2) is well-defined. Here we note that the sign of the second term
in the right hand side is minus because of the definition on curvature tensor.

For a compact Riemannian manifold M, we define an inner product ( , ) on
the space of functions by (f, g) ::SM fgx1l. Then the differential operator L(1, z)
is self-adjoint with respect to (, ) provided that 2= —pg (cf. [3]).

If / is a real-valued function on S(M), we denote by grad’f and gradf the
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vertical and horizontal components of grad f respectively.

LEMMA B [3]. In a compact Riemannian manifold M, we have

SS(M) LFLQ@, = (f) (n, x)+|grad"f|2(m, x) +2 Kecgraavsry ] x1=0,

where the letter K indicates the sectional curvature of M.

§ 2. Fundamental formulas.

Let M be a submanifold of a Riemannian manifold N. We denote by the
same ¢ , > the Riemannian metrics of M and N, and by y (resp. ) the Riemannian
connection of N (resp. M) respectively. In the sequel the letters W, X, Y and
Z (resp. V) will always denote any vector fields tangent (resp. normal) to M. Then

the Gauss and Weingarten formulas are respectively given by
@D rxY=pxY+B(X,Y),
2.2) rxV=—ArX+DxV,

where B (resp. A) and D are the second fundamental form (resp. shape operator)
and the normal connection of M respectively. Then first and second covariant

derivatives of B are respectively defined by
@.3) (xB) (Y, Z)=DxB(Y, Z)-B(yxY, Z)—B(Y, pxZ),
@4 3 xB) (Y, 2)=Dw(7xB) (Y, Z) = (7, xB) (Y, Z)

~ (PxB) (pwY, Z)— (7xB) (Y, pwZ)

Denoting by R the Riemannian curvature tensor of N and putting as (RwxY)”

the normal part of RwxY, we have the equation of Codazzi:
@.5) RwxY)"=FwB) (X, V)= =B (W, V).

If (RwxY)" vanishes identically, then we call such a submanifold M curvature-
invariant.

From (2.4), the formula of Ricci with respect to the second covariant deriv-
ative of B is given by

2.6) WyxB) (Y, Z) = iwB) (Y, Z)
=RpsB(X, Z) —BRwxY, Z) —B(Y, RwxZ),
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where RE :=[Dw, Dx]+ Drw,x7 indicates the normal curvature tensor of M.

From now on let M be an n-dimensional C-totally real submanifold in a
(2n+1)-dimensional Sasakian manifold N with structure (¢4, &, ). Then it is
shown that ([7], [8], [9], [11])

@n (B, 2), §)=0,

2.8 Dx¢Y=—(X, Y)6+opxY,

2.9) (RE10Y, Z)={(RwxY, Z)— (W, Z)X, Y)+<W, Y (X, Z),
(2.10) ((pxB) (Y, Z), & =—<(B(Y, Z), $X).

For such a C-totally real submanifold M, we state the definitions as follows:

DEFINITION [11]. We say that the mean curvatare vector field of M is
n-parallel if

(2.11) L FwB) (s €2)5 $X)=0.
We say that the second fundamental form of M is y-parallel if

(2.12) GwB) (Y, 2), $X)=0.
If M has »n-parallel mean curvature vector field, then the equations (2.8) and

(2.10) yield
S A FyxB) (ew €, Y
= —5",[{FxB) (ew €2), DwdY>+2{(FxB) (Fwew, €a), Y]
= =S [ (W, Y)(B(ew €2), $X)+2(7xB) (Fwew, €2), $YD].
Taking the normal coordinate system, we can state the following.
LEMMA 2.1. If M has n-parallel mean curvature vector field, then we have

2.13) D% LGB (ew €, $Y>=—32KW, YI(B(ew €, $X).

§3. C-totally real submanifolds.

Throughout this section let M be an n-dimensional curvature-invariant C-totally
real submanifold in a (2x#+1)-dimensional Sasakian manifold. We denote the
components of the second fundamental form B by
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ChY; hap : ={B(ea €3), P> for 1=a, B, r<n.
As M is C-totally real, we find that 2 is symmetric, i.e.,
3.2) hapy=hers=hgey for 1=a, B, r=n.

The components of first and second covariant derivatives of B with respect to

&I (M) are respectively expressed as
3.3 ) oo :={(7aB) (€5, €), pesy  for 1=a, B, 1, 6=m,

(3.4 (P2oh) yoe =L (7%B) (1, €), pey  for 1=a, B, 7, 0, e<n.
8

Since M is curvature-invariant, then, from (2.5) and (3.3), we find that p2

is symmetric with respect to ¢I' (M), i.e.,
@3.5) Wah) srs= Wsh)ars for 15, B, 1, 6=n.

We consider a function f on S(M) defined by f(m, x) =hzsz for any point
(m, ) € S(M) and then prove the following Lemma to use later.

LEMMA 3.1. Let M be an n-dimensional curvature-invariant C-totally real
submanifold in a (2n-+1)-dimensional Sasakian manifold N. If M has y-parallel
mean curvature vector field, then we have L(1/3, —1/3) (f) =0.

PROOF. We take any point (m, z) of S(M). For each a, 1Za<n, let 7.(s)
be a geodesic in M such that 7,(0) =m and 7,(0) =e.. Then we denote a vector
field by parallel translating of = along 7. as the same letter x. By virtue of
(2.7 —(2.10), we obtain

(:;’; Yom, 2) =Pz, Da(FuB) (z, > +(Digz, 7B (z, 2))  at m
:<¢xr (EZ&B) (-73, x)>+xa<¢ea, B(I, _’C>> at m
= (2.1 zan+ Zolazz,

where we have put z,: ={e., ), which implies

3.6) 2 ZL) o, ) =D (b seet hoas

2
0z’

From (2.6), (2.9), (3.2) and (3.5), we can verify
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WEP) wao= (7 2P ez

={$x, (72.B) (z, €)> +{$x, R%,B(z, e))
=<9z, B(Raz, €2))—{9x, B(x, Ruve)y at m
=49, (72,B) (es, €)>—{B(x, €), R%¢x)
—<(B(%, €a); $Raxx) —{(B(x, x), dRuze.y at m
= (P3h) aaz + Dferl = 2hperRazos— ooz Ragas
8 ushsar—hpeaTazy],

from which follows that

(37) 2?:1 (V,zmh) Tre = 2::1 [ (Vi‘xh>aaz "'22?=1 hfﬁaz‘Ra.ﬂIﬂ-{'hzx.ﬂ.’L‘paﬂ +haaz:l _hxrz-
Thus it is shown from (3.6) and (3.7) that

2
GO S ZL)0n D) = By (2D see — 2501 Rusaphosot pahass +hons

From the definition of £, we have

(3.9 FGeos M+ (MBT)5 0 wrey)

r

=<COS r)ah.‘cz.‘b'l"s(cos 7.)2(Svi¥>27>1 urhrxx

H 2 s 3
sin r sin 7
+3(cos r)( p > 2ie>1 uru6h671+< p ) Diasse>1 Uythstihes;

= (cos 7)3hzzz+3(cos 7-)2<§h;_i)2,>1 17

1 2
-+ (COS 7‘) (511’; 7’) 27>1 (3llrzx—hxw.z) urz

. 2 . 3
sin 7 sin r
+6(COS ) (7~) S>> u,u,;h,sx-l—( p ) St u,u.yushs,;,,

because of 72=3", u?. Applying Lemma A to (3.9), we find

(3.10) gf (m, 2) =3hezs  for 2<a<n,

2
3.1 ﬁ(w, Z) = —3hagadup+6haps  for 2<a, f<n.
a” Y

We see from (3.8), (3.10) and (3.11) that
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(3.12) LA/3, =1/3) (f) (my 2) =20et [W3eh) aaz+ ez
On the other hand, the equation (2.13) is rewritten as

(3‘13) :::1 (Vgﬁh) aay = T Z:l aﬁrhﬁaa fol' léﬁ’ 7> 5§71-

Combining (3.12) with (3.13), we have
LA/3, =1/3)(f) (m, ) =0.

THEOREM 3.1. Let M be an n-dimensional compact curvature-invariant
C-totally real submanifold in a (2n+1)-dimensional Sasakian manifold with
y-parallel mean curvature vector field. If the sectional curvature of M is positive,

then M is totally geodesic.

PROOF. As M has positive sectional curvature, L(1/3, —1/3) is elliptic.
From the above hypothesis we have L(1/3, —1/3) (f)=0. By maximum principle
[10], f is constant on S(M). Since f is an odd function, it must be zero. Thus
M is totally geodesic.

COROLLARY 3.2. Let M be an n-dimensional compact C-totally real submani-
fold in a (2n+1)-dimensional Sasakian space form with n-parallel mean curva-
ture vector field. If the sectional curvature of M is positive, then M is totally

geodesic.

PrOOF. If the ¢-sectional curvature of Sasakian space form N is denoted by
¢, then the Riemannian curvature tensor R of N restricted to M is given by

RwxY=""F2[¢Y, oW —(Y, WyX],

which means clearly that M is curvature-invariant. By Theorem 3.1, M is totally

geodesic.

REMARK 1. If the normal connection of M is flat, then, from (2.9), M is of
constant curvature 1, so that we have the same result as those in Theorem 3.1 or
Corollary 3.2.

REMARK 2. As a Corollary of Theorem 3.1, we can state the Blair-Ogiue’s

Theorem in the introduction of this paper.

THEOREM 3.3. Let M be an n-dimensional compact curvature-invariant
C-totally real submanifold in a (2n+1)-dimensional Sasakian manifold with
y-parallel mean curvature vector field. If the sectional curvature of M is

non-negative, then M has y-parallel second fundamental form.
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PrOOF. By use of Lemma 3.1, we have L(1/3, —1/3)(f)=0. Applying
Lemma B, we find that grad”f must be identically zero. From (3.2) and (3.5),
the fact that grad*f=0 is equivalent to saying that the second fundamental form

is »-parallel.

COROLLARY 3.4, Let M be an n-dimensional compact C-totally real submani-
fold in a (2n+1)-dimensional Sasakian space form with n-parallel mean curva-
ture vector field. If the sectional curvature of M is non-negative, then M has

n-parallel second fundamental form.
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