
TSUKUBA J. MATH.

Vol. 11 No. 2 Cl987). 265―272

NON-NEGATIVELY CURVED C-TOTALLY REAL SUBMANIFOLDS

IN A SASAKIAN MANIFORD

By

Masumi Kameda

Dedicated to Professor Y. Tashiro on his 60th birthday

§0. Introduction.

Several authors have investigated minimal totally real submanifolds in a com-

plex space form and obtained many interesting results. Recently F. Urbano [6]

and Y. Ohnita [4] have studied pinching problems on their curvatures and stated

some theorems.

On the other hand, in a (2n +1) -dimensional Sasakian space form of constant

^-sectional curvature c(> ―3), if a submanifold M is perpendicular to the structure

vector field, then M is said to be C-totally real. For such a submanifold M, it is

well-known that if the mean curvature vector field of M is parallel, then M is

minimal. S. Yamaguchi, M. Kon and T. Ikawa [8] obtained that if the squared

length of the second fundamental form of Mis less than n(n + Y)(c + 3)/4(2n ―1),

then M is totally geodesic. Furthermore, D. E. Blair and K. Ogiue [2] proved

that if the sectional curvature of M is a greater than (n―2) (c + 3)/4(2≪ ―1), then

M is totally geodesic.

In this paper, we consider a curvature-invariant C-totally real submanifold M

in a Sasakian manifold with 37-parallelmean curvature vector field. Then M is not

necessary minimal. Making use of methods of [3] and [4], we prove that if the

sectional curvature of M is positive, then M is totally geodesic.

In Sec. 1, we recall the differential operators on the unit sphere bundle of a

Riemannian manifold. Sec. 2 is devoted to stating about fundamental formulas on

a C-totally real submanifold in a Sasakian manifold. In Sec. 3, we prove Theo-

rems and Corollaries. Throughout this paper all manifolds are always C°°,oriented,

connected and complete. The author wishes to thank Professor S. Yamaguchi for

his helo.

§1. A differentialoperator defined by A. Gray.

Let M be an ^-dimensionalRiemannian manifold and P (M) the Lie algebra
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of vector fieldson M. Denote by < , >, f and Rxy := [Fx, Fr] ―f[x,r: (X, Y e

F (M)) the metric tensor of M, the Riemannian connection on M and the curva-

ture tensor of M, respectively. The Ricci tensor p of M is given by

(1.1) |0*r:= 2a=i<#≪tt*y, O forX, 7er(M),

where {eu ･■-,en] is an arbitrary local orthonormal frame field. For m G M we

denote by Mm the tangent space to M at m. Then we write Rwxyz in place of

(Rwxy, z) for w, x, y, z e Mm and shall sometimes use such expressions as RXay^

instead of Rxea(.m-)yepw

Now we define the unit sphere bundle S(M) of M by

S(M) = {(ot, x) : m e M, .z G Mm, <x, ^;>= 1}.

For any unit vector x in a fibre Sm we take an orthonormal basis {e1?･･･,ere}of

Mm such that j;=^i. Denote by (y2, ･･･,.yn) the corresponding system of normal

coordinates defined on a neighborhood of x in Sm.

LEMMA A [31. Let F: Sm >i2 be a function. Then we have

a
+■■･+
<*

d 2 nF

dy*:.dy＼
(m, x) =

a +... + ≪
a 2 n

d
u22---dunn

where we have set r2=2"=2Mr2

LQ., ^)<m,*): = [S
n

F((cos r)x+(
sin r )2?=2^r)(0),
r

Next we lift the frame {eu ■･-,en] to an orthonormal basis {fu ･･･,fn',g2,･･･>

gn} of the tangent space S(M)(m,x), where we require thatfu ■■･,fn are horizontal

and g2, ･･-,gn are vertical. Denote by (xi, ･･･,xn;y2, ･■■,yn) the corresponding

normal coordinate system on a neighborhood of (m, x) in S(M). We define a

second-order linear differentialoperator L(h u) by

―― ― 1 Vn y>
^2
i ,,v≪n ≪

^ -i

where pap(m, x) := RaXpx, qa(m, x) :―paX and X, ft are constants to be chosen

later. This definitionisindependent of the choice of normal coordinates at (m, x).

Hence L(Z, f*)cm,x)is well-defined. Here we note that the sign of the second term

in the right hand side is minus because of the definition on curvature tensor.

For a compact Riemannian manifold M, we define an inner product ( , ) on

the space of functions by (/, g) := ＼ fg*l. Then the differentialoperator L(l, p)

is self-adjointwith respect to ( , ) provided that X=―p. (cf. [3]).

If / is a real-valued function on S(M), we denote by grad"/ and gradft/the
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verticaland horizontalcomponents of grad f respectively.

LEMMA B [3]. In a compact Riemannian manifold M, we have

JS(M')

where the letter K indicates the sectionalcurvature of M.
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§2. Fundamental formulas.

Let M be a submanifold of a Riemannian manifold N. We denote by the

same < , > the Riemannian metrics of M and N, and by f (resp. f) the Riemannian

connection of N (resp. M) respectively. In the sequel the letters W, X, Y and

Z (resp. V) will always denote any vector fieldstangent (resp. normal) to M. Then

the Gauss and Weingarten formulas are respectively given by

(2.1) FxY=j7xy+£(X,Y),

(2.2) fxV = - AVX+ DxV,

where B (resp. A) and D axe the second fundamental form (resp. shape operator)

and the normal connection of M respectively. Then firstand second covariant

derivatives of B are respectively defined by

(2.3) {VxB) (Y, Z) =DxB(Y, Z) -BfrxY, Z)-B(Y, FxZ),

(2.4) CF2WXB) (Y, Z) =Dw(vxB) (Y, Z) - (F^) (Y, Z)

- (jxB) (fwY, Z) - (pzE) (Y, fwZ)

Denoting by R the Riemannian curvature tensor of N and putting as (Rwx Y) n

the normal part of RwxY, we have the equation of Codazzi:

(2.5) (RwzY)n=(pwE)(X, Y)-(vxB)(W, Y).

If (RwxY^)n vanishes identically, then we call such a submanifold M curvature-

invariant.

From (2.4), the formula of Ricci with respect to the second covariant deriv-

ative of B is given by

(2.6) (F2wxB)(Y, Z)-{}xwE)(Y,Z)

= KXB(X, Z)-B(RwxY, Z)-B(J, RwxZ)
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where R^x: = ＼_Dw,Dx^＼+ D[_w,xiindicates the normal curvature tensor of M.

From now on let M be an w-dimensional C-totally real submanifold in a

(2w + l)-dimensional Sasakian manifold N with structure (<j>,£,rj). Then it is

shown that ([7], [8], [9], [11])

(2.7)

(2.8)

(2.9)

(2.10)

<B(Y,Z),*>=0,

Dx$Y=-(X, Y)$ + <f>pxY,

<Kx0Y, 0Zy = <RwxY, Z>-<W, Z)(X, Y) + (W, Y>(X, Z>,

(dxB) (Y, Z), 0= -<5(Y, Z), <}>X}.

For such a C-totally real submanifold M, we state the definitionsas follows:

DEFINITION [11]. We say that the mean curvatare vector field of M is

7]-parallelif

(2.11) ^na=i<(FwB) (ea, ea),£X> = 0.

We say that the second fundamental form of M is y-parallel if

(2.12) <FwB>(Y, Z), <pX)=0.

If M has 37-parallelmean curvature vector field,then the equations (2.8) and

(2.10) yield

= -2"=i[<(Fx£)(^, ea),Dw$Yy> + 2≪pxB) (pwea> ea),^Y>]

= -S:=i[-<W, YXB(ea, ea),<f>X}+2(vxB) (pwea, ea),0Y>].

Taking the normal coordinate system, we can state the following.

LEMMA 2.1. If M has rj-parallelmean curvature vector field, then we have

(2.13) 2≫=1{CvwxB) (ea,ea), <?>Y)=-%an=1(W, T><B(ea, ea), 0X).

§3. C-totally real submanif olds.

Throughout thissectionlet M be an w-dimensional curvature-invariant C-totally

real submanifold in a (2n+l) -dimensional Sasakian manifold. We denote the

components of the second fundamental form B by
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han7: =<B(ea, <?,),$er} for l<a, /3,r£n.
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As M is C-totally real, we find that h is symmetric, i.e.,

(3.2) ha[)r= hari)= hpar for l^a, /3,y<Ln.

The components of firstand second covariant derivatives of B with respect to

(f>F(M) are respectively expressed as

(3.3) (VaK)pri:= <(paB) (eh er),<J>es} for l^a, $, r, d^n,

(3.4) (Fi?h)ro*:= <(F^3) <>, e*),^.> for l^or, /3,r, ^ ^n.

Since M is curvature-invariant, then, from (2.5) and (3.3), we find that fh

is symmetric with respect to <pF(M), i.e.,

(3.5) (Vah)i>ri=(Pith)art for l^a, ^ j, d^n.

We consider a function / on S(M) defined by f(m, x)=hXxx for any point

(m, x) e S(M) and then prove the following Lemma to use later.

LEMMA 3.1. Let M be an n-dimensional curvature-invariant C-totally real

submanifold in a (2≪+ l) -dimensional Sasakian manifold N. If Mhas yj-parallel

mean curvature vector field,then we have L(l/3, ―1/3)f/")=0.

PROOF. We take any point (m, x) of S(M). For each a, l<La<^n, let ya(s)

be a geodesic in M such that ya(0) = m and j'a(0) = ea. Then we denote a vector

fieldby parallel translatingof x along ja as the same letter x. By virtue of

(2.7)―(2.10), we obtain

(m, x) = ($x, Da(jaB) (x, x)> + (Da<}>x, (paE) (x, x)) at m

= <^, (rl≪B) (x, x)} + xa(<pea, B(x, x)) at m

= (y aah) xxx~＼~xahaxx,

where we have put xa: = (ea,x), which implies

(3.6)
2-la = l

(aiQ
(m> x^ ==s≪=i(r≪≪^)ww+A≪≫^

From (2.6), (2.9), (3.2) and (3.5), we can verify
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= ^x, (f2xaB) (x, ≪.)>+ <M RZcBfr, ea)>

- (<px, B (Raxx, ea)> - (<px, B (x, RaXett)> at m

= <^x, (j2xxB)(ea, ea))-(B(x, ea), R°Jx)

―{B(x, ea), 0RaXx} ―(B(x, x), &RaXea} at m

= ＼PXX'O aaX~^~S,S=lL―2hpaxRaXXP ―hpxxRaXap

+ dapkpaX ―hfiaxXaXp'],

from which follows that

(3.7) S≫=1 (fL^)^=S:=i [(FL^a.*-2S"=1 hfiaXRaXXt + haXXpaX + haaX-＼-hxxl

Thus it is shown from (3.6) and (3.7) that

(3.8) 2"=i
0≪, X) =S"=1 [(rlx^)≪a*- 2S^1 RaXXI>hapx + pXahaXX + haaxl.

From the definitionof /, we have

(3.9)
/((cos r)x+( LL)^r>1urer)

= (cos r)3hxxx + 3(cos r)2(^^l)s,>i urhrXX

+ 3(cos r)(^r)2Sr,a>1 ≪r^^+(^Jl)32r,55£>1 ≪r≪,≪.A.^

= (cos r)3/zx^+3(cos r)2(^:)sr>i urhrXX

+ (cos r)(^:)22,>i (3hrxx-hxxx)ur2

+ 6(cos r)(^^)2Sr>,>1 MrM,Ar^+(|^:)32r,3,5>1 uru,u.h.tr

because of r2 = S"2 u2. Applying Lemma A to (3.9), we find

(3.10)

(3.11)

(m, x)=3haXX for 2^a<n,

(in, x) = ―3hxxx8a? + 6haBx for 2^a9 B<Ln≪

We see from (3.8), (3.10) and (3.11) that
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L(l/3, -l/3)(/)(m, z)=SL ＼-(rlJdaaX+ haaXl.

271

On the other hand, the equation (2.13) is rewritten as

(3.13) S≫=1 (f%K)aar = -2^=1 8>rht*a for 1^/3, r, d^n.

Combining (3.12) with (3.13), we have

L(l/3, -1/3) (/)(m, x)=0.

THEOREM 3.1. Let M be an 7i-dimensional compact curvature-invariant

C-totally real submanifold in a (2n +1) -dimensional Sasakian manifold with

r]-parallelmean curvature vector field.If the sectionalcurvature of M is positive,

then M is totallygeodesic.

PROOF. As M has positive sectional curvature, L(l/3, ―1/3) is elliptic.

From the above hypothesis we have L (1/3, ―1/3)(/)=0. By maximum principle

[10], / is constant on S(M). Since / is an odd function,it must be zero. Thus

M is totallygeodesic.

COROLLARY 3.2. Let M be an n-dimensional compact C-totallyreal submani-

fold in a (2w + l) -dimensional Sasakian space form -with rj-parallelmean curva-

ture vector field. If the sectionalcurvature of M is positive,then M is totally

geodesic.

PROOF. If the ^-sectionalcurvature of Sasakian space form N is denoted by

c, then the Riemannian curvature tensor R of N restricted to M is given by

RwzY=-^-l<J, X}W-<Y, W}Xl

which means clearly that M is curvature-invariant. By Theorem 3.1,Mis totally

geodesic.

REMARK 1. If the normal connection of M is flat,then, from (2.9), Mis of

constant curvature 1, so that we have the same result as thosein Theorem 3.1 or

Corollary 3.2.

REMARK 2. As a Corollary of Theorem 3.1, we can state the Blair-Ogiue's

Theorem in the introduction of this paper.

THEOREM 3.3. Let M be an n-dime?isional compact curvature-invariant

C-totally real submanifold in a (2n + V)-dimensional Sasakian manifold with

■^-parallelmean curvature vector field. If the sectional curvature of M is

non-negative, then M has v-parallel second fundamental form.
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PROOF. By use of Lemma 3.1, we have L(l/3, ―1/3)(/)=0. Applying

Lemma B, we find that gradhf must be identically zero. From (3.2) and (3.5),

the fact that gradft/=0 is equivalent to saying that the second fundamental form

is 37-parallel.

COROLLARY 3.4. Let M be an n-dimensional compact C-totally real submani-

fold in a (2w + l) -dimensional Sasakian space form with rj-parallelmean curva-

ture vector field. If the sectional curvature of M is non-negative, then M has

ri-parallelsecond fundamental form.
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