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ON CERTAIN MIXED-TYPE BOUNDARY-VALUE

PROBLEMS OF ELASTOSTATICS

―with a simple example of Melin's inequality for a system―

By

Hiroya Ito

Introduction.

Let Q be a bounded domain in Rn, n^_2, with C°°-boundaryF―dQ. For a

vector function u=(Ui(x)) with values in Cn, we introduce differentialsystems

A and 5 by

(0.1) (Au)t = - S dj(aijkh(x)skh{u)) in Q
j,k,h

(0.2) (Bu)t= 2 vJ(x)aijkh{x)ekh(u)＼r on f
j,k,h

where dj―dXj=d/dXj, eij(ii)=(djui+diuj)/2 and p―(vi{x)) denotes the unit outer

normal to F. Here we assume that aijkh{x) are real-valued C°°-functions on

Q with the property of symmetry

(0.3) aijkh(x)=akhij(x)=ajikh(x) on Q

and the property of strong convexity

(0.4) 2 aij*ft(^)s*ftSi^c12]Sii on Q, d>0: const,
i.j.k.h i.j

for all nXn real symmetric matrices (si;). (Throughout this note, Latin indices

i, j, k, h take their values in the set {1, ■■■, n} ; small letters u, $, etc. in

boldface represent column vectors.)

Then the fundamental equations of linear elastostatics are expressed as

follows:

(0.5) Au=f in Q

with the mixed boundary condition

(0.6) Bu=$ on FN, u＼r―<p on FD

where F N and FD are open subsets of F into which F is divided by a 1-

codimensional C'-submanifold E of F': F―FN＼jI＼jFD (disjoint union). The
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problem of seeking a solution u=(ui) of (0.5) with (0.6) for given data /"=(/<),

^={^t) and ^―((pi) has been studied well (see, e.g., Duvaut & Lions [2;

Theoreme 3.3, Chap. 3]).

We are concerned with the equation (0.5) not only with (0.6) but also with

another boundary condition

(0.7) Bau:=a(x)Bu+(l-a(x))u＼r = $ on f,

where we assume that a=a(x) is a C^-function on F such that

0^a(x)^l and a(x)ml on F.

For the case a(x)=l, see [2; Theoreme 3.4, Chap. 3]. We are more interested

in the latter boundary condition (0.7), which may possibly change its order on

F. For the future use, we consider

(Sa)x Axu=f in Q, Bau = <p on F

where Ax = )＼-{-A,X^0 a parameter, I the identity. In thispaper, we willstudy

the following problems:

( I ) Is there a solution u of (Sa)x for given data {f, 0}? How about the

uniqueness and regularity if there exists a solution?

(II) If problem (5≪)^=0with data {f, a^+(l ―a)d>} has a unique solution

ua, can

problem

(S)

we construct a weak solution u of (0.5) with (0.6), namely, of the

Au―f in Q with Bu=S on FN, u＼r―d> on FD

as a limit of ua when a{x) converges to the defining function of FN in a sui-

table sense?

We will give affirmative answers to Problems (I) and (II); they will be

stated in Theorems I (in §1) and II (in §3), respectively.

In connection with our problems, consider the dynamic problem corresponding

to (5) when aijkh and I are time-independent. Theorem I enables us to con-

struct a weak solution of this problem with {<p,(p＼―{o, c} by the method of

Inoue [6]. Under slightlymore general assumptions allowing the time-dependence

of aijkh (but not of I) and non-zero ＼<f>,<p＼,Duvaut & Lions showed the exis-

tence of a unique weak solution of that problem by the Faedo-Galerkin method

in [2; Theoreme 4.1, Chap. 3], and proposed that "L'abandon de cettehypothese

(E ne depend pas du temps) semble conduire a des problemes ouverts et fort

interessants". Subsequently, Inoue asserted in [7] that "we may believe that

the method developed in this paper will be useful to solve the problem posed

by Duvaut & Lions". We may say that this paper is the first step to make
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sure of his words (see Ito [9]).

The plan of this paper is as follows: §§1,2 are devoted to Problem (I).

To examine it we reduce problem (Sa)x to the study of a system of pseudo-

differentialequations on F of non-elliptictype. And we obtain key estimates

by means of Melin's inequality for a certain system of pseudo-differentialopera-

tors. That is the same manner as Fujiwara & Uchiyama [4], Taira [13], etc.,

took in studying non-ellipticboundary-value problems for the Laplacian. Although

the theorem of Melin [11; Theorem 3.1]is not fitfor our matrix-valued operator

unlike their scalar cases, we can extend it to our matrix-valued operator of a

simple form (see Theorem 2.4 and the note following it). After those, we

deduce Theorem I, which is a system version of Taira [13; Theorem 1], from

the key estimates using the method of Agmon & Nirenberg developed in Fuji-

wara [3], Taira [14]. In §3 we answer Problem (II). In §4 we consider a

slightly more general case. Finally, in Appendix, we prove Theorem 2.4.

§1. Reduction to the Boundary.

The purpose of this section is to reduce problem (Sa)x to a system of pseudo-

differentialequations on F.

Sobolev spaces and pseudo-differential operators. First, we mention the

Sobolev spaces, in the framework of which we study our problems. Let M be

Rn, a bounded domain in Rn with O-boundary, or an oriented compact C°°-

Riemannian manifold. We denote by Ha(M) the complex-valued Sobolev space

of order o^R with norm ||-||ff,≫-When M is an oriented compact manifold or

Rn, we utilizethe following particular norm on Ha(M):

NIU=( ＼A%u＼HvM with AM=a-AMY'2;
JM

and the inner product (･, -)M on L2(M)―H°(M) can be extended to a continuous

sesquilinear form on H~a(M)xHa(M) by

(u, v)M=
[ Ajfu-A%vdvM for

u^H~a{M), v(eH"(M).

Here, AM and dvM denote the Laplace-Beltrami operator and the volume element

on M, respectively. We willexpress various function spaces of (n-)vector func-

tions in boldface: C°°,L2, H", etc. The same notation as above will be used

for the norm of Ha(M) and the inner product on H-"{M)xHa(M).

Secondly, we shortly refer to pseudo-diffential operators. For details,see,

2.g.,Hormander [5]. Let meR and let M be an oriented C°°-Riemannianmanifold.
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A classicalpseudo-differentialoperator P^.W^hg{M) {regarded as acting on sections

of the half density bundle on M) has its principal symbol pm(x, f) and subprincipal

symbol psm-i(x,£),invariantly defined on the cotangent bundle T*(M)＼0 on M

with the zero section removed; pm(x, £)(resp. psm-x(x,£))is homogeneous in

£^Q of degree m (resp. m ―1). For example, those symbols of AaM^Waphg(M)

are given by ]!･{%and 0, respectively, where ＼t-＼Mdenotes the length of £<e

T%(M) with respect to the metric on M.

By a matrix-valued pseudo-differentialoperator P<BW%hg(M), we mean that

all its elements belong to ＼%hg(M). The principal and subprincipal symbols of

P are defined by the matrices of those symbols of its elements. Let P(=W%hg(M)

and Q<=＼%hg(M) be Ixl matrix-valued, and let pm and psn-uQft and q^.i be

respectively their principal and subprincipal symbols. The adjoint and composi-

tion formulae are as follows: (i) The principal and subprincipal symbols of

the formal adjoint P*(EW$hg(M) of P are given by pm(x, £)*and psn-i{x,£)*,

respectively. In particular,if P = P*, then pm and ^_! are both Hermitian

matrices, (ii) The principal and subprincipal symbols of PQ^W^/iM) are

given respectively by pm(x, f^/x, £)and

Pm(x, £)^-iU, 6)+j&Sm-1(x,?)^(X, f)-^-{/>mU, IX ^(X, 0}

where {･, ･} denote the Poisson brackets: {pm, qtl＼―Ylj{―Kr-
dqM dpm

dxj dxj

Throughout this paper, by c, C, C(*), etc., we denote positive constants

independent of the various functions or variables found in given inequalities;

they may change from line to line.

Uniqueness of solution. We state Korn's inequality, which is useful for the

existence theorems in elasticity. For the proof, see, e.g., Duvaut & Lions [2;

Theoremes 3.1 et 3.3, Chap. 3], also Ito [8]. After that, the uniqueness of

solution of problem (Sa)x is proved.

Theorem 1.1. Let Q be a bounded domain in Rn with O-boundary F.

( i ) For any open subset Y(=£0) of F, there exists a constant cK(T)―cK(T, 0)

>0 such that

(1.1)

(1.2)

A ＼eij{u)＼2dx^cK{T)＼＼u＼＼1,0 for all u<=H＼Q) with u＼r

(ii) There existsa constant cK ―cK(Q)>0 such that

S( lei/iOI^Jt+Hullli.fl^Ctfllallfofor all u(=H＼Q).

= 0
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Proposition 1.2. Let ^0. // u^H＼Q) is a solutionof problem (Sa)x

with {f,0} = {o,c}, then u=o.

Proof. Denoting the sesquilinearform associatedwith A by

a{u, v)=
r

. S ＼aij≫h(x)ekh(u)eij(v)dx

aijkh{x)dhuk-djvidx (by (0.3)),

we have Green's formula for A

(1.3) (Au, v)Q=a(u, v)-(Bu, v)r for all u<=H＼Q), v<eH＼Q).

Since ^0 and Baii―o on F, we have by (1.3)

f 1 ―
(Axu, u)a^a(u, m)+＼ ―

Ja(x)7tO a

≪(*)

U)

And since Axu=o in Q, we have using (0.4)

O=a(ii, m)^c1s(

u＼2dvp^aiii, u)

＼Sij(u)＼zdx^O

Hence (so-(m))=0, so that Bau ―il ―a(x))u = o on F, and u=o on {xe/7; ≪(x)<l}

7^0. Thus it follows from (1.1) that u=o. □

Operator T(X). When a(jt)=0 or >0 on F, (Sa)x is a boundary-value

problem of elliptictype.

Lemma 1.3. Let 2.^0 and a^2. If a(x)=0 (resp. >0) on F, thenfor any

f^H"-＼Q) and <f><=H"-llXr)(resp. Ha~2l＼r))there existsa unique solution

u<=H°(Q) of problem {Sa)x- And the mapping: u-*{f,$) is an isomorphism

between the correspondingSobolev spaces.

Proof. We have by (0.4) and (1.2)

a(u, u)^C1＼＼u＼＼Iq-Cz＼＼u＼＼Iqfor all ue=H＼Q).

This inequality implies that the differentialsystem A is strongly ellipticon Q

and the boundary-value problem {A, B} satisfiesthe strong complementing condi-

tion on F (see Simpson & Spector [12]), and accordingly the boundary-value

problems {A, Dirichlet] and {,4, B) are ellipticin the sense of Hormander [5;

Definition 20.1.1]. In addition, these are formally self-adjoint boundary-value

problems as easily seen, so that for a^2 the mappings
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f Ha{Q)^u―> {Au, u＼r}EEHa-2(Q)xHa~1'2(F)f

(1.4)
1 Ha{Q)E$u―> {Au, Bu} <=Ha-＼Q)xHa-i'＼r)

are Fredholm operators with index 0. Therefore, we conclude from Proposition

1.2 that the following compact perturbations of (1.4):

f Ha{Q)^u―>{Axu,u＼r}^Ha-＼Q)xHa-"＼r),
|
H°(Q)3u ―> {axu, (B+^^h)u＼^H°-XQ)xHa-*'Xr), if a(x)>0,

are isomorphisms. □

Let i^O and a^2. Using Lemma 1.3, the Dirichlet problem

Axii―o in Q, u＼r=$ on F

admits a unique solution ugH"(Q) for any ^^Ha'1/2(F). Define a mapping P(X)

by u=P{l)<p; P(l) is an isomorphism: Ha-1/2(F)-+Ha(Q), which we call the

Poissonoperator(for
^4^).
Then T(^) := BP(X) defines a continuous linear operator:

Ha-1/2(F)-^Ha-3/2(F), which makes sense for any a^R because T(Z)eiWlphg(F)

as will be shown below. We now state some properties of T(X) as a pseudo-

differentialoperator.

Proposition 1.4. Let X^O. The mapping T(X) is an nXn matrix-valued

pseudo-differentialoperator ^=Wphg(r) with X-independent principal symbol ti(x,£)

and subprincipal symbol ts0(x,£)defined on T*(F)＼0. Moreover, T(X) is formally

self-adjoint(which implies that ti(x,£)is Hermitian) and is strongly ellipticin

the sense that there exists a constant c2>0 such that

(1.5) fiOt,£)^C2l£lrI on T*(D＼0, I: the identity matrix.

Proof. Applying Theorem 20.1.5 in [5] to our case and using the existence

of a unique solution for (Sa=o)xzo, we can show that: (i) P(X) admits an ex-

tension to a continuous linear operator: Ha~l'＼r)-+Ha(Q) for any a<=£R; (ii)

BP(X) is a pseudo-differential operator ^＼phg(r) with ^-independent principal

and subprincipal symbols.

Putting u=P{X)<f>, v=P(X)<p in (1.3) for <p,^eC°°(r), we obtain

(1.6) (Ttf)0, <p)r= a(P{X)$, P(X)0)+X(P(X)0, P(X)#)q,

which implies the formal self-adjointnessof T{X). And if $ = $ in (1.6) parti-

cularly, we have by (0.4) and (1.2)

(1.7) (T(X)<p,4i)r^clcK＼＼P{X)ip＼＼＼,Q+{X-cl)＼＼P{Xmio

^ctU＼＼U.r-CU＼＼lmr,
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where the last inequality is due to the trace theorem and the property (i) of

P(X). Since the principal symbol of Ar/2is |flr2. we conclude from (1.7) that

t,{x,Z)vy^c2＼$＼r＼y＼2 for all (x, £)<eT*(/>0, v<=Cn.

This indicates the strong ellipticityof TU). D

Example. When an elasticbody is homogeneous and isotropic,the elasticity

coefficientsaijkh are given by

(1.8) aijkh^Zdijdkh+fiidikdjh-j-dihdjk)

where X, pteLR are the Lame moduli, dtj the Kronecker delta. The condition

≪>0 and nX-＼-2u>0 is equivalent to condition (0.4):

S aijkhskhsij^min{2ft, nX+2ft}J]s2ij for all (stj) as in (0.4)
i.j.k.h i,j

and the associated A of (0.1) is strongly elliptic if ^>0 and A-＼-2fi>0; in fact,

the symbol a(£)=(2j.fcat>*ft£A)*.* of A satisfies

(1.9) a(£)?-^mm{/i, X+2/i}＼%＼2＼v＼z for all %(ERn,veiCn.

Consider a homogeneous isotropic elastic body occupying R^. Let P be the

Poisson operator which assigns to jiGW"1) the bounded solution u^Co6(R+)

of the Dirichlet problem

^m=o in /*?, w|aie≪=^ on dR^R71'1.

Then, T :―BP belongs to WUgiR71"1) and its symbol is calculated as

i±M|£|+Ji
X+f*

61

KX+u)

i+3^

161

2V-lu

X+fjt

fif*

ill

X+ft

In 2?n

&&.-1
Ill

£

≫ -2gn

Iff

A+/i

$

1

2

n

6

-2V-1>

2U+2^)

where £―(?i,･■･,£n-i)=£O(see Ito [8; Theorem 4.4]). Since the eigenvalues of

this Hermitian matrix are given by

Pifi.-.^i.^ifi.^^ifi,
Mu

n-2



140 Hiroya Pro

it is positive definiteif ft>0 and A+fi>0, when the sesquilinear form a{-, ･)

associated with (1.8)is coercive on H＼Rf) in view of (1.9); more precisely, we

have

a(u, m)^ |t£) Sll^x.llJ; fora,l n^W(Rl),

where the constant is best possible (see Ito [8; Theorem 4.6]).

Reduction to the boundary. Define a function space Ha(a^F) by

^≪)(/7)={^ = ≪U)951+(l-≪(x))^0; fa^H^D, ^,Gff'+1(D}.

The following lemma, whose proof we leave to the reader, is fundamental con-

cerning this space.

Lemma 1.5. The Ha(a)(F) is a Banach space equipped with the norm

II0IU;a.r :=inf{||^1||ff,r+ll^olU+i,r;0=a(x)0i+(l ―a(*))0o

with <px^Ha{F), fo<=Ha+1{T)).

And we have the continuous inclusion relations

H'+Kn=H'lamn(T) c H'UD c H%ml,(D=H"(r);

if a(x)>0 on F, then H%-){r)=Ha{r) as Banach spaces.

Now we can answer Problem (I) by means of the space Hi^F).

Theorem I. Let ^0 and a>2. For any f^H"-＼Q) and 0 =Hffl＼D,

there exists a unique solution u^Ha{Q) of problem (Sa)x- Furthermore, the

mapping

(1.10) {Ax, Ba} : Ha(Q)Em ―> [Axu, Bau}^H"-＼Q)xH%V＼r)

is an (algebraic and topological)isomorphism.

Theorem I will be proved in §2. Here we reduce {Sa)x to a system of

pseudo-differentialequations on the boundary F.

Proposition 1.6. Assume that, for any ^<=Ha~1/2(F), the problem

(1.11) Ta(X)$=0 on F

admits a unique solution 0<=EHa-1/2(F) where Ta(X)=a(x)T(X)+(l-a(x))＼, X~^$.

Then Theorem I follows.
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PROOF. By definition,̂ e.H＼~^＼D can be written in the form $=a(x)$i

+ (l-a(jc))0o with some {<f>u$0}(EHa-3<2(r)xHa-ll＼r). By Lemma 1.3, the

boundary-value problem

Axv=f in Q, Bv-＼-v=0l―0o on F

has a unique solution v^Ha(Q). Thus we see that u<=Ha(Q) is a unique solu-

tion of (Sa)x if and only if w:=u ―v^.Ha(Q) is that of the boundary-value

problem

(1.12) Axw=o in Q, Baw=(2a(x)-l)v＼r + $o on P.

Moreover, since w=P(X)<p with $:=w＼r, the solution w^Ha(Q) of (1.12) cor-

responds one-to-one to the solution 0^Ha-ll2(F) of

(1.13) Ta(X)0=(2a(x)-l)v＼r + #o on f.

By assumption, (1.13) admits a unique solution 0^Ha~1/2(F), which indicates

the unique existence of solution for (Sa)x. That (1.10) is an isomorphism is

due to the closed graph theorem. □

§2. Solvability of Problem (Sa)x.

Operator f. To examine the solvabilityof (1.11), we use a method due to

Agmon & Nirenberg: we introduce an auxiliary variable y(ES:―R1/2rcZ, the

unit circle(see Fujiwara [3], Taira [14]). We consider the differentialoperator

A:=A―dl in QxS. The boundary operator B of (0.2) is regarded as defined

on d(QxS)―rxS. The following lemma corresponds to Lemma 2.3.

Lemma 2.1. Let a^2, f<=Ha~＼QxS) and 0^H<J-1/＼QxS). Then the

Dirichlet problem

(2.1) Au=f in QxS, a|rxS=^ on rxS

admits a unique solution u<^Ha(QxS), and the mapping:

H<*(QxS)^u ―> {Au, u＼r,s}GHa-＼QxS)xHa-^2(rxS)

is an isomorphism.

By Lemma 2.1 we can define the Poisson operator P which assigns to ^e

H°'l!＼rxS), a>Jl, the unique solution u^Ha{QxS) of(2.1) with f =c; P is an

isomorphism : Ha~ll＼rxS)-^Ha{QxS). Then f :=BP defines a continuous linear

operator: Ha-"2(rxS)^Ha-3'2(rxS), which makes sense for any o(eR. The

following proposition for T corresponds to Proposition 1.4 for T(X).
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Proposition 2.2. The mapping T is an nXn matrix-valued pseudo-differential

operator (EW^giFxS), whose principal symbol we write Uix, f; y, tj),(x, f; y, tj)

<B(T*rxT*S)＼O^T*(rXS)＼0. Moreover, f enjoys the property of formal

self-adjointness (which implies ii(x, $; y, rj)is a Hermitian matrix) and the property

of strong ellipticityin the sense that there exists a constant c3>0 such that

(2.2) h(x, $; y, i))>c,＼($, y)＼r*sl on T*(FxS)＼0

where |(f, v)＼r*s=VWJ+tf.

A priori estimates. We set Ta = a(x)T+(l-a(x))＼(e＼iph,B(rxS)). The

following estimates for Ta and its formal adjoint TJ play an important role in

proving Theorem I.

Proposition 2.3. Let a^R. There exists a constant C=C(a, a)>0 such that

for all $e=C°(rxS)

＼m<,-U2,rxS£C(＼＼fJ＼＼a-1/2.rxs+W＼<,-i,rxs),

m-o+in.rxs£C(＼＼f*0＼＼-a+U2.rxS+W＼-a.rxS).

To prove Proposition 2.3, we utilize Melin's inequality (see Melin [11] and

Hormander [5]) in the following form.

Theorem 2.4. Let M be an oriented compact C°°-Riemannian manifold. And

let P be an Ixl matrix-valued pseudo-differential operator ^W hg(M), m^R.

Assume that the principal and subprincipal symbols pm(x, f) and psm-i(x, £) of P

satisfy respectively the following conditions:

( i ) pm(x, $) is expressed as pm(x, £)―am(x, $)qo(x, £)with a real-valued symbol

am homogeneous in £=£0 of degree m and an Ixl matrix symbol q0 homogeneous

in £=£0of degree 0 such that

am(x> 1)^0, Reqo(x, £)>0 (positive definite) on T*(M)＼0

where Req0 denotes the Hermitian part of q0: Reqo―(qo+q^)/2;

(ii) The Hermitian part Re/>m-i of psm-i satisfies

Re/4_x(x, £)+y(Tr+tfam(x, £))Re<7≪>U,6)^col, c^R,

on the characteristic set Iajn ".={(%, f)eT*(M)＼0; am(x, %)=0} of am. Here,

H=Ham is the Hessian of am invariantly defined on %am, and Tr+H denotes the

sum of the positive eigenvalues, each being counted with its multiplicity, of the

Hamilton map of H/V^―l (see [5]).

Then, for any s>0 we have Melin's inequality for P:
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(2.3) Re(Pu,u)M-Z(c0-e)＼＼u＼＼＼m-≫n.M-C(e)＼＼u＼＼tim-≫,i.itfor all u^C°°(M).

Furthermore, if co>O, for any se(O, c0) and s^R we have the following estimates

with loss of one derivtive: for all jieC°°(M),

f l|Pa||Li/^(co-£)2||M||I+m-i,^― C(e, s)||m|||+to_3/2,m,
(2.4)

I WP^WlMUco-eYWuWUm-LM-Cie, s)＼＼u＼＼2s+m-si2,M.

This simple system version of Melin's inequality is already known (essen-

tially). When P^＼%hg(M),m>l, satisfies (i) with qo(x, £)=＼ and (ii) with

co>O, Iwasaki [10] constructed the fundamental solution E(t) of (d/dt)+P in a

certain class of pseudo-differential operators with parameter t; inequality (2.3)

follows as a corollary of that. We will, however, prove Theorem 2.4 more

directly in Appendix.

Proof of Proposition 2.3. Using the composition formula, the principal

and subprincipal symbols px{x,£; y, rj) and pt(x,£; y, 7]) of P: = fa are cal-

culated respectively as pi(x,$; y, rj)=a{x)U{x, £; y, 7])and

Pl(x,£; y, V)=l+a(x)Ctso(x,£; y, i))-＼)-
^
{a(x)l,U{x, $; y, rj)}

where i*0(x,£; y, rj)is the subprincipal symbol of T. Put

ai(x,$; y, 7))=a(x)＼(£,rj)＼rxS,Q^, f; y, ri)=i1(x,|; y, ^)/|(f 5?)lrxs,

then P satisfies(i) of Theorem 2.4 by Proposition 2.2. Since, at all zeros

(x, £;y, 7]) of alfTr+Hai(x, %; y, r))^0 by definition (=0 truth to tell)and

Po(x,?; y, 7])=l, P satisfiesalso (ii) with cQ= l. Consequently we obtain the

desired estimates from (2.4). □

Proof of Theorem I. Following Taira [14], we associate with equation

(1.11) the closed linear operator za(X): Q{2a{X))(ZHa~li＼r)^Ha-ll＼D defined by

(a) m?a{X))=＼*^H-"Xr); Ta(X)^H"-"＼D},

(b) £ra(i)0=Tatf)0 for <f><=ma{X))

where <D(2a(A))denotes the domain of 2a(A). We define also a closed linear

operator %a : 2)(a:a)c:Ha-1'2(rxS)^Ha-ll2(rxS) by

(a) £)(3-a)={^^Ha-l'2(FxS); Ta^Ha-x'＼rxS)},

(b) Zj = fa$ fOr $ZLQ($a).

Since &, is densely defined as easily seen, &a admits its adjoint operator 3"*:

$(2*)aII-a+ll2(rxS)-^H-<7 +i/2(rxS). Similarly, %aU) admits its adjoint
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Lemma 2.5. The closed linear operator STj is characterized by

(a*) £)($*)= {0GH-a^'＼rxS); t*$^Ha+li＼rxS)},

(b*) iJ*^=f*^ for $<E0(2*).

By the definition of 3"a, Lemma 2.5 and Proposition 2.3, we have

W$＼＼a-u2.rxs^C(＼＼3:a$＼＼a-m.rxs+＼＼$＼＼<,-i.rxs) for all ^S)iSa),

ll^ll-a+1/2,rx5^C(||3-*^||_ff+1/2,rxS+|i^||_(T,rxS) for all $^2){%f).

Furthermore, since H'(rxS}-~>Hs~1/＼rxS) is compact for any sgK, £fa and

^■J are, as well-known, semi-Fredholm operators (i.e., operator T with finite

dimensional kernel Jl(T) and closed range 3l(T)).

As a result, by the same argument as in [141, we arrive at:

Proposition 2.6. Let IseZ. Then mapping ET≪(/2):3){<3a{l2))c:Hs-ll＼F)->

HS~1I2{F)is a Fredholm operator with the property that there exist finitesubsets

J and J* of Z such that

dim^(ffa(/2))<co if 1<=J, =0 if IeeZ＼J;

dim3l(3-≪(/2))=dim32(3-*(/2))<^if l(=J*, =0 if /gZ＼/*.

End of Proof of Theorem I. Let o>2. Since the principal and sub-

principal symbols of T{X) are, by Proposition 1.4, independent of A^Q, so are

those of Ta(X); hence T'MJ-T.(^efji^r) for any Xu X^O. Thus, <2)(ff≪(/D)

is also independent of X^O, and for any Xu ^2^0 the mapping £TaUi)―£Ta(A2)

admits an extension to a compact operator: Ha~ll<l{r)-*Ha~ll2(r).

On the other hand, Proposition 2.6 shows that the mapping £ra(X0),̂o^/o

with some /,eZ＼(/u/*), is a Fredholm operator with index 0. Therefore, for

any ^0, 2"tt(i)=2"a(/io)+(3'aU)―3"≪Uo))is a compact perturbation of a Fredholm

operator with index 0, and hence is a Fredholm operator with index 0.

We finallyshow dim32(ffa(/{))=0. If $^3){<3:a{X))ciH<'-llXr)satisfiesTa{X)$

―o on F, we have by putting u=P(X)<p

Axii=o in Q, Bau~o on P.

Thus Proposition 1.2. gives that u=o and <p―u＼r=o. It therefore follows that

codim5l(3'a(^))=ind3-aU)-dim32(3'aU))=0,

which completes the proof of Theorem I by Proposition 1.6. □
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§3. Weak Solution of Problem (S).

In this section, we construct a weak solution to (S) using Theorem I (cf

Duvaut & Lions [2; Theoreme 3.3, Chap. 3]).

Definition. Suppose f<=L＼Q), 4<=L＼F) and <p^Hl'＼F) in (S). We call

u^H＼Q) a weak solution of problem (S) if u＼r ―& on FD and

(3.1) a(≪,v)=(f, vh+ty,v)r≫ for all v<=Hl0(QuFN).

Here Hl(QuFN) denotes the closure of C (Q＼jFN) :={u^Caa(Q); suppw C

QuFN} in H＼Q). Since the interface 2=FNr＼FD between 7^- and 7^ is of

class C1, this space is characterized as

Hl(Q＼jrN)={u<=H＼Q); M|r=o on FD).

See the Proof of Lemma 10 in Browder [1].

Let f<=L＼Q), $<BL＼r) and &eHll2(n be given. We begin with construct-

ing a collection of approximate solutions of (S) by means of Theorem I. We

may assume, without loss of generality, that supp^ClirT＼fo with jQ an open

subset of F such that f0CirN. Choose sequences {<pm} in Hll＼F) and {<pm＼ in

H*'＼r) with supp^mcr＼f0 so that

(3.2) $m―^<}> in H~x'＼r＼ <pm ―> <j> in Hl'＼r) as m ―> oo.

Now, let {sm}m=i be an arbitrary decreasing sequence tending to 0 such that

Ti^0 where ^m = {xe/1D; distrU, Ar)2|em}. It is easy to construct a family

{am(x)} in C°°(r)such that 0^am(x)^l on F and ≪m(x)=l on FN, =0 on ^m.

We set Bm = Bttm.

For each m, consider the approximate problem (S)m of (S) given by

(S)w .4m―f in /3, BmB=am(x)j4M+(l-am(x))<pm on Z7.

By applying Theorem I, we get the unique solutien um^H＼Q) of (S)m.

Theorem II. The sequence {um} in H2(Q) obtained above is Hl(Q)-weakly

convergent. The limit u(bH1(Q) gives an unique weak solution of problem (S).

Moreover, it satisfiesthe estimate

(3.3) l|M||i.fl^C(l|f||_1.flury+ll^ll-1/2.r+ ll^lli/2,r)

where IHI-i.flur*-denotes the norm of the dual space of Hl(Q＼jFN).

Proof. According to Theorem I, the boundary-value problem
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Av=o in Q, v＼r―^m on F

(resp. Aw―f in Q, Bmw=am(x)(&m―Bvm) on F)

admits a unique solution vm (resp. wm)^H＼Q). Since ym + u;m is a solution of

(S)m, it follows from the uniqueness property that h,,=^+ipb. By Green's

formula (1.3). the solutions vm and m? satisfy

a(vm, vm)=(Bvm, vm)r

a(wm, wm)-{f, M7m)s4-l ($m ―Bvm jL―-wm)-wmdvr-

Noting that vm＼u―o and wm＼ri=o, we obtain from (0.6)and (1.1) that a{v, v)^

CtWvWlo for v=vm, w,n. Using this and the fact that BP(0)=T(0)<=＼lphg(r＼

we have from (3.4s)

(3.5)

C1＼＼vm＼＼lQ£＼＼Bvn＼＼-U2,r＼＼vm＼＼u2,r^^＼＼vm＼＼ln+C＼＼0m＼＼h2,r,

Ci＼＼wm＼＼i,o^(f, ^m)o+(l|^mll-i/2,r + l|5ym||_1/2,r)l|wm||i/2.r

^■

^Ll|≪?Billf.fl+C(||f||§.fl+||^m||l1/2.r4-||^m||f/2.r).

Thus (3.2) and (3.5) yield

ll≪Btl|1.fl^||Wml|1.fl+NBl|kfl^C(||/f||o.fl+ll^||-,/8.r+ ll^|li/2.r).

This shows that, for any subsequence {um>) of {um＼, some subsequence {um,}

of {um,} has a weak limit u°in HX{Q). If m°is a unique weak solution of (S),

which will be shown below, then we see from the uniqueness that the sequence

{um} itself converges weakly to u°in H＼Q).

Now. since am(x)=1 on /V we have bv (1.3)

(3.6)
fl(a≫.,v)=(f, yh+itm', v)r for all v^m(Q＼jrN)

And, for any C<=C°°(r)with support in FD, we have

hence {um>, Or ―(0m-, Or if m" is so large that £m≫<distr(suppC,I). Letting

m"―>qo here and in (3.6), we see that u is a weak solution of problem (S).

Furthermore, the uniqueness of weak solution is shown as follows: Let mxg

H＼Q) be a weak solution of (S) with {f, $, ^} ―{o, o, o). Then, by definition,

u^HKQuFn) and a(u＼ u^―O, so that(0.6)and Korn's inequality (1.2) give us

that ul―o.

Similarly, we see that the sequences {vm}, {wm＼ are also H＼Q)-weakly

convergent and that their limits v°,w°^Hl(Q) satisfy u°=v°+w＼ Since M?°e

HKQvjFn), we have, as m->oo,
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(f, wm)Q-^{f, w≫)Q<＼＼f＼UuQvrN＼＼w≫＼＼uQ.

Therefore, the desired estimate (3.3) follows immediately by letting m-≫oo in

estimate (3.5). □

Corollary 3.1. Let f^Hs'＼Q), ^<=eHs-3'＼F) and <p^Hs-li＼r) for s^2.

And let um(EHs(Q) be the unique solution of problem (S)m with <j>m~<j>,<pm―<p

for each m. Then the sequence {um} converges to the weak solution u of problem

(S) weakly in Hioc(Q^U), that is, {um} cenverges to u weakly in HS(Q') for any

subdomain Q' of Q {with C^-boundary) such that Q'dQ^S. Furthermore, we

have the estimate

＼＼u＼＼s,Q'^C(Q',s)(||f||s.2,.(2+||0||s_3/2.r+ H^|]s-1/2,r).

Proof. Although the claim can be shown by the general theory of elliptic

systems, our proof is an application of Theorem I.

Let Q' be any such domain in Q as stated above. All we have to do is to

show that there exists a constant C ―C(Q', s)>0 such that

(3.7) ||Mm||.,fl'^C(||/r||,_2.fl+||0||,_,/2.r+ llsft|l.-x/≪.r)

for large m. Indeed, the rest of the proof is similar to the latter half of Proof

of Theorem II.

Now we show estimate (3.7)

C°°(Q) such that O^w^l on

For l^/^[s] + l, we choose functions ^g
Q and rji= l on {dist(;c, 2)^15), ~0 on

{distU, 1)^,(1―1)5} where <5=dist(£', 2")/([s]+l). Let m0 be a number such

that smo<<5. Since am=amo on supped r) for all ra^ra0 and 2^/^[s] + l, the

equations in (S)m with {0m, ^m} = {^, $&} multiplied by 7]t are

f A(r]iiim)=＼_A, ydum + iqif in i3,

I Bma(7jlum)=amo(lB, yl']um +
T]i0)-hO―ano)7}l& on T

where [･, ･] denotes the commutator. Thus an application of Theorem I shows

that, for any 2^t^s, m^m0 and 2^/^[s]+l,

(3.8),.t ＼＼ViUm＼＼t.a^C(KAf rjl-]um+ r}lf＼＼t-2,Q

+ ＼＼<Xmo([B,jyi]Mm + iyi^)+(l-amo)^||a jt_s/2.r)

£C(||57l_1≪m||t_1.fl+||/f||t_8,fl+||^||t_s/2ir+||^||t_,/8>r).

Using (3.8){>t for l=t=2, ■■■, [s] and (3.3), we have

^C(||f|i[s]_2,.Q+]|55||[s]_3/2,r+ ||^||CS]-i/2,r),
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which combined with (3.8)[s]+i,sgives (3.7). □

§4. Simple Generalization.

For a forthcoming paper (Ito[9]) dealing with a dynamic problem mentioned

in Introduction, we give a simple extension of Theorem I.

When we consider (Sa)x only for large ^>0, it is essential for the arguments

in §§2,3 that the real-valued functions aijkh{x)(EC°°(Q)possess the property of

symmetry

(4.1) aijkh(x)=akhij(x) on Q

and the property of coerciveness

(4.2) aijkh{x)dhuk-djuidx^ci＼＼u＼＼＼,Q-cb＼＼u＼＼l,Q

for alliKEH&QuFa) with Fa-={x^F; a(x)±0}.

Now we redefinedifferentialsystems A in Q and B on F by

(4.3)

(4.4)

(Au)t =

(Bu)t =

― 2 dj{aijkh{x)dhuk)+^bijk{x)dkUj+Ylcij{x)uj,
j,k,h j,k j

( S Vi(x)aijkh(x)dhuk+ *ZTij(x)uj)＼r

where all the coefficientsare real-valued C°°-functionson fi or F and aijkh{x)

satisfy(4.1) and (4.2). We note that these conditions imply that A is strongly

ellipticon Q and {A, B) satisfiesthe strong complemention condition on Fa.

Let a(x) be as before but we allow the case a(x)=l, and let o)i}{x)be real-

valued C°°-functionson F such that a)(x)=(a)ij{x))is positivedefiniteon F. Then

Theorem I can be extended as follows.

Theorem I'. Let <t^2 and X^R. The mapping

(4.5) {Ax, Ba,a} : H"(Q)^u ―> {Axii, Ba,au}(E:H<>-＼Q)xHTaV＼r).

is a Fredholm operator with index 0 where Ax ―Xl+A, Ba:0)=-a{x)B+{＼ ―a{x))(D{x).

In particular, if X is sufficiently large, then (4.5) is an (algebraic and topological)

isomorphism.

For the proof, we prepare the following two lemmas.

Lemma 4.1. Let a^>2. If I is sufficiently large, the mapping (4.5) is an

injection. If a(x)=Q or >0 on F in addition, then it is then an isomorphism.

Proof. Let u^H'J(Q), o<2, be in the kernel of (4.5). Then, we have by
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2
＼
aijkn{x)dhuk-djuidx + l＼＼u＼＼la

= ―S＼ ( 2 bijk(x)dkuj+J]Cij(x)uj)uidx
i JQ j,k j

__ r /l-a(x)

)ra＼ a(x) (o(x)u-ii―^Tij(x)UjUi)dvr.i,i '
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Using (4.2) and the positivity of a)(x),we obtain

c^＼u＼＼＼,Q+{X-cC)＼＼u＼＼lQ^C{＼＼u＼＼1Mu＼U.QM＼u＼＼lr),

from which the firstclaim follows immediately. The second is due to the same

argument as in Proof of Lemma 1.3. □

Lemma 4.2. Let a>2, and A＼ B° be the first terms of A, B in (4.3) and

(4.4). // X is sufficientlylarge, then for any f<=Ha-＼Q) and ^^H°-S'＼F) there

existsa uEiHa(Q) which satisfiesA＼u=f in Q, B°u=0 in a neighborhood of Fa

on F where A＼=X＼-＼-A°,and the estimate

＼＼u＼＼a.Q^.C(＼＼f＼＼a-tiQ+＼＼0＼＼o-3/i.r).

Proof. We can choose a bounded domain Q including Q with O-boundary

f and C°°-extensionsdijkh{x) of aijkh(x) to Q so that (i) f includes an open

neighborhood j of Fa in F and (ii)(4.1) and (4.2) are valid for dijkh(x) with

Q, Fa replaced by Q, f (that is, A0 is strongly ellipticon Q and {A0, B0} is

strongly complementing on t where A", B° are the associated A0, B° with

aijkh(x),Q and f). Here we need to pay attention to the fact that the strong

complementing condition at xo^F depends (continuously) not only on dijkh(x0)

but also on the direction of the normal at x0 to F.

Take a nonnegative function C,{x)<^C°°(F)with support in y such that C,(x)=l

near Fa, and define 0<=Ha-3/z(F), for any given 0(=Ha-*>%r), by #=C(x)$ on

y, =o on f＼y. Then we have

II^IU-s/2.r^C||CW^|U-!1/2.r^C||^||(,_s/2.r for all 0(eII°-≫＼F).

Also, any f^Ha~＼Q) admits an extension ?<=H"-＼fi) such that ＼＼fIU_2.s^

C＼＼f＼＼o-2q- Now consider the boundary-value problem

(4.6) A°xu= f in Q, B°u=& on f.

By an argument similarto Proof of Lemma 1.3(see also the precedinglemma),

we have, for a sufficientlylarge X, a unique solutionu^Ha{Q) of problem

(4.6),which satisfiesthe estimate
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l|fi|U.^C(||^|U_8,fi+||^|U_3/2.f)^C/(||/f|U_2,0+||^||ff_s/,.r)

Thus u: ―u＼o is a desired one. □

Proof of Theorem I'. By Lemma 4.1 and the compactness of the map:

Ha(Q)Em―> {(i;bijkdlluJ+Zcijuj)Aa'ZTijUj)}<EH°-＼Q)xHtaV*(n,
j-k j j

we have only to show that, for sufficiently large X,

MS, B°a,w}: Ha(Q)^u―> {A＼u, B%,mu)<=Ha-＼Q)xH%y＼D

is an isomorphism where B^m=a(x)B°-{-(l ―a(x))o)(x).

Applying Lemma 4.1 in the case {Ax, Bat<a} = {A＼, Dirichlet), we can define

the Poisson operator P＼X) for A＼ if X^Xr with Xx large enough. Then Proposi-

tion 1.4 is valid for T°(X): = B°P°(X),X^Xly except that the principal symbol

t＼(x,£) of T＼X) is strongly elliptic on Pa in the sense that for some c°2>0

to,(x,£)^c°2＼$＼rl for all (x, £)e U r*(f)＼{0}cT*(r)＼0

xera

And, by virtue of Lemma 4.2, Proposition 1.6 is also valid if we replace Ta(X),

X^Q, with T:,^)=ff(x)TG(/!)4-(l-a(x))(o(x). Moreover, the argument in §2

will be justified in this case if we replace A, P(X) and Ta(X) with A＼v P°(X)

and TJi8)(4 respectively; we have only to remark that, in Proposition 2.2, the

corresponding principal symbol i＼(x,£;y, f))satisfies only the following condition:

h(x, f; y, ≫)^c§|(f, y)＼r*sl, c°3>0: const,

for all (x,$; y,rj)<= W^ H,,v)(fxS)＼{0}cP(fxS)＼0

(x,K)efaxS

which is weaker than (2.2) but sufficientfor our argument. □

Appendix. Proof of Theorem 2.4.

For simplicity, we abbreviate (･, -)M and ||･|s,M as (･, ･) and ||･||S)respectively.

Proof of inequality (2.3).

First step (Reduction to the case P = P*, co=O and qo(x, £)=I). It suffices

to consider the case P = P* and co=O. In fact,

Re(Pu, u^dReP-CoA^-^u, u)+co＼＼u＼＼2im^/2

where ReP=(P + P*)/2, and the principal and subprincipal symbols of ReP ―

CqAm'1! are given respectively by

RepM, $)=am(x, £)Reqo(x, %), Rep^.^x, f)-co|f IS"1!.
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Assume that P―P* and c0―0, so qo=q*. Let Qi(iesp. ft^^/M) be a

formally self-adjoit pseudo-differential operator with principal symbol q^1'2(resp.

ql12) and subprincipal symbol 0 (resp. {■s/^-l/2)q＼l2{q-,l＼ql'2}). Since QxQz^QiQi

=lmod＼ph.g(M), we have

(A.I) (Pu, uY^{QlPQlQzu, 08m)-C||w||U-2>/2 for all u<=C~(M).

On the other hand, the principal symbol j>m(jc,f) and subprincipal symbol

$m-＼{x, I) of P'-―QiPQi are given respectively by pm = aml and

pSm ― rt―1/2 j,s n~l/2
V-l
({<?o1/2,amq,}qVl2+{amqV＼ qV1'))2

Since am vanishes to the second order on I:=Iajn, condition (ii) of Theorem

2.4 is equivalent to

K-&, £)+y(Tr+#(x, £))I^0 on I

where H―Ham. Now, suppose that Theorem 2.4 is valid for the case #0=1

Then we have for any s>0

(A.2) (PQ2u, Q2u)^-e＼＼QM＼m-i>i*-C(s)＼＼Qtu＼＼U-≫i*

^-sCJi*||U-n/2-C(s)|N|^_2)/2 for all weC"(M)

where the constant Cx>0 depends only on Q2. The desired inequality (2.3)

follows immediately from inequalities (A.I) and (A.2).

Second step (Proof of the case P=P*, co=O and go(x, £)=I). Fix an e>0

arbitrarily. We first show that, for any (x0, t-0)^T*(M)＼0, there exists a conic

neighborhood rTocT*(M)＼O of (x0, ^0) with the following property: Let <j>0{x,!･)

be any real-valued symbol homogeneous in £=£0of degree 0 with support in i~V

Then we have

(A.3) (POu, 0u)^-e＼＼0u＼＼＼n-lifi-C(e, 0)＼＼u＼＼ilm-2>/2for all u<eC°°(M)

where 0^W$he(M) is any formally self-adjoint pseudo-differential operator with

principal symbol 0O and subprincipal symbol 0.

When (x0, %0)£Z, there is a conic neighborhood Fo of (x0, £0)such that

a-mix, £)^2d|£|$ on f0 for some <5>0, so by the Garding inequality

(P0u, 0u)^d＼＼Ru＼＼2m/2-Ci0)＼＼u＼＼＼m-≫/2for all MeC°°(M)

with any 0<^WphgiM) as above.

When (x0, o)^2, we define a symbol a*m-iix,£) by

<-:U, £)=(j-Tr+//Uo, M＼eo＼M))＼$＼JTl
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Then, by the continuity of Tr+H(x, £)on I, there exists a conic neighborhood

I＼ of (xo,$0) such that

(A.4)
8" ISIST^a ･m_xU, $)+Tr+H(x, $)£

£

2"
I£IS on r≪r＼Z.

If A<=W$hg(M) is a formally self-adjoint pseudo-differential operator with prin-

cipal symbol am and subprincipai symbol a'm.u the usual Melin's inequality (see

Hormander [5; Theorem 22.3.3]) gives

(A.5) (A0u, Ou)^-e＼＼0u＼＼＼m-im-C(s, 0)＼＼u＼＼＼m-t,fifor all u<eC°°(M).

On the other hand, R :=P ― Al<=＼%Kg(M) is a formally self-adjoint pseudo-

differential operator with principal symbol rm-i'.=P'm-i ―cim-ih which satisfy by

virtue of (A.4) and condition (ii)

Thus, by shrinking Fo if necessary, we have rm_i^ ― sl^lS'1! on T^, so that

by the sharp Garding inequality

(R0u, 0u)^-e＼＼0u＼＼＼m-Wt-C(e, 0)＼＼u＼＼＼m-im for all u<e=C(M)

with any 0 as above. This and (A.5) show (A.3) in this case.

To complete the proof, we choose finite number of real-valued symbols

<f>oj(x>6)^0 homogeneous in £=£0of degree 0 with so small support that (A.3)

is valid for each 0j and 2^=1 in T*(M)＼0 where 0j^W≫,!lg(M) is a formally

self-adjoint pseudo-differential operator with principal symbol 0O; and subprincipai

symbol 0. Since ^ffi―l^WpigiM) and [[P, 0}~],&j~]^W%^(M), we therefore

obtain that

{Pu, u)=-E(P0jU, 0ju)+Re(.{l-205)Pu, u)+TS([[P, 0j~＼,0^u, u)
5 j & 3

^ ―eSII^M||(m-i>/2 ―C(e)||≪||?m_i)/a^― ellMllfm-D/2― C(e)||ii||^m_2,/2
3

for all u(eC~(M). D

Proof of inequalities (2.4). Let a&R. The principal and subprincipal

symbols of Aj?PAaM are given respectively by pm and p^ + oV―1|£＼M{ I£U, Pm).

Since {|£Im,pm}=0 on E, it follows from (2.3) that for any £<s(0,c0)

Re(A-M°PAaMv,y)^(co-£)!|i;!|^_1)/2-C(£,(7)||r||^_2)/2.

By putting y―y/^71"1572ând o―s―(m―l)/2 in the above, we have
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(co-eJIIwllS+^-CU, s)||u||S+m-s/2^Re(^Sf/Jii,A%m~hi)

IL^WPull s-t- 2 ll^lls+m-1 for all u<=C"(M).

Putting 8=co―e, we obtain the former of (2.4). As for

only to note that, if P satisfies(i) and (ii),so does P*.
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the latter, we have

□
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