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Abstract. This paper contains two main results. One is to prove

the orthocompactness of products with a metric-like factor. Another

is to characterize the orthocompnct products of spaces of ordinals.

In particular,from this characterization, we can obtain the equi-

valence with the normality of these products.
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1. Introduction.

In product spaces, it is known that "orthocornpactness versus metacompact-

ness" behaves like as "normality versus paracompactness", see [Ao, SI, S2, S3].

Scott [SI] proved that if X is an orthocompact P(/c)-space(in the sense of

Morita), then XxY is orthocompact for every subspace Y of the Tychonoff

product of countably many discrete spaces of cardinality tc. He also conjectured

that XxY is orthocompact for every metric space Y of weighty iff X is an

orthocompact F(ff)-space. In this connection, we consider the orthocompactness

of products with a metric-like factor. One of our results will show that the

"if" part of his conjecture is true.

Next, he [S2] proved that aX/3 is normal iff it is orthocompact for any

ordinals a and /3. Recently, Kemoto, Ohta and Tamano [KOT] have charac-

terized the normality of a product AxB, where /land B are space of ordinals

with the subspace topology of the usual order topology. Moreover Yajima

[Yl] has introduced the concept of suborthocompactness as a generalized ortho-

compactness, and he has proved some related results in [Yl, Y2].

In this paper, we introduce the concept of weak suborthocompactness as a
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further generalization of suborthocompactness, and we prove a characterization

theorem for the orthocompactness of such a product AxB. This gives the

equivalence between the normality and the orthocompactness of AxB. We

also prove a characterization theorem for the paracompactness of AxB.

2. Notations and definitions.

Throughout this paper, a, /3,J, ■･■denote ordinals and k denotes a cardinal.

The cofinalityof a is denoted by cfa. Intervals (a, /3),(a, j8] and [a, jQ] de-

note the open, half-open and closed, respectively, intervals with the end points

a and /3. Note that a</3 and a<=/3 are equivalent. Let X be a set. We de-

note by P(X) the collection of all subsets of X. We denote by [X^＼<K the col-

lection (FgP(I): ＼Y＼<k}, where |F| denotes the cardinality of Y. We

analogously define [^]S/C and ＼_X~＼K.For any sets X and Y, XY denotes the

collection of all functions from Y into X, and X<K denotes the set ＼Ja<=KXa.

For every HJdP(X) and x<=X, (<£/)*denotes {U(EHJ: xge/7}. Let 1) be a cover

of X (i.e., VJCU=X). We say that cvcP(X) is a u<ea£refinement of <U if

each member of cv is contained in some member of <U. Furthermore, such a

c^ is a refinement of 'U if it is a cover of X.

Let I be a space and cy a collection of open sets in X. We say that cy

is interior preserving if PiCV is open for every cVCL^V. A space X is ortho-

compact if every open cover of X has an interior preserving open refinement.

It is easy to show that a space X is orthocompact iff,for every open cover Hj

of X, there is an open refinement cv of <U such that n(cl;)x is a neighborhood

of x for each xel.

A space X is said to be (weakly) subortho'compact if, for every open cover

1J of X, there is a sequence {cvn : n go)} of(weak) open refinements of CU such

that, for each x^X, there is an new such that n(cl;n)^ is a neighborhood of

x. Such a sequence {cv7l: new} is said to be a (weak) c-sequence for cu. A

space X is a-orthocompact if, for every open cover 'U of X, there is a sequence

{cv'n: n eft)} of interior preserving open weak refinements of HJ such that

KJn^aPJn covers X The following implications are obvious from their defini-

tions.

* tf-orthocompact ^^^

orthocompact weakly suborthocompact

^^ suborthocompact ^

In the last section, weak suborthocompactness plays an important role.

Here, we give some equivalent conditions for it.
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Proposition 2.1. The following are equivalent for a space X.

(1) X is weakly suborthocompact.

(2) For every open cover 1J of X, there is a sequence {^n'- kG(o} of weak

open refinements of -U such that, for each igI, there is an new with xe

(3) For every open cover HJ of X, thereis a cover KJn&JWn of X such that,

for each x<=X, there are an n^a and a UX(ECU such that r＼(Wn)x is a neigh-

borhood of x and is contained in II,.

Proof. The implications (2)->(l)-^(3)are obvious. We show (3)->(2). Let

HJ be an open cover of X. Let U≫e^≫ be a cover of X described in (3). For

each ≪Gffl,let Xn―{x<=X: C＼(cWn)xis a neighborhood of x and is contained in

some UX^HJ}. For each x^Xn, nea>, let Vn(x) = int(n(!W)x). Put cyn =

{Vn(x): ieIb) for each ncEco. Then each cvn is a weak open refinement of

HJ. Pick any xgX Since {Xn : neco} covers X, choose some neo> with xelr

For each y^Xn with xg7b(j), we have Vn(x)dVn(y). In fact, x^r＼(Wn)y

implies (WB)*Z)(WB)V. So it follows that r＼(<=Vn)x= n{Vn(y): y^Xn with xe

VJy)＼Z)VJx). This imolies that n(^Jt = 7≫(x)eq;n.

Unfortunately, a similar characterization for suborthocompactness is still

3. Products with a metric-Iike factor.

Throughout this section, k denotes an infinitecardinal. The following is

Lemma 3.1. Let HJa be an interior preserving collectionof open setsin a

space X for each a in an index set Q. If {Va : ≪ei2} is a point-finitecollection

of open setsin a space Y, then {UxVa: U<=cUa and a^Q} is interior preserv-

ing in X^Y.

Theorem 3.2. Let X be an orthocompact space and Y a space with a o-

point-finitebase. If the product XxY is countably paracompact, then it is ortho-

comtact.

Proof. Let HJ be an open cover of XxY. Without loss of generality, we

may assume that ^ ―＼Jneo,^nis a base for Y such that

1) each Bn is point-finite,
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2) BnCBn+i for each ≪e<y,

3) each Bn is closed under finiteintersections.

For each UdXxY and each 6gJ, let

G(B, U)=＼J{G: G is an open set in X such that GxBaU}.

Let G(B)=＼J{G(B, £7):£/e<U} for each 5g5, and let Pn = ＼J{G(B)XB : B<=<3n)

for each neo>. By 2), {Fn: nE(o} is an increasing open cover of XxY. Since

XxF is coimtably paracompact, there is an increasing open cover {Qn: new}

of XxF such that cl QndPn for each neoi. Pick an new and a 6g^b. Let

F(B)=c＼G(B, Qn). For each jgB, let By=n(.^Jy. By 3), we have 5,,e

(&n)v. Since F{B)X {y}(Zcl QndPn, it follows that F(B)X {y}dVJ {G(B')XBr:

fl'eC-S,,),,}.Since BycB' whenever B'^{&n)y, we have G(B')CG(B?). Thus

we obtain

4) F(B)x{y}dG(By)xBy for each yc=B.

Next, for any j> and y' in J3, define y = y' by By = By>. Then s is clearly an

equivalence relation on B. Let 5/ = be the quotient of 5 by =. Furthermore,

for E<=B/^ define BE=By {<E.Bn) for some (in fact, any) _ye£. Then

{BE: E^B/ = ) is a point-finite open cover of B, all members of which are

distinct and belong to jRre. Moreover, it follows from 4) that F(B)cG{BE)

for each E^B/^. Hence F{B)(zyj{G{BE,U):U^cU}. Since F(B) is closed

in X, and hence orthocompact, for each E<=B/ = , there is an interior pre-

serving collection W(E)={W(BE, U): Uei)} of open sets in X such that

W(BE, U)(ZG(BE, U) for each £/s<U and F(B)CUW(E). Put <wn={W(BE, U)

XBE: BgB/s,5gSs and £/e<U} for each new, and put <W=^{Jn&0'Wn. Then

it follows from Lemma 3.1 that each Wn is interior preserving. Since W(BE,U)

XBEaG(BE, U)xBEaU<^cU, each <Wn is a weak open refinement of HJ. To

show f is a cover of XxY, pick a point <x, ;y> in ZxF. Then there is an

m6(D with <x, ;y>eQm. Since 5 is a base for Y and (?m is open in XxY,

there are an open set G in X and a B<=£B such that <#, y)(^GxB(zQm. By

2), we may assume B(^<Bn with m<in. Then x(eGcG(B, Qn)(ZF(B). Picking

E in fi/s with y^BE, we have <x, y}(^F(B)X {y}d(UW(E))xBE. So there

is a t/GE<U such that xef(B£,(/). This means <x, j)Giy(B£,[/)XBBG^.

Hence W covers XxY. This argument concludes that XxY is <;-orthocompact.

Here notice that c-orthocompact, countably metacompact spaces are orthocom-

pact, see [SI, Proposition 0.1]. Since XxY is countably metacompact, it is

orthocompact.

Since XX M is normal iff itis countably paracompact whenever X is normal
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and M is a non-discrete metric space (cf. [RS]), Theorem 3.2 yields the fol-

lowing.

Corollary 3.3. The normal product of an orthocompact space and a metric

space is orthocompact.

Next we consider the product of an orthocompact P-space and a metric-like

space.

Lemma 3.4. // a space Y has a a-point-finitebase of cardinality^,it, then

it has a base J=U≫e≪5B, satisfying;

(1) Sn―{B(p): p^K71} for each utw,

(2) each <Bn is point-finite,

(3) B(p)=＼J{B(p)VJ{(n, ≪>}): ae/c} for each p(=Kn, where we consider

p^Kn as the set {</, p(i)):i<^n＼,

(4) for each y^Y, there is a y~EiKwsuch that {B{y＼n): new} is a neigh-

borhood base at y, where y＼n denotes the restrictionof y to n (thus y＼n^Kn).

Proof. Let B'―＼Jn^S'n be a base of Y such that ＼j&'＼^k,and each B'n

is point-finitein Y. We may assume that X^<B'n and <B'nis closed under finite

intersections for each ≪gw. Let B'n= {B^ :≪£≪:},where 5"=X Note that

some Ba may be empty. For each p(EK<<o,let B{p)=^r＼{Bia: <j, a}<Bp}. Put

jSn={B(p): p<=/cn} for each new. Then J=UBea/-S≫ satisfiesthe desired

conditions.

Definition. A space X is called a P(tc)-space(in the sense of Morita [Mo])

if, for every collection {U(p): /)GE/c<(U}of open sets in X such that U{p)dU{q)

for any p, q^tc<a>with p(Zq, there is a collection{F(p): p^/c<u>} of closed sets

in X, satisfying

1) F(p)cU(p) for any />e*<<B,

2) if /<=≪≫with ＼Jnea>U(f＼n)=X, then U≫e≪.WIn)=X

In case X is a P(≪:)-spacefor any cardinal *, X is called a P-space.

Lemma 3.5. The product XxY of an orthocompact P{K)-space X and a

space Y with a a-point-finitebase of cardinality^k is a-orthocompact.

Proof. Let <U be an open cover of XxY and B=＼Jn^0)^Bn a base for Y

described in Lemma 3.4. We use the same notation G(B, U) as in the proof of

Theorem 3.2. Let G{p)~KJ ＼G{B{p),U): U^HJ} for each Ae/c<ffl.Then ＼G(p):
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p(^tc<m)is a collection of open setsin X such that G(p)dG(q) for any p, q<^tc<u)

with pdq. Since {B(j?|n): new} is a neighborhood base at y for each j>eF, it

follows that {Jn<=a>G(y＼n)=X, where y is the same one as is described in 4) of

Lemma 3.4. Since I is a P(/c)-space,there is a collection {F{p)＼ pGK<c"＼ of

closed sets in X such that F(p)dG(p) for each p(E/c<aiand Unea>-F(;y|n)=Z for

each yeF. Since {G(B(p), U)＼f/ei/} is an open cover of the closed set F(/>),

there is an interior preserving collection(W(p)―{W(p, U): U(E.CV} of open sets

in X such that W(p, U)dG(B(p), U) for each U(BHJ and F(p)c＼JW{p). It fol-

lows from Lemma 3.1 X.haXcWn={W(p, U)xB(p): p<^tcnand U^CU＼ is an interior

preserving open weak refinement of CU for each new. It is not difficultto

verify that cW=＼Jn!=a>ctt'ncovers XxY. Hence XxY is cr-orthocompact.

Since countably metacompact, a-orthocompact spaces are orthocompact, the

above lemma yields the following.

Theorem 3.6. Let X be an orthocompact P{n)-space and Y a space with a

a-point-finitebase of cardinalitŷ /c. // the product XxY is countably metacom-

pact, then it is orthocompact.

Nagami proved in [Na, Theorem 4.10] that the normal product of a P-

space and a strong 2-space is countably paracompact. But he actuallyproved

the followinglemma.

Lemma 3.7. The product XxY of a P{ic)-spaceX and a strong J}(ic)-space

Y is countably metacompact.

Since metacompact developable spaces of weight^k are strong S(^)-spaces

with a a -point-finitebase of cardinalitŷ tc, Theorem 3.6 and Lemma 3.7 yield

the following.

Corollary 3.8. The product of an orthocompacl P(ic)-spaceand a meta-

compact developablespace of weightf^icis orthocompact.

Remark. This corollaryis a generalizationof [SI, Theorem 2.5]and an

affirmativeanswer to the one directionof the Scott'sconjecture following

Theorem 2.1in [SI]. Note thata similarresultwas proved for a GO-space X,

see [S2, Theorem 4.10].

Example 3.9. There are an orthocompact P-space X and a compact T2-

space C such that XxC is normal but not orthocompact.
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Let X be the space o>i with the usual order topology and C the one-point

compactificationof o)lwith the discretetopology. Then XxC is normal but

not orthocompact, as is pointed out in [Ao, Example 4.3]. Note that X is a

P-soace,because it is countablv compact.

4. The orthocompactness of products of spaces of ordinals.

Throughout this section, A and B always denote spaces of ordinals with the

subspace topologies of sup^4+ l and sup.6+ 1, respectively, with the usual order

topology. Note that A and B are hereditarily orthocompact, see [Lu]. We

characterize the orthocompactness and the paracompactness of the product AxB.

As a corollary, we show that AxB is orthocompact iff it is normal.

Let a be an ordinal with cfa^tUi. A strictly increasing sequence {f(T):

fecfa} in a is said to be normal in a if f(T)―sup{f(T'): j'^j) for each limit

ordinal fecfa, and a=sup {/(TO: f^cfa}. Considering / as a function with

the domain cfa and the range a, we identify f={f{T): fecfa}. Note that

there always exists a normal sequence in a, and that / can be considered as a

closed copy of cf≪in a whenever it is normal in a.

First, we need some propositions and subsidiary notations. The proof of

the following is a routine.

Proposition 4.1. Let a be an ordinal with cfa^a)u and let f and g be

two normal sequencesin a. Then {J(Ecfa : f{T)=g{j)) containsa closed unbounded

(abbreviated as cub) set in cfa.

Recall that a subset in a regular uncountable cardinal k is stationary if it

meets all cub sets in tc. Using Proposition 4.1, the proof of the following is

also a routine.

Proposition 4.2. Under the same assumption as in Proposition 4.1, {y&cfa

f(Y)<=A＼ is stationary iff so is {j^cfa: g(r)^A＼.

Remark. Let A be the set of all non-limit ordinals in o)x. Let f={f(j):

J'eoji}defined by f(T)=T for each fea>i. Let g= ＼g{y):y<=(Oi] be the increas-

ing enumeration of the set of alllimit ordinals in a>i. Clearly, / and g are

normal sequences in a>i. Then {y^o)^. f(y)<=A) is unbounded in ^ (in fact,

= ,4), but {y^oDi: g(y)^A＼ is not unbounded in a>i (in fact, =0). Thus, in

general, the unboundedness of {^ecfa: f{y)^A) does not coincide with that of

{^ecfa: e-(]')e/l}even if / and g are normal sequences in a. But the above
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lemma means that the stationarityof them does not depend on the choices of

normal sequences.

Notation. Hereafter, for every ordinal a with cfa^Oi, fix a normal

sequence a in a. By AAa, we denote the set {fecfa: ≪(]')g^4}.

Note that {a(T):T^AAa} is a closedsubspace of if＼a. Making the nota-

tionsimple, we rewrite a instead of a. That is, the normal sequence a (=a)

is consideredas the set{a(J):J^zia}. So we observe AAa= {T^cfa : a(T)^A}.

From the contexts, we can easily distinguishbetween an ordinal a and a

normal sequence a. If a is a regular uncountable cardinal,then we may con-

sider the normal sequence a defined by a(T)=T for each jea, so we may

assume A/＼a―Ar＼a.

The proof of the following is also a routine.

Lemma 4.3. Let a be an ordinal. Assume that cja^a>i and /IA a is not

stationaryin cfa, or assume thatcfa―a). Then Ar＼a is a free union of cfa

many bounded, closed-opensubspaces.

In our proofs below, we often use the Pressing Down Lemma (PDL for

short). For a regular cardinal k, Lim(/c) denotes the cub set {y^ic: y is a limit

ordinal} in k.

Lemma 4.4. Let a and /3be ordinals with K―cfa=cf^^(o1, Ada and BCLf}.

If X=(AU {a})xB is weakly suborthocom pact, then A is bounded in a or BAft

is not stationary in k.

Proof. Assume that A is unbounded in a and J3A/3 is stationary in k.

One can choose a strictly increasing cofinal sequence {h(J): J(Ek} in a such

that h{y)^A for each re*. Let Ur={h(r), ≪]X[0, ]3(r)]nl for each refiA/3.

Then ^=1/1x5}＼J{Ur: /gBAjSJ is an open cover of X. By the weak sub-

orthocompactness of X, we can take a weak <r-sequence{cUn: n^o)} for CL/.

For each Fe(BA/8)r＼Lim(/e), pick an n(r)G(o such that n(cUn(n)<a,i3(r)>is a

neighborhood of the point (a, /3(?0>in X, and take an f(T)^T, a g(T)^tc and

0(T)E:BaP such that

i) yr=(/i(g(r)), a]X(/3(/(r)), ^(r)]nXcn(Li77l(n)<ff,^r≫c?7^r).

The finalinclusion of 1) is assured by the weak refinementness of "Un(n of 17.

By <a, $(r)y^U6m> note that 7*^0(7"). Since 5A/3 is stationary in ≪,n(y)(Eu)
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and f(T)^T, it follows from the PDL that there are a stationary set Sd(B/＼ft)

nLim(/c), an ≪G(o and a J0(^k such that

2) n(J)=n and f(Y)=Yo for each r^S.

Take a ^eS witn Yo^Yu and let fix―fi{Yi)-By 1) and 2), we have <a, jSi>

^Fr for each reS with ri^r, because of 5(/(7))=/3(^)ei8(r1)=,81e/3(r). Hence

<a, ^>Gn|Fr:reS and y^y]

cn{n(£uj<≪,,3(r)>:yEES and y^r}-

Therefore, we conclude

3) <a, ^)en(<Uj(a.,51>

C.r＼{rMcUn)<a,,3(n>'>T^S and Ti^r}

cn{/7^n: re5 and y,(=y}

a{a}xpr＼X

Where the last inclusion follows from the unboundedness of {(j){y):7eS and

yi^y] in k. Since A is unbounded in a, intx({a}XjSnI)=f Thus by 3),

intx(n(cUn)<a,/31>)is empty. On the other hand, by ^gS, n(cUn)<≪,;3l>is a

neighborhood of <≪,/3i>.But thisis a contradiction.

Lemma 4.5. Let ic be a regular uncountable cardinal,Adit and BC/c. If

X=AxB is weakly suborthocompact, then A is non-stationaryin tc,B is non-

stationaryin tc,or Ap＼B is stationaryin tc.

Proof. Assume the contrary. Without loss of generally, we may assume

that A and B are stationary sets in tcsuch that Ar＼B=$. In fact, take a cub

set C in k such that Ar＼Br＼C=<f>. Since weak suborthocompactness is a closed

hereditary property, we may consider Ar＼C and Br＼C instead of A and B,

respectively. Let Y― {<a, fi}(^X: /3ea}. Then Y is closed in X. So Y is

weakly suborthocompact. Let Ur=(J, k)X[_0, T~]nY for each j<=k. Then 17=

{f/fife/e} is an open cover of Y. There is an weak ^-sequence {1Jn: ne&)}

for CU. First, fix an arbitrary /3ei?. For each a^A―[0, /3],take an ≪(≪,/3)

eo such that n(£L/7l(a,/3))<a,^>is a neighborhood of <≪,iS>. Furthermore, take

an /(a, iS)ea with j8^/(a, j9),a g(a, /3)e^ and a r(a,i3)GA; such that

1) <≪,j9>e(/(a, j8),a]X(g(≪, /3),j8]nK

CnCT/nCa, ,9))<a,^>C/7r(≪,/3).

Here note that
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2) jS^rCa, j8)ea.

It follows from the PDL that there are a stationary set A((H)(ZA―[0, /3],an

n(/3)eo>,an /(/3)e/cand a g(/3)e/3 such that

3) n(≪,i8)=n(i8)> /(≪,/3)=/(/3) and g(≪,/3)=£(/3)for each aE^(jS).

Here notice that

4) j8^/(j8).

Next, moving £ over £,it follows from the PDL that there are a stationary

set SdB, an ?i6to and a /30e/c such that

5) ≪(j8)=n and g(/3)=/30 for each /3eS.

By 1), 3) and 5), we observe that

6) SdB is a stationary set and, for each /3ge5, A(fi)(zA―[0, ^8] is a

stationary set such that, for each ≪e.4(/3),

<≪,/3>g(/(/3),a]x[i8o, jSDnrcnCUn^.^cf/Ka.^ .

Take a ^iGvS with j80e|8i, and an aie^4(j8i) with f{^)^a＼- Take a /32e5

with ≪ie/32, and an ≪2e^4(i8i)with /(/32)e≪2. Moreover take an a3e^4(/32)

with ≪2e≪3. By 4), note that j8oeJ81^/(/31)Ga1G/32^/(/S2)Ga2ea3- Choose

the three points x=-(au fiC>,y ―(a2, fti)and 2=<a3,
JS2>

in Y. Then by 6), we

have

y = <a2,jS^eC/CjSg), as]X(j80, JQ2]nFcn(ct7j2Ct/r(2),

where r(^)=r(a3, j88). Since yxE.rMHJn), implies (cL/n),C(cUn)y, it follows from

6) again that

X = <≪,,fl^eC/Cfl,), a2]X(jS0, Bdr＼Y

ar＼{ci]n)ycLr＼{cun)zcLUriz-).

However, by 2), notice a^fi^Yiaz, ^z)―y(z). Hence we have x = (,a1}fii}^

(T(z),*)X[0, T(z)']r＼Y=UrCz-}.This contradicts ie(/r(2).

Lemma 4.6. A product AxB is not orthocompact iff there are some ordinals

a and /3 which satisfy the following conditions;

(a) cfa―cf^(ou

(b) a£A or fi(£B,

(c) (i4n[0, a])X(Bn[O, jS]) *'sno^ orthocompact,

(d) (/4n[0, a'])x(fln[0, /3])is orthocompact for each a'^a.

(e) (.4n[0, a])X(Bn[0, jS'])is orthocompact for each jS'efl.
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Proof. The "if" part immediately follows from (c), because (/ln[0, a])X

(5n[0, /3])is a closed-open subspace of AxB.

To show the "only if" part, assume that X―AxB is not orthocompact.

Let

ao=mm{a: (^4n[0, aJ)XB is not orthocompact}

/30=min{^: (An[0, ao])X(Bn[0, /3])is not orthocompact}.

Then it is easy to show that cfa0^(o and cf/30^o>. Furthermore, the following

are clearly true.

1) Y=(Ar＼[0, ao])X(Bn[O, j80])is not orthocompact.

2) Za=(4n[0, a])X(Bn[0( j80])is orthocompact for each aea0.

3) ZiS=(/ln[0, ao])X(fin[O, /3])is orthocompact for each /3e/30.

We show that these a0 and ^o are desired ones. By 1), there is some open

cover T/ of Y which has no interior preserving open refinement.

Claim 1. a^A or fi^B.

Proof. Assume that <xo(bA and /30e5. Take an U^IJ with <≪,,j30)g[/,

an ≪ea0 and a j8e/30 such that V=(a, ao]X(j8, /30]nFct7. Since, by 2) and

3), Z―ZaV)Z^ is an orthocompact closed-open subspace of Y, take an interior

preserving open refinement <V' of {ZnU lUtEiJ} in Z. Then cv=cv＼j{V)

is clearly an interior preserving open refinement of °U. Tnis is a contradiction.

Claim 2. i) // ao<£A, then c/ao^(Ui flftdiAa0 ≪'sstationary in cfa0. ii)

// /30^fi, ?/iewc/^0^ft>! cnJ 5A/30 zs stationary in c//30.

Proof, i): Assume cfao=a> or assume that cfao^ft>i and /lAa0 is not

stationary in cfa0. In any cases, it follows from Lemma 4.3 that Ar＼a0 is the

free union of {A{j): fecfa0}, where each A(j) is a bounded, closed-open sub-

space. Then Y is the free union of {A(?)X(Br＼[§, /30]):recfa0}- Since each

y4(7)X(Bn[0, /30])is orthocompact, so is F. This contradicts 1). The case of

ii)is similar.

Claim 3. cfao=cfBo.

Proof. Assume the contrary. We may assume cfao£=cf/3o-From Claim 1,

we can consider the three cases.

Case 1. a^A and /30<£-6-
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By Claim 2, note cfao^≪i and cf/30^a>i. First, fix a Y<E.A£a0. For each

5e(BAj9o)nLim(cfj8o), take an f{j, <5)ed, a g(T, d)(EY and an U(J, d)^HJ such

that

4) (ao(g(T, ≪)),ao(T)-]X(Uf(T, 5)), WftnYaWr, $)■

Observe that (BAjS0)nLim(cfj80) is stationary in cf/30, and observe that

f(T, <5)e<5 and g(j, <5)efecfa0ecf/3o. By the PDL, there are a stationary set

SrC(BAj80)r＼Lim(cfj80), an /(r)ecfj80 and a g(T)^7 such that

5) f(7, d)=f(7) and g(r, d)=g(r) for each ≪5eSr.

Next, moving j over {AAao)nLim(cfa0), let <50=sup {/(TO: Y^(A/＼a*)r＼

Lim(cfa0)}. By cfaoecf^o, we have <50ecf/30. Let /8=/3o(^o)- Then we have

6) (≪o(#(r)),ao(r)]x(i9, j80(5)]nrc£/(r, a)

for each 5e5r with 7'e(^4A≪0)nLim(cfa0)-

Applying the PDL to {A A≪0)nLim(cfa0) and ^(^)fE?', one can take a stationary

set Tcz(^Aao)nLim(cfao) and a 70ecfa0 such that

7) £(r)=r<, for each r^T.

Let a=ao(7'o). By 4), 5), 6) and 7), we observe that

8) Tcz(/lAao)nLim(cfao) is a stationary set in cfa0 and, for each J^T, Sr

is stationary in cf/30 such that V{J, 8)-{a, ≪0(r)]X(/3, j80(5)]P＼Kc£/(r, d)^^ for

each /gT and each d<=Sr.

Put cvo={F(7', d):j^T and deSr}. Then it is easily seen by 8) that ＼j<V0

―(a, ao)X(/3, /30)nF. Clearly, cy0 is an open weak refinement of cl7. Pick a

point x in (a, ao)X(/3, /30)nF. Let r^=min {r: V(J, <5)e(°^o)x} and 5X =

min{5: Vij, 5)ee(cvo)x}. Then we have x£(a, ao(rJ]X(/3, j80(5x)]nrcn(cv0)x.

Therefore c^o is interior preserving. Since Z―ZauZ^ is an orthocompact,

closed-open subspace of Y, there is an interior preserving open refinement cy

of CU. This contradicts the assumption on °U.

Case 2. ao^A and fto^B.

By Claim 2 ii), note that cf/3022o>i and 5a/30 is stationary in cfjS0. For

each ^e(5A/30)r＼Lim(cf/30), take an f(8)^d, a g(8)<Bcfa0 and an {/(^Gii such

that

(ao(g(d)), ≪o]X(i8o(/(3)), i30(a)]nFcf/(a).

Since /(<5)e<5 and ^(^ecf^o^cf^o, by the PDL, there are a stationary set Sc

(JBA/3o)r＼Lim(cfiSo), a 80<=cfB0 and a roecfao such that f(d)=d0 and g(8)=Yo
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for each deS. Let a=a0(To) and j8= j80(30).Then V(8)=(a, ao]X(j8, fi≫(d)~]r＼Y

<ZU(8)^<V for each 3eS. Put c^0={V(8): 5eS}. As in Case 1, we can derive

a contradiction.

Case 3. a&A and j90efl.

Note that (yi^cfa0ecfjS0 and (,4a≪0) is stationary in cf≪0- For each fe

(i4Aa0)nLim(cfa0), take an /(r)ecf^0, a g{7)^7 and an £/(r)e<U such that

(≪o(^(r)),ao(r)]X(i8o(/(r)),i9o]nrc£/(?').Letdo=sup{/(r):re(4Aao)nLim(cfao)}.

Then <50ecf/30. By the PDL, there are a stationary set Td.{A/＼aa)r＼L＼m{zfa0)

and a ro^cf≪o such that g(T)―J0 for each j^T. Let P = po(5o) and a=ao(ro).

Then V(T)=(a, ao(T)lX(P, P^nYaUirt^iJ for each J^T. Putting q;0=

{F^iJ'gT}, one can derive a contradiction as in Case 1. Thus the proof of

Claim 3 is complete.

It follows from Claims 1, 2 and 3 that cfao=cf/3o^a)i. This establishes

the clause (a). The clauses (b), (c),(d) and (e) follow from Claim 1, 1),2) and

3), respectively. This completes the proof of Lemma 4.6.

Now we have prepared to establishour main theorem in thissection

Theorem 4.7. The following are equivalent.

(1) AxB is orthocompact.

(2) AxB is suborthocompact.

(3) AxB is a-orthocompact.

(4) AxB is weakly suborthocompact.

(5) For any ordinals a and B with K=cfa―cjB^a}i, the following conditions

hold;

i) ;/ a<£A and fi^B, then Also, is non-stationary in k, BAfi is non-

stationary in k or (/lA≪)n(i3Aj3) is stationary in k,

ii) if ae.4 and fi<£B,then Ar＼a is bounded in a or /3A/3 is non-stationary

in k,

iii) if a^A and fi^B, then AAa is non-stationaryin k or Br＼flis bounded

in B.

Proof. Since the implications (l)->(2)-≫(4)and (l)-≫(3)―>(4)are obvious, it

sufficesto show the implications (4)->(5)->(l).

(4)-≫(5): Let a and B be ordinals with K=zia―ziB^mx. Then X=

(An[0, a])X(Bn[0, j8])is weakly suborthocompact. If a£A and B£B, then
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(AAa)X(BAfi) is also weakly suborthocompact. In fact, it can be considered

as a closed copy in X. So i) follows from Lemma 4.5. If ae/1 and fi<£B,

then ii) follows from Lemma 4.4. The case of iii)is similar.

(5)―>(1): Assume AxB is not orthocompact, then there are some ordinals a

and fl satisfying (a),(b),(c),(d) and (e) in Lemma 4.6. Put X=(Ar＼[0, a])X

(5H[0, /3]).

First assume that a<£A and fi<£B. If AAa is non-stationary in k, then

Ar＼a is a free union of bounded, closed-open subspaces (cf. Lemma 4.3). In

this case, as in the proof of Claim 2 in Lemma 4.6, we can show that X is

orthocompact. This contradicts (c) in Lemma 4.6. The case 5A/3 is non-

stationary in k is similar. So we may assume that a^A, /3<^£and {AAa)C＼

(5AjS) is stationary in k. By (c), take an open cover 1/ of X which has no

interior preserving open refinement. For each 7"e(ylAa)n(BAj8)P＼Liin(/t), take

an /(r)er and an Utf)^ such that (a(/(r)),≪(r)]X(/3(/(r)),P(r)lr＼X(ZU(r).

By the PDL, there are a stationary set Sc(AAa)r＼(BAP)r＼Lim(ic) and a fo^K

such that f(r)=7o for each re5. Let 7(r)=(≪(r0),a(r)]X(i8(ro),j8(r)]n^(Ct/(r))

for each ^eS, and let cyo^l^Cr): T^S}. Then we can show that V has an

interior preserving open refinement, as in the proof of Case 1 of Claim 3 in

Lemma 4.6. This is a contradiction.

Next, assume that ≪ei and ft<£B. If Ar＼a is bounded in a, we can get

a contradiction from (c) and (d) in Lemma 4.6. If 5A/3 is non-stationary in k,

using Lemma 4.3, we also get a contradiction as in the proof of Claim 2 of

Lemma 4.6.

The case of a<£A and /3e5 is similar. This completes the proof of Theo-

rem 4.7.

Remark. If a is an ordinal with supple a and cf≪^o>i, then a<£A and

,4A a is not stationary in da. Therefore, in (5) of the above theorem, it suf-

fices to consider any ordinals a and /3 with /c=cfa=cfi8^&>i such that a^supA

and /3<^sup-B.

The condition(5) of Theorem 4.7is exactly the same one as in a charac-

terizationof the normality of AxB in [KOT, Theorem A]. This yieldsthe

followingresult.

Corollary 4.8. A product AxB is orthocompactiffitis normal.

Finallywe characterizethe paracompactness of AxB. We begin with the

following.



Orthocompactness in products 421

Lemma 4.9. A is paracompact iff,for every ordinal a with a^A and cfa

>≪,, AAa is not stationary in eta.

Proof. The "only if" part: Assume that there is an ordinal a with a^A

and cfa^cOi such that A A a is stationary in cfa. Since every stationary set in

a regular cardinal is not paracompact (cf. [EL, Theorem 2.3]), AAa is not

paracompact. By a<£A, note that AAa is homeomorphic to a closed subspace

of A. Hence A is not paracompact.

The "if" part: Assume A is not paracompact. Let ao=min{a: Ar＼[0, a]

is not paracompact}. Then one can obtain that ao£A, cfao^≪i and AAa0 is

stationary in cfa0, as in the proofs of Claims 1 and 2 in Lemma 4.6 (but the

proof of this case is simpler).

Theorem 4.10. The following are equivalent.

(1) AxB is paracompact.

(2) AxB is metacompact.

(3) AxB is submetacompact.

(4) AxB is a-metacompact.

(5) AxB is weakly submetacompact.

(6) A and B are paracompact.

Proof. Since weakly submetacompact GO-spaces are paracompact (cf. [Lu,

Theorem 4.4]), the implication (5)->(6)immediately follows. It sufficesto show

the implication (6)-≫(l). Assume that A and B are paracompact and that AxB

is not paracompact. Let

ao=m＼n{a: (Ar＼[0, a])xB is not paracompact},

/30=min{/3: (.4n[0, ao])X(5n[O, /S])is not paracompact},

Y=(Ar＼lQ, ≪0])X(£n[0, &]).

As is easily seen, cfao^ft> and cf/30^o>. Fourthermore, as in the proof of Claim

1 in Lemma 4.6, we can obtain that ao<£A or jSo^B. Assume ao^A (the case

of /30^-8 is similar). If cfao^≪i, by Lemma 4.9, Aa<x0 is not stationary in

cftf0. Then it follows from Lemma 4.3 that Y is a free union of paracompact

subspaces, as in the proof of Claim 2 in Lemma 4.6. Thus Y is paracompact.

This is a contradiction, because Y is not paracompact. If cfa0=o), we can

similarly show that Y is paracompact. But this is also a contradiction.

Remark. Note that weak submetaLindelofnesscan be added in theseequi
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valences in Lemma 4.9 and Theorem 4.10. On the other hand, Theorem 4.10

is not extended to the case of GO-spaces. In fact, we may consider the Sor-

genfrey line S instead of A and B, because S is paracompact but S2 is not

normal. Furthermore, since the product of the Michael line and the irrationals

is orthocompact but not normal ([S3]), Corollary 4.8 is not extended to the case

of GO-spaces either.
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