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WEAKLY NORMAL FILTERS AND LARGE CARDLINALS

By

Yoshihiro Abe

0. Introduction.

In this paper, k denotes an uncountable regular cardinal and X a cardinal

^k. For any such pair, PK1 is the set {xdX: |x|<a;}.

An "ideal on PKX" is always a "proper, nonprincipal, /c-complete,fine ideal

on PKX" unless specified. (An ideal I is fineif for all a<X, {x<=PKX: a<£x}^L)

For any ideal /,I+=P(PKX)-I and /* is the filterdual to /.

Definiton. An ideal / as well as /* are said to be weakly normal iff for

every regressive function /: PKX->X,

(3j<X)({x^PKX: f(x)<r＼<=I*).

The above definitionis a translation of Kanamori's "weak normality" for

filterson k in [5]. There is another weak normality presented by Mignone

[10]. It is known that our notion is Mignone's weak normality plus some

saturation property and every c/^-saturated normal ideal on PKX has our weak

normality.

k is said to be ^-compact if there is a fine ultrafilteron PKl. If k is X-

compact, PKX carries many fine ultrafilters. Moreover every fine ultrafilterhas

a weakly normal fine ultrafilterwhich is Rudin-Keisler ordering below it. So,

it may be a natural question whether k is large if a weakly normal filteron

PK1 exists.

In §1, we consider a case where one can say k is large.

Kunen-Paris [7] and Kunen [6] consider the possibility of S(k,rj) holding

for various k, f] where

S(k, )j/)= There is a /c-complete ^-saturated ideal on k. §2 is devoted to an

application of their methods to weakly normal ideals on PKX.

Much of our notation is standard, and Jech [4] or [7] should be consulted.

§1. k may be strong compact.

For a reader's convenience, we give a proof of a lemma which appears
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In [2].

Lemma 1.1. If I is weakly normal, then there is no disjoint family of

cf X-many setsin I+.

Proof. Suppose that {Aa : a<cfk}dl+ is a pairwise disjoint family. Let

{Xa' a<cfl) be a cofinalincreasing sequence in 1. We can assume that Aa(Z

{la} for all a<cfX. Define a regressive function /: P.X-^A so that f"Aa― ＼la＼･

Then B={x(=PKX: f(x)£j}^I* for some r<*- Now pick a ^a>r. By the

definition of /, Aacf-＼{Xa}) and f-1({Xa})nB=Q. This contradicts to Aa(El+.

n

If PKl carries a weakly normal ideal / and cfl^K, I is ^-saturated. So, k

is measurable in some inner model. In general, we can say at least k is not

small.

Lemma 1.2. (See Matsubara [9]) Let k=8+ and I an ideal on PJ. If r^,

cfy>8 and Ig/*, then X can be decomposed into f-many disjointI-positive subsets.

Theorem 1.3. // PKX carries a weakly normal ideal, then k is weakly inac-

cessible.

Proof. There is no eft-many disjoint sets in /+. Hence k is weakly

inaccessible by 1.2 if cfk^fc. When cfX<K, I is c//J-saturated,and there is no

/(-saturatedideal on PKX if a;is a successor cardinal. D

If cfX is small, k becomes very large. In fact we have a direct analogue

of Proposition 3.8 in DiPrisco and Marek [31.

Theorem 1.4. Let 2<cJX<k. If there is a weakly normal ideal on PJ

then k is X-compact.

Sketch of Proof. Assuming that every set X(=I+ can be partitioned

into two disjoint sets in /+, we construct a tree Tdl+ with fewer than /c-many

branches such that PK1 is the union of the intersections of each branches which

are all sets in /.

So, there is a set Ig/* which is not a union of two disjoint sets in /+.

Then I＼X=＼Y<zPKX＼ Yr＼X<=I) is a prime ideal and (/1 X)* is a /c-completefine

ultrafilteron PJ. □

Corollary 1.5. Suppose that cfX=o) and PJ carries a weakly normal ideal
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Then k is X-compact.

Combining weakly compactness, the method of 1.4 yields following.

Thforem 1.6. // k is weakly compact, PKX carries a n-saturated ideal and

cfX=K, then k is X-compact.

Proof. Assume that every Zg/+ is a disjoint union of two sets in /

A tree T with ath level Tn is defined as follows.

For X<=Ta, the immediate successors of X are two sets in /+ such that

X is their disjoint union.

For a limit, T≪={nS: S is an a-branch}n/+.

Since / is /e-saturated,＼Tn＼<n for each a<tc. Also every Tai=0 since tc

is inaccessible and / is ^-complete.

By the tree property, there is a branch B through T. Let B={Aa: ≪<≪}

and Aa = Aa+1＼jA'a+1. Then {A'a+l: a<tc} is an almost disjoint family which

contradicts the /e-saturationof /. n

We have shown that k is ^-compact if thereis a weakly normal ideal on

PKX and one of (a) and (b)is satisfied.

(a) 2<cn<K

(b) k is weakly compact and cfX=K.

§2. k may not be very large.

Next we examine the other situation and present some consistency results

such that k is not /l-compact although PKl bears weakly normal ideals. Theorem

1.4 and 1.6 impose limitations on k and 1.

We need several lemmas.

Lemma 2.1. Let I be weakly normal. If f: X―>A is a regressive function

and Ig/+, then (xgI: /r(x)<r}e/+ for some 7<X.

Proof. We extend / to g: PKX-^X which is also regressive and g＼X=f.

Then Y={xsEPtX: g(x)^r}^I* for some J<X and Z=ZnFe/+. g＼Z=f＼Z.

D

This lemma says that our weak normality is stronger than Mignone's vir-

sion of weak normality.
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Lemma 2.2. {x : cf(supx)<ic}e/+ /or et>er;yweakly normal ideal.

Proof. We only have to show that {x : supxGEx}e/. Then we have {x :

x is cofinalin supx}s/* and the lemma is proved.

Suppose that {x : supxGi}e/+. By the previous lemma, thereis a T<X

such that {x : supx^f}^/"1". Now {x : xdY+l} e/+ contradictingthat / is

fine. □

Lemma 2.3. Suppose that I is weakly normal and a<min(cfk, k). Then

{x: cf(supx)>a}<^I*.

Proof. Assume that{x : cf($upx)^La]e/+. Sincea<K and /is ^-complete,

there is an ao^La such that /l={x: c/(supx)=a0} e/+. /|^4is also weakly

normal and A<z(I＼A)*.

Let {jSf|^<a0} be a cofinalincreasingsequence in sup x for each xe/4.

/f:
^4->^

can be definedso that(2%<fs(x)<=x. Now, for every ^<a0 we have

TS<Z such that {x(=A: f^x)^J^(^{I＼Af. Since a^a<cfl, r=sup{rf: 6<≪o}

</L Then ^={igA: /f(x)^r}^(i ＼A)*for each |<a0 and B = r＼{Ae:%<a≫}

g(/|^4)*. But supx<r for every igB, which is a contradiction.□

Lemma 2.4. Let d>o). Suppose thatI is a weakly normal ideal such that

{x<=PJ: c/(supjc)^d}e/* and P is a 8-c.c.forcing notion in V. Then I

generatesa weakly normal ideal J on PA in the generic extensionV＼G~＼.

Proof. In F[G], / is defined by Ze/* iff YczX for some Y<=I*. By

our assumption and 2.2,<5<£. Hence / is an idealon PKX extending I.

Let / be a regressivefunction on PKX in V[G] and / its name always

denoting a regressivefunctionon PK1. In F, for each x^PKl, let /1x={≪g%:

p＼-f(x)=a for some P<bP}.

Since P satisfiesthe 5 chain condition,l^l^. Hence {x : sup /lx<sup x)

(El* because {x: c/(supx)^8} e/*. Using the weak normality, we have a

T<1 such that £={x: sup Ax^j＼ e/*. For each xe£, lK/(x)^r. Clearly

every conditionforces "5c {x: /(x)^r}" and 5 is a member of /*. D

We only had to require {x : c/(sup x)>8} e/+, since I＼X is also weakly

normal for any Zg/+.

We can now show that the inaccessibilityof k is necessary in Theorem 1.4.

Theorem 2.5. It is consistent that there is a weakly normal ideal on PKX

with Q)<cf?.<K and a is not inaccessible.
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Proof. Assume that k is inaccessible, a)<cfA<ic, and /is a weakly normal

ideal on PKX in the ground model. We blow up 2m to ic by c.c.c. forcing. All

the cardinals and cofinalitiesare preserved and / generates a weakly normal

ideal in the generic extension by 2.3 and 2.4. □

Two problems remain: Is it posiible that PKX carries a weakly normal

ideal and k is inaccessible (weakly compact) and nevertheless k is not ^-compact?

Is it consistent that k is inaccessible, not weakly compact and there is a weakly

ideal on PKX?

For this purpose We state PKX generalization of what Kunen and Paris [7]

did for saturated ideals on k that is measurable in the ground model.

Let G be (^-generic over V and U is a F―/c-complete F-weakly normal

filteron P(PJ)nV which lies in F[G] i.e., We have in V＼_G~＼

(1) UdP(PJ)r＼V and d<£U

(2) X<=UAXc:YsEP(PJ)r＼V^Y<=U

(3) {Xa: a<8}(EVr＼P(U)Ad<K^n{Xa: a<d}eEU

(4) For every a<X, {x<=PJr＼V: aex}^U

(5) For each /gV which is regressive on PKAr＼V, there is a J<X such

that {x(EPJr＼V: f{x)^f}(EU.

In addition, assume that Q satisfiesthe cfk-c.c. and U is a name such that

IU is a F-/c-complete F-weakly normal filteron P(/y)nF]Bc<2) = l. In V,

let F={XdPJ: rZe£/lB(^ = l}.

Lemma 2.6. F is a weakly normal filteron PK1

Proof. F is clearly a filteron PKX. For its weak normality, let /: PK1->X

regressive. Then, [|jce^: f{x)£r}E^U for some r<-*Fcc> = l-

For pEiQ, p(y) is the ordinal such that p forces "p(Y) is the least ordinal

r so that {xe/y: f(x)^r}^U"-

Set ^={^<^: r=P(T) for some />}.

Since Q is a cfX-c.c. notion, p and /)'are incompatible if p{Y)^=P'iY),＼M<

cfh So, fi=supA<X and [{x: /(x)^/3} et/]B(Q) = l. Hence |iePf2: /U)^j8}

e=F. n

The situation of lemma is familiar in the large cardinal theory.

Suppose that cf/t'^K,R=P*Q, G is P-generic over V and H is (^-generic

over VIC], [Q is c/%c.c.]Bc<2)= l, and there exists a F[G]-/e-complete V[C]-

weakly normal filter on P(PKk)nV[G] in F[G][/i]. Then we can find a

weakly normal filteron PJ. in V＼G~＼.
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Assume that V f= GCH-＼-k is supercompact, and R is a usual backward

Eastern forcing adding a++ subsets to every inaccessible a^tc. Let G' be R-

generic over V. Then V[G^＼=k is supercompact+there is a normal ultrafilter

on PJ. R=P*Q where IQ adds *++ subsets to /c]B(P)=--land F[G]=V[G!][//],

Gi is P-generic and /f is Q-generic over F[G]. Since F[G1]h2K=/c++2a = a++

for any inaccessible a<≪, /cis a inaccessible cardinal that is not measurable in

y[Gi]. Moreover Q satisfies/c+-c.c.in V[Gi]. Hence we get a weakly normal

filteron PJ in y[d] if c//l^/c+.

However, it is not clear whether k is weakly compact or not in this con-

struction. So, we follow Kunen's argument in [6].

Again we start from the universe Vo where k is supercompact. Without

loss of generality, supercompactness of k is indestructibleunder /^directedclosed

forcing (Ref. [8]). Let V1 = VOIG'], G is VYgeneric over P adding a Cohen subset

of k. Since P is yc-directedclosed, k is supercompact in V^.V^―V0[H~]＼_K~＼,H

is Q-generic over Vo, K is /^-generic over V1[_H~],where Q is a notion of forc-

ing which adds a s-Suslin tree T, and R is T itself.

V^SU: F0[#]-weakly normal filteron ?(P£2)nF0[9]

and

V0[H]＼=Q is the K-c.c.+cfX^ic

We have a weakly normal filterin V J＼_H~]and k is inaccessible but not weakly

compact since there is a /c-Suslintree. We have proved;

Theorem 2.7. Con @k(k is super compact)) implies,Con (3k(k is not weakly

compact+K, is inacessible+P^ carries a weakly normal filter+cfX^ic)).

Next we try the case where k is weakly compact but not measurable. It

is impossible that cfX<ic by Theorem 1.4,1.6. The following lemma is standard.

Lemma 2.8. Let j: V―>M be a X-super compact embedding with the critical

point k, PdVK, j{P)=P(BQ, G be j{P)-generic. If U is defined as;

ph-j^X^U iff for some P-term X' p＼hpX=X'aPJ

and

MMPW-hpiJ'X^KX')),

then V[_G^＼＼=U is a V[Gi~＼-K-complete V＼_G^-normal ultraftlter on PK＼r＼V＼_G＼~＼,

where d is V-generic on P. (Note that j(fi)= p for all p^P.)

Proof.

alla<8<K

U is trivially a proper fine filter. Let r<=:V[_Gl~＼and t(a)^U for

For some />eG, />H-Va<5(r'(a)=r(a)ef/). So, /> forces in M that
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j"X(=j{z'(a)). Or'is a P-term that that every condition forces that r' = f＼a<gr{a).)

Then j{P)＼＼-j{r')―r＼a<di(x{a)). Hence p＼＼-j" X^ j＼t')in M, which says that U

is F[Gi]-/c-complete.

To show that U is ultra, pick a P-terms X and Ac which always denotes

X and PKX―X respectively for given X<=PKXr＼V＼_Gl~＼. If X is not in U, then

we can find a />eG such that p＼＼-^j"X^j(X) since {/>: p decides "/">*e/(2D"}

is dense in /(P). So, ^lhy^ey(Zc) and PKX-X<=U.

For the normality of U, let /: PK1-^X be a regressive function in F[d]

and / be its P-name. Then j(P)＼hj(f)(j"Z)^j"Z. F[G]3M[G] and j(f)(J"X)

=j(a) for some a<X in M[G]. So, "j{f){j"X)=j(a)" is forced by some /igG.

In y[Gx], let X={xeePJ: f{x) = a) and A" be its P-name. j(P)＼hj(X) =

{x^PjmjXX): j(f)(x)=j＼a)＼. Hence p forces "j"X^j(X)" and Zet/. D

Theorem 2.9. // the existence of a super compact cardinal is consistent,it

is also consistent thatk is weakly compact, not measurable, and there is a weakly

normal filteron PKA with cfA^tc+.

Proof. We follow the proof of Theorem 4.4 in [7]. Let P be a forcing

notion adding one generic subset to each inaccessible cardinal less than a;.

j: V―>M is an elementary embedding with the criticalpoint k and M is closed

under 2X-sequences. Note that cfX^ic+. We can furthere assume that 2K^k.

j'(P)―P(^QQ)R, where Q adds a subset to k and R treats inaccessibles

between k and j(k) in M. So, Q satisfiesthe /t+-c.c.and R is /l+-closed. Let

Gu G2, G3 be F-generic over P, Q, R respectively. By the lemma, we have a

F[Gi]-*-complete F[Gi]-normal ultrafilteron PKXr＼V[_G{＼in VCdxGgXGs].

P(PKX)nV[G1xGs~] = P(PJ)r＼V[G^ since R is /+-closed and A=(a<k)v =

Now, U is a F[G!XG3]-/c-complete F[GiXG3]-normal ultrafilteron P(PK2.)r＼

VIG.XG,'] in V[G1XG2XGS~].

Since Q is /c+-c.c,we can find a weakly normal filteron PKl in V＼_GlXG2~]

using Lemma 2.6. It is known that k is weakly compact but not measurable

in VTGxXG,]. D

Recent work of Abe and Matsubara show that weakly normal filterson

PK1 exist if there is a precipitous ideal / with no pairwis disjoint family of

c/^-many sets in I+.
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