WEAKLY NORMAL FILTERS AND LARGE CARDLINALS

By

Yoshihiro ABE

0. Introduction.

In this paper, κ denotes an uncountable regular cardinal and λ a cardinal $\geq \kappa$. For any such pair, $P_{\kappa}\lambda$ is the set $\{x \subset \lambda : |x| < \kappa\}$.

An "ideal on $P_{\kappa}\lambda$ " is always a "proper, nonprincipal, κ -complete, fine ideal on $P_{\kappa}\lambda$ " unless specified. (An ideal I is fine if for all $\alpha < \lambda$, $\{x \in P_{\kappa}\lambda : \alpha \notin x\} \in I$.) For any ideal I, $I^{+}=P(P_{\kappa}\lambda)-I$ and I^{*} is the filter dual to I.

DEFINITON. An ideal I as well as I^* are said to be weakly normal iff for every regressive function $f: P_* \lambda \rightarrow \lambda$,

$$(\exists \gamma < \lambda)(\{x \in P_{\kappa}\lambda : f(x) < \gamma\} \in I^*).$$

The above definition is a translation of Kanamori's "weak normality" for filters on κ in [5]. There is another weak normality presented by Mignone [10]. It is known that our notion is Mignone's weak normality plus some saturation property and every $cf\lambda$ -saturated normal ideal on $P_{\kappa}\lambda$ has our weak normality.

 κ is said to be λ -compact if there is a fine ultrafilter on $P_{\kappa}\lambda$. If κ is λ compact, $P_{\kappa}\lambda$ carries many fine ultrafilters. Moreover every fine ultrafilter has
a weakly normal fine ultrafilter which is Rudin-Keisler ordering below it. So,
it may be a natural question whether κ is large if a weakly normal filter on $P_{\kappa}\lambda$ exists.

In §1, we consider a case where one can say κ is large.

Kunen-Paris [7] and Kunen [6] consider the possibility of $S(\kappa, \eta)$ holding for various κ, η where

 $S(\kappa, \eta) \equiv$ There is a κ -complete η -saturated ideal on κ . §2 is devoted to an application of their methods to weakly normal ideals on $P_{\kappa}\lambda$.

Much of our notation is standard, and Jech [4] or [7] should be consulted.

§ 1. κ may be strong compact.

For a reader's convenience, we give a proof of a lemma which appears Received October 21, 1991, Revised February 17, 1992.

This recearch was partially supported by Grant-in-Aid for Scientific Research (No. 01302006), Ministry of Education, Science and Culure.

in [2].

LEMMA 1.1. If I is weakly normal, then there is no disjoint family of $cf \lambda$ -many sets in I^+ .

PROOF. Suppose that $\{A_{\alpha}: \alpha < cf\lambda\} \subset I^{+}$ is a pairwise disjoint family. Let $\{\lambda_{\alpha}: \alpha < cf\lambda\}$ be a cofinal increasing sequence in λ . We can assume that $A_{\alpha} \subset \{\lambda_{\alpha}\}$ for all $\alpha < cf\lambda$. Define a regressive function $f: P_{\epsilon}\lambda \rightarrow \lambda$ so that $f''A_{\alpha} = \{\lambda_{\alpha}\}$. Then $B = \{x \in P_{\epsilon}\lambda: f(x) \leq \gamma\} \in I^{*}$ for some $\gamma < \lambda$. Now pick a $\lambda_{\alpha} > \gamma$. By the definition of $f, A_{\alpha} \subset f^{-1}(\{\lambda_{\alpha}\})$ and $f^{-1}(\{\lambda_{\alpha}\}) \cap B = 0$. This contradicts to $A_{\alpha} \in I^{+}$.

If $P_{\kappa\lambda}$ carries a weakly normal ideal *I* and $cf\lambda \leq \kappa$, *I* is κ -saturated. So, κ is measurable in some inner model. In general, we can say at least κ is not small.

LEMMA 1.2. (See Matsubara [9]) Let $\kappa = \delta^+$ and I an ideal on $P_{\kappa}\lambda$. If $\gamma \leq \lambda$, $cf\gamma > \delta$ and $X \in I^*$, then X can be decomposed into γ -many disjoint I-positive subsets.

THEOREM 1.3. If $P_{\kappa}\lambda$ carries a weakly normal ideal, then κ is weakly inaccessible.

PROOF. There is no $cf\lambda$ -many disjoint sets in I^+ . Hence κ is weakly inaccessible by 1.2 if $cf\lambda \ge \kappa$. When $cf\lambda < \kappa$, I is $cf\lambda$ -saturated, and there is no λ -saturated ideal on $P_{\kappa}\lambda$ if κ is a successor cardinal. \Box

If $cf\lambda$ is small, κ becomes very large. In fact we have a direct analogue of Proposition 3.8 in DiPrisco and Marek [3].

THEOREM 1.4. Let $2^{\langle cf \lambda} \langle \kappa \rangle$. If there is a weakly normal ideal on $P_{\kappa}\lambda$, then κ is λ -compact.

SKETCH OF PROOF. Assuming that every set $X \in I^+$ can be partitioned into two disjoint sets in I^+ , we construct a tree $T \subset I^+$ with fewer than κ -many branches such that $P_{\kappa}\lambda$ is the union of the intersections of each branches which are all sets in I.

So, there is a set $X \in I^*$ which is not a union of two disjoint sets in I^+ . Then $I|X = \{Y \subset P_{\kappa}\lambda : Y \cap X \in I\}$ is a prime ideal and $(I|X)^*$ is a κ -complete fine ultrafilter on $P_{\kappa}\lambda$. \Box

COROLLARY 1.5. Suppose that $cf \lambda = \omega$ and $P_{\kappa} \lambda$ carries a weakly normal ideal.

488

Then κ is λ -compact.

Combining weakly compactness, the method of 1.4 yields following.

THFOREM 1.6. If κ is weakly compact, $P_{\kappa}\lambda$ carries a κ -saturated ideal and $cf\lambda = \kappa$, then κ is λ -compact.

PROOF. Assume that every $X \in I^+$ is a disjoint union of two sets in I^+ . A tree T with α th level T_{α} is defined as follows.

$$T_0 = \{P_{\kappa} \lambda\}$$

For $X \in T_{\alpha}$, the immediate successors of X are two sets in I^+ such that X is their disjoint union.

For α limit, $T_{\alpha} = \{ \cap S : S \text{ is an } \alpha \text{-branch} \} \cap I^+$.

Since I is κ -saturated, $|T_{\alpha}| < \kappa$ for each $\alpha < \kappa$. Also every $T_{\alpha} \neq 0$ since κ is inaccessible and I is κ -complete.

By the tree property, there is a branch *B* through *T*. Let $B = \{A_{\alpha} : \alpha < \kappa\}$ and $A_{\alpha} = A_{\alpha+1} \cup A'_{\alpha+1}$. Then $\{A'_{\alpha+1} : \alpha < \kappa\}$ is an almost disjoint family which contradicts the κ -saturation of *I*. \Box

We have shown that κ is λ -compact if there is a weakly normal ideal on $P_{\kappa}\lambda$ and one of (a) and (b) is satisfied.

(a) $2^{\langle cf \lambda} \langle \kappa$

(b) κ is weakly compact and $cf\lambda = \kappa$.

§2. κ may not be very large.

Next we examine the other situation and present some consistency results such that κ is not λ -compact although $P_{\kappa}\lambda$ bears weakly normal ideals. Theorem 1.4 and 1.6 impose limitations on κ and λ .

We need several lemmas.

LEMMA 2.1. Let I be weakly normal. If $f: X \rightarrow \lambda$ is a regressive function and $X \in I^+$, then $\{x \in X: f(x) \leq \gamma\} \in I^+$ for some $\gamma < \lambda$.

PROOF. We extend f to $g: P_{\kappa} \lambda \to \lambda$ which is also regressive and g | X = f. Then $Y = \{x \in P_{\kappa} \lambda : g(x) \leq \gamma\} \in I^*$ for some $\gamma < \lambda$ and $Z = X \cap Y \in I^+$. g | Z = f | Z.

This lemma says that our weak normality is stronger than Mignone's virsion of weak normality.

Yoshihiro ABE

LEMMA 2.2. $\{x: cf(supx) < \kappa\} \in I^+$ for every weakly normal ideal.

PROOF. We only have to show that $\{x : \sup x \in x\} \in I$. Then we have $\{x : x \text{ is cofinal in } \sup x\} \in I^*$ and the lemma is proved.

Suppose that $\{x : \sup x \in x\} \in I^+$. By the previous lemma, there is a $\gamma < \lambda$ such that $\{x : \sup x \leq \gamma\} \leq I^+$. Now $\{x : x \subset \gamma + 1\} \in I^+$ contradicting that I is fine. \Box

LEMMA 2.3. Suppose that I is weakly normal and $\alpha < \min(cf\lambda, \kappa)$. Then $\{x : cf(sup x) > \alpha\} \in I^*$.

PROOF. Assume that $\{x : cf(\sup x) \leq \alpha\} \in I^+$. Since $\alpha < \kappa$ and I is κ -complete, there is an $\alpha_0 \leq \alpha$ such that $A = \{x : cf(\sup x) = \alpha_0\} \in I^+$. $I \mid A$ is also weakly normal and $A \in (I \mid A)^*$.

Let $\{\beta_{\xi}^{x} | \xi < \alpha_{0}\}$ be a cofinal increasing sequence in $\sup x$ for each $x \in A$. $f_{\xi}: A \to \lambda$ can be defined so that $\beta_{\xi}^{x} < f_{\xi}(x) \in x$. Now, for every $\xi < \alpha_{0}$ we have $\gamma_{\xi} < \lambda$ such that $\{x \in A: f_{\xi}(x) \le \gamma_{\xi}\} \in (I | A)^{*}$. Since $\alpha_{0} \le \alpha < cf\lambda$, $\gamma = \sup \{\gamma_{\xi}: \xi < \alpha_{0}\}$ $< \lambda$. Then $A_{\xi} = \{x \in A: f_{\xi}(x) \le \gamma\} \in (I | A)^{*}$ for each $\xi < \alpha_{0}$ and $B = \bigcap \{A_{\xi}: \xi < \alpha_{0}\}$ $\in (I | A)^{*}$. But $\sup x \le \gamma$ for every $x \in B$, which is a contradiction. \Box

LEMMA 2.4. Let $\delta > \omega$. Suppose that I is a weakly normal ideal such that $\{x \in P_{\kappa} \lambda : cf(\sup x) \ge \delta\} \in I^*$ and P is a δ -c.c. forcing notion in V. Then I generates a weakly normal ideal J on $P_{\kappa} \lambda$ in the generic extension V[G].

PROOF. In V[G], J is defined by $X \in J^*$ iff $Y \subset X$ for some $Y \in I^*$. By our assumption and 2.2, $\delta < \kappa$. Hence J is an ideal on $P_{\kappa}\lambda$ extending I.

Let f be a regressive function on $P_{\kappa}\lambda$ in V[G] and f its name always denoting a regressive function on $P_{\kappa}\lambda$. In V, for each $x \in P_{\kappa}\lambda$, let $A_x = \{\alpha \in x : p \vdash f(x) = \alpha \text{ for some } p \in P\}$.

Since P satisfies the δ chain condition, $|A_x| < \delta$. Hence $\{x : \sup A_x < \sup x\} \in I^*$ because $\{x : cf(\sup x) \ge \delta\} \in I^*$. Using the weak normality, we have a $\gamma < \lambda$ such that $B = \{x : \sup A_x \le \gamma\} \in I^*$. For each $x \in B$, $1 \vdash \underline{f}(x) \le \gamma$. Clearly every condition forces " $B \subset \{x : f(x) \le \gamma\}$ " and B is a member of J^* . \Box

We only had to require $\{x : cf(\sup x) \ge \delta\} \in I^+$, since $I \mid X$ is also weakly normal for any $X \in I^+$.

We can now show that the inaccessibility of κ is necessary in Theorem 1.4.

THEOREM 2.5. It is consistent that there is a weakly normal ideal on $P_{\kappa}\lambda$ with $\omega < cf\lambda < \kappa$ and κ is not inaccessible.

490

PROOF. Assume that κ is inaccessible, $\omega < cf \lambda < \kappa$, and *I* is a weakly normal ideal on $P_{\kappa}\lambda$ in the ground model. We blow up 2^{ω} to κ by c.c.c. forcing. All the cardinals and cofinalities are preserved and *I* generates a weakly normal ideal in the generic extension by 2.3 and 2.4. \Box

Two problems remain: Is it possible that $P_{\kappa}\lambda$ carries a weakly normal ideal and κ is inaccessible (weakly compact) and nevertheless κ is not λ -compact? Is it consistent that κ is inaccessible, not weakly compact and there is a weakly ideal on $P_{\kappa}\lambda$?

For this purpose We state $P_{\kappa}\lambda$ generalization of what Kunen and Paris [7] did for saturated ideals on κ that is measurable in the ground model.

Let G be Q-generic over V and U is a $V-\kappa$ -complete V-weakly normal filter on $P(P_{\kappa}\lambda) \cap V$ which lies in V[G] i.e., We have in V[G]

- (1) $U \subset P(P_{\kappa}\lambda) \cap V$ and $0 \notin U$
- (2) $X \in U \land X \subset Y \in P(P_{\kappa}\lambda) \land V \to Y \in U$
- $(3) \quad \{X_{\alpha}: \alpha < \delta\} \in V \cap P(U) \land \delta < \kappa \to \cap \{X_{\alpha}: \alpha < \delta\} \in U$
- (4) For every $\alpha < \lambda$, $\{x \in P_{\kappa} \lambda \cap V : \alpha \in x\} \in U$

(5) For each $f \in V$ which is regressive on $P_{\kappa} \lambda \cap V$, there is a $\gamma < \lambda$ such that $\{x \in P_{\kappa} \lambda \cap V : f(x) \leq \gamma\} \in U$.

In addition, assume that Q satisfies the $cf\lambda$ -c.c. and \underline{U} is a name such that $[\![\underline{U}]$ is a $V - \kappa$ -complete V-weakly normal filter on $P(P_{\kappa}\lambda) \cap V]^{B(Q)} = 1$. In V, let $F = \{X \subset P_{\kappa}\lambda : [X \in \underline{U}]^{B(Q)} = 1\}$.

LEMMA 2.6. F is a weakly normal filter on $P_{\kappa}\lambda$.

PROOF. *F* is clearly a filter on $P_{\kappa}\lambda$. For its weak normality, let $f: P_{\kappa}\lambda \rightarrow \lambda$ regressive. Then, $[\{x \in P_{\kappa}\lambda : f(x) \leq \gamma\} \in U$ for some $\gamma < \lambda]^{B(Q)} = 1$.

For $p \in Q$, $p(\gamma)$ is the ordinal such that p forces " $p(\gamma)$ is the least ordinal γ so that $\{x \in P_{\kappa} \lambda : f(x) \leq \gamma\} \in \underline{U}$ ".

Set $A = \{\gamma < \lambda : \gamma = p(\gamma) \text{ for some } p\}$.

Since Q is a $cf\lambda$ -c.c. notion, p and p' are incompatible if $p(\gamma) \neq p'(\gamma)$, $|A| < cf\lambda$. So, $\beta = \sup A < \lambda$ and $[\{x : f(x) \leq \beta\} \in \underline{U}]^{B(Q)} = 1$. Hence $\{x \in P_x\lambda : f(x) \leq \beta\} \in F$. \Box

The situation of lemma is familiar in the large cardinal theory.

Suppose that $cf\lambda \ge \kappa$, R = P * Q, G is P-generic over V and H is Q-generic over V[G], [Q] is $cf\lambda$ -c.c. $]^{B(Q)}=1$, and there exists a $V[G]-\kappa$ -complete V[G]-weakly normal filter on $P(P_{\kappa}\lambda) \cap V[G]$ in V[G][H]. Then we can find a weakly normal filter on $P_{\kappa}\lambda$ in V[G].

Yoshihiro ABE

Assume that $V \models GCH + \kappa$ is supercompact, and R is a usual backward Easton forcing adding α^{++} subsets to every inaccessible $\alpha \leq \kappa$. Let G' be Rgeneric over V. Then $V[G]\models\kappa$ is supercompact+there is a normal ultrafilter on $P_{\kappa}\lambda$. R=P*Q where $[Q \text{ adds } \kappa^{++} \text{ subsets to } \kappa]^{B(P)}=1$ and $V[G]=V[G_1][H]$, G_1 is P-generic and H is Q-generic over V[G]. Since $V[G_1]\models 2^{\kappa}=\kappa^{+}+2^{\alpha}=\alpha^{++}$ for any inaccessible $\alpha < \kappa$, κ is a inaccessible cardinal that is not measurable in $V[G_1]$. Moreover Q satisfies κ^{+} -c.c. in $V[G_1]$. Hence we get a weakly normal filter on $P_{\kappa}\lambda$ in $V[G_1]$ if $cf\lambda \geq \kappa^{+}$.

However, it is not clear whether κ is weakly compact or not in this construction. So, we follow Kunen's argument in [6].

Again we start from the universe V_0 where κ is supercompact. Without loss of generality, supercompactness of κ is indestructible under κ directed closed forcing (Ref. [8]). Let $V_1 = V_0[G]$, G is V_0 -generic over P adding a Cohen subset of κ . Since P is κ -directed closed, κ is supercompact in V_1 . $V_1 = V_0[H][K]$, H is Q-generic over V_0 , K is R-generic over $V_1[H]$, where Q is a notion of forcing which adds a κ -Suslin tree T, and R is T itself.

$$V_1 \models \exists U : V_0[H]$$
-weakly normal filter on $P(P_{\kappa}\lambda) \cap V_0[H]$

and

 $V_0[H] \models Q$ is the κ -c.c.+ $cf \lambda \ge \kappa$

We have a weakly normal filter in $V_0[H]$ and κ is inaccessible but not weakly compact since there is a κ -Suslin tree. We have proved;

THEOREM 2.7. Con $(\exists \kappa (\kappa \text{ is supercompact}))$ implies Con $(\exists \kappa (\kappa \text{ is not weakly compact} + \kappa \text{ is inacessible} + P_{\kappa} \lambda \text{ carries a weakly normal filter} + cf \lambda \geq \kappa))$.

Next we try the case where κ is weakly compact but not measurable. It is impossible that $cf\lambda \leq \kappa$ by Theorem 1.4, 1.6. The following lemma is standard.

LEMMA 2.8. Let $j: V \to M$ be a λ -supercompact embedding with the critical point κ , $P \subset V_{\kappa}$, $j(P) = P \oplus Q$, G be j(P)-generic. If U is defined as;

and

 $p \Vdash_{j(P)} \underline{X} \in \underline{U} \text{ iff for some } P\text{-term } \underline{X}' \quad p \Vdash_P \underline{X} = \underline{X}' \subset P_{\kappa} \lambda$ $M \models (p \Vdash_{j(P)} j'' \lambda \in j(X')),$

then $V[G] \models U$ is a $V[G_1]$ - κ -complete $V[G_1]$ -normal ultrafilter on $P_{\kappa}\lambda \cap V[G_1]$, where G_1 is V-generic on P. (Note that j(p) = p for all $p \in P$.)

PROOF. U is trivially a proper fine filter. Let $\tau \in V[G_1]$ and $\tau(\alpha) \in U$ for all $\alpha < \delta < \kappa$. For some $p \in G$, $p \models \forall \alpha < \delta(\tau'(\alpha) = \tau(\alpha) \in \underline{U})$. So, p forces in M that

492

 $j''\lambda \in j(\tau'(\alpha))$. (τ' is a *P*-term that that every condition forces that $\tau' = \bigcap_{\alpha < \delta} \tau(\alpha)$.) Then $j(P) \models j(\tau') = \bigcap_{\alpha < \delta} j(\tau(\alpha))$. Hence $p \models j''\lambda \in j(\tau')$ in *M*, which says that *U* is $V[G_1]$ - κ -complete.

To show that U is ultra, pick a P-terms X and \underline{X}^c which always denotes X and $P_{\kappa}\lambda - X$ respectively for given $X \in P_{\kappa}\lambda \cap V[G_1]$. If X is not in U, then we can find a $p \in G$ such that $p \models \neg j'' \lambda \in j(\underline{X})$ since $\{p : p \text{ decides } "j'' \lambda \in j(\underline{X})"\}$ is dense in j(P). So, $p \models j'' \lambda \in j(\underline{X}^c)$ and $P_{\kappa}\lambda - X \in U$.

For the normality of U, let $f: P_{\kappa}\lambda \to \lambda$ be a regressive function in $V[G_1]$ and \underline{f} be its *P*-name. Then $j(P) \Vdash j(\underline{f})(j''\lambda) \in j''\lambda$. $V[G] \supset M[G]$ and $j(f)(j''\lambda) = j(\alpha)$ for some $\alpha < \lambda$ in M[G]. So, $(if)(\underline{f})(j''\lambda) = j(\alpha)$ is forced by some $p \in G$. In $V[G_1]$, let $X = \{x \in P_{\kappa}\lambda : f(x) = \alpha\}$ and \underline{X} be its *P*-name. $j(P) \Vdash j(\underline{X}) = \{x \in P_{j(\kappa)}j(\lambda) : j(\underline{f})(x) = j(\alpha)\}$. Hence p forces $(j''\lambda \in j(\underline{X}))$ and $X \in U$. \Box

THEOREM 2.9. If the existence of a supercompact cardinal is consistent, it is also consistent that κ is weakly compact, not measurable, and there is a weakly normal filter on $P_{\kappa}\lambda$ with $cf\lambda \ge \kappa^+$.

PROOF. We follow the proof of Theorem 4.4 in [7]. Let P be a forcing notion adding one generic subset to each inaccessible cardinal less than κ . $j: V \to M$ is an elementary embedding with the critical point κ and M is closed under 2^{λ} -sequences. Note that $cf \lambda \geq \kappa^{+}$. We can furthere assume that $2^{\kappa} \geq \lambda$.

 $j(P) = P \oplus Q \oplus R$, where Q adds a subset to κ and R treats inaccessibles between κ and $j(\kappa)$ in M. So, Q satisfies the κ^+ -c.c. and R is λ^+ -closed. Let G_1, G_2, G_3 be V-generic over P, Q, R respectively. By the lemma, we have a $V[G_1]$ - κ -complete $V[G_1]$ -normal ultrafilter on $P_{\kappa}\lambda \cap V[G_1]$ in $V[G_1 \times G_2 \times G_3]$.

 $P(P_{\kappa}\lambda) \cap V[G_1 \times G_3] = P(P_{\kappa}\lambda) \cap V[G_1] \text{ since } R \text{ is } \lambda^+ \text{-closed and } \lambda = (\lambda^{<\kappa})^V = (\lambda^{<\kappa})^{V[G_1]} = (\lambda^{<\kappa})^{V[G_1 \times G_3]}.$

Now, U is a $V[G_1 \times G_3]$ - κ -complete $V[G_1 \times G_3]$ -normal ultrafilter on $P(P_\kappa \lambda) \cap V[G_1 \times G_3]$ in $V[G_1 \times G_2 \times G_3]$.

Since Q is κ^+ -c.c., we can find a weakly normal filter on $P_{\kappa}\lambda$ in $V[G_1 \times G_2]$ using Lemma 2.6. It is known that κ is weakly compact but not measurable in $V[G_1 \times G_2]$. \Box

Recent work of Abe and Matsubara show that weakly normal filters on $P_{\kappa}\lambda$ exist if there is a precipitous ideal *I* with no pairwis disjoint family of $cf\lambda$ -many sets in I^+ .

Yoshihiro ABE

References

- [1] Y. Abe, Weakly normal filters and the closed unbounded filter on $P_{\varepsilon}\lambda$, Proc. Amer. Math. Soc. 104 (1988), 1226-1234.
- [2] Y. Abe, Saturated ideals and subtle properties of $P_{\kappa}\lambda$, circulated.
- [3] C.A. DiPrisco and W. Marek, Some properties of stationary sets, Diss. Math. 218 (1983).
- [4] T.J. Jech, Set theory, Academic Press, New York (1978).
- 5] A. Kanamori, Weakly normal filters and irregular ultrafilters, Trans. Amer. Math. Soc. 220 (1976), 393-399.
- [6] K. Kunen, Saturated ideals, J. Symbolic Logic 43 (1978), 65-76.
- [7] K. Kunen and J.B. Paris, Boolean extensions and measurable cardinals, Ann. Math. Logic 2 (1971), 353-378.
- [8] R. Laver, Making the supercompactness of κ indestructible under κ -directed closed forcing, israel J. Math. 29(4) (1978), 385-388.
- [9] Y. Matsubara, Menas's conjecture and generic ultrapowers, Ann. Pure and Appl. Logic 36 (1987), 225-234.
- [10] R. Mignone, A direct weakening of normality for filters, preprint.

Numazu college of technology, Numazu-shi, Shizuoka, 410 Japan