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1. Introduction

There is introduced in [3] an interesting theorem on maximal planar graphs,

due to Wagner [6], as follows:

Theorem 1. (K. Wagner) Any two maximal planar graphs with the same

number of verticesare equivalent under diagnal transformations.

A maximal planar graph G is a simple graph embedded in the plane such

that one can add no new edge to it in the plane, that is, such a one that each

region or face is three-edged. The diagonal transformation is to switch the

diagonal edge ac in the union of two adjacent triangular faces abc and acd, as

shown in Figure 1. We however have to preserve the simpleness of graphs,

that is, the diagonal transformation cannot be applied if vertices b and d are

adjacent in G.

a a

b d ―*. b d

c c

Figure 1. Diagonal transformation

In fact,it has been that every maximal planar graph can be transformed

into the normal form given in Figure 2 by a finite sequence of diagonal trans-

formations and hence any two maximal planar graphs are transferable via this

normal form. The planarity of graphs ensures that the degree of an arbitrary

vertex can be decreased to 3 by switching edges incident to it.
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Figure 2. Normal form for maximal planar

graphs with &+3 vertices

Theorem 1 can be translated naturally into the theorem that any two trian-

gulations with n vertices on the sphere are equivalent under diagonal trans-

formations. Dewdney [1] had already proved that any two triangulations with

n vertices on the torus also are equivalent under diagonal transformations. Since

the triangulation on the torus with fewest vertices is the unique embedding of

the complete graph K7 on seven vertices, we can take the triangulation given

in Figure 3 as a normal form of toroidal triangulations.

Theorem 2. (A. K. Dewdney) Every triangulation of the torus can be trans-

formed into the normal form in Figure 3 by diagonal transformations.
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Figure 3. Normal form for toroidal triangulations

In this paper, we shall deal with triangulations of other closed surfaces

and prove the following two theorems which imply that any two triangulations
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Figure 4. Normal form for projective-planar triangulations
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with n vertices of the projective plane and Klein bottle are equivalent under

diagonal transformations:

Theorem 3. Every triangulation of the projective plane can be transformed

into the normal form in Figure 4 by diagonal transformations.

Theorem 4. Every triangulation of the Klein bottle can be transformed into

the normal form in Figure 5 by diagonal transformations.
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Figure 5. Normal form for Klein-bottlal triangulations

To get the actual triangulation of each normal form, we have to identify

the parallel pairs of edges on the boundary of each polygonal disk so that the

labels of vertices coincide, and have to add a suitable normal form of maximal

planar graphs (Figure 2) to each shaded face so that the result has the same

number of vertices as a given triangulation.

We shall use the terminology and notations in [2] for graph theory and

quite standard ones for topology.

2. General observations

Let F2 be a closed surface, that is, a compact 2-manifold without boundary.

A simple graph G embedded in F2 is called a triangulation of F2 if G divides

F2 into three-edged regions, called faces of G. Since G has no self-loop and

no multiple edges, such a triangulation G induces a simplicial2-complex structure

of F2 unless G is Kt in the sphere. For each vertex v of a triangulation G,

we define the star neighborhood st(v,G) and the link lk(v, G) of v as the union

of triangular faces meeting v and its boundary cycle, respectively. Two trian-

gulations Gx and G2 in F2 are said to be isomorphic if there is a homeomorphism

h: F2->F2 such that /j(Gi)=G2.

We define the diagonal trnsformation for triangulations in F2 as the same

local modification as is mentioned in introduction. Two triangulations of F2

are said to be equivalent (under diagonal transformations) if one can be trans-



158 Seiya Negami and Shin Watanabe

formed into the other, up to isomorphism, by a finite sequence of diagonal

transformations.

Lemma 5. Let Gi and G2 be two triangulationsin F%. If there are vertices

Vi^.V{Gi) and i;2eF(G2) of degree 3 such that Gi―Vi and G2~v2 are isomophic,

then Gi and G2 are equivalent.

Proof. Let G be a triangulation in F2, isomorpfaic to Gx―vx and hence to

G2―v2, and let v be an extra vertex of degree 3 added to a face abc of G.

Figure 6 shows a transformation which carries v to a neighboring face acd. It

should be noticed that vertices a and c are not adjacent in the second stage.

By repeating this process, we can replace v in suitable faces of G to get d

and G2. Thus, there is a sequence of diagonal transformations which transforms

Gx into G2. E

a a a

b

d-*h d―*b d

c c c

Fig. 6.

Lemma 6. Let Gx and G2 be two triangulationsof a closed surface F1 which

have vertices vx and vz of degree 3, respectively. If d ―vx and G%―v2 are equi-

valent, then d and G2 are equivalent.

Proof. We use induction on the length n of a sequence of triangulations

d―Vi^Ho, Hu ･■■, Hn ―G2―v2 such that //£_iis transformed into Ht by a single

diagonal transformation. If n―0, then Gt and G2 are equivalent by Lemma 5,

which is the firststep of our induction.

Let abc be the face of d―Vi which contains vx and suppose that the first

diagonal transformation, applied to Ho, in a sequence of length w>0 switches

an edge a'c' to b'd'in a rectangle a'b'c'd'.

If a'c'is not an edge lying on the triangle abc, the transformation can be

regarded as a diagonal transformation for d directly. If a'c'is one of edges

on abc, say ac, then the transformation can be translated into two consecutive

diagonal transformations for G＼ as shown in Figure 7, where a, b, c,d corres-

pond to a' b',c',d' in order.
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In either case, d is equivalent to a triangulation G{ such that G[―v[ is

isomorphic to Hx for a vertex v[ of degree 3. By the induction hypothesis, G[

is equivalent to G2 and hence so is Gx. m

Let G be a triangulation in F2 and v a vertex of G with neighbors uu u2,

wn(n^4) lying cyclically on the link Ikiv, G) in this order. Suppose that

no edges incident to v can be switched by a diagonal transformation, and hence

that the degree of v cannot be decreased by only deformation within the star

neighborhood st(v, G) of v. Then there must exist n edges UiUi+2 (z'=l, 2, ･･･,

n―2), Mn-iMi and u,>u2(or two edges UiW3 and u2u4 if n=4). We define the

graph Fn as the union of the wheel st(v,G) with center v and these n(or two)

edges. In particular, F4 and F-oare isomorphic to the complete graph Ks and

/T6,respectively, but Fn is not complete if n^6.

F<

Figure 8.

Lemma 7. Let G be a triangulationin F2 and C a cycleof G which bounds

a 2-cell D2 in F2, Then G(~＼D2can be deformed by a sequence of diasonal trans-
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formations and deletions of verticesof degree 3 so that afterward the neighbors

of each vertex in the interior of D2 are contains in C. After such deformation,

the interior of D2 contains at most lO≪―2)/2J vertices of G if C has length m.

Proof. Let v be a vertex of G in the interior of D2 and apply diagonal

transformations to edges incident to v as long as possible. If deg(v)―3, we

remove v out of G and continue the following argument for another vertex.

Here we can assume that v lies at the center of the graph Fn(n2>4). If an

edge UiUi+z were contained in D2, then the triangle vUiUi+2 would bound a 2-

cellin D2 which contains ui+l but not ui+z. In this case, no edge could join

Mf+i to ui+3) a contradiction. Thus, all of UiUi+2!s are placed in F2 ―D2. This

implies that each Ui(i=l, 2, ■■･, n) lies on C, the boundary of D2.

Therefore, if C has length 3, then D2 cannot contain any vertex after the

deformation, which corresponds to that i(m―2)/2_＼=0 if m=3. When some

vertices remain in the interior of D2 with ra^4, we estimate the number of

them inductively as follows.

If D2 contains two or more vertices, then it does not coincide with the star

neighborhoods st(v,G) of any vertex v and there is an edge on the link lk(v, G)

which divides D2 into two 2-cells. Let mx and m2 denote the length of their

boundary cycles, respectively. Then we have m ―7n1+ m2―2. By the induction

hypothesis, we can assume that those 2-cells contains at most (mi―2)/2 and

(m2―2)/2, and hence U1 contains at most (m―2)/2=(ra1―2)/2+(m2―2)/2 vertices.

1

3. Proofs of theorems

We shall prove Theorems 3 and 4 through thissection. Our proofs of these

theorems will proceed in a common manner as follows.

A triangulation G of F2 is said to be pseudo-minimal if G is equivalent to

no triangulation which has a vertex of degree 3. By Lemma 6, we can conclude

that any two triangulations with the same number of vertices are equivalent if

any two pseudo-minimal triangulations are equivalent. So our goal is to show

that any pseudo-minimal triangulation of the projective plane and Klein bottle

are equivalent to the normal forms in Figures 4 and 5, respectively.

Let F2 be one of the projective plane and Klein bottle and G a pseudo-

minimal triangulation in F2. Suppose that the minimum degree 8(G) of G is

the smallest among the pseudo-minimal triangulations equivalent to G and let v

be a vertex of G such that n=deg(v)=d(G)^4t. Then v lies at the center of

Fn. By Euler's formula, any triangulation of the projective plane (or of Klein
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bottle)has a vertex of degree at most 5 (or 6), so we have n<^5(or n<^6) if F2

is the projective plane (or the Klenin bottle).

We shall keep the situationin the previous paragraph hereafter and often

use the fact that any m-gonal region contains no vertex if m<n, which follows

from Lemma 7.

Case of the projective plane:

Assume that F2 is the projective plane and n=A. Then the triangle vu^u?,

is a non-trivialloop in F2 and hence it is the center line of a Mobius band in

F2. Cut open F2 along vUiU3, then we get the hexagonal 2-cell as shown in

the left hand of Figure 9, where the vertex with label i corresponds to ut.

If square 1243 (precisely uiu2uius) had a dianoal, then G would have multiple

edges 14 or 23, contrary to the simpleness of G. Thus, there i s a unique

vertex of degree 4 in square 1243 which is adjacent to 1, 2, 3, 4, by Lemma 7.

Also square 1324 contains no diagonal but a unique vertex of degree 4. If we

switch the three edges uxui, u2us and m2m4, then the right hand of Figure 9

will be obtained. This contradicts that G is pseudo-minimal since the resulting

triangulation has a vertex of degree 3.
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Figure 9.

Now suppose that n=5. The graph Fb is isomorphic to KR and has the

unique embedding obtained in Figure 4. Since such an embedding of Fh is

triangular, G has to coincide with F5 by Lemma 7.

The above argument concludes that there is a unique pseudo-minimal trian-

gulation of the projective plane, isomorphic to K6 as a graph. By Lemm 6,

any triangulation is equivalent to K6 with extra vertices of degree 3 added in

order. So we can choose Figure 4 as a normal form of projective-planar trian-

gulations. Now Theorem 3 has been proved, m

Case of the Klein bottle:

Assume that F2 is the Klein bottle. Each triangle vui.un.?(i=l, 2, ･･■, n) is
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a non-trivialloop in F2 and is the center line of an annulus or a Mobius band

in turn. In the former case (or latter case), such a loop is said to be 2-sided

(or 1-sided). Note that any 2-sided loop given as vUiUi+2 cuts open the Klein

bottleinto an annulus.

Case 1. First, suppose that at least one of them, say vu2u4, is 2-sided.

Then vuiU3 is 1-sided and F% can be cut open along the bouquet of vu2u4 and

vuiU3 into a rectangle with v's at four corners; otherwise, F% would be a torus.

Assume that n=4 under the above condition. Let 24x and 2Ay(x^y) be the

two triangles adjacent to edge 24 (precisely u2u4) and let 13s and 13t(s=tt)be

the such triangles for edge 13 (Figure 10(i)). If x and y were not adjacent in

G, we could replace the diagonal 24 with xy in 2x4y and next lv with 24 so

that afterward v has degree 3, contrary to G being pseudo-minimal. Thus, x

and y and also s and t are joined by an edge, respectively. Up to symmetry,

we have the two possibilitiesshown in Figures 10(ii)and (iii),where x―s, y―t

and x=s, yi±t,respectively.
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Figure 10.

In either figure,if there is a vertex z in rectangle 43ry or list, then z has

degree 4 and we can replace the diagonal xy or st in rectangle xzy* or szt* and

carry out the same deformation as in the previous paragraph, a contradiction.

Thus, both 43-ry and list contain no vertex and are divided into two triangles

by diagonals 3y and At, respectivly. It is however impossible in case of Figure

10(ii).

By Lemma 7, pentagon 23fry in Figure 10(iii)contains at most one vertex.

If there is no vertex in 23txy, then we get the normal form in Figure 5 after

adding diagonals 2t, yt. If there is a vertex in 23txy, then we have the three

possibilitiesshown in Figures ll(i),(ii)and (iii). However, the diagonal trans-

formations indicated by dashed lines transform them into one that have vertices

of degree 3, contrary to G being pseudo-minimal. Therefore, we conclude that

if v has degree 4, then the pseudo-minimal triangulation G is the normal form

in the Klein bottle.
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Now suppose that v has degree 5. In this case, we have Figure 12(1) as

the rectangle obtained from F2 by cutting it open along the bouquet of vu2Ui

and viiiUz,and consider triangles 24x, 24y, 13s and I3t. As in the previous case,

we may assume that there are edges xy and st in G. The simpleness of G

implies that x^2, 3, 4; y=tl, 2, 3, 4, 5; s=£l,2, 3, 5; t^l, 2, 3, 4. The vertex x

might be equal to one of vertices 1 and 5. We shall consider the three cases

below, depending on it. Now any rectangle region in F2 contains no vertex

and is divided into two triangles by a diagonal, by Lemma 7.
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Figure 12.

If x=l (Figure 12(ii)),then we have to draw the edges indicated by dashed

lines but no more edge can be added to the rectangle 145s which also contains

no vertex. Thus, it is impossible to construct the whole of G in this case.

When x=5 (Figure 12(iii)),we add firstedges 14, 53 and next 3y in the

rectangle 532y and finallya vertex z of degree 5 in the pentagon 125^4 to com-

plete the triangulation. The resulting triangulation (Figure 13(i))is another

pseudo-minimal triangulation of the Klein bottle with 8 vertices. However, it

can be transformed into one that which has a vertex of degree 4 by switching

Sy{―ty). This implies that G is equivalent to the previous normal form with

a vertex of degree 4.

When x^l, 5, we have 5=t and 4=s after adding 52, 53 and 14 to Figure
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12(i). The rectangle containing xy as its diagonal must be Ix5y to forbid the

switching of xy. Then the triangulation in Figure 13(ii) will be obtained. It

is also pseudo-minimal, but we can decrease the degree of v to 4, replacing 25

with 3y and next Iv with 25. Thus, G is equivalent to the normal form in

Figure 5.
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Finally, suppose that v has degree 6. Then F6 with v at the center is

embedded in F2 as shown in Figure 14. Since any rectangle contains no vertex

now, the whole of G has to be obtained by adding diagonals to 1245, 3564 and

6132. It is however impossible; firstadd 36 to 3564, then there is no diagonal

which can be added to 6132.
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Case 2. Now suppose that all of vUiUi+z(i―l, 2, ■■■, n) are 1-sided loops in

the Klein bottle F2, and cut open F2 along vuiUs (Figure 15(i)). Then one of
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cycles 1324(56) and 1243 bounds a cross cap (=Mobius band) and the other bounds

a 2-cell.

First suppose that v has degree 4 (Figure 15(ii)). Then we may assume

that 1243 bounds a 2-cell and 1324 bounds a cross cap, up to symmetry. Since

1243 cannot contains a diagonal, there is a unique vertex x of degree 4 in 1243.

Let 2y3;y be the rectangle containing 23 as its diagonal. Now y coincides with

neither 1 nor 4 since multiple edges would arise if not. So we can replace the

diaonal 23 with vy and next 4x with 23 in 243x so that deg(x)=2> afterward,

contrary to G being pseudo-minimal.

Now suppose that 1243 bounds a cross cap and that deg(v)=5 or 6. If

deg(v)=6, then 64 and 51 could not be placed simultaneously in the 2-cell bounded

by 132456. If deg(v)=5, then the 2-cellbounded by 13245 is triangulated by

edges 53, 52 and the cross cap contains edge 14 (Figure 15(iii)).In this case,

if the cycle 124 did not bound a face, we could switch the diagonal 24 in 254*

and next 3v in 34v2 to decrease the degree of v, contrary to the assumption of

v. Thus, triangles 124 and similarly 134 have to bound faces, but this implies

that F2 would be a projective plane, a contradiction.

Therefore, deg(v)=5 or 6 and 1243 has to bound a 2-cellwhich contains the

diagonal 14. By the symmetry, the cycles {i, 2+ 1, 2+ 3, 2+ 2} bounds 2-cells

with diagonals (i, 2+3) (2= 1, 2, 3, 4, 5 mod 5). This is however possible only

when both 1243 and 13245 bound 2-cellslike Figure 15(iii),which implies that

F2 would be the projective plane.

Since any situation under Case 2 implies a contradiction,any pseudo-minimal

triangulation of the Klein bottle is equivalent to the normal form recognized in

Case 1 and Theorem 4 follows, m

4. Remarks

We conjecture that any two triangulations in a given closed surface are

equivalent under diagonal triangulations. To prove this,it sufficesto observe

that any two pseudo-minimal triangulations are equivalent, as our strategy in

this paper. Unfortunately, if one carries out arguments similar to ours in Sec-

tion 3, a tedious and long proof will be obtained in general.

A triangulation G in a closed surface F2 is said to be minimal if the number

of faces (or of vertices equivalently) of G is the smallest among all the trian-

gulations of F2. If the complete graph Kn has a triangular embedding in F2,

then the embedding is a minimal triangulation of F2 and Kn is the unique

graph which induces a minimual triangulation.(See [4] and [5] for minimal
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triangulations.)

Since no diagonal transformation can be applied to Kn, our conjecture is

false for F2 if such Kn has two or more inequivalent embeddings in F2. For

example, the embeddings of K6 and K7 in Figures 3 and 4 are minimal trian-

gulations of the projective plane and the torus, respectively, and they are uni-

quely embeddable, up to homeomorphism, in each surface. On the other hand,

the minimal trinagulations of the Klein bottle are not complete and not unique,

but they are equivalent.

Every minimal triangulation is pseudo-minimal, but the converse is not so

clear. If there is a pseudo-minimal triangulation G of F2 which is not minimal,

then our conjecture is not true again. For G is not equivalent to any trian-

gulation obtained from a minimal triangulation by adding vertices of degree 3

in order. It is however not so difficultto show that for any two triangulations

Gi and G2 of F2 with possibly different number of vertices, there is a common

triangulation which can be transformed into d and G2 by sequences of diagonal

transformations and deletions of vertices of degree 3.
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