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OF THE SCATTERING KERNEL FOR THE
ELASTIC WAVE EQUATION
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Mishio KAWASHITA

§0. Introduction

In 1977, Majda [6] proved a representation formula of the scattering kernel
for the scalar-valued wave equation. Melrose [7] and Soga [9] obtained the
equivalent representation formula. This formula was very useful to investigate
the inverse scattering problems (cf. Majda [6], Soga [9], [10]). For the elastic
wave equation, Shibata and Soga [8] recently have given us the scattering
theory by the same conception as in Lax and Phillips [4] and a representation
formula has been proved by Soga [11]. Since he uses the same approach as
in the case of the scalar-valued wave equation (cf. Soga [9]) it is necessary to

get the leading terms of integrals Ssn_l(j,‘/e)(tgo(w), w)dw as |t!-—co, where J.
is a pseudo-differential operator with a homogeneous symbol of order (n—1)/2
(for the precise definition of j. see §1). This caused the difficulty in his
strategy and the necessity of the convexity of each slowness surface.

In the present paper, we give a proof of the representation formula of the
scattering kernel for the elastic wave equation without a convexity assumption
of the slowness surfaces. Qur proof is based on a kernel representation for
the Fourier transform of the scattering kernel (cf. Theorem 1.2 in §1). Since
the Fourier transformation changes the operator /. into a multiplication operator,
in the proof of that kernel representation we do not meet the difficulty in Soga
[117 stated above. Furthermore, we do not need the convexity assumption of
the slowness surfaces to obtain that kernel representation. This is one of the
main parts in the present paper. Thus, our proof gives us not only the sim-
plicity but also the removal of the convexity assumption of the slowness sur-
faces.
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Let £ be an exterior domain in R™ (n=3) with smooth and compact bound-

ary. We set

A@u= 3 Bu@ideyn), ="y, Uy, -, Un),
i j=1

where a;;=(aipj|B4D) are nXn matrices and each a,,;, is constant. We
consider the elastic wave equation with the Dirichlet or the Neumann boundary
condition

(90— A@@:)ult, x)=0 in RX %,
(0.1) B@)u@, x)=0 on Rxd8,

u(0, X)=fi(x), Q.u(0, x)=fx) on L.

Here the boundary operator is of the form B(d.)u=u|;e (for the Dirichlet con-
dition), B(0z)u=233% ;=1 vi(x)a:;0: uls0 (for the Neumann condition), where v(x)
=4y (x), vao(x), -+, va(x)) is the unit outer normal to 2 at x=af.

We assume that

(A1) Qipjqe=—Apijg— Qjgip »
<A2> . 2 aiqusquipgal_ Z Ieiplg’
. pJe=1 i, p=1
(A.3) A&)= i a;€:&; has d characteristic roots of
i.j=1

constant multiplicity for any §éR™\ {0},

where (g;,) is any nXn symmetric matrix and d, is some positive constant in-
dependent of (ej,).

Under the assumptions (A.1)~(A.3), Shibata and Soga [8] formulate the
scattering theory which is analogous to the theory of Lax and Phillips [4]. Let
k_(s, w) and k. (s, )€ LARXS" H={L*RXS™*)}" be the incoming and outgo-
ing translation representations of the initial data f=*(f,, f.) respectively. The
mapping S: k_—k, is called the scattering operator, which is a unitary operator
from L:RXxS"™') to itself. The scattering operator S has a temperate distri-
bution kernel called the scattering kernel, and S is of the form

~

(Sk)(s, O)=k.(—Dsk(s, 0)—{—3 _ISo(s—s’, 0, wk(s’, w)ds'dw,

Rx8™

where x,(—D;) is a pseudo-differential operator with symbol k,(—a) defined as
£n(0)=1 (for odd n) and «,(¢)=—a/|a| (for even n), and Sy (s, 8, w) is a tem-
perate distribution kernel.

The representation formula of Sy (s, 8, w) is given by use of the solution
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wj(t, x ; ) of the problem
(0F—A(0))w;=0 in BX &,
{ B(0o)wy=—2"(—2r~/—1)' " 2(@)™""
l B@.) {6(t— @) *0-x)Piw)}  on RXaQ,
w;=0 if ¢ is small enough.

In the above, {A;{(&)}=1,...c O<A(E)< -+ <A4(E)) are the eigenvalues of A(§), and
each P,(€) is the eigenprojector of the eigenvalue 1(£). From the assumptions
(A.1)~(A.3) it follows that each 1;&) and Py(€) is a smooth function in §&R™ {0}.
Note that w,(t, x ; w) is an nXn matrix of smooth functions in xef and wc
S»~! with the value of temperate distributions in t<R.

THEOREM 0.1. If we assume (A.1)~(A.3), then the temperate distribution
S(s, 8, w) stated above is of the form

Sis, 0, @)= 3 20" (POI@EN@ )0 )A8) 2y 05, 33 @)

—A:0)7 P 0) (N@,)(0 - y)@F " w ) AL0) 2y -0 —s, y; @)} dSy,

where N(0z)u=3} j=1 vi(X)a:;0z U |50.

Note that the above integral means the Riemann integral of smooth func-
tions with the value of temperate distributions.

Soga [11] obtains the same result as Theorem 0.1 with an additional as-
sumption that every slowness surface {#=R"|10)=1} is strictly convex (cf.
Theorem 1 in [11]). Thus, Theorem 0.1 is an improvement of Theorem 1 in
[117].

We do not prove Theorem 0.1 directly. In our approach, we first obtain a
representation formula of the Fourier transform of S(s, 6, w) by the outgoing
scattered plane waves. That representation formula is stated in § 1 as Theorem
1.2, which is proved in §2~§4. Theorem 0.1 is derived from Theorem 1.2 by
the Fourier inversion formula (cf. § 1).

§1. A representation formula of the modified scattering matrix.

In this section, we review the scattering theory obtained by Shibata and
Soga [8] and the definition of the modified scattering matrix in Lax and Phillips
[5]. Next, we state a representation formula of the modified scattering matrix
by the outgoing scattered waves as Theorem 1.2, which gives us Theorem 0.1
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by the Fourier transformation.
We denote H by the Hilbert space defined as the completion of {f=(f,, f2)!
B(0,)f,=0} with the energy norm

”f“%iz%SQ{Lj,;n’qzlaiquaxjflq(x)ariflp(x)+[fz(-’v')lz}dx .

The mapping f—*(u(t, -), 0.u(t, -)) becomes a group of unitary operators {U(#)} ,cr
on H, where u(f, x) is a solution of problem (0.1) with initial data f="*(f,, f.).
In the free space case (i.e. 2=R"), we denote by H, the Hilbert space with
the energy norm | f|x, and by {U()}.cr a group of unitary operators on H,
which is a solution operator of the free space problem.

The free space translation representation T: H,—L*(RXxS"™ ') has the re-
presentation

T3/ (s, w):jé A{@) Plw) ] . R;f )N A{w)?s, w) for any feCT(R"),
where
R,f(s, @)=—A{w)"*0:] (s, o)+/o(s, ®) (=1, 2, -, d),
74s, a)):S“m F4x)dS.  (j=1, 2) (the Radon transform),
Je=(—0s)" /% for odd n and J.=(~08,)*'»'2.(D,) for even n with

~gli? (for ¢=0),

4—‘-«—72:—-']00”2 (for ¢<0).

We fix a constant p>0 with 0Q2CB,, where B,={xeR"||x|<p}. We
define the outgoing subspace D% as

Do=Uy(+Cinp)D",

where D={fcH,|T;f(s, ®)=0 in =s<0}={feH,|U,t)f=0 in |x]| <=4 Cnint}

and Cpin= min inf {A;@)"?} >0. The outgoing subspace D¢ is the closed
j=1,+d wcSn-1

subspace in H, and H.
The scattering operator S introduced in §0 is represented as S=
TIWIW _(T3)"!, where the wave operators from H, to H

W.f=s—lim U(—HUst)f

are well-defined and complete (cf. §3 of [8]). We define unitary operators
T, H-L*(RXS" ") and 9%: H—LYRxS*Yas T.=F 'TiWz'and 9i=F'T%,
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where Fk(o, w):Sm exp(—+/—1a-5)k(s, w)ds is the Fourier transformation with

respect to scR. The operators 9, and 9_ (resp. 9% and 9°) are called the
outgoing and incoming spectral representation of {U(t)} (resp. {U.f)}) respec-
tively. They satisfy

(1.1) g.U)y=e'-Tiq, for any teR,
(resp. FU()=e’-17tg? for any t<=R).
Now, wet set S=F~'SF. Using the outgoing and incoming spectral repre-

sentations, we can express the operators S as S=9,.9'. Hence, the operator
S has the following properties:

(i) S is unitary on LARXS™™),
(ii) & commutes with multiplication by bounded
measureable complex-valued functions.

Then, by Corollary 4.2 in Chap. Il of Lax and Phillips [4], we have the fol-
lowing Proposition.

PROPOSITION 1.1. There is a B(L¥S"™"), L¥S"V)-valued function S(o) on
o= R cailed the modified scattering matrix satisfying that S(g) is unitary for
almost all e=R, and for any ke LA(RXS" ') we have

Sk(a, 0)=(S(o)k(a, -))(O)  for almost all =R and &S5

Note that for odd n, S(¢) is the same as the scattering matrix in Lax and
Phitlips [4].
We denote v{(x ; 0, @) C(2X(R~{0})xS"*™") by the outgoing solution of
problem
(A@)+ oW (x; 0, w)=0 in 2,
(1.2) B@: P (x ; 0, w)=—A(w)™""
-B(3,) {e~ "M@ T a0z D)) on 942,

where outgoing means that vY(x; ¢, ) is the analytic continuation of the
L*(Q)-valued solution of problem (1.2) with Img<0. Note that v{? is an nXn
matrix of smooth functions in & and w=S""' with the value of temperate
distributions in ¢<R, and satisfies (Fw,;)(x; ¢, @)=2"(—2x+/~1)!'""0(x; 7, )
for each j=1, 2, ---, d.

THEOREM 1.2. If we assume (A.1)~(A.3), then the modified scattering matrix
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S(a) is represented as
(S(@)k(a, O)=knl(@)h(o, O+ K(a, 0, 0)k(o, w)do

a.e. o and 6 for any ke CyRXS" ™),

where K(a, 0, )= C>(R~{0})XS**XS"™") is of the form

I GV ) SR
K(O’, 0, w)gm_——l)nﬂ i;/_izllti(e) !

Sageq“”a)_””'y {PLON@ W)y ; 0, )

— N/ =1a2:6) 2 PO (N (@, X0 - N (v ; 0, @)} dS, .

Now, we prove Theorem 0.1 by use of Theorem 1.2. We denote <,)> by
the pairing of temperate distributions. From S=FSF~™! and Theorem 1.2 it
follows that

(1.3) (Sk, hy—<&(—Dk, h)

K(e, 8, ®)F 'k(co, w)dw-Fh(s, 8)d8do

Slgxsn—lgsn—l

for any k, heS(RxS* ') with F'k, FheCy{RxS" '), which yields the right-
hand side of (1.3) is of the form

o d
SY ). —n/a,Y=1ad0)=1/20 .y
[0l o] as,\" do 31 aqoymmermioncor-ymey

[Pu0)3 2 s V@, 0, @F (o, )-Fita, 0)
(O POV NG, )+ )
s 003 0, F ko, @) Pi(o, )},

In fact, since from the assumptions (A.1)~(A.3) it follows that each v{’(x ; ¢, ®)
is locally uniformly bounded in @XRXS™! (cf. the proof of Theorem 1.2 in
Iwashita and Shibata [37), the integrated function of the right-hand side is
absolutely integrable. Hence, by the Fourier inversion formula we obtain
Theorem 0.1.

Thus, our purpose in the rest of the present paper is to prove Theorem
1.2. In the case of the scalar-valued wave equation Lax and Phillips [5] give
a kernel representation of the modified scattering matrix, however, they use
the asymptotic behaviour of the fundamental solutions for the free space prob-
lem as |x|—oo. Hence, the lack of the assumption about the convexity of the
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slowness surfaces does not allow us to use their approach completely. Never-
theless we can prove Theorem 1.2 because the result about the analytic con-
tinuation of resolvent obtained by Iwashita [2] and Iwashita and Shibata [3]
gives us a characterization of outgoing and incoming solutions.

In §2, we give the representation of 9, by the distorted plane waves.
Theorem 1.2 is proved in § 3 by means of the explicit form of the difference
between the outgoing and incoming fundamental solutions for the free space
problem. It is one of the crucial fact to obtain Theorem 1.2 as is pointed out
in Lax and Phillips [5]. In our case, we can not write the fundamental solu-
tions by use of special functions, however, we can get the explicit form stated
above by looking at the construction of that solutions carefully (cf. §4).

§2. The spectral representations.

In §1, we see S(¢)=9,9-'. Hence, to prove Theorem 1.2, we have to
represent 9, (resp. 9_) by the outgoing (resp. incoming) distorted plane wave,
which is our purpose in this section.

We set
Wi 0, 0)= 3 2@ e T e P,
$.(x; 0, @)=cy (Ow(x; g, 0){1, vV~1d},
where
(=D 01222r) (v —1g) 972 (for odd n),
Cmi(a):{ F(=1)"2-12027) A/ —16) 2] (¢) (for even n).

Since 98=F"'T% we have the following representation
2.1 (T2)(e, @)=/, ¢:(-; 0, ®e)n,
for any f=S(R") and (=1, ---, n,
where (92f), is the [-th component of 9¢f and ¢,=%0, -, 1, ---, 0) (i.e. the
[-th column is 1 and other columns are 0).
Next, we define the distorted plane wave ¢, as
Pu(x; 0, 0)=cn, () {wo(x; 0, @)+v.(x; 0, ©)} {1, vV—10}

where v.(x; 0, ©)=3%,vP(x; 0, w), and v¥(x; 0, ®) is defined in §1, and
v¥(x; 0, w) is the incoming solution satisfying (1.2). In the above, incoming
means that v9(x ; ¢, @) is the analytic continuation of the L% Q)-valued solution
of problem (1.2) with Im¢>0. Note that v.(x; o, @)= C(Q X (R~ {0} )X S™ ™).
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To represent 9. by using the distorted plane waves we need the asymptotic
behaviour of v¥(x; ¢, w) as |x|—co. To get this we introduce the solution
operator W*(z) of problem

{ (A@)+2"(x 5 2)=0 in 2,
B(0.)v(x ; z)=g(x) on 0Q.

(2.2)

For any m=>=0, the operator W=*(z) is a B(H™(9Q2), H™*¥2))-valued holomor-
phic function in +Imz<0, and a B(H™7(3Q2), H™*%Q,))-valued continuous
function in +Imz=0, z#0, where 7,=3/2 in the case of the Dirichlet boundary
condition, 7,=1/2 in the case of the Neumann boundary condition and 2,=
2N\ B, (cf. Iwashita [2] and Iwashita and Shibata [3]). As for the asymptotic
behaviour, we have the following Lemma.

LEMMA 2.1. Under the assumptions (A.1)~(A.3) for any s>1/2 and |a| L2,
the operator (x> 0:W*(z) is a B(H"™082), L*Q))-valued continuous function in
+Im 2<0, 2+#0, where <x)>=(1+]x]|*)"2,

PROOF OF LEMMA 2.1. For p>0 stated in §1 we take a cutoff function
Xe C=(R") such that Ax)=1 in |x]|>2p, X(x)=0 in |x|<p. Then the function
u(x ; 2)=X(x)W=*(2)g(x) satisfies
(A@)+2Mu(x ; 2)=[A(0,), XIW*(z)g(x)  in R".
We denote by Ri(z) the solution operator for the free space problem. By the
uniqueness of L’-solution of the free space problem and a continunity of Ri(z)
and W=(z) in +Im z<0, z+0, we have
Xx)WH(z)g(x)=R5(2){[A@.), X]W*(2)g}(x)
for any +=Imz<0, z+#0 and geH™(0%2).
Since for s>1/2 and |a| <2, (x)7%0%Ri(z){x>"* is a B(LAR™), L¥R"))-valued
continuous function in +£Imz<0, z=£0 (cf. Yajima [13]) and {x>*[A®@.), X]W*(z)
is a B(H™(08), L¥R")-valued continuous function in =+Imz=<0, z+0, the
operator g <{x>733X(x)W*(z)g(x)) is a B(H(08), L¥2))-valued continuous
function in +Im2z<0, z+#0. This completes the proof of Lemma 2.1.
Using the operator W*(z) we can write
(2.3) v (x5 0, @)=W*(0)[—A5@) " B(0;){e” T 002 Py} (x)
for any +Im¢<0, ¢+0 and wesS"1,

which implies that for any s>1/2 and |a|<2, <x)>~0%P(x; o, w) is a L% £)-
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valued continuous function in =Ime<0, ¢#0 and w=S""'. Hence, by the
same methods as in Lemma 4.3 and Theorem 5.2 in Lax and Phillips [5] we
can get following Lemma.

LEMMA 2.2. For any positive integer m we set
Va={feH|(x>™0, f((x)E L Q) and <{x)™f(x)e L (D)},

and denote A by a generator of {U(t)}ier. If we assume (A.1)~(A.3), then we
have
(1) V.N\DeND(A) is dense in D°,
(2) for any feV., with m>n/2+1, (f, ¢:(-; 0, we)n
is well-defined and a continuous in +Im ¢ <0,
c+0 and wsS™,
(3) any feV.NDL with m>n/2+1 is orthogonal to ¢.—¢-,
that is (f, (¢:(- ; 0, @)—¢:(- ; 0, ®)e)y=0 for any
deR\{0}, weS™}, and =1, 2, -, n.

Lax and Phillips [5] construct the spectral representation 9. by using
Lemma 2.2 and

2.4 UV .CV,  for any teR,

for any fixed integer m=0. The fact (2.4) is used implicitely in [5], however,
they do not give the proof of (2.4). Furthermore, we need the fact (2.4) to get
the representation of I. by using the distorted plane waves. Hence, we
prove it.

Proof of (2.4). It is sufficient to prove that there is a constant ¢,>0 inde-
pendent of m and a constant C, >0 such that

(2.5) U lm 0= Cne®"' || flmo  for any tER and fE€V,,

where Hfﬂ%n.D:SDOc)”‘{](’ixfl(x)lz—}—lfg(x)\z}dx and D is a domain in R".
We set
Vao={f€H[{x>™0, f1(x), {xd™fo(x)e LAR™)}.

Note that V,, (resp. V.., is a Banach space with norm |||, o (resp. ||-|lm, rn).
Since S(R™) is dence in V, , from the argument to prove U,(t)e.L(S(R"), S(R™))
we have

(2.6) W@ f Im ge=Crne® || fln.gn  for any teR and fE€V, .

For the cutoff function X(x) taken in the proof of Lemma 2.1 we can prove that
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t
0

xua)f:U(,(t)(erS Ut—s)QU(s)fds  for any feH,

where Q is defined as Qg="'(0, [X, A(@,)]g,). Since the operator Q: H—H, is
bounded and supp QgC Bs, N2 for any geH, from (2.6) it follows that

1XU® flm. 0L C e {1 X flim. re+ I flu}  for any teR and f&V,.

Noting that the estimate |fillz22ns,,, SCl10:f1lz2c0) (cf. Shibata and Soga [81)
yields that
1Xfllm.gn=Clfllw.e  for any fEV,.

Combining the above estimates with the estimate [(1—X)U)f|n o<Clflla, we
obtain (2.5). This completes the proof of (2.4).

Now, we state a representation of . which is indispensable to obtain
Theorem 1.2.

PROPOSITION 2.3. We assume (A.1)~(A.3) and take an integer m>n/2+1.
Then, for any f€V, we have
(T. =S, Sb:(' ; 0, We)n for any I=1, 2, ---, n.

REMARK. The same procedure as the construction of 9. in [5] (cf. Theo-
rem 5.3 in [5]) implies that for any m>n/2+1 we have

2.7 (T le, @)=(f, ¢=(-; 0, ®)e)u
for any fet\)RU(t)(VmﬂD’;mD(A)) and [=1, 2, -+, n.

Thus, Proposition 2.3 is stronger than (2.7), and to get Proposition 2.3 we need
an additional consideration.

PROOF OF PROPOSITION 2.3. Since to obtain Proposition 2.3 we need (2.7)
we start with the proof of (2.7).
For any feV, we define the /[-th component of &, as

(gif)l:(fy ¢¢(' y 0) w)el)ll fOI' lzlr 21 Tty n.

Note that from (3) in Lemma 2.2, (2.1) and the fact that . f=a2f for any
feDt, which is derived from W.f=f for any feD¢, it follows that 9.f=
g.f for any feDiNV.,. Hence, by (l.1) the representation (2.7) is equi-
valent to

(2.8) G (U )=e"otg, f for any feV.N\DiND(A).

We take feV.N\DeND(A). There is a sequence fPC3(2) such that fP—f
in V, as j—o. We differentiate §.(U®)f) by ¢t and use the integration by
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parts, that is,

d%(ETi(U(l)f”’))zI(AU(t)f‘”, ¢:(-; 0, wey
=—UMf?, Ad<(-; 0, ®e)u
=+—1aT . (U@®f), .

Note that it is possible to do the above reductions since from the finiteness of
the proagation speed of the solution of the elastic wave equation (0.1) it follows
that U®#)f has compact support. Thus, we obtain §,(U@)f9)=e " 10"tg, f,
From (2.5) it follows that U®)f9—U@®)f in V, as j—oo for any fixed {. Hence,
taking the limit as j—oc we have (2.7).

Next, we prove the representation of T, is valid for any f€V,. To show
it we need the following Lemma.

LEMMA 2.4. If we assume (A.1)~(A.3) and fix an integer m>n/2+1, then
for any feV, we have I.fe LA{RXS" ™) and

1T fllzocresn-1, <242 (27) ™ 272 f 5 .

The proof of Lemma 2.4 is postponed and we continue the proof of Pro-
position 2.3. For any feV, there is a sequence f&\J,er UXV nNDEND(A))
(j=1, 2, --) such that f¥’—f in H as j—oo. Since (2.7) and (2.5) imply that
g.fY9 is well-defined and 9. /=g, /¥, from Lemma 2.4 we have lim,_., . fo
=g.f in LXRXS""). Hence, it follows that I.f=9,f, which completes the
proof of Proposition 2.3.

Now, we prove Lemma 2.4. We start with a preparation to obtain Lemma
2.4.

LEMMA 2.5. Under the assumptions (A.1)~(A.3), for any fixed integer m>
n/2+1 we have
1D+ fliEecresn-1,+1T -l Eecrusn-u,=8Cm)" || fI}  for any f&Dyoa(A),
where D,,.(A)={f=D(A)| supp f is compact}.

PROOF OF LEMMA 2.5. We set
w.(x; 0, w)=wyx; 0, 0)+v.(x; 0, ),

and for any g L.(£2), we define the /-th component of F.g as

(Fn®=| 800 w.(x; 18], 3)edx  for i=1,2, -, n,
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where L2,.(2)={g=L¥Q)| supp g is compact}. By the same argument as for
Theorem 6.7 and Lemma 6.9 in Wilcox [12], we can prove that F.ge L*(R")
for any g L2,.(2) and the following equality holds:

(2.8) 1 Fegllr2crny=2m)"| gl L2c0) for any geLi.(2).

For any f&D,..(A), integration by parts implies that

(T .o, w):—l/?" m{vfiaggfl<x>~mdx

+ fu0) WG 7, weid).

Since Ajw) and Pyw) (j=1, 2, ---, n) are even functions and W-(z)=W*(e*"7'z)
for any Imz>0 we have w.(x; —0, —@)=ws(x; ¢, ) for any ¢=R\{0} and
we S, which yields

(th),(ow)zgng(x)'wz(x 10, we,dx  for any ¢>0,

(Fig)L(vw)zggg(x)-wt(x;a, w)e;dx  for any ¢<0.

Hence, we get
|T.f(a, ®)|*+|T_f(o, ®)!*
=@n)?le1" B {101} Ff(00)|*+ | Fufolow)|®

+2Re (v =10F,f1(0w)-F. fo(dw))}.
S'nce integration by parts gives us
o*(F.f)ow)=(F.(—A(@:)f )ow),
from (2.8) it follows that &.fe L¥RXxS™*") and
1T . fliecresn-n+ 1T - fllEecresn-1
=402r)" = (A0 1, [+ aollfaw}.

This completes the proof of Lemma 2.5 by use of integration by parts for the
term —(AW@)f1, fOr2@-

Last, we prove Lemma 2.4. For any fV,, there is a sequence [ &
Dyoz(4) (j=1, 2, ---) satisfying f¥—f in V, as j—o. From Lemma 2.5 it
follows that lim;,... ./ exists in L¥RxS""!). Since §.fP—T.f in C(R\{0})
X S™1), we have Ilmj.. T.fP=9.f in LA(RXS™!). This completes the proof
of Lemma 2.4.
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§3. Proof of Theorem 1.2.

In this section, we give the proof of Theorem 1.2. First, we state the
existence of the integral kernel of the adjoint operator S,(¢)* of the operator
S,(a) defined as S,(6)=5(a)—«,(0).

PROPOSITION 3.1. Under the assumptions (A.1)~(A.3), there exists a smooth
function Iz'(a, 0, w) in a=R~\ {0}, 6 and w=S"""! such that

~

3.1) (S\(a)ek(a, -))(0):8 Ko, 0. )k(o, o)do

sn-1
a.e. in ¢ and 6 for any keCT(RXS™™),

where Ka, 8, 0*='K(a, 0, w) is of the form

o _\/:_1 g n-2 d st
(3.2) Reo, 0, 0="H5)" B

e e e P (NG s 0, 0)

— V—1ow)  *P@)"(N@, @  yv.(y; o, )} dS,.

Since the assertion of Proposition 3.1 implies that S,(¢) is an integral
operator with kernel 1?(0, ®, 8)* we can get Theorem 1.2 by Proposition 3.1.

PROOF OF PROPOSITION 3.1. We fix arbitrary ¢=R~{0}. As in the proof
of Theorem 6.2 in [5] we begin with the assumption that S,(¢)* can be ex-
pressed as an integral operator with kernel 1?(0, f, w). In this case, S,(o)*
can be expressed as the form (3.1), and S,(¢)* is continuous from H to

2 (BN{0))XS™ Y. From the unitarity of 9. it follows that S(e)*=(g,g=H*
=g_g97'. Hence, we have
T_f(o, =i @)T S0, O+ K(0, 0, )7, f(s, 0)do

sn
a.e. in ¢ and @ for any feH.

From Proposition 2.3, the definition of the distorted plane waves ¢., and
k.(0)A_(6)=—A.(c) for even n, it suffices to show that there exists I?(a, 0, w)
such that

ox;0, O)=v(x;0 6)—v(x;0, 0)

—xn(a)g 1{w(,(x 0, @)+tv_(x; 0, w) ff(a, 0, w*dw

sn=

vanishes for all #&S*7'. Note that ¢(x ; g, 8) satisfies
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{ (A@x)+aDp(x; 0, 6)=0 in Q,
B@:)p(x ; @, 6)=0 on 90%.

We denote by G*(x; z) and G~ (x ; z) the outgoing and incoming fundamental
solution for the free space problem respectively. The fundamental solutions
G*(x; z) are S’(R?)-valued continuous functions in *+Imz=0, z#0 and satisfy
the following properties:

(3.3) G*(x; z) is continuous in x#0 and +Imz<0, z+0,

(3.4) {G*(—x;2)=G*(x; 2) in S/(R?) for any *+Imz<0, z+0.

For any geC3(R"), we set V=(x; z):SRnG*(xay ; 2)g(y)dy, where the integral
means the temperate distribution sense. Then, we have

For any integer m=0, we can extend the operator
(3.5) g—V*(x;z) as a B{H™R"), H"**(R"))-valued
holomorphic function in +Im z<0.

For any ¢>0 and integer m=0, we can extend
(3.6) the operator g — V*(-, z) as a B(HZ(R™), H™**(B,))-
valued continuous function in +Im z<0, z+0,

where Hp(R™={feH™(R")|supp fCB,}.

Integration by parts and (3.3) and the continunity of v,(x; o, w) yield

3.7) vz, O=] (NG G—x; .32 0)

—'G*(y—x; 2N@, . (y; 2z, 0)}dS,
for any Im 20, z+0, S™* and x Q.
Now, we note that the following representation of the difference between the

outgoing and incoming fundamental solutions which is proved in §4;

NN PV Vil A
Gr(x; ) =G x; 0)=1 s (2x>

d —
.z}lssn lxj(w)_nﬂe‘/—llalXj(w)'llzw-IPj(Q)>dw, for any e= R\ {0}.
= )sn-

Since each 14w) is an even function and each P w) is an nXn matrix of even
functions, we obtain

(3.8) G (x;0)—G7(x; 0)=—ka(o) \f;l( —027r >H

d J—
. Zlgs 12]_((0)—11/2@#—10'1]-(0))—l/2w.1‘Pj<w)dw for any e RN {O}
J= n-
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From (3.7) and (3.8), it follows that

o5 0, 0)=g(x; 0, O)—ri(0)| | 33 i) "/ iem e s

sn

.[Pj(a))k(o', 0, wyt— %(i%;)n-zlj(w)“nﬂ

0 1O T (PAGNNG, 0, ; 0, 0)
— V= Toa @) (NG, Yo )P (@7 7, O} dS, | do,
where ¢(x; z, 8)=¢i(x; z, @)+¢u(x; z, ) and

x5z, O)=—v.(x; 2, 0>—xn(a)5 _v-(x;2, 0)K(g, 0, o) do,

sn

Gux iz, 0=\ [N@)G (y—x; 200,33 9, 0)
—'G (y—x; 2)N@,w.(y; e 0)}dS, for any Imz=0, z+0.
Now, we define I?(a, 0, w) as (3.2). Then noting that each Pf{w) is symmetric
and Pjw)*=Pjw) for any wS*" and j=1,2, -, n we have ¢(x;0, 0)=
¢(x; o, w). Hence, to get Proposition 3.1 it suffices to prove
(3.9 ¢(x; e, 0)=0 for any x and 4.
By (3.4) we have
(A@)+2z0¢d(x ; z, 8)=0 in £ for any Imz=0, z+0,
and since ¢(x; o, )=¢(x; a, 6) in 2 it follows that
(3.10) B@.)(x; 0, 8)=0  on 08.

LEMMA 3.2. For any fixed 6=S™* the function ¢ is a H¥2)-valued holo-
morphic function in Imz>0 and a H*(8,)-valued continuous function in Imz=0,
z#0 for any a>0 satisfying 02C B,.

We postpone the proof of Lemma 3.2, which is given later.
Using Lemma 3.2, we prove (3.9). We set h(x; z, 8)=B(0.)¢(x; 2z, 8). The
uniqueness of L% 2)-valued solution of problem (2.2) implies

3.11) O(x;z, =W (2h(-; z, 0))(x) for any Im z>0.

Since each side of (3.11) is H*(8,)-valued continuous function in Imz=0, z=0
(cf. Lemma 3.2), the equality (3.11) holds in the region Imz=0, z0. Hence,
it follows that ¢(x; g, )=W (o)h(-; o, 0))(x). Noting that (3.10), we have
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h(x; o, 8)=0, which completes the proof of (3.9). Thus, we get Proposition 3.1.

Now, we begin to prove Lemma 3.2. The construction of v9(x; o, @) (cf.
(2.3)) and the properties of W(z) stated in § 2 imply that the function ¢,(x ; z, §)
has the same property as that in Lemma 3.2. Thus, we have only to show
¢x(x; 2z, §) has the properties stated in Lemma 3.2. We take X,&C7(R") satis-
fying 0<%, <1, Xo(x)=1 near 02, and set w(x; )=X(x)v.(x; o, §). Note that
we omit the variable ¢ because we fix s= R~ {0}. The function w(x ; §) satisfies

{ (A@)+2Dw(x ;: 8)=g(x; z, 8) in 2,
B w(x: 60)=B0)v.(x; 0, §) on 0%,

where g(x; z, )=[A@0.), %v.(x; ¢, 0)+(2—a®w(x; )eCHQ).
For any X C3(2) and z&c € with Imz>0, we set V7 (x;z2)=

SRnG‘(xAy s 2X(y)dye HYR™). Integration by parts yields
[, N@V (3 20 (x; 0=V ~(x; 2)- N@Ju(x ; )} dS.

=| 0w s =V (x5 2)-g0x3 2, O dx,
where - means the inner product of C". Hence, we have

(200 {], 16— 3 28055 2, Oy 2, O)—u(y; O)}dy=0
for any Imz>0.
For any fixed x,&8, we replace X(y) by ¢ "X((y—x,)/¢) with X CH(R") satisfy
SRnX(y)dyzl, supp IC {x&R"| | x| <1}. Taking the limit as ¢ | 0, we have

G2 sz, O=txwirs 0 0=] (G (r—x; 28052 6)dy
for any Imz>0 and x=4&.

In fact, from (3.4) and (3.5) it follows that Sth“(y—x 2g(y 2, 0)dysC=(Q)
NHY Q) for any Im z>>0.

Note that (3.3) yields ¢,(x; z, 8) is continuous in x€£, §=S™ ! and Im z=0,
z#0. Thus, the equality (3.12) holds in the region Imz>=0, z+0. From (3.4),
(3.5) and (3.6), it follows that the right-hand side of (3.12) has the same pro-
perty as that stated in Lemma 3.2. This completes the proof of Lemma 3.2.
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§4. The difference between the outgoing and
incoming fundamental solutions.

This section is devoted to prove the representation formula of G*(x;z2)—
G (x; z) which is used in §3 to obtain Theorem 1.2.

PROPOSITION 4.1. Under the assumptions (A.1)~(A.3), we have

rs =G s = O Y A(lolyr
G*(x;0) G(xra)-w[ dr (271')

el — N
- Ssn_llj(w)‘n/w#_nu[Aj(w)~1/2w.er(w)dw) for any e R~ {0}.

j=1

PROOF OF PROPOSITION 4.1. Since G*(x; ¢)=G (x; |o]|) for any ¢<0 it is
sufficient to prove Proposition 4.1 for ¢>0. We fix ¢>0, and take >0 such
that ¢°—20>0. We denote by ¢(HeC=(R) (I=1, 2, 3) cutoff functions satis-
fying supp ¢, C(—c0, 62—3), supp ¢.C(0°—20, ¢°+ 20), supp ¢;C(¢°+9, o), and

1233_,9%(2):1 for any A=R. By definition of G*(x;z) for +Imz<0, we can

divide G*(x; z) of the form

G*(x;z)zé %I};z(x;Z),

Jj=11l=1
where each Ij,(x;z) is defined as

Rt (Pl(zj(é))Pj(E)
E™ 22— A5(8)
Note that the above integral means the Fourier transformation of temperate
distributions.

Ii(x; z):(Zn')“”S dé.

Now, for /=1 and /=3 we prove

4.1) linol Ii(x; a—s):lix}g I7(x; a+¢) in S"(R™).
el €

Since we have
 pAAE)PAE)
(6F A/—1e)*— 28
the equality (4.1) is obvious for /=1. In the case /=3, we note that
©0:(A(8)PKE)
4.2) (6 F v/ —1e)—248)
In fact, |2,(6)—(6F +~/—1¢)?| =4 holds for any £é&R"” with ©:(4;(8)#0 and ¢>0.
From (4.2) it follows that the equality (4.1) holds for /=3.
As for I7.(x;z), using the polar coordinate, we have

igcj for any £¢eR" and 0<e<~/0/2,

|§C]~ for any £ R" and 0<e.
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Viire. xSDZ(rzZJ(a)))PJ(w) pu-1
Io(x; 2)=2r)" S Ssn N —Z——?’zi_(z») dwdr .

Now, we set u=4,(w)"/*, and a change of variables gives

© 1
T4 9=\ s dadpe

where

gb](p)——(ZTE) n,,n- 15 n_l(pz(ﬂz)lj(w)—"/ze/jlﬂlf(w)ﬂ/zw'xpj((v)dw

This implies

:Soo € —44/—1 10¢,(#) dp for any ¢>0.

o (p—aitet (ptorte

Since (4.1) holds for /=1 and /=3 from the fact that ¢;=C%((0, «)) and

we obtain

—AV=Togi) AV Toh | < gy (20940)
(/’l+0)2+52 (F‘+U)2 = pzo (#+0>4 ’
G (x;0)—G(x; G')—llng ¢ V-1 lodi(p)
o S ) (pmayre T (pto)
= 2V=1 540,

where we use a well-known property of the Poisson kernel. This completes

the proof of Proposition 4.1.

L8]
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