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§0. Introduction

In 1977, Majda [6] proved a representation formula of the scattering kernel

for the scalar-valued wave equation. Melrose [7] and Soga [9] obtained the

equivalent representation formula. This formula was very useful to investigate

the inverse scattering problems (cf. Majda [6], Soga [9], [10]). For the elastic

wave equation, Shibata and Soga [8] recently have given us the scattering

theory by the same conception as in Lax and Phillips[4] and a representation

formula has been proved by Soga [11]. Since he uses the same approach as

in the case of the scalar-valued wave equation (cf. Soga [9]) it is necessary to

r
get the leading terms of integrals ＼ (J±k)(t<p(a>),a))da) as ＼t＼―>=≪,where /+

is a pseudo-differentialoperator with a homogeneous symbol of order (n ―1)/2

(for the precise definition of /+ see §1). This caused the difficultyin his

strategy and the necessity of the convexity of each slowness surface.

In the present paper, we give a proof of the representation formula of the

scattering kernel for the elastic wave equation without a convexity assumption

of the slowness surfaces. Our proof is based on a kernel representation for

the Fourier transform of the scattering kernel (cf. Theorem 1.2 in §1). Since

the Fourier transformation changes the operator Jt into a multiplication operator,

in the proof of that kernel representation we do not meet the difficultyin Soga

[11] stated above. Furthermore, we do not need the convexity assumption of

the slowness surfaces to obtain that kernel representation. This is one of the

main parts in the present paper. Thus, our proof gives us not only the sim-

plicitybut also the removal of the convexity assumption of the slowness sur-

faces.
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Let Q be an exterior domain in Rn (n^3) with smooth and compact bound-

ary. We set

n
A(dx)u= S dxXaijdXju), u-l(uu u2, ･■-,un),

where aij=(aipjq＼^i＼::::n)are nXn matrices and each aipjqis constant. We

consider the elasticwave equation with the Dirichlet or the Neumann boundary

condition

'{d＼-A(dx))u{t,x)=0 in RxQ,

(0.1) ■ B(dx)u(t, x)=0 on RxdQ,

u(0, x)=f1(x), dtu(Q, x)=f2(x) on Q.

Here the boundary operator is of the form B{dx)u = u＼sQ(for the Dirichlet con-

dition),B(dx)u―J]itj=iVi(x)aijdXju＼SQ(for the Neumann condition), where v(x)

= t{vi(x),v2(x),･･･,vn(x))is the unit outer normal to Q at x<=dQ.

We assume that

(A.I)

(A.2)

&ipjq ― O-pijq―djqip ,

n
2 O-ipjq^jqSip^Oi

n2

i.p.j,q=l i, p = l

&ip
>

n
(A.3) A($)= S o.ij$i^jhas d characteristicroots of

constant multiplicity for any f<Ei?n＼{0},

where (sjq)is any nXn symmetric matrix and 8{ is some positive constant in-

dependent of (ejq).

Under the assumptions (A.1)~(A.3), Shibata and Soga [8] formulate the

scattering theory which is analogous to the theory of Lax and Phillips[4]. Let

k_(s, a>)and k+(s, <m)gL2(jKxSb-1)= {L^RXS71-1)}71 be the incoming and outgo-

ing translation representations of the initialdata f=t(f1) f2) respectively. The

mapping S: k_-*k+ is called the scattering operator, which is a unitary operator

from L＼RxSn~l) to itself. The scattering operator 5 has a temperate distri-

bution kernel called the scattering kernel, and S is of the form

(SkXs, 0)= Kn(-Ds)k(s, 0)+＼ S0(s-s', d, a>)k(s',a>)ds'da),
JRxsn-1

where tcn(―Ds)is a pseudo-differential operator with symbol icn{―a)defined as

Kn(a)=l (for odd n) and nn(o)= ―o/＼o＼(for even n), and S0(s, 6, ai) is a tem-

perate distribution kernel.

The representation formula of Sn(s, d, w) is given by use of the solution
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Wjit, x ; ft>)of the problem

'(dl-A(dx))wj=0 in KxQ,

B(dx)wj=-2-l(-27r^-iy-nkj(a))-n"

B(dx){8(t-Xj(a))-1/2Q}-x)Pj((o)} on RxdQ,

.ii'j=0 if £is small enough.

In the above, {%]{£)}j=i,..,d(0<Ai(t-)< ■■■<Ad(^)) are the eigenvalues of A($), and

each Pj(i-)is the eigenprojector of the eigenvalue Aj(t-). From the assumptions

(A.1)~(A.3) it follows that each Atf) and P,-(f)is a smooth function in £e/2n＼ {0}.

Note that u>/£,x ; o>) is an nXn matrix of smooth functions in x<=Q and o>e

S71"1 with the value of temperate distributions in t&R.

Theorem 0.1. // we assume (A.1)~(A.3), then the temperate distribution

S0(s, d, o>) stated above is of the form

SO(S, d, Q))=
i
2 uoynli＼ {Pi(d)(dr2N(dv)wj)(uoyi/2ye-'S! y; a>)

-U0ril2Pi(mN(dy)(d■ yWr'wjXUOy^y-6-s, y;a>)}dSy>

where N{dx)u = ^utj=1 vi(x)aijdx.u＼3Q.

Note that the above integral means the Riemann integral of smooth func-

tions with the value of temperate distributions.

Soga [11] obtains the same result as Theorem 0.1 with an additional as-

sumption that every slowness surface {d^R'l＼Xj(d)=l} is strictly convex (cf.

Theorem 1 in [11])- Thus, Theorem 0.1 is an improvement of Theorem 1 in

[11].

We do not prove Theorem 0.1 directly. In our approach, we firstobtain a

representation formula of the Fourier transform of S0(s, d, <&)by the outgoing

scattered plane waves. That representation formula is stated in§1 as Theorem

1.2, which is proved in §2~§4. Theorem 0.1 is derived from Theorem 1.2 by

the Fourier inversion formula (cf.§1).

§1. A representation formula of the modified scattering matrix.

In this section, we review the scattering theory obtained by Shibata and

Soga [8] and the definition of the modified scattering matrix in Lax and Phillips

[5]. Next, we state a representation formula of the modified scattering matrix

by the outgoing scattered waves as Theorem 1.2, which gives us Theorem 0.1
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by the Fourier transformation.

We denote H by the Hilbert space defined as the completion of {f=Kfi> fz)＼

B(dx)fi=0＼ with the energy norm

Ur" = j＼o{i -^
^aivmdXjfn{x)dHflv(x)+＼f2{x)＼^dx

The mapping f^l(u(t, ･), dtu(t,･))becomes a group of unitary operators {U(t)}tsR

on H, where u(t,x) is a solution of problem (0.1) with initial data f=c(fu f2).

In the free space case (i.e. Q=Rn), we denote by Ho the Hilbert space with

the energy norm ||/||^0,and by {U0(t)}t<ERa group of unitary operators on Ho

which is a solution operator of the free space problem.

The free space translation representation Tf. H0-*L2(RxS7'~l) has the re-

presentation

where

Ttf(s, (o)= S Xfco)lliP£a>)U±&sfXU<≫)ms, <o) for any f^C^R71)

3ljf{s, a>)=-U(o)mdJi(s, Q))+Us, <w) (; = 1, 2, ■■■,d)

fj(s, a))
r
＼ fj{x)dSx (j=l, 2) (the Radon transform),

/±=(-d,)u-1)/2 for odd n and /±=(-3,)(n/2)-^±(Z),)for even n with

(for <;^Q),

＼a＼112 (for o<0).

We fix a constant p>0 with dQdBp, where Bp = {x<=Rn＼ ＼x j <p}. We

define the outgoing subspace Dp± as

Di = U0(±C^p)Dl,

where D°±={fz=H0＼ T$f{s, g>)=0 in ±s<0} = {f<=H0＼U0(t)f=0 in |xi<±Cmin^

and Cmln= min inf {/iX^>)I/2}>0. The outgoing subspace Di is the closed

subspace in //0 and //.

The scattering operator 5 introduced in §0 is represented as 5=

TiW+W^T^)"1, where the wave operators from Ho to H

W±f=s- lim U{-t)U0{t)f

are well-defined and complete (cf. § 3 of [8]). We define unitary operators

£T±:H-*L＼RxSn~x) and 3^ : H^LHRxSn~l) as 3-±= F~lTiW±1 and <3l= F~lTt,
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where Fk{a, o))―＼ exp(― V― la-s)k(s, a))ds is the Fourier transformation with

respect to s<=R. The operators 2"+ and 1_ (resp. %% and 3"£.)are called the

outgoing and incoming spectral representation of {U(t)＼(resp. {U0(t)＼)respec-

tively. They satisfy

(1.1) S±U(t)=e'/:^ai3'± for any te^R,

(resp. %°JJ0(t)=e'/-iat3:i for any feft).

Now, wet set S=F~1SF. Using the outgoing and incoming spectral repre-

sentations, we can express the operators S as S=s:+9:z1. Hence, the operator

S has the following properties:

(i) S is unitary on L^ftXS""1),

(ii) S commutes with multiplication by bounded

measureable complex-valued functions.

Then, by Corollary 4.2 in Chap. II of Lax and Phillips [4], we have the fol-

lowing Proposition.

Proposition 1.1. There is a BiL^S71'1), L＼Sn~l))-valuedfunction S(a) on

o<=R called the modified scattering matrix satisfying that S(o) is unitary for

almost all a<=R, and for any k^L＼RxSn~l) we have

Sk{a, 6)={S{o)k{o, ･))(#) for almost all o<=R and ^gS""1.

Note that for odd n, S(o) is the same as the scattering matrix in Lax and

Phillips[4].

We denote v(j＼x;a, a))^Coo(UX(R＼{0})xSn~1) by the outgoing solution of

problem

(1.2)

(A(dx)+o2)v{JKx ; a, co)=0 in Q,

B(dx)vij＼x ; a, w)=-i/≪)-"/4

･£(d*){ewru>Ca')~1/WxPX<w)} on 9i2

where outgoing means that v(j＼x;a, o>) is the analytic continuation of the

L2(£)-valued solution of problem (1.2) with Im <;<0. Note that v(+j}is an nXn

matrix of smooth functions in x<=Q and aGS"""1 with the value of temperate

distributions in o&R, and satisfies(Fwj)(x ; a,(o)=2~1(―27i^―iy~nvlj)(x;a, a>)

for each /=1, 2, ･･･,d.

Theorem 1.2. // we assume (A.I)―(A.3), then the modified scattering matrix
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(S(a)k(a, ■)){d)=icn{o)k(a, $)+[ K{a, 6, a>)k(a, a>)d<i>

a.e. a and 6 for any k<=C (RxSn~l)

where K{o, 6, &))GCoo((i?＼{0})X5n"1X5n-1) is of the form

＼
e^i".<≫-"<i-v{PtfXN(.d,WX.y;", <･>)

J oQ

- V-laUOr^PiidYiNidyXd ･y))vp(y ; a, m)}dSy .

Now, we prove Theorem 0.1 by use of Theorem 1.2. We denote <,> by

the pairingof temperate distributions.From S―FsF'1 and Theorem 1.2 it

follows that

(1.3) <S£,h>-<KJ-D,)k, h)

=
f t

K(o, 6, a))F-lk{o, o))do)-Fh{a, 8)ddda

for any k, h^S(RxSn-1) with F~lk,F/iGC^xS""1), which yieldsthe right-

hand sideof (1.3)is of the form

)sn

do＼ dd)＼ dSv＼°° da

1 Jsra-i JdO JJ-oo i

d

Xi(Qyni*eJ-ia*i(0)-mo.y

{Pi(0)2Y^^^T(Wdy)vi≫Xy ; a, w)F^k{a, <o))-Fh(a,6)

-uorl/2Pi(oy(N(dy)(yd))

2(-2^V-l)"~1
(vij＼y;a, o^F^kia, a)))-Fh(a, 0)j

In fact, since from the assumptions (A.1)~(A.3) it follows that each v^＼x ; a, a>)

is locally uniformly bounded in QxRxSn~l (cf. the proof of Theorem 1.2 in

Iwashita and Shibata [3]), the integrated function of the right-hand side is

absolutely integrable. Hence, by the Fourier inversion formula we obtain

Theorem 0.1.

Thus, our purpose in the rest of the present paper is to prove Theorem

1.2. In the case of the scalar-valued wave equation Lax and Phillips [5] give

a kernel representation of the modified scattering matrix, however, they use

the asymptotic behaviour of the fundamental solutions for the free space prob-

lem as |x|―>oo. Hence, the lack of the assumption about the convexity of the
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slowness surfaces does not allow us to use their approach completely. Never-

theless we can prove Theorem 1.2 because the result about the analytic con-

tinuation of resolvent obtained by Iwashita [2] and Iwashita and Shibata [3]

gives us a characterization of outgoing and incoming solutions.

In §2, we give the representation of 2*+ by the distorted plane waves.

Theorem 1.2 is proved in §3 by means of the explicit form of the difference

between the outgoing and incoming fundamental solutions for the free space

problem. It is one of the crucial fact to obtain Theorem 1.2 as is pointed out

in Lax and Phillips[5]. In our case, we can not write the fundamental solu-

tions by use of special functions, however, we can get the explicit form stated

above by looking at the construction of that solutions carefully (cf.§4).

§2. The spectral representations.

In §1, we see cS(o-)=3'+3'i1.Hence, to prove Theorem 1.2, we have to

represent £T+(resp. £T_)by the outgoing (resp. incoming) distorted plane wave,

which is our purpose in this section.

We set

wo(x ; a, a>)= 2 X^a>)-nl*e-'/~xaXiw~llia''xP^(o),

where

<f>±{x ; a, <o) = cn,±(o)w0(x : a, od){1, V― Iff}

f (-l)(re-1)/22(27r)-1(V-l^)(n-3)/2 (for odd n),

＼
+{-lYnl2)-l2(27z)-＼^^laYni2)-iX^G) (for even n).

Since %l = F'~1Tt we have the following representation

(2.1) (3l/);(<r, <≫)=(/, <j>-+(-; a, <o)ei)Ho

for any f^S(Rn) and /=1, ･･･, n ,

where (£T±/)jis the /-th component of 2"°/ and gj= {(0, ･■･,1, ･･･, 0) (i.e. the

l-th column is 1 and other columns are 0).

Next, we define the distorted plane wave <p±as

(p±(x; a, <o)=cn.±(0){wo(x ; a, a>)-＼-v±(x; a, <w)}{1, V― ltf}

where v±(x; o1,<y)=S/=i v±')( ;̂ <r,a>), and v(j＼x ; c, <y) is defined in §1, and

v{J＼x; a, a)) is the incoming solution satisfying (1.2). In the above, incoming

means that v{J＼x ; a, a>) is the analytic continuation of the L2(,0)-valued solution

of problem (1.2) with Ima>0. Note that v±(x; a, a))^Cca(QX(R＼{0})XSn-1).
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To represent 2"±by using the distorted plane waves we need the asymptotic

behaviour of vij＼x; a, <a)as Ixl―>oo. To get this we introduce the solution

operator W±(z) of problem

f (A(dx)+zz)v(x ; z)=0 in Q,
(2.2)

{ B{dx)v(x ; z)=g(x) on 3fi.

For any m^O, the operator W^z) is a B(Hm+r°(dQ), //m+2(i2))-valuedholomor-

phic function in ±Im?<0, and a B(Hm+r°(dQ), Hm+＼Qa))-valued continuous

function in ±lmz^0, z^O, where ^o=3/2 in the case of the Dirichlet boundary

condition, fo=l/2 in the case of the Neumann boundary condition and Qa =

Qr＼Ba (cf. Iwashita [2] and Iwashita and Shibata [3]). As for the asymptotic

behaviour, we have the following Lemma.

Lemma 2.1. Under the assumptions (A.1)~(A.3) for any s>l/2 and ＼a＼^2,

the operator (x}~sd"W±(z) is a B(Hr°(dQ), L＼Q))-valued continuous function in

±Im^O, z^O, where <x> = (l+ |x|2)1/2.

Proof of Lemma 2.1. For p>0 stated in §1 we take a cutoff function

2<=C°°(Rn)such that X(x)=l in ＼x＼>2p, X(x)=Q in ＼x＼<p. Then the function

u(x ; a)=Z(x)M^±(0)^(x) satisfies

(A(dx)+z*)u(x ; z)=[A(dx), TW%z)g{x) in R＼

We denote by Z^oO) the solution operator for the free space problem. By the

uniqueness of //-solution of the free space problem and a continunity of R%(z)

and W±(z) in ±Im z^O, z^O, we have

l{x)W%z)g{x)=R%{z){[_A{dx),lW±{z)g}{x)

for any ±lmz^0, zi^O and g^Hr°(dQ).

Since for s>l/2 and kl^2, <x>-s5≪i?J(0)<x>-sis a B(L＼Rn), L2(J?re))-valued

continuous function in ilmz^O, 2^0 (cf. Yajima [13]) and <x>s[y4(5^),Z]T7*(^)

is a B(Hr°(dQ), L2(-f?"))-valued continuous function in ilmz^O, ^^0, the

operator ^-><x>-sa≪(Z(x)W^±(z)^(x)) is a B(W*($Q), LTO)-valued continuous

function in ±Im2^0, z^O. This completes the proof of Lemma 2.1.

Using the operator W±(z) we can write

(2.3) t>±J)(x; a, w) =W±(a)l-U<o)-n'*B(dx){e-'-liJ^-m''a'-xPU)n(x)

for any ±lma^0, a=£0 and ojeS" ＼

which implies that for any s>l/2 and ＼a＼^2,(%ysd%v ij)(x; a, <o)is a LHQ)-



Another proof of the representation formula

valued continuous function in ±Im<r^0, <r^0 and weS" ＼

same methods as in Lemma 4.3 and Theorem 5.2 in Lax and

can get following Lemma.
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Hence, by the

Phillips[5] we

Lemma 2.2. For any positiveinteger m we set

Vm={f^H＼(xymdxf1(x)^L＼Q) and {x)mf2(x)^L＼Q)},

and denote A by a generator of {U(t)}t^R- If we assume (A.1)~(A.3), then we

have

(1) Vmr＼Dp±r＼D(A)is dense in Di,

(2) for any f^Vm with ra>n/2-f 1, (/, 0T(- ; a, a))ei)H

is well-defined and a continuous in ±lma^O,

o^Q and w<=Sn-＼

(3) any f<=Vmr＼Dp± with m>n/2+l is orthogonal to (p+―$T,

that is (/, (<prf(-; a, (d)~0t(-; a, a)))ei)H―Qfor any

o(eR＼ {0}, foeS""1, and 1=1, 2,■■■,n.

Lax and Phillips [5] construct the spectral representation 3"+ by using

Lemma 2.2 and

(2.4) U(t)VmdVm foranyfei?,

for any fixed integer m^O. The fact (2.4)is used implicitely in [5], however,

they do not give the proof of (2.4). Furthermore, we need the fact (2.4) to get

the representation of £T±by using the distorted plane waves. Hence, we

prove it.

Proof of (2.4). It is sufficientto prove that there is a constant co>O inde-

pendent of m and a constant Cm>0 such that

(2.5) l|f/(f)/||m.fl^CrBeco|tl||/||ol.flfor any t<=R and f<=Vm,

where ＼＼f＼＼2mD=[ <xyan{＼dxf1(x)＼i+＼f2(x)＼2}dxand D is a domain in Rn.
JD

We set

Vm,0= {/ei/01<x}mdxf1(x), (x)mf2(x)^L＼Rn)}.

Note that Vm (resp. Vm,0) is a Banach space with norm ||-||m,fi(resp. ||-|lm.≪n).

Since S(Rn) is dence in Vm,0 from the argument to prove U0(t)^X(S(Rn), S(Rn))

we have

(2.6) l|i/o(O/llm.i≫≪^Cmeco"'||/||m.JlBfor any t^R and /eVm,0.

For the cutoff function l(x) taken in the proof of Lemma 2.1 we can prove that
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lU(t)f=Uo(t)(lf)+＼tU0(t-s)QU(s)fds for any /ei/,
Jo

where Q is defined as Qg=l(O, ＼1,A{dx)~]gx). Since the operator Q: H->H0 is

bounded and supp Qg(ZB3pr＼Q for any g^H, from (2.6) it follows that

UU(t)f＼＼m,Q^Cmec^{＼＼Xf＼＼m.jw+ll/H*} for any teER and /eFm.

Noting that the estimate ＼＼fi＼＼L2(,QnB2p)^C＼＼dxf1＼＼L2(Q)(cf. Shibata and Soga [8])

yields that

!|Z/||m.a≫^C||/||m.fl for any /eFm .

Combining the above estimates with the estimate ＼＼(l―T)U(t)f＼＼m,Q^C＼＼f＼＼H,we

obtain (2.5). This completes the proof of (2.4).

Now, we state a representation of £T±which is indispensable to obtain

Theorem 1.2.

Proposition 2.3. We assume (A.1)~(A.3) and take an integer m>n/2+l.

Then, for any f<=Vm we have

(£T±A=(/, <p-+{-; a, <o)ei)H for any 1=1, 2,■■■,n.

Remark. The same procedure as the construction of ET±in [5] (cf. Theo-

rem 5.3 in [5]) implies that for any m>n/2+l we have

(2.7) (2-±A(<x, *>)=(/, 0,(. ; a, io)e{)H

for any /e ＼Jf/(0(Vmn^nZ)(i4)) and 1=1, 2, ■･･,w.
tell

Thus, Proposition 2.3 is stronger than (2.7),and to get Proposition 2.3 we need

an additional consideration.

Proof of Proposition 2.3. Since to obtain Proposition 2.3 we need (2.7)

we start with the proof of (2.7).

For any f^Vm we define the l-th component of 3＼ as

(2±f)i=(f, <!>*(･; <r,<o)et)H for /=1, 2, ･･･,n.

Note that from (3) in Lemma 2.2,(2.1) and the fact that 2＼/=3t/ for any

f<^Dp±,which is derived from W±f=f for any f<=Di, it follows that 2"+/=

2＼/ for any f^Dp±r＼Vm. Hence, by (1.1) the representation (2.7) is equi-

valent to

(2.8) 3-±(/7(0/)=e^-£2-±/ for any f<=VmnD'±nD(A).

We take f^Vmr＼Dp±r＼D(A). There is a sequence fU)^C^{Q) such that /O)->/

in Vm as /―>°o.We differentiate 3±(U(t)fU))by £and use the integration by
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parts, that is,

jt&±(U(t)f{i>))i=(AU(t)fU＼ <M- ; a, w)et)H

= -(U(t)fU), >l<M-;tf, <w>i)*

Note that it is possible to do the above reductions since from the iiniteness of

the proagation speed of the solution of the elastic wave equation (0.1)it follows

that U{t)fU) has compact support. Thus, we obtain 3:±(U(t)f(J))=es/~la-t3:±fu＼

From (2.5)it follows that U(t)fU)-^U(t)f in Vm as ;―oo for any fixed t. Hence,

taking the limit as /―≫<x>we have (2.7).

Next, we prove the representation of T±is valid for any /eFm. To show

it we need the following Lemma.

Lemma 2.4. // we assume (A.1)~(A.3) and fix an integer m>≪/2+l, then

for any /eFm we have 3"±f^L＼RxSn~l) and

l3'+/r||r2f≪v/!≫-1^2v/2(2ff)(B-8)/2||/f||W.

The proof of Lemma 2.4 is postponed and we continue the proof of Pro-

position 2.3. For any /eFm there is a sequence f(i)G{JteH U(t)(Vmr＼Dp±r＼D(A))

(/=1, 2, ･･･)such that fU)^f in H as /-≫oo. Since (2.7) and (2.5) imply that

&±fU) is well-defined and %±fU) = %±fU), from Lemma 2.4 we have lim^TO 3"±/O)

= S?±/in L＼Ry.Sn~l). Hence, it follows that £T±/=3'±/,which completes the

proof of Proposition 2.3.

Now, we prove Lemma 2.4. We start with a preparation to obtain Lemma

9 A

Lemma 2.5. Under the assumptions (A.1)~(A.3), for any fixed integer m>

n/2+1 we have

l|9'+/ll!2(/Jx^-i)+ l|3--/III2(iJxSn-,)=8(2^)"-2||/|!!/ for any f^Dv0X{A),

where DVOX(A)= {f<=D(A)＼ supp / is compact}.

Proof of Lemma 2.5. We set

w±(x ; o, Q))=wo(x ; a, a))-＼-v±{x; a, a)),

and for any g^LLx(G), we define the l-th component of F+g as

(F±g)i($)=
＼

Qg(x)- *(x;
161, j|j)^;Jx for 1=1, 2, ■･■,n
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where Llox{0)―{g^L＼Q)＼ suppg is compact}. By the same argument as for

Theorem 6.7 and Lemma 6.9 in Wilcox [12], we can prove that F±g^.L＼Rn)

for any g^.Llox(Q) and the followingequalityholds:

(2.8) ＼＼F±g＼＼LURn,=(2ny＼＼g＼＼LnQ,for any g<=Z,*0X(fl).

For any f^Dv0X(A), integrationby partsimplies that

(3-±/)i(a, (o)=-
V―iff^-£T^){v-f a＼ f1(x)-wT(x ; a, o))eidx

-M fz(x)'W^(x ; a, <o)eidx＼

Since Xjda>)and Pfaa) (/=1, 2, ･･･,n) are even functions and W~(z)=W+(e'7cV~1z)

for any lmz>0 we have w±(x; ―a, ―o))―w^{x; a, a>)for any <rei2＼{0} and

weS""1, which yields

Hence, we get

(F±g)l(aa)) =＼ g(x)-w+(x ; a, a>)eidx for any <r>0

{F±g)i{a(i))=
＼

g(x)-w±(x ; a, <o)eidx for any a<0

JiJ

Z+f(a,a))＼z+＼$:J(a,G))＼2

=(2izT*＼<j＼n-' S {＼a＼2＼Fafi( )＼2+＼FJ2(aa>)＼*

+ 2 ReW-laFJ^a^'FJ^ao)))}.

Since integration by parts gives us

<7＼F±f1)(a(o)=(F±(-A(dx)f1)(aa)),

from (2.8) it follows that 3±f^L＼RxSn~l) and

j|3'+/ll£2(≪xSn-1)+ ii3--/lli2CKxSn-1)

=4(27r)B-M-(^(9O/i, /iW + IIMIiW.

This completes the proof of Lemma 2.5 by use of integration by parts for the

term -(A(dx)fu /i)w<C).

Last, we prove Lemma 2.4. For any /eVm, there is a sequence /O)e

-D≪ox(^4)(;'=1, 2, ■･･)satisfying fU)->f in Fm as /-≫oo. From Lemma 2.5 it

follows that lim^oo 2±fm existsin L＼RxSn~l). Since 2＼/O)^2＼/ in C((i2＼{0})

XS""1), we have lim^oo Z±fU) = 3:±fin L^RxS71'1). This completes the proof

of Lemma 2.4.
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§3. Proof of Theorem 1.2.

In this section, we give the proof of Theorem 1.2. First, we state the

existence of the integral kernel of the adjoint operator Si(<j)* of the operator

Sy(a) defined as Si(a)=S(a)―Kn(o).

Proposition 3.1. Under the assumptions (A.1)~(A.3), there exists a smooth

function K(o, d, <o)in aei?＼{0}, 0 and a)^Sn~l such that

(3.1) (Sy(o)*k{o, -W)=[ K(a, d, <o)k(o,Q))d(o

a.e.in a and 0 for any k^C^(RxSn x),

where K(a, 6. (t>)*―tK(a,d, (o) is of the form

(3.2)

f eJ-,.>iW-'"..>{PfaXNtf^Xy, a, 6)

JdQ

- V-laUo>rmPj(<oy(N(dyXa>- y))v+(y; a, 6)}dSv.

Since the assertion of Proposition 3.1 implies that Si(a) is an integral

operator with kernel K(o, co,$)* we can get Theorem 1.2 by Proposition 3.1.

Proof of Proposition 3.1. We fix arbitrary <rei?＼{0}. As in the proof

of Theorem 6.2 in [5] we begin with the assumption that <SiO)* can be ex-

pressed as an integral operator with kernel K(a, d, w). In this case, Si(a)*

can be expressed as the form (3.1), and Si(a)* is continuous from H to

L2loc((R＼{0})xSn-1). From the unitarity of 2＼ it follows that ^(^^^(ff +ffi1)*

= 3"_£T+1.Hence, we have

9-_/(ff, 0)=Kn(<r)2+f(ff, 0)+
f

n_xK{a,
6, o>)ET+/(ff,(o)da>

a.e. in a and 0 for any /e//.

From Proposition 2.3, the definition of the distorted plane waves <p±,and

Kn(a)X.(a)= ―X+(o) for even n, it sufficesto show that there exists K{a, 0, w)

such that

(p(x; a, 8)=v+(x ; a, d)―v_(x ; a, 6)

―Kn(&)＼ {wo(x ; a, (i))-＼-v-{x; a, (o)} K(o, 8, (i))*da)

vanishes for all #<=S" ＼ Note that <p(x ; a, 6) satisfies
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f (A(dx)+o2)<p(x ; a, 0)=O in Q,

＼
B(dx)ip{x; a, 0)=O on 88.

We denote by G+(x ; z) and G~(x; z) the outgoing and incoming fundamental

solution for the free space problem respectively. The fundamental solutions

G*(x; z) are S'(i?£)-valuedcontinuous functions in ±Im2<:0, z^O and satisfy

the following properties:

(3.3) G±(x; z) is continuous in x^O and ±Imz^0, zi^O,

(3.4) £G±(-x;z)=G±(x;^) in S'(i2S) for any ±Im z^O, z^O.

r
For any g<=C (Rn), we setF±(x;^)=＼ G±(x―y ; z)g(y)dy, where the integral

means the temperate distribution sense. Then, we have

For any integer m^O, we can extend the operator

(3.5) g >-≫V%x ; z) as a B(Hm(Rn), Hm+＼Rn))-valued

holomorphic function in ±Imz<0.

For any a>0 and integer m^O, we can extend

(3.6) the operator g^V%-, z) as a B{H (Rn), Hm+＼Ba))-

valued continuous function in ±Imz<^0, z^O,

where H%(Rn)= {f^Hm(Rn) ＼supp fcBa}.

Integration by parts and (3.3) and the continunity of v+(x ; a, m) yield

(3.7) y+U ; z, <?)=( {＼N(dy)G+(y-x ; z)K(j>; z, <?)
Joil

-lG＼y-x ; z)N(8v)v+(y ; *, 0)} dStf

for any imz^O, z^O, ^eS""1 and xei2.

Now, we note that the following representation of the difference between the

outgoing and incoming fundamental solutions which is proved in §4;

G+(x;a)-G-(x; a)=^~
＼0

d
s

Js≫-i

~2n)

U<oYnlze'~UalXj(o>)~1'2a"xPj(<*>)d(D, for any <j<eR＼{0}.

Since each Xj(q))is an even function and each P/tw) is an nXn matrix of even

functions, we obtain

(3.8) G＼x ; o)-G-(x : a)=-Kn(a)
/―1/ g ＼"-2

4?r V-27T/

S
(

iXj(a})-nl2ev-laXJ(a>)'1'2a'-xPj(a))dQ}
for any aeR＼{Q}.
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From (3.7) and (3.8),it follows that

<p(x ; a, d)―

■[Pj(a))K(a,d, ^-^^{^~)n'2U^Ynli

-V-l(TXj(o)ri'2t(N(dy)((o-y)Pj((!)))v+(y,a,e)}dSy＼da>,

where <b(x ; z, d)―(bx{x ; z, d)+(p2(x ; z, 0) and

4>x(x; z, d)= v.(x ; z, d)―Kn{a)＼
n

y_(x ; z, (d)K(o, 0, a))*da)

<p2(x; z, 0)=＼ {l(N(dv)G-(y-x ; z))v+(y ; a, 6)

365

-'G'iy-x ; z)N(dy)v+(y ; a, 0)＼dS, for any Im z^O, z^O.

Now, we define K(o, 6, <w)as (3.2). Then noting that each P/o>) is symmetric

and Pj(a))i=Pj(a))for any coeS71"1 and j―l,2, ･･■,n we have <p(x;a, <o)=

<p(x; a, <o). Hence, to get Proposition 3.1 it sufficesto prove

(3.9) (p(x; a, ^)=0 for any x and d.

By (3.4) we have

(A(dx)+z2)(p(x ; z, 6)=0 in Q for any Imz^O, z^O,

and since ^>(x; a, 0)=<p{x ; ≪r,̂) in Q it follows that

(3.10) B(dx)(p(x;a, d)=0 on dQ.

Lemma 3.2. For any fixed ^gS""1 the function <pis a H＼Q)-valued holo-

morphic function in Imz>0 and a H＼Qa)-valued continuous function in Imz^O,

z^O for any a>0 satisfying dQdBa.

We postpone the proof of Lemma 3.2, which is given later.

Using Lemma 3.2, we prove (3.9). We set h(x ; z, d)=B(dx)<p{x ; z, 6). The

uniqueness of L2(£?)-valued solution of problem (2.2) implies

(3.11) <p(x ; z, d)=(W-(z)h(- ; z, 0))(x) for any Imz>0.

Since each side of (3.11) is H＼Qa)-valued continuous function in Imz^O, z^O

(cf. Lemma 3.2), the equality (3.11) holds in the region Im^O, z^O. Hence,

it follows that Mx＼ a, 6)=^{W'(a)h(- ; a, 6)){x). Noting that (3.10), we have
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0, which completes the proof of (3.9). Thus, we get Proposition 3.1.

Now, we begin to prove Lemma 3.2. The construction of vlJ＼x; a, o>)(cf.

(2.3)) and the properties of W~(z) stated in§2 imply that the function <p^x ; z, 6)

has the same property as that in Lemma 3.2. Thus, we have only to show

<p2(x;z, 0) has the properties stated in Lemma 3.2. We take X0<=C (Rn) satis-

fying O^ZoSsl, X0(x)=l near dQ, and set w(x ; 6)=X0(x)v+(x ; a, 0). Note that

we omit the variable a because we fix a^R＼{0}. The function w(x ; 0) satisfies

f(A(dx)+z2)w(x ; 6)=g(x ; z, d) in Q,

＼
B(dx)w(x ; 0)=B(dx)v+(x ; o, d) on dQ,

where g(x ; z, 6)=[_A{dx), lo]v+{x ; a, 6)+(z2-a2)w(x ; 0)<=CZ(Q).

For any 1 g Ct(Q) and z e C with lmz>0, we set F"(x; z) =

r
＼jG (x ―y;z)X(y)dy^H＼Rn). Integration by parts yields

(
{N(dx)V~(x ; z)-w{x ; 0)-V~(x ; z)-N(dx)w(x ; d)＼dSx

JdQ

=
f
{X(x)-w(x; d)-V-(x;z)-g(x;z, 6)}dx,

where ･ means the inner product of Cn. Hence, we have

f Ky>{＼a tG-(x-y;z)g{x',z, 6)dx+<p2(y
; z, d)-w(y; d)＼dy=O

for any Imz>0.

For any fixed xa<=Q, we replace X(y) by £'nl((y―xQ)/e) with l^C^(Rn) satisfy

I
nX(y)dy

= l, suppZc {x^Rn＼ ＼x＼<1}. Taking the limit as e| 0, we have

(3.12) (p2(x; z, d)=X0(x)v+(x ; a, e)-^QlG-{y-x ; z)g(y ; z, d)dy

for any Im^>0 and x^Q

In fact, from (3.4) and (3.5) it follows that
f
'G'iy-x ; z)g(y; z, d)dy<EC~(Q)

C＼H＼Q) for any Imz>0.

Note that (3.3) yields <p2{x; z, 0) is continuous in x<=Q, #eSn~! and Imz^O,

0^0. Thus, the equality (3.12) holds in the region Im^O, z^O. From (3.4),

(3.5) and (3.6), it follows that the right-hand side of (3.12) has the same pro-

perty as that stated in Lemma 3.2. This completes the proof of Lemma 3.2.
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§4. The difference between the outgoing and

incoming fundamental solutions.

This section is devoted to prove the representation formula of G+(x ; z)―

G'(x ; z) which is used in §3 to obtain Theorem 1.2.

Proposition 4.1. Under the assumptions (A.1)~(A.3), we have

G+(x ; a)-G-(x ; a)

d r
s

.7=1 J sn-i

a

~2x)

U<o)-nlse''-u'aJ(a≫-1'*≫'xPAa>)da>, for any a<ER＼{0}.

Proof of Proposition 4.1. Since G±(x; a)=G+(x; ＼o＼)for any a<0 it is

sufficientto prove Proposition 4.1 for <r>0. We fix <7>0, and take <5>0 such

that <72-2d>0. We denote by ^,(2)£C°°(i2)(/=1, 2, 3) cutoff functions satis-

fying supp^C( ―oo, a2―8), $upp<p2(Z(a2―2d> a2+2d), supp^3CZ(<72+d, oo), and

3
^(pi(k)=l for any X^R. By definition of G±{x;z) for ±Im^<0, we can

divide G±(x; z) of the form

G±{x;z)=

where each //,,(x ; z) is defined as

ds hiux-,2)
3 = 1 1 = 1

lU*＼z)=Q*Yn＼Rn d$

Note that the above integral means the Fourier transformation of temperate

distributions.

Now, for 1=1 and /=3 we prove

(4.1)

Since we have

(a +

lim It i(x ; a―s)

£4-0

V-l£)2-^(|)

＼im Iifaio + e) in S'(Rn).

£10

^Cj for any ^eeR71 and 0<e<Vd/2,

the equality (4.1) is obvious for l~l.

(4.2)

y/-tiy-U&

In the case 1=3, we note that

^Cj for any f<=J2re and 0<s

In fact,!^(f)-(ff+V-ls)2l^a holds for any $^Rn with <p3(Xtf))=t0and s>0.

From (4.2)it follows that the equality(4.1)holds for /=3.

As for Ij2{x;z), using the polarcoordinate,we have
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IU* ;*)=&*)-$.
^rW.x^(r^Xa>))P/6j)

Now, we set fi―Xj{a))ll2r,and a change of variables gives

f°°1
If.*(x;z)=＼ ,_,4>j(fi)dfi,

where

Jgn-1'

This implies

Itz{x ; o―＼/―is,)―IjiZ{x ; a+ V― Is)

Since (4.1) holds for

we obtain

r i z±t^u^ia

Jo (ft-oy + e* (^ + (;)2+ £2 ^
for any s>0

1=1 and /=3 from the fact that ^gCo((O, oo))and

-4 V- 1 <7<pj(/il)__ njV-l_a<Pj(^
<£2

(≪+ ff)2+s2 {pt+ af "~ -

G+(x; a)-G-(x; a)=

d fee

limS

£10 j = l J-

sup p&$

s

ttV-1 4
a

5 W)

3―1

_-4V-l#XJ≪) .

where we use a well-known property of the Poisson kernel. This completes

the proof of Proposition 4.1.
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