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3-DIMENSIONAL SUBMANIFOLDS OF SPHERES WITH
PARALLEL MEAN CURVATURE VECTOR*

By

Qing-ming CHENG and Bin JIANG

Abstract. In this paper, for a 3-dimensional complete submanifold
M with parallel mean curvature vector in S*+?(¢), we give a pinch-
ing condition of the Ricci curvature under which M is a 3-dimen-
sional small sphere.

1. Introduction

Let M be an n-dimensional complete submanifold immersed in a sphere
S**P(¢). It is well-known that properties of M can be described by a pinching
condition of some curvatures. When M is a minimal submanifold or a sub-
manifold with parallel mean curvature vector, many authors studied the pinch-
ing problem with respect to the sectional curvature or the scalar curvature of
M and a lot of beautiful results were obtained. It is natural to consider
whether we can describe the properties of M by a pinching condition of the
Ricei curvature. When M is minimal, Ejiri [2] and Shen [5] studied the
pinching problem. Shun [6] researched compact submanifolds of a sphere with
parallel mean curvature vector for n>3. He gave a pinching condition of the
Ricci curvature under which M is totally umbilic.

In this paper, for n=3, we consider same problem. That is, we prove the
following :

THEOREM 1. Let M be a 3-dimensional complete submanifold of S**?(c)(p<2)
with parallel mean curvature vector h. If

64

then M is totally umbilic. Hence M is a 3-dimensional small sphere, where
Ric(M) and H=|h| denote the Ricci curvature and the norm of the mean cur-

Ric(M)z > Sot 9y 1 L \/12211{%425[{2
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vature vector h respectively.

THEOREM 2. Let M be a 3-dimensional complete submanifold with parallel
mean curvature vector of S**?(c)(p>2). If

Ric(M)=d,

then M is totally umbilic. Hence M is a 3-dimensional small sphere, where

5:Max{36+39 1\/1521 45, 5p—p

1T (c+HY).

2 4
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2. Preliminaries.

Throughout this paper all manifolds are assumed to be smooth, connected
without boundary. We discuss in smooth category.

Let M be a 3-dimensional submanifold of a (3+ p)-dimensional sphere S**?(c).
We choose a local field of orthonormal frame e,, -+, esy, in S**?(¢) and the
dual coframe w,, -+, ws;, in such a way that e,, ¢, and ¢, are tangent to M.
In the sequel, the following convention on the range of indices is used, unless
otherwised stated:

4§a} ﬂ) e —§3+p -

And we agree that the repeated indices under a summation sign without indi-
cation are summed over the respective range. The connection forms {w4s} of
S*+?(¢) are characterized by the structure equations

— 2w Nwp=0, ®aptwap=0,
(2.1) dwp—X0ac NOcs=245,
1
Qun :'—EZR:;BCD(UC/\(UD;

(2.2) Ripcp==¢(04¢08p—040050)

where Q2,5 (resp. Rizcp) denotes the Riemannian curvature form (resp. the
components of the Riemanman curvature tensor) of S°*7(¢). Therefore the
components of Ricci curvature tensor Ri¢” and the scalar curvature »’ are
given as

Rig=c(n+p—1)045, r'=(n+p)n+p—1c.

Restricting these forms to M, we have

(2.3) we=0 for a=4, ---,3+p.
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We see that ¢, ¢, and ¢, is a local field of orthonormal frames on M and w,,
w; and w, is a local field of its dual coframes on M. It follows from (2.1),
(2.3) and Cartan’s Lemma that

(2.4:) waizzh"ixjwj s h?j:h’.lfzi .

The second fundamental form « and the mean curvature vector A of M are
defined by

2.5) a=Shtowe., h=%D(Shie..

The mean curvature H is given by

1 - _
(2.6) H=lh|=% V3 (S h#).

Let S=X3(hg)? denote the squared norm of the second fundamental form of M.
The connection forms {w;;} of M are characterized by the structure equations
dw;— 2w N\w;=0, ;;+@;=0,

2.7 dwi—30 N Noy=82,;,
1
gi]':_?ZRijklwk/\wl )
where £,; (resp. Rz, denotes the Riemannian curvature form (resp. the com-

ponents of the Riemannian curvature tensor) of M. Therefore the Gauss equa-
tion is given by, from (2.1) and (2.7),

(2.8) Rijn=c(0:20;:—010;1)+ 2 h&hs—hihs) .

The components of the Ricei curvature Ric and the scalar curvature » are
given by

2.9 R;1=2¢0;s+2hths—Xh&hy,
(2.10) r=6c+9H*—3(hy)*.
We also have

dwaﬁ—zwar/\wrﬂ:‘"%ERaﬂtjwt/\wj;
where
(2.11) Rapiy=3 (h§thf—h$ihf).
Define A%, and hg,, by

(2.12) Zh?jkwkzdh?j-}‘zhi"kwkri‘zhfkwu_thjwa,e ,
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D hnm=dh$s+Dh& o+ 2DhEwn+ S hfen— S hiw.s .
The Codazzi equation and the Ricci formula for the second fundamental form
are given by
h$je—h; =0,
(2.13) h?jkz*h?jtkzzh?m}?mju‘i‘Eh#Lijikz‘thijﬁakz )

The Laplacian Ah% of the components hA$ of the second fundamental form
is given by
Ahgj——_kz hgjkk .

From (2.13) we get
(2.14) Ah?j:‘kjhgkij_"zh%m}?mijk+2h%iRmkjk+2hfiRﬂajk .

In this paper, we assume that the mean curvature vector k of M is parallel.
Hence the mean curvature H is constant. We choose e, such that h=He,,
then
(2.15) hi;=3H, 2hs=0 for any a+4,

(2.16) H,H,=HH, for any a,

where H, denotes 3X3-matrix (h%). From (2.14), we have
(2.17) 3 hiARSG= 3 hEihimRuije
a+4 aF4
+ D hGhsiRuese+ 2 hEGhEiRgasn
a#4 a+4

(2.18) Shi; AR = hihim R + 230550 Rovesn -

Define |7|?=Nq.str(H?Z) and |e¢|®*=tr(H3). Then S=|z|*4|0|®%. A submani-
fold M is said to be pseudo-umbilic if it is umbilic with respect to the direction
of the mean curvature vector h, that is

hiy=Hdy; .

3. Proofs of Theorems

In this section, we will give the proofs of Theorem 1 and Theorem 2. In
order to prove Theorems, at first we give the following Propositions 1 and 2.

PROPOSITION 1. Let M be a 3-dimensional complete pseudo-umbilical sub-
manifold in S**?(c)p>1) with parallel mean curvature vector. If
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Ric(M)= -~ 2(2]b 3) (c+H?),

then M is a totally umbilical submanifold.

PROOF. Because of Ric(M)=[(5p—9)/22p—3)1(c+H?) >0, we know that M
is a compact submanifold from Myers’ theorem (2.17) implies

1
3.1) —Al‘z-]2 L(h,,k)z—i—a%h?jzlh?j
:E(h lz)2+2(hkm m11k+thRmk1k>h1]+ % hijhkt Bajk »
a+4 a+4 4
El‘(hngmijk"'h#l,iRmkjlz)hgj
= 2 Atr(HoHpl—tr (H3HZ)} — 3 {tr (H.Hp)}?
a, B#4 a, B#4
+36|T|2+3Ha2{, tr(H,H,H,)— a% {tr (H, H,)}?
+ 2 tr(H. Hy)*— 3 tr (H HY) .
a#d a*4

Since M is a pseudo-umbilical submanifold, we have H,=HI, where I is the
identity matrix. Hence

2tr(H,H)— S tr (HEH)=0,
a#4 a+*4
24tr(HaH4Ha):H|r!,
aF

a% {tr(H.H)}*=0  (by (2.15).

Thus
3.2) a§4(hmemijk+h#¢iRmkjk)h?j
= %] {tr (HyHg)—tr (HEH, )}— Z {tr (Ho Hp)} 2 4+-3(c+H?) 7|2 .
3.3) 2 huhszﬁwk— %] {tr(HaHﬁ)z_‘tr(H,%HZ)}-
a, B#4 a, B4

According to (3.1), (3.2) and (3.3), we get
(3.4) *Al‘rlz E(hwk)z a§¢4{tr(HaHﬁ)}2

+3(c+H?)|r|*+2 2 {tr {(H. Hg—tr (H3H2)} .

a, f#4

For a suitable choice of e;, -, e;,p, We can assume (p—1)X(p—1) matrix
(tr (HyHp)) is diagonal. Hence
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3.5 S A (HaHpl'= 3 {tr (H)}*?

a, B#4

From Lemma 1 in [1], we have
(3.6) 2{tr (Ho Hg)*—tr (H3H2)}
=—tr(H,Hg— Hg H, = —2tr (HZ) tr(H3),

and equality holds for nonzero matrices H, and Hj if and only if H, and Hg
can be transformed simultaneously by an orthogonal matrix into

1 0 0 0 1 0
H:=40 —1 0] and H%=p1 0 0].
0 0 0 0 0 0

Moreover if Hy, -+, Ha, satisfy

tr (Hy,Hy ,— Ho Ho P42 tr (H2)tr (H2,)  for 1<i, k<s,

then at most two of the matrices H,, are nonzero. Let

(p—Da,=I7|*,
G (ﬁ—l)(p—2)02=2“<5§ﬂ#tr(Hi)tr(H%)-
Then
3.8) (1)—1)2(1)—2>(0?—02)=M\E'ﬁ#{tr (Ho)—tr (Hp}* .
Hence we obtain
39) S A1 3 ()t + 3+ HO) e

—2{ 3 (HD+ 3 {er (HD)?

> — {2(p— =1 (p— Dt +(p—1Xp—2)at— o) +3(c+ HY) <|?
> —(p—1)2p—3)at+3(c+ Yo
== (2= 555 It I+ e+ HOlel

On the other hand, for each fixed a4, we can choose a local field of ortho-
normal frames e,, ¢, and e; such that, from (2.16),
I’l%j:Haa:j and h;-’j::l‘,-’&j.

Since tr H,=—3>119=0, we have
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S'=5 (DA,

that is,
tr H;:% ftr H2).
Hence
(3.10) ~ Ztrl-l‘,‘,:i {tr H2}?%.
a4 2 a7
For any a=+4,
3+p
(3.11) 22 {tr (HZH3)—tr (H, Hg)?

=6

=1{ E D (hE)Mag—29

B=5 ij

<43 ShErasr.

B#4, B#a ij

According to (2.9), we get

(3.12) Rij=2(c+H*)—(2)— 2 S (hé?,
#4 #cz J
(3.13) S S(hEgy
B#4, B#Fa ij

=2e+HY) S QDT 9~ 2 Rus(a)?

<2t HOtr (HD— o (e (HDF—, tr (H2),

where d, is the infimum of the Ricci curvature of M. Hence

(3.14) 22 {tr (HZHB)—tr (Ho Hp)*}

= {8(e+H")—4d,} tr (HY)—2{tr (H3)}®

327

The terms at the both ends of the inequality above do not depend on the

choice of the frame fields. Hence

(3.15) 2 3 {tr(HiH3)—tr (H. Hp))

a, B4

S {8(e+H)—40,} 7]°=2 3 {tr (HE)}* .

(3.4), (3.5) and (3.15) yield
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(3.16) %Am”z— {8(c+H)—4d,} I7I°+ 2 {tr (HOY +3(c+H?)|7|?

z{= 5(C+H2)+45HTI+ —ylelt

(3.9)x1/(2p—3)+(3.16) implies

_— 2 2
3.17) Sl - S]Am 2 (45— (5- 5= s e+ HO e
Since 8, is the infimum of the Ricci curvature, we have
5p—9 .
6122(2;0_3)(54-1{ ).

If 6,>((5p—3)/2(2p—3)Xc+H?), from (3.17) and Hopf’s maximum principle, we
obtain |7|2=0. If 8,=((5p—3)/2(2p—3))c+H?), (3.16) and Hopf’s maximum
principle yield |7|?=constant and all inequalities above become actually equalites.

If |7|2=0, then M is totally umbilic. If |z|?*s0, from (3.6) and (3.9), we
have

(318) h?jk::o R

(3.19) lz|*= (c+H?),

p—1
tr (HyHg— Hg Hp =2 tr (H3) tr (H%) for a+8,

(3.20) (p—1(p—2N0t—02)=0.

From Lemma 1 in [1], we know that at most two of the matrices H, are non-
zero, say H,, and Hj,, and we can suppose

1 0 0 0 1 0
He=20 —1 0] and Hg =gl 0 0].
0 0 O 0o 0 0
From (2.16), we have
(3.21) H, H=H,H,, Hs Hi=H,H;,, tr H,=3H.

Hence under this local field of orthonormal frames, we also have
hiy=Hd; .

a) Case p=2. (2.16) implies for a suitable choice of the orthonormal frame
field ‘
}l;l'j:Haij )
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h?j:lga'ﬂ 5
(3.22) 1 29=0.

1

If 29#0, from (3.12) and (3.13), we have

Rii:51:%(C+H2) for /=1, 2, 3,

30,= %(c—i-Hz):G(c—{—Hg)— [712=3(c+ H?) (from (3.19)).

This is a contradiction. Hence at least one of A% is zero, say 4¢=0. Thus
¥=—2% from (3.22).
Iz 2= +(25)*=3(c+ H?),

(AP =(8) =5 e+ HY,

Rii:%(C+H2):COHStant>O, =1, 2,

Ry3=2(c+ H?*)=constant >0 ,
7’:2 R;;=3(c+H*»>0.

S Ry= %(c—{-HZ)z:constant.
]

Hence V,R;;=0. Thus M is a 3-dimensional conformally flat submanifold with
positive definite Ricci curvature. From Theorem 2 due to Goldberg [3], we
know that M is a space form. Hence M is totally umbilic. This is a contra-
diction.

b) Case p=3. In this cases, (3.20) implies

gi=gc,.

We obtain that at most two of H,, a=5, ---, 3+p, are different from zero.
Suppose that only one of them, say H, , is different from zero. Then we have
g{=(1/p—1)|r|* and ¢,=0, which is a contradiction. Therefore we can
suppose that

1 0 0 0 1 0
H=20 —1 0| and He=pg1 0 0},
\0 0 0 0 0 O

H,=0 for a=>7.
In this case,
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H,=HI, tr H2=22%, tr Hi=2p*,
(3.23) 2224 2pr=\7*=3(c+H?).

(2.3) implies
0= Ho,, 0 =10, W= AW, w;53=0,

O =pw,,  @p=p0;, ©0:=0, 0,=0 for a=2,-,34+p.
Since h%,=0 from (3.9), we have, for a=5, -, 3+p,
—dhG=3 s ;+ 3 hws+ 2 hiwpsa -
Setting $=6, ;=1 and j=2, we have
dp=dh$,=0.

Hence g is constant. Thus 4 is also constant from (3.23).
Riu=Rp=2c+H)—A—p*= %(c+H2)=constant>0 .

Ri3=2(c+ H?)=constant >0 .

Making use of the same proof as in case p=2, we obtain |r|*=0. This is a
contradiction. Thus we complete the proof of Proposition 1.

COROLLARY. Let M be a 3-dimensional minimal submanifold in a sphere
S#P(e). If
. 5p—4
> Y7 -
Ric(M)= 2(2p_1)c ,
then M is totally geodesic.

PROOF. Since M is a minimal submanifold in S**P(¢) and S™*?(c) is a
totally umbilical hypersurface in S**?*'(¢c— H?), then M can be seen as a sub-
manifold in S**?*(¢c—H?). It is a pseudo-umbilical submanifold with parallel
mean curvature vector h. According to Proposition 1, we know that Corollary
is true.

REMARK. The result in Corollary is better than one due to Shen [5].

PROPOSITION 2. Let M be a 3-dimensional complete submanifold in S**P(c)
with parallel mean curvature vector. If

. 3,39 1 1521, 45,
RZC(M)ZZC+@H2+—8‘\/—6TH‘+7HZCy

then M is a pseudo-umblical submanifold.
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PROOF. Because of
ch(M)> + Hz \/1921 +2H >0,

we conclude that M is compact from Myers’ theorem. We choose a frame field
in such a way that

hi;=2.0; .
Let p;=2,—H, we have

Su=0, Sp=||"~3H*,

Spi=6H*-3H|a|*+3 2%,

_i 3__ 218 3 2 __ 2\3
(3.26) Vo =3I TS 5 s o V(G307
and equality holds if and only if two of g, are equal (cf. [4]). Because of
(3.27) E (X4 hu)z— > { (Ai—H)hg)®

=(le|*-3H%)|r|*,
from (2.18), (3.26) and (3.27), we obtain
(3.28) -'-‘AIGIZ—Z(h k) 20 htARS,
=2 (hip )+ 2 (MmRmije+hiniRmeje)hi;s
=21(hi;)+3c(|o|*—3H*)— | |*+3H3) 43— ES;}LM&Z
22(h‘%jk)2+3c(\G|2—3H2)+9H2(|012—2H2)

\/6 \/(JG|2—3H2)3 (le|*=3H%|t|*—]|g]|*

=21(hi)+(la|*—3H?)
X{3<0+H2)“Vs V(o*=3HY)— |0 |*+3H"~ 2|7}

On the other hand, since M is a 3-dimensional submanifold, its Weyl conformally
curvature tensor vanishes, i.e.,

1
Rijppm=Rit0im—Rim0is+Rimbis—Rjpbim— E‘r(aikajm_aimaik) s
2 (hngmijk + h:n,iRmkjk)hgj

1 )
=7 Eﬂ (Ai— 2P Ryj4;
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5 B 2p(RutRy—)

S l

;3(25,—%)“0 |2—3H?).

From (2.18), we have

(3.29) Al =B (e +3(2,— 5 (I *—=3H)
1 1
23(25,—36— %HZ-%? lr|2+»2— lo i2>( lg|*—3H?).

(3.28)x3/24(3.29) implies

> Aloisz {60, o (c+ H)— 3‘/6H¢<|aw SO0 ~3H?).

Because of
30, <SRy =r=6c+9H*— |a|*—|7|?,

we have

lo|*—3H*<6¢+6H*—30, .
Hence
(3.30) EA(Jolz—st)zéA] ik

4 4

{661~——( +H2)—9—Q HV X H=6, (0 |*~3H").

By a straightforward calculation, we can easily verify that if
5> et Sy \/@H4+2H2
we have
{66~ 5 (c+-HO)— 9‘/2HV2(c+H2)— 5i}(lo1*—3H?)>0.
According to (3.30) and Hopf’s maximum principle, we conclude
le|?>—3H*=0.

Hence, M is pseudo-umbilic. If

_3,. 89, 1 1521, 45,
4C+64H 8\/ 64H+ H?¢
then,

{6’61— %(c+H2)——91—7 H e FHD —5';}( |6 |2—3H?*)=0.
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Therefore from (3.30), we obtain that |¢|*—3H%=constant and all inequalities
above are equalities. If |g|*—3H®*=0, then M 1s pseudo-umbilic. If |¢|*—3H?
>0, we get that two of pu; are equal. Without loss of generality, we can
suppose p,=g,, then g,=-—2h,. From (2.18), we have

0=31 (htm Ronisi +htsi Ry

_1 . _r

=5 B (Rt Ry— )
=9piRy; .

Therefore R;;=0. On the other hand,

R33>51_3c+ SH \/1521H4+7H2c>0.

This is a contradiction. Hence M is pseudo-umbilic.

PROOF OF THEOREM 1. When p=2, (5p—9)/2(2p—3))=1/2. Hence
—_— +H2 _\/1521H4+ Hz ‘—‘(C’f‘HZ).

According to Propositions 1 and 2, we conclude easily that M is a 3-dimensional
small sphere. When p=1, Proposition 1 implies that Theorem 1 is true.

PROOF OF THEOREM 2. According to Propositions 1 and 2, Theorem 2
holds good obviously.

Authors would like to express their deep thanks for the referee for his
suggestion on Corollary in this section.
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