3-DIMENSIONAL SUBMANIFOLDS OF SPHERES WITH PARALLEL MEAN CURVATURE VECTOR*

By
Qing-ming Cheng and Bin Jiang

Abstract

In this paper, for a 3 -dimensional complete submanifold M with parallel mean curvature vector in $S^{3+p}(c)$, we give a pinching condition of the Ricci curvature under which M is a 3-dimensional small sphere.

1. Introduction

Let M be an n-dimensional complete submanifold immersed in a sphere $S^{n+p}(c)$. It is well-known that properties of M can be described by a pinching condition of some curvatures. When M is a minimal submanifold or a submanifold with parallel mean curvature vector, many authors studied the pinching problem with respect to the sectional curvature or the scalar curvature of M and a lot of beautiful results were obtained. It is natural to consider whether we can describe the properties of M by a pinching condition of the Ricci curvature. When M is minimal, Ejiri [2] and Shen [5] studied the pinching problem. Shun [6] researched compact submanifolds of a sphere with parallel mean curvature vector for $n>3$. He gave a pinching condition of the Ricci curvature under which M is totally umbilic.

In this paper, for $n=3$, we consider same problem. That is, we prove the following:

Theorem 1. Let M be a 3-dimensional complete submanifold of $S^{3+p}(c)(p \leqq 2)$ with parallel mean curvature vector \boldsymbol{h}. If

$$
R i c(M) \geqq \frac{3}{4} c+\frac{39}{64} H^{2}+\frac{1}{8} \sqrt{\frac{1521}{64} H^{4}+\frac{45}{2} H^{2} c},
$$

then M is totally umbilic. Hence M is a 3-dimensional small sphere, where $\operatorname{Ric}(M)$ and $H=|\boldsymbol{h}|$ denote the Ricci curvature and the norm of the mean cur-

[^0]vature vector \boldsymbol{h} respectively.

THEOREM 2. Let M be a 3-dimensional complete submanifold with parallel mean curvature vector of $S^{3+p}(c)(p>2)$. If

$$
\operatorname{Ric}(M) \geqq \delta
$$

then M is totally umblic. Hence M is a 3-dimensional small sphere, where

$$
\delta=\operatorname{Max}\left\{\frac{3}{4} c+\frac{39}{64} H^{2}+\frac{1}{8} \sqrt{\frac{1521}{64} H^{4}+\frac{45}{2} H^{2} c,} \frac{5 p-p}{2(2 p-3)}\left(c+H^{2}\right)\right\}
$$

2. Preliminaries.

Throughout this paper all manifolds are assumed to be smooth, connected without boundary. We discuss in smooth category.

Let M be a 3 -dimensional submanifold of a $(3+p)$-dimensional sphere $S^{3+p}(c)$. We choose a local field of orthonormal frame e_{1}, \cdots, e_{3+p} in $S^{3+p}(c)$ and the dual coframe $\omega_{1}, \cdots, \omega_{3+p}$ in such a way that e_{1}, e_{2} and e_{3} are tangent to M. In the sequel, the following convention on the range of indices is used, unless otherwised stated:

$$
\begin{gathered}
1 \leqq A, B, \cdots \leqq 3+p ; \quad 1 \leqq i, j, \cdots \leqq 3 \\
4 \leqq \alpha, \beta, \cdots \leqq 3+p
\end{gathered}
$$

And we agree that the repeated indices under a summation sign without indication are summed over the respective range. The connection forms $\left\{\omega_{A B}\right\}$ of $S^{3+p}(c)$ are characterized by the structure equations

$$
\left\{\begin{array}{l}
d \omega_{A}-\sum \omega_{A B} \wedge \omega_{B}=0, \quad \omega_{A B}+\omega_{A B}=0 \\
d \omega_{A B}-\sum \omega_{A C} \wedge \omega_{C B}=\Omega_{A B} \tag{2.2}\\
\Omega_{A B}=-\frac{1}{2} \sum R_{A B C D}^{\prime} \omega_{C} \wedge \omega_{D} \\
\quad R_{B B C D}^{\prime}=c\left(\delta_{A C} \delta_{B D}-\delta_{A D} \delta_{B C}\right)
\end{array}\right.
$$

where $\Omega_{A B}$ (resp. $R_{A B C D}^{\prime}$) denotes the Riemannian curvature form (resp. the components of the Riemannian curvature tensor) of $S^{3+p}(c)$. Therefore the components of Ricci curvature tensor Ric' and the scalar curvature r^{\prime} are given as

$$
R_{A B}^{\prime}=c(n+p-1) \delta_{A B}, \quad r^{\prime}=(n+p)(n+p-1) c
$$

Restricting these forms to M, we have

$$
\begin{equation*}
\omega_{\alpha}=0 \quad \text { for } \alpha=4, \cdots, 3+p \tag{2.3}
\end{equation*}
$$

We see that e_{1}, e_{2} and e_{3} is a local field of orthonormal frames on M and ω_{1}, ω_{2} and ω_{3} is a local field of its dual coframes on M. It follows from (2.1), (2.3) and Cartan's Lemma that

$$
\begin{equation*}
\omega_{a i}=\sum h_{i j}^{\alpha} \omega_{j}, \quad h_{i j}^{\alpha}=h_{j i}^{\alpha} . \tag{2.4}
\end{equation*}
$$

The second fundamental form α and the mean curvature vector \boldsymbol{h} of M are defined by

$$
\begin{equation*}
\alpha=\sum h_{i j}^{\alpha} \omega_{i} \omega_{j} e_{\alpha}, \quad \boldsymbol{h}=\frac{1}{3} \Sigma\left(\sum_{i} h_{i i}^{\alpha}\right) e_{\alpha} \tag{2.5}
\end{equation*}
$$

The mean curvature H is given by

$$
\begin{equation*}
H=|\boldsymbol{h}|=\frac{1}{3} \sqrt{\sum\left(\sum_{i} h_{i i}^{\alpha}\right)^{2}} . \tag{2.6}
\end{equation*}
$$

Let $S=\sum\left(h_{i j}^{\alpha}\right)^{2}$ denote the squared norm of the second fundamental form of M. The connection forms $\left\{\omega_{i j}\right\}$ of M are characterized by the structure equations

$$
\left\{\begin{array}{l}
d \omega_{i}-\Sigma \omega_{i j} \wedge \omega_{j}=0, \quad \omega_{i j}+\omega_{j i}=0 \tag{2.7}\\
d \omega_{i j}-\Sigma \omega_{i k} \wedge \omega_{k j}=\Omega_{i j} \\
\Omega_{i j}=-\frac{1}{2} \Sigma R_{i j k l} \omega_{k} \wedge \omega_{l}
\end{array}\right.
$$

where $\Omega_{i j}$ (resp. $R_{i j k l}$) denotes the Riemannian curvature form (resp. the components of the Riemannian curvature tensor) of M. Therefore the Gauss equation is given by, from (2.1) and (2.7),

$$
\begin{equation*}
R_{i j k l}=c\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}\right)+\Sigma\left(h_{i k}^{\alpha} h_{j l}^{\alpha}-h_{i l}^{\alpha} h_{j k}^{\alpha}\right) . \tag{2.8}
\end{equation*}
$$

The components of the Ricci curvature Ric and the scalar curvature r are given by

$$
\begin{gather*}
R_{j k}=2 c \delta_{j k}+\sum h_{i i}^{\alpha} h_{j k}^{\alpha}-\sum h_{i k}^{\alpha} h_{i j}^{\alpha}, \tag{2.9}\\
r=6 c+9 H^{2}-\Sigma\left(h_{i j}^{\alpha}\right)^{2} . \tag{2.10}
\end{gather*}
$$

We also have

$$
d \omega_{\alpha \beta}-\Sigma \omega_{\alpha \gamma} \wedge \omega_{\gamma \beta}=-\frac{1}{2} \sum R_{\alpha \beta i j} \omega_{i} \wedge \omega_{j}
$$

where

$$
\begin{equation*}
R_{\alpha \beta i j}=\Sigma\left(h_{i l}^{\alpha} h_{j l}^{\beta}-h_{j l}^{\alpha} h_{i l}^{\beta}\right) . \tag{2.11}
\end{equation*}
$$

Define $h_{i j k}^{\alpha}$ and $h_{i j k l}^{\alpha}$ by

$$
\begin{equation*}
\Sigma h_{i j k}^{\alpha} \omega_{k}=d h_{i j}^{\alpha}+\Sigma h_{i k}^{\alpha} \omega_{k j}+\Sigma h_{j k}^{\alpha} \omega_{k i}-\Sigma h_{i j}^{\beta} \omega_{n \beta} \tag{2.12}
\end{equation*}
$$

$$
\sum h_{i j k l}^{\alpha} \omega_{l}=d h_{i j k}^{\alpha}+\sum h_{i l k}^{\alpha} \omega_{l j}+\sum h_{i j l}^{\alpha} \omega_{l k}+\sum h_{i j k}^{\alpha} \omega_{l i}-\sum h_{i j k}^{\beta} \omega_{\alpha \beta} .
$$

The Codazzi equation and the Ricci formula for the second fundamental form are given by

$$
\begin{gather*}
h_{i j k}^{\alpha}-h_{i k j}^{\alpha}=0, \\
h_{i j k l}^{\alpha}-h_{i j l k}^{\alpha}=\sum h_{i m}^{\alpha} R_{m j k l}+\sum h_{m j}^{\alpha} R_{m i k l}+\sum h_{i j}^{\beta} R_{\beta \alpha k l}, \tag{2.13}
\end{gather*}
$$

The Laplacian $\Delta h_{i j}^{\alpha}$ of the components $h_{i j}^{\alpha}$ of the second fundamental form α is given by

$$
\Delta h_{i j}^{\alpha}=\sum_{k} h_{i j k k}^{\alpha} .
$$

From (2.13) we get

$$
\begin{equation*}
\Delta h_{i j}^{\alpha}=\sum_{k} h_{k k i j}^{\alpha}+\sum h_{k m}^{\alpha} R_{m i j k}+\sum h_{m i}^{\alpha} R_{m k j k}+\sum h_{k i}^{\beta} R_{\beta \alpha j k} . \tag{2.14}
\end{equation*}
$$

In this paper, we assume that the mean curvature vector h of M is parallel. Hence the mean curvature H is constant. We choose e_{4} such that $\boldsymbol{h}=H e_{4}$, then

$$
\begin{gather*}
\sum_{i} h_{i i}^{4}=3 H, \quad \sum_{i} h_{i i}^{\alpha}=0 \quad \text { for any } \alpha \neq 4, \tag{2.15}\\
H_{\alpha} H_{4}=H_{4} H_{\alpha} \quad \text { for any } \alpha, \tag{2.16}
\end{gather*}
$$

where H_{α} denotes 3×3-matrix ($h_{i j}^{\alpha}$). From (2.14), we have

$$
\begin{gather*}
\sum_{\alpha \neq 4} h_{i j}^{\alpha} \Delta h_{i j}^{\alpha}=\sum_{\alpha \neq 4} h_{i j}^{\alpha} h_{k m}^{\alpha} R_{m i j k} \tag{2.17}\\
+\sum_{\alpha \neq 4} h_{i j}^{\alpha} h_{m i}^{\alpha} R_{m k j k}+\sum_{\alpha \neq 4} h_{i j}^{\alpha} h_{k i}^{\beta} R_{\beta \alpha j k}, \\
\sum h_{i j}^{4} \Delta h_{i j}^{4}=\sum h_{i j}^{4} h_{k m}^{4} R_{m i j k}+\sum h_{i j}^{4} h_{m i}^{4} R_{m k j k} . \tag{2.18}
\end{gather*}
$$

Define $|\tau|^{2}=\sum_{\alpha \neq 4} \operatorname{tr}\left(H_{\alpha}^{2}\right)$ and $|\sigma|^{2}=\operatorname{tr}\left(H_{4}^{2}\right)$. Then $S=|\tau|^{2}+|\sigma|^{2}$. A submanifold M is said to be pseudo-umbilic if it is umbilic with respect to the direction of the mean curvature vector \boldsymbol{h}, that is

$$
h_{i j}^{4}=H \delta_{i j} .
$$

3. Proofs of Theorems

In this section, we will give the proofs of Theorem 1 and Theorem 2. In order to prove Theorems, at first we give the following Propositions 1 and 2.

Proposition 1. Let M be a 3-dimensional complete pseudo-umbilical submanifold in $S^{3+p}(c)(p>1)$ with parallel mean curvature vector. If

$$
\operatorname{Ric}(M) \geqq \frac{5 p-9}{2(2 p-3)}\left(c+H^{2}\right),
$$

then M is a totally umbilical submanifold.
Proof. Because of $\operatorname{Ric}(M) \geqq[(5 p-9) / 2(2 p-3)]\left(c+H^{2}\right)>0$, we know that M is a compact submanifold from Myers' theorem (2.17) implies

$$
\begin{gather*}
\frac{1}{2} \Delta|\tau|^{2}=\sum_{\alpha \neq 4}\left(h_{i j k}^{\alpha}\right)^{2}+\sum_{\alpha \neq 4} h_{i j}^{\alpha} \Delta h_{i j}^{\alpha} \tag{3.1}\\
=\sum_{\alpha \neq 4}\left(h_{i j k}^{\alpha}\right)^{2}+\sum_{\alpha \neq 4}\left(h_{k m}^{\alpha} R_{m i j k}+h_{m i}^{\alpha} R_{m k j k}\right) h_{i j}^{\alpha}+\sum_{\alpha, \beta \neq 4} h_{i j}^{\alpha} h_{k i}^{\beta} R_{\beta \alpha j k}, \\
\sum_{\alpha \neq 4}\left(h_{k m}^{\alpha} R_{m i j k}+h_{m i}^{\alpha} R_{m k j k}\right) h_{i j}^{\alpha} \\
=\sum_{\alpha, \beta \neq 4}\left\{\operatorname{tr}\left(H_{\alpha} H_{\beta}\right)^{2}-\operatorname{tr}\left(H_{\beta}^{2} H_{\alpha}^{2}\right)\right\}-\sum_{\alpha, \beta \neq 4}\left\{\operatorname{tr}\left(H_{\alpha} H_{\beta}\right)\right\}^{2} \\
+3 c|\tau|^{2}+3 H \sum_{\alpha \neq 4} \operatorname{tr}\left(H_{\alpha} H_{4} H_{\alpha}\right)-\sum_{\alpha \neq 4}\left\{\operatorname{tr}\left(H_{\alpha} H_{4}\right)\right\}^{2} \\
+\sum_{\alpha \neq 4} \operatorname{tr}\left(H_{\alpha} H_{4}\right)^{2}-\sum_{\alpha \neq 4} \operatorname{tr}\left(H_{\alpha}^{2} H_{4}^{2}\right) .
\end{gather*}
$$

Since M is a pseudo-umbilical submanifold, we have $H_{4}=H I$, where I is the identity matrix. Hence

$$
\begin{gathered}
\sum_{\alpha \neq 4} \operatorname{tr}\left(H_{\alpha} H_{4}\right)^{2}-\sum_{\alpha \neq 4} \operatorname{tr}\left(H_{\alpha}^{2} H_{4}^{2}\right)=0, \\
\sum_{\alpha \neq 4} \operatorname{tr}\left(H_{\alpha} H_{4} H_{\alpha}\right)=H|\tau| \\
\left.\sum_{\alpha \neq 4}\left\{\operatorname{tr}\left(H_{\alpha} H_{4}\right)\right\}^{2}=0 \quad \text { (by }(2.15)\right)
\end{gathered}
$$

Thus

$$
\begin{gather*}
\sum_{\alpha \neq 4}\left(h_{k m}^{\alpha} R_{m i j k}+h_{m i}^{\alpha} R_{m k j k}\right) h_{i j}^{\alpha} \tag{3.2}\\
=\sum_{\alpha, \beta \neq 4}\left\{\operatorname{tr}\left(H_{\alpha} H_{\beta}\right)^{2}-\operatorname{tr}\left(H_{\beta}^{2} H_{\alpha}^{2}\right)\right\}-\sum_{\alpha, \beta \neq 4}\left\{\operatorname{tr}\left(H_{\alpha} H_{\beta}\right)\right\}^{2}+3\left(c+H^{2}\right)|\tau|^{2} . \\
\sum_{\alpha, \beta \neq 4} h_{i j}^{\alpha} h_{k i}^{\beta} R_{\beta \alpha j k}=\sum_{\alpha, \beta \neq 4}\left\{\operatorname{tr}\left(H_{\alpha} H_{\beta}\right)^{2}-\operatorname{tr}\left(H_{\beta}^{2} H_{\alpha}^{2}\right)\right\} . \tag{3.3}
\end{gather*}
$$

According to (3.1), (3.2) and (3.3), we get

$$
\begin{gather*}
\frac{1}{2} \Delta|\tau|^{2}=\sum_{\alpha \neq 4}\left(h_{i j k}^{\alpha}\right)^{2}-\sum_{\alpha, \beta \neq 4}\left\{\operatorname{tr}\left(H_{\alpha} H_{\beta}\right)\right\}^{2} \tag{3.4}\\
+3\left(c+H^{2}\right)|\tau|^{2}+2 \sum_{\alpha, \beta \neq 4}\left\{\operatorname{tr}\left\{\left(H_{\alpha} H_{\beta}\right)^{2}-\operatorname{tr}\left(H_{\beta}^{2} H_{\alpha}^{2}\right)\right\} .\right.
\end{gather*}
$$

For a suitable choice of e_{5}, \cdots, e_{3+p}, we can assume $(p-1) \times(p-1)$ matrix $\left(\operatorname{tr}\left(H_{\alpha} H_{\beta}\right)\right)$ is diagonal. Hence

$$
\begin{equation*}
\sum_{\alpha, \beta \neq 4}\left\{\operatorname{tr}\left(H_{\alpha} H_{\beta}\right)\right\}^{2}=\sum_{\alpha \neq 4}\left\{\operatorname{tr}\left(H_{\alpha}^{2}\right)\right\}^{2} \tag{3.5}
\end{equation*}
$$

From Lemma 1 in [1], we have

$$
\begin{gather*}
2\left\{\operatorname{tr}\left(H_{\alpha} H_{\beta}\right)^{2}-\operatorname{tr}\left(H_{\beta}^{2} H_{\alpha}^{2}\right)\right\} \tag{3.6}\\
=-\operatorname{tr}\left(H_{\alpha} H_{\beta}-H_{\beta} H_{\alpha}\right)^{2} \geqq-2 \operatorname{tr}\left(H_{\alpha}^{2}\right) \operatorname{tr}\left(H_{\beta}^{2}\right),
\end{gather*}
$$

and equality holds for nonzero matrices H_{α} and H_{β} if and only if H_{α} and H_{β} can be transformed simultaneously by an orthogonal matrix into

$$
H_{\alpha}^{*}=\lambda\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \text { and } \quad H_{\beta}^{*}=\mu\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Moreover if $H_{\alpha_{1}}, \cdots, H_{\alpha_{s}}$ satisfy

$$
\operatorname{tr}\left(H_{\alpha_{i}} H_{\alpha_{k}}-H_{\alpha_{k}} H_{\alpha_{i}}\right)^{2}+2 \operatorname{tr}\left(H_{\alpha_{i}}^{2}\right) \operatorname{tr}\left(H_{\alpha_{k}}^{2}\right) \quad \text { for } 1 \leqq i, k \leqq s
$$

then at most two of the matrices H_{α}, are nonzero. Let

$$
\begin{gather*}
(p-1) \sigma_{1}=|\tau|^{2} \\
(p-1)(p-2) \sigma_{2}=2 \sum_{\alpha<\beta, \alpha, \beta \neq 4} \operatorname{tr}\left(H_{\alpha}^{2}\right) \operatorname{tr}\left(H_{\beta}^{2}\right) \tag{3.7}
\end{gather*}
$$

Then

$$
\begin{equation*}
(p-1)^{2}(p-2)\left(\sigma_{1}^{2}-\sigma_{2}\right)=\sum_{\alpha<\beta, \alpha, \beta \neq 4}\left\{\operatorname{tr}\left(H_{\alpha}^{2}\right)-\operatorname{tr}\left(H_{\beta}^{2}\right)\right\}^{2} . \tag{3.8}
\end{equation*}
$$

Hence we obtain

$$
\begin{gather*}
\frac{1}{2} \Delta|\tau|^{2} \geqq \sum_{\alpha \neq 4}\left(h_{i j k}^{\alpha}\right)^{2}+3\left(c+H^{2}\right)|\tau|^{2} \tag{3.9}\\
-2\left\{\sum_{\alpha \neq 4} \operatorname{tr}\left(H_{\alpha}^{2}\right)\right\}^{2}+\sum_{\alpha \neq 4}\left\{\operatorname{tr}\left(H_{\alpha}^{2}\right)\right\}^{2} \\
\geqq-\{2(p-1)-1\}(p-1) \sigma_{1}^{2}+(p-1)(p-2)\left(\sigma_{1}^{2}-\sigma_{2}\right)+3\left(c+H^{2}\right)|\tau|^{2} \\
\geqq-(p-1)(2 p-3) \sigma_{1}^{2}+3\left(c+H^{2}\right)|\tau|^{2} \\
=-\left(2-\frac{1}{p-1}\right)|\tau|^{4}+3\left(c+H^{2}\right)|\tau|^{2}
\end{gather*}
$$

On the other hand, for each fixed $\alpha \neq 4$, we can choose a local field of orthonormal frames e_{1}, e_{2} and e_{3} such that, from (2.16),

$$
h_{i j}^{4}=H \delta_{i j} \quad \text { and } \quad h_{i j}^{\alpha}=\lambda_{i}^{\alpha} \delta_{i j}
$$

Since $\operatorname{tr} H_{\alpha}=\sum \lambda_{i}^{\alpha}=0$, we have

$$
\sum_{i}\left(\lambda_{i}^{\alpha}\right)^{4}=\frac{1}{2}\left\{\sum_{i}\left(\lambda_{i}^{\alpha}\right)^{2}\right\}^{2},
$$

that is,

$$
\operatorname{tr} H_{\alpha}^{4}=\frac{1}{2}\left\{\operatorname{tr} H_{\alpha}^{2}\right\}^{2} .
$$

Hence

$$
\begin{equation*}
\sum_{\alpha \neq 4} \operatorname{tr} H_{\alpha}^{4}=\frac{1}{2} \sum_{\alpha \neq 4}\left\{\operatorname{tr} H_{\alpha}^{2}\right\}^{2} . \tag{3.10}
\end{equation*}
$$

For any $\alpha \neq 4$,

$$
\begin{align*}
& 2 \sum_{\beta=5}^{3+p}\left\{\operatorname{tr}\left(H_{\alpha}^{2} H_{\beta}^{2}\right)-\operatorname{tr}\left(H_{\alpha} H_{\beta}\right)^{2}\right\} \tag{3.11}\\
&=\left\{\sum_{\beta=5}^{3+p} \sum_{i j}\left(h_{i j}^{\beta}\right)^{2}\left(\lambda_{i}^{\alpha}-\lambda_{j}^{\alpha}\right)^{2}\right. \\
& \leqq 4 \sum_{\beta \neq 4, \beta \neq \alpha} \sum_{i j}\left(h_{i j}^{\beta}\right)^{2}\left(\lambda_{i}^{\alpha}\right)^{2} .
\end{align*}
$$

According to (2.9), we get

$$
\begin{gather*}
\quad R_{i j}=2\left(c+H^{2}\right)-\left(\lambda_{i}^{\alpha}\right)^{2}-\sum_{\beta \neq\langle, \beta \neq \alpha} \sum_{j}\left(h_{i j}^{\beta}\right)^{2}, \tag{3.12}\\
\sum_{\beta \neq 4, \beta \neq \alpha} \sum_{i j}\left(h_{i j}^{\beta}\right)^{2}\left(\lambda_{i}^{\alpha}\right)^{2} \tag{3.13}\\
=2\left(c+H^{2}\right) \sum_{i}\left(\lambda_{i}^{\alpha}\right)^{2}-\sum_{i}\left(\lambda_{i}^{\alpha}\right)^{4}-\sum_{i} R_{i i}\left(\lambda_{i}^{\alpha}\right)^{2} \\
\leqq 2\left(c+H^{2}\right) \operatorname{tr}\left(H_{\alpha}^{2}\right)-\frac{1}{2}\left\{\operatorname{tr}\left(H_{\alpha}^{2}\right)\right\}^{2}-\delta_{1} \operatorname{tr}\left(H_{\alpha}^{2}\right),
\end{gather*}
$$

where δ_{1} is the infimum of the Ricci curvature of M. Hence

$$
\begin{gather*}
2 \sum_{\beta=5}^{3+p}\left\{\operatorname{tr}\left(H_{\alpha}^{2} H_{\beta}^{2}\right)-\operatorname{tr}\left(H_{\alpha} H_{\beta}\right)^{2}\right\} \tag{3.14}\\
\leqq\left\{8\left(c+H^{2}\right)-4 \delta_{1}\right\} \operatorname{tr}\left(H_{\alpha}^{2}\right)-2\left\{\operatorname{tr}\left(H_{\alpha}^{2}\right)\right\}^{2} .
\end{gather*}
$$

The terms at the both ends of the inequality above do not depend on the choice of the frame fields. Hence

$$
\begin{gather*}
2 \sum_{\alpha, \beta \neq 4}\left\{\operatorname{tr}\left(H_{\alpha}^{2} H_{\beta}^{2}\right)-\operatorname{tr}\left(H_{\alpha} H_{\beta}\right)^{2}\right\} \tag{3.15}\\
\leqq\left\{8\left(c+H^{2}\right)-4 \delta_{1}\right\}|\tau|^{2}-2 \sum_{\alpha \neq 4}\left\{\operatorname{tr}\left(H_{\alpha}^{2}\right)\right\}^{2} .
\end{gather*}
$$

(3.4), (3.5) and (3.15) yield

$$
\begin{align*}
& \frac{1}{2} \Delta|\tau|^{2} \geqq-\left\{8\left(c+H^{2}\right)-4 \delta_{1}\right\}|\tau|^{2}+\sum_{\alpha \neq 4}\left\{\operatorname{tr}\left(H_{\alpha}^{2}\right)\right\}^{2}+3\left(c+H^{2}\right)|\tau|^{2} \tag{3.16}\\
& \geqq\left\{-5\left(c+H^{2}\right)+4 \delta_{1}\right\}|\tau|^{2}+\frac{1}{p-1}|\tau|^{4}
\end{align*}
$$

$(3.9) \times 1 /(2 p-3)+(3.16)$ implies

$$
\begin{equation*}
\frac{1}{2}\left[1+\frac{1}{2 p-3}\right] \Delta|\tau|^{2} \geqq\left\{4 \delta_{1}-\left(5-\frac{3}{2 p-3}\right)\left(c+H^{2}\right)\right\}|\tau|^{2} \tag{3.17}
\end{equation*}
$$

Since δ_{1} is the infimum of the Ricci curvature, we have

$$
\delta_{1} \geqq \frac{5 p-9}{2(2 p-3)}\left(c+H^{2}\right)
$$

If $\delta_{1}>((5 p-3) / 2(2 p-3))\left(c+H^{2}\right)$, from (3.17) and Hopf's maximum principle, we obtain $|\tau|^{2}=0$. If $\delta_{1}=((5 p-3) / 2(2 p-3))\left(c+H^{2}\right)$, (3.16) and Hopf's maximum principle yield $|\tau|^{2}=$ constant and all inequalities above become actually equalites.

If $|\tau|^{2}=0$, then M is totally umbilic. If $|\tau|^{2} \neq 0$, from (3.6) and (3.9), we have

$$
\begin{gather*}
h_{i j k}^{\alpha}=0, \tag{3.18}\\
|\tau|^{2}=\frac{3}{2-\frac{1}{p-1}}\left(c+H^{2}\right), \tag{3.19}\\
\operatorname{tr}\left(H_{\alpha} H_{\beta}-H_{\beta} H_{\alpha}\right)^{2}=2 \operatorname{tr}\left(H_{\alpha}^{2}\right) \operatorname{tr}\left(H_{\beta}^{2}\right) \quad \text { for } \alpha \neq \beta, \tag{3.20}
\end{gather*}
$$

From Lemma 1 in [1], we know that at most two of the matrices H_{α} are nonzero, say $H_{\alpha_{1}}$ and $H_{\beta_{1}}$, and we can suppose

$$
H_{\alpha_{1}}=\lambda\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) \text { and } H_{\beta_{1}}=\mu\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

From (2.16), we have

$$
\begin{equation*}
H_{\alpha_{1}} H_{4}=H_{4} H_{\alpha_{1}}, \quad H_{\beta_{1}} H_{4}=H_{4} H_{\beta_{1}}, \quad \operatorname{tr} H_{4}=3 H \tag{3.21}
\end{equation*}
$$

Hence under this local field of orthonormal frames, we also have

$$
h_{i j}^{4}=H \delta_{i j} .
$$

a) Case $p=2$. (2.16) implies for a suitable choice of the orthonormal frame field

$$
h_{i j}^{4}=H \delta_{i j},
$$

$$
\begin{align*}
& h_{i j}^{\alpha}=\lambda_{i}^{\alpha} \delta_{i j}, \\
& \sum_{i} \lambda_{i}^{\alpha}=0 . \tag{3.22}
\end{align*}
$$

If $\lambda_{i}^{\alpha} \neq 0$, from (3.12) and (3.13), we have

$$
\begin{gathered}
R_{i i}=\delta_{1}=\frac{1}{2}\left(c+H^{2}\right) \quad \text { for } i=1,2,3 \\
3 \delta_{1}=\frac{3}{2}\left(c+H^{2}\right)=6\left(c+H^{2}\right)-|\tau|^{2}=3\left(c+H^{2}\right) \quad \text { (from (3.19)). }
\end{gathered}
$$

This is a contradiction. Hence at least one of λ_{i}^{α} is zero, say $\lambda_{3}^{\alpha}=0$. Thus $\lambda_{1}^{\alpha}=-\lambda_{2}^{\alpha}$ from (3.22).

$$
\begin{gathered}
|\tau|^{2}=\left(\lambda_{1}^{\alpha}\right)^{2}+\left(\lambda_{2}^{\alpha}\right)^{2}=3\left(c+H^{2}\right), \\
\left(\lambda_{1}^{\alpha}\right)^{2}=\left(\lambda_{2}^{\alpha}\right)^{2}=\frac{3}{2}\left(c+H^{2}\right), \\
R_{i i}=\frac{1}{2}\left(c+H^{2}\right)=\text { constant }>0, \quad i=1,2, \\
R_{33}=2\left(c+H^{2}\right)=\text { constant }>0, \\
r=\sum_{i} R_{i i}=3\left(c+H^{2}\right)>0 \\
\sum_{i j} R_{i j}^{2}=\frac{9}{2}\left(c+H^{2}\right)^{2}=\mathrm{constant} .
\end{gathered}
$$

Hence $\nabla_{k} R_{i j}=0$. Thus M is a 3-dimensional conformally flat submanifold with positive definite Ricci curvature. From Theorem 2 due to Goldberg [3], we know that M is a space form. Hence M is totally umbilic. This is a contradiction.
b) Case $p \geqq 3$. In this cases, (3.20) implies

$$
\sigma_{1}^{2}=\sigma_{2} .
$$

We obtain that at most two of $H_{\alpha}, \alpha=5, \cdots, 3+p$, are different from zero. Suppose that only one of them, say $H_{\alpha_{1}}$, is different from zero. Then we have $\sigma_{1}^{2}=(1 / p-1)|\tau|^{2}$ and $\sigma_{2}=0$, which is a contradiction. Therefore we can suppose that

$$
\begin{gathered}
H_{5}=\lambda\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) \text { and } H_{6}=\mu\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \\
H_{\alpha}=0 \quad \text { for } \alpha \geqq 7 .
\end{gathered}
$$

In this case,

$$
\begin{gather*}
H_{4}=H I, \quad \operatorname{tr} H_{5}^{2}=2 \lambda^{2}, \quad \operatorname{tr} H_{6}^{2}=2 \mu^{2}, \\
2 \lambda^{2}+2 \mu^{2}=|\tau|^{2}=3\left(c+H^{2}\right) . \tag{3.23}
\end{gather*}
$$

(2.3) implies

$$
\begin{gathered}
\omega_{4 i}=H \omega_{i}, \quad \omega_{51}=\lambda \omega_{1}, \quad \omega_{52}=-\lambda \omega_{2}, \quad \omega_{53}=0, \\
\omega_{51}=\mu \omega_{2}, \quad \omega_{62}=\mu \omega_{1}, \quad \omega_{63}=0, \quad \omega_{\alpha i}=0 \quad \text { for } \alpha=2, \cdots, 3+p .
\end{gathered}
$$

Since $h_{i j_{k}}^{\alpha}=0$ from (3.9), we have, for $\alpha=5, \cdots, 3+p$,

$$
-d h_{i j}^{\alpha}=\sum h_{i k}^{\alpha} \omega_{k j}+\sum h_{k j}^{\alpha} \omega_{k i}+\sum h_{i j}^{\beta} \omega_{\beta \alpha} .
$$

Setting $\beta=6, i=1$ and $j=2$, we have

$$
d \mu=d h_{12}^{6}=0 .
$$

Hence μ is constant. Thus λ is also constant from (3.23).

$$
\begin{gathered}
R_{11}=R_{22}=2\left(c+H^{2}\right)-\lambda^{2}-\mu^{2}=\frac{1}{2}\left(c+H^{2}\right)=\text { constant }>0 . \\
R_{33}=2\left(c+H^{2}\right)=\text { constant }>0 .
\end{gathered}
$$

Making use of the same proof as in case $p=2$, we obtain $|\tau|^{2}=0$. This is a contradiction. Thus we complete the proof of Proposition 1.

Corollary. Let M be a 3-dimensional minimal submanifold in a sphere $S^{3+p}(c)$. If

$$
\operatorname{Ric}(M) \geqq \frac{5 p-4}{2(2 p-1)} c,
$$

then M is totally geodesic.
Proof. Since M is a minimal submanifold in $S^{3+p}(c)$ and $S^{3+p}(c)$ is a totally umbilical hypersurface in $S^{3+p+1}\left(c-H^{2}\right)$, then M can be seen as a submanifold in $S^{3+p+1}\left(c-H^{2}\right)$. It is a pseudo-umbilical submanifold with parallel mean curvature vector \boldsymbol{h}. According to Proposition 1, we know that Corollary is true.

Remark. The result in Corollary is better than one due to Shen [5].
Proposition 2. Let M be a 3-dimensional complete submanifold in $S^{3+p}(c)$ with parallel mean curvature vector. If

$$
R i c(M) \geqq \frac{3}{4} c+\frac{39}{64} H^{2}+\frac{1}{8} \sqrt{\frac{1521}{64} H^{4}+\frac{45}{2} H^{2} c},
$$

then M is a pseudo-umblical submanifold.

Proof. Because of

$$
R_{\imath c} c(M) \geqq \frac{3}{4} c+\frac{39}{64} H^{2}+\frac{1}{8} \sqrt{\frac{1921}{64} H^{4}+\frac{45}{2} H^{2} c}>0,
$$

we conclude that M is compact from Myers' theorem. We choose a frame field in such a way that

$$
h_{i j}^{4}=\lambda_{i} \delta_{i j} .
$$

Let $\mu_{i}=\lambda_{i}-H$, we have

$$
\begin{equation*}
-\frac{1}{\sqrt{6}} \sqrt{\left(|\sigma|^{2}-3 H^{2}\right)^{3}} \leqq \sum \mu_{i}^{3} \leqq \frac{1}{\sqrt{6}} \sqrt{\left(|\sigma|^{2}-3 H^{2}\right)^{3}}, \tag{3.26}
\end{equation*}
$$

and equality holds if and only if two of μ_{i} are equal (cf. [4]). Because of

$$
\begin{gather*}
\sum_{\alpha \neq 4}\left(\sum_{i} \lambda_{i} h_{i i}^{\alpha}\right)^{2}=\sum_{\alpha \neq 4}\left\{\sum_{i}\left(\lambda_{i}-H\right) h_{i i \ell}^{\alpha}\right\}^{2} \tag{3.27}\\
\leqq\left(|\sigma|^{2}-3 H^{2}\right)|\tau|^{2},
\end{gather*}
$$

from (2.18), (3.26) and (3.27), we obtain

$$
\begin{gather*}
\frac{1}{2} \Delta|\sigma|^{2}=\sum\left(h_{i j k}^{4}\right)^{2}+\sum h_{i j}^{4} \Delta h_{i j}^{4} \tag{3.28}\\
=\sum\left(h_{i j k}^{4}\right)^{2}+\sum\left(h_{k m}^{4} R_{m i j k}+h_{m i}^{4} R_{m k j k}\right) h_{i j}^{4} \\
=\Sigma\left(h_{i j k}^{4}\right)^{2}+3 c\left(|\sigma|^{2}-3 H^{2}\right)-|\sigma|^{4}+3 H \sum \lambda_{i}^{3}-\sum_{\alpha \neq 4}\left(\sum_{i} \lambda_{i} h_{i i}^{\alpha}\right)^{2} \\
\geqq \sum\left(h_{i j k}^{4}\right)^{2}+3 c\left(|\sigma|^{2}-3 H^{2}\right)+9 H^{2}\left(|\sigma|^{2}-2 H^{2}\right) \\
-\frac{3 H}{\sqrt{6}} \sqrt{\left(|\sigma|^{2}-3 H^{2}\right)^{3}}-\left(|\sigma|^{2}-3 H^{2}\right)|\tau|^{2}-|\sigma|^{4} \\
=\sum\left(h_{i j k}^{4}\right)^{2}+\left(|\sigma|^{2}-3 H^{2}\right) \\
\times\left\{3\left(c+H^{2}\right)-\frac{3 H}{\sqrt{6}} \sqrt{\left.\left(|\sigma|^{2}-3 H^{2}\right)-|\sigma|^{2}+3 H^{2}-|\tau|^{2}\right\} .}\right.
\end{gather*}
$$

On the other hand, since M is a 3 -dimensional submanifold, its Weyl conformally curvature tensor vanishes, i.e.,

$$
\begin{gathered}
R_{i j k m}=R_{i k} \delta_{j m}-R_{i m} \delta_{j k}+R_{j m} \delta_{i k}-R_{j k} \delta_{i m}-\frac{1}{2} r\left(\delta_{i k} \delta_{j m}-\delta_{i m} \delta_{j k}\right), \\
\sum\left(h_{k m}^{4} R_{m i j k}+h_{m i}^{4} R_{m k j k}\right) h_{i j}^{4} \\
=\frac{1}{2} \sum_{i \neq j}\left(\lambda_{i}-\lambda_{j}\right)^{2} R_{i j i j}
\end{gathered}
$$

$$
\begin{gathered}
=\frac{1}{2} \sum_{i \neq j}\left(\lambda_{i}-\lambda_{j}\right)^{2}\left(R_{i i}+R_{j j}-\frac{r}{2}\right) \\
\geqq 3\left(2 \delta_{1}-\frac{r}{2}\right)\left(|\sigma|^{2}-3 H^{2}\right) .
\end{gathered}
$$

From (2.18), we have

$$
\begin{align*}
& \frac{1}{2} \Delta|\sigma|^{2} \geqq \Sigma\left(h_{i j k}^{4}\right)^{2}+3\left(2 \delta_{1}-\frac{r}{2}\right)\left(|\sigma|^{2}-3 H^{2}\right) \tag{3.29}\\
\geqq & 3\left(2 \delta_{1}-3 c-\frac{9}{2} H^{2}+\frac{1}{2}|\tau|^{2}+\frac{1}{2}|\sigma|^{2}\right)\left(|\sigma|^{2}-3 H^{2}\right) .
\end{align*}
$$

$(3.28) \times 3 / 2+(3.29)$ implies

$$
\frac{5}{2} \Delta|\sigma|^{2} \geqq\left\{6 \delta_{1}-\frac{9}{2}\left(c+H^{2}\right)-\frac{3 \sqrt{6}}{4} H \sqrt{\left(|\sigma|^{2}-3 H^{2}\right)}\right\}\left(|\sigma|^{2}-3 H^{2}\right) .
$$

Because of

$$
3 \delta_{1} \leqq \sum R_{i i}=r=6 c+9 H^{2}-|\sigma|^{2}-|\tau|^{2},
$$

we have

$$
|\sigma|^{2}-3 H^{2} \leqq 6 c+6 H^{2}-3 \delta_{1}
$$

Hence

$$
\begin{gather*}
\frac{5}{4} \Delta\left(|\sigma|^{2}-3 H^{2}\right)=\frac{5}{4} \Delta|\sigma|^{2} \tag{3.30}\\
\geqq\left\{6 \delta_{1}-\frac{9}{2}\left(c+H^{2}\right)-\frac{9 \sqrt{2}}{4} H \sqrt{2\left(c+H^{2}\right)-\delta_{1}}\right\}\left(|\sigma|^{2}-3 H^{2}\right) .
\end{gather*}
$$

By a straightforward calculation, we can easily verify that if

$$
\delta_{1}>\frac{3}{4} c+\frac{39}{64} H^{2}+\frac{1}{8} \sqrt{\frac{1521}{64} H^{4}+\frac{45}{2} H^{2} c},
$$

we have

$$
\left\{6 \delta_{1}-\frac{9}{2}\left(c+H^{2}\right)-\frac{9 \sqrt{2}}{4} H \sqrt{2}\left(\overline{\left.c+H^{2}\right)-\delta_{1}}\right\}\left(|\sigma|^{2}-3 H^{2}\right)>0 .\right.
$$

According to (3.30) and Hopf's maximum principle, we conclude

$$
|\sigma|^{2}-3 H^{2}=0 .
$$

Hence, M is pseudo-umbilic. If

$$
\delta_{1}=\frac{3}{4} c+\frac{39}{64} H^{2}+\frac{1}{8} \sqrt{\frac{1521}{64} H^{4}+\frac{45}{2} H^{2} c}
$$

then,

$$
\left\{6 \delta_{1}-\frac{9}{2}\left(c+H^{2}\right)-\frac{9 \sqrt{2}}{4} H \sqrt{2\left(c+H^{2}\right)-\delta_{1}}\right\}\left(|\sigma|^{2}-3 H^{2}\right)=0 .
$$

Therefore from (3.30), we obtain that $|\sigma|^{2}-3 H^{2}=$ constant and all inequalities above are equalities. If $|\sigma|^{2}-3 H^{2}=0$, then M is pseudo-umbilic. If $|\sigma|^{2}-3 H^{2}$ >0, we get that two of μ_{i} are equal. Without loss of generality, we can suppose $\mu_{1}=\mu_{2}$, then $\mu_{3}=-2 h_{1}$. From (2.18), we have

$$
\begin{gathered}
0=\sum\left(h_{k m}^{4} R_{m i j k}+h_{m i}^{4} R_{m k j k}\right) h_{i j}^{4} \\
=\frac{1}{2} \sum_{i \neq j}\left(\lambda_{i}-\lambda_{j}\right)^{2}\left(R_{i i}+R_{j j}-\frac{r}{2}\right) \\
=9 \mu_{1}^{2} R_{33} .
\end{gathered}
$$

Therefore $R_{33}=0$. On the other hand,

$$
R_{33} \geqq \delta_{1}=\frac{3}{4} c+\frac{39}{64} H^{2}+\frac{1}{8} \sqrt{\frac{1521}{64} H^{4}+\frac{45}{2} H^{2} c>0} .
$$

This is a contradiction. Hence M is pseudo-umbilic.
Proof of Theorem 1. When $p=2$, $((5 p-9) / 2(2 p-3))=1 / 2$. Hence

$$
\frac{3}{4} c+H^{2}+\frac{1}{8} \sqrt{\frac{1521}{64} H^{4}+\frac{45}{2} H^{2} c>}>\frac{1}{2}\left(c+H^{2}\right)
$$

According to Propositions 1 and 2, we conclude easily that M is a 3 -dımensional small sphere. When $p=1$, Proposition 1 implies that Theorem 1 is true.

Proof of Theorem 2. According to Propositions 1 and 2, Theorem 2 holds good obviously.

Authors would like to express their deep thanks for the referee for his suggestion on Corollary in this section.

References

[1] S.S. Chern, M. do Carmo and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional analysis and related fields (1970), 59-75.
[2] N. Ejiri, Compact minimal submanifolds of a sphere with positive Ricci curvature, J. Math. Soc. Japan 31 (1979), 251-256.
[3] S.I. Goldberg, On conformally flat spaces with definite curvature, Kodai Math. Sem. Rep. 21 (1969), 226-232.
[4] M. Okumura, Hypersurfaces and a pinching problem on the second fundamental tensor, Amer. J. Math. 96 (1974), 207-213.
[5] Y.B. Shen, Intrinsic rigidity of minimal submanifolds in spheres, Scientia Simica A 32 (1989), 769-781.
[6] Z.Q. Shun, Submanifolds of spheres with constant mean curvature, Adv. in Math. China 16 (1987), 91-96.

Keywords. Parallel mean curvature vector, Ricci curvature and totally umbilic submanifolds.

Department of Mathematics
Northeast University of Technology
Shenyang Liaoning 110006
China

First author's present address
Institute of Mathematics
Fudan University
Shanghai 200433
P.R. China

[^0]: * The Project Supported by National Natural Science Fundation of China. Received January 7, 1991, Revised September 18, 1991.

