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§1. Introduction

The idea of constant width has been developed in a somewhat differentspirit,

as a topic in differentialgeometry, and the concept of "transnormality" has been

introduced as the generalized one of constant width in a Riemannian manifold.

Let M be a connected complete hypersurface of a connected complete Rieman-

nian manifold M. For each igM, there exists,up to parametrization, a unique

geodesic zx of M which intersectsM orthogonally at x. M is called a transnormal

hypersurface of M it, for each pair x,y<E.M, the relationy&rx implies that tx = tv.

For a transnormal hypersurface M, we define an equivalence relation ~ onMas

follows; for xjgM, x~y means that yE.rx. Then we can consider the quotient

space M―Mj~ with the quotient topology with respect to thisrelation. We call

M an r-transnormal hypersurface if the natural projection of M onto M is an

r-fold covering map.

Topological structures of transnormal submanifolds are full of interest and

have been investigated from various angles (for example, see [3]). On the other

hand, differentialgeometric structures of 2-transnormal hypersurfaces in a space

form have been given in [2] and [4].

Recentry, the author has studied in [5] differentialgeometric structures of

compact 2-transnormal hypersurfaces in a complex space form. The purpose of

this paper is to generalize the result in [5] to the case where 2-transnormal

hypersurfaces are complete. Namely we shall prove that 2-transnormal hyper-

surfaces in a Kaehler manifold of negative constant holomorphic sectionalcurvature

are tubes over some submanifolds or geodesic hyperspheres if any principal curva-

ture is constant.

§2. Preliminalies

First we shall review the definitionof the function Lp on M for some point
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/>eAf, which plays an impotant part to investigate the properties of transnormal

submanifolds.

If M is an r-transnormal hypersurface and if there exists a point p^M satis-

fying the condition C(p) nM=0, then the differentialfunction Lp on Mis denned

by

Lp(x)=cIm(P, -zO2 for any xElM,

where C(p) is the cut locus of p in M and dH denotes the distance function in M.

It is well known that any transnormal hypersurface has no intersection with its

focal set. Therefore, the function Lp is the Morse function.

Next we describe relevant concept and formulas used for the proof of Mair

Theorem.

From now on, let M be a simply connected complete Kaehler manifold of

negative constant holomorphic sectional curvature k (for convenience, we will

assume k=~4), dimcM=m and M be a connected complete 2-transnormal real

hypersurface in M. Note that the cut locus C(p) of any point p&M is empty

because of the negativity of the holomorphic sectionalcurvature of M. Then, for

any point p&M, the Morse function Lp can be denned.

Since M is 2-transnormal, for any point XE:M, there exists the unique point

f£M such that x~x and x^x. It is known that £ is a criticalpoint of Lx,

which is called an antipodal point of x, and we calldM(x, x) the width of M as

a subset of M, which is constant on M.

Let f(x, x) be the minimizing normal geodesic segment from x to the antip-

odal point x of x. We denote by N(x) the initial vector f'(0) of j(x, x) and

E(x) ―JN(x), where J is the complex structure of M. We callN(x) an inward

unit normal vector at x and E(pc) an almost contact structure vector at x.

Then, the Hessian H of Lx at criticalpoint x is given by

H(x, y) =2^<{coth(J) -I-Snw}X, Y)

+ 2d- tanh(d) (E (x), X) (E (x), Y>

for X, Y<eMx,

where d=d]S(x, x) and / denotes the identity transformation and S is the second

fundamental tensor. See [5] for details.

In the sequel we assume that the almost contact structure vector E(x) is a

principal vector with the principal curvature ^.(x) at each point xgM Further-

more, we denote by v(x, X) the principal curvature of M at x associated with the

principal vector X orthogonal to E(x). Then we have the following proposition.

PROPOSITION 2.1 (Lemma 4.3 of [5]) At the antipodal point x of x,
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n n ,, -s - 2sinh(2d) + ^(x) cosh(2^)
^i; x^; (^(^)/2)sinh(2J)-cosh(2^)

(9＼ v(? y＼- ~sinhC^)
+ y(^ -X)cosh(^)

^ ; n-r' A ; y Cx, X) sinh(d) - cosh(d)
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･where X is the tangent vector of M at x given by the parallel translation of X

along y(x, x) and d=dii(x, x).

Finally we shall consider some properties of a focal point of M. For each

/>sM, let yp be the normal geodesic starting from p perpendicularly to M such

that f(P)=N(P)-

PROPOSITION 2.2 A point ieM is a focal point of M along geodesic yp ij

and only if x=yp(r) where 2coth(2r) = X(p) or coth(r) = v(p, X) for some non-

zero principal curvature of M at p.

PROOF. Tp(f) is a focal point of M along jp if and only if there exists a

non-trivial (M, p)-Jacobi field along jp which vanishes at yP(r). For a non-zerc

principal curvature of M at p, we can consider the (M, p) -Jacobi field

Y (t) = (cosh (2t) -(X(p)/ 2) sinh (2t) ) Jf (t) or

Z(t) = (cosh (*) - v(j>, X) sinh (0 ) X(t),

where X{t) is the parallel vector field along jp with X(0)=X which is principal

vector orthogonal to E(p). Then we obtain the assertion. q.e.d.

REMARK 2.1 Since any transnormal hypersurface has no intersection with

its focal set, for any point zeM the folloings are true;

2cosh (2d) - X(x) sinh (2d) =£0

cosh(^) -v(x, X)sinh(d) ^0,

where d is a width of M as a subset of M.

REMARK 2.2 From the form of Hessian of Lx at critical point x, the index

of Lx at x is equal to the number of principal curvatures X and v of M at x with

respect to N(x) such that <2>2coth(2<i) or y>coth(<i).

In the sequel, we label the principal curvatures v from 1 to 2?n―2 as followings ;

PROPOSITION 2.3 If for some point zeM, the index of Lx at antipodal

point x is n, then, for any point y&M, the index of Ly at y is also n.

PROOF. We assume that X(£) > 2coth (2d). Then vt(x) >coth(<i) and vj(x)

<coth(J) (lt^if^n ―1, n-£jt^2m ―2) from Remark 2.2. In the sequel, adopt that
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l^a^2m ―2, lf^if^n ―1 and n^j^2m ―2. Now we shall consider the set D of

M such that

D={y<=M; X(y)>2coth(2d), Vi(y)>coth(d) and vj(y)<coth(d)}.

Then D is open and closed. In fact, each X and va being continuous on M, for

any point xgD, there exists an open neighborhood of x in M contained in D.

Thus D is open. Next, for xElD (closure of D), let {xm} be a sequence in D

such that limTO_->ooXm= x. Then, by the continuity of X and va, we have limOT_>oo

X(xm) = X(x) 2>2coth(2d), limTO_^ooyi(xm) = vi(x) ^coth(d) and limm-K^(xm) = ≫j

(x)-^coth(d). By Remark 2.1, we obtain that X(x) > 2coth(2d), vt(x) > coth(d)

and vj(x) <coth(d). Thus D is closed. Hence D ―M.

If /IOr) <2coth(2<i), then it holds that Vj(x) >coth(<i) and Vj(x)<coth(d) for

1;Sz'^m and n + l^jSL2m ―2. By the same way as above,

D = {y e M; *(j/)< 2coth(2J), vt(y)> coth(J) and Vj(y) < coth(d)

for l^i^n, n + l£j^2m-2]

is open and closed. Hence D = M. q.e.d.

§3. Main Theorem

Now, we shall prove the following theorem using the results prepared.

THEOREM Let M be a simply connected complete Kaehler manifold of nega-

tive constant holomorphic sectional curvature ―4 and dime M=m. Let M be a

connected complete 2-transnormal hyper surface of M and d be the width of M as

a subset of M. Suppose that, for a point x^M, the index of Lx at the antipodal

point x is ≪(^1). For each point x*ElM.,the almost contact structure vector E(x)

is assumed to be a principal vector with principal curvature X(x). Let V＼(x)

^y2(-^)^･･･^y2m-2(-^) be other principal curvatures at x^M. Then we have

followings.

(1) For each point of M, if ^(>2coth(2<i)), Vi(for l^i^n ―1) and vj(for

n^jt^2m ―2) are bounded from either above or below by 2coth(<i), coth

(d/2) and tanh(<i/2) respectively, then M is a tube of radius d/2 over

(2m ―n ―l)/2-dimensional complex totally geodesic submanifold.

(2) For each point of M, if ^(<2coth(2<i)), vt(for l<,i^n) and ≫j(for

?t+l-^j-^2m ―2) are bounded from either above or below by 2tanh(<i), coth

(d/2) and tanh(d/2') respectively, then M is a tube of radius d/2 over

(2m ―n ―V) -dimensional anti-holomorphic totally geodesic submanifold. In

particular, if n ―2m ―l then this implies that M is a geodesic hyper sphere

with radius d/2.
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PROOF. First we consider only the following case of (1) ;

A^2coth(d), Vi^coth(d/2) (l^i^n-1) and

Vj^ tanh (d/2) (n ^j^ 2m - 2).

From Proposition 2.1 and the above assumption,

2r~＼= - 2sinh (2d) + X (x) cosh (2d)

KX) (X (x) m sinh (2d) - cosh (2d) ■
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^2coth(<i)

= 2 (1 + cosh Q2d)) /sinh (2d).

Note here that -2> 2coth (2 J), i.e. (XI2) sinh(2d) -cosh(2<2) >0. Then this ine-

quality implies

*Ge) ^2(1 + cosh(2d))lsinh(2J) = 2coth(d).

Thus we obtain /£=2coth(<i).

Next we shall discuss va. To begin with, we should note that v(x, X)>

coth (d) implies v(x, X) > coth (d). In fact, we have the following inequality ;

v(x, X) sinh (d) - cosh (d)=l/{(v (x, X) - coth (d) ) sinh (d)}.

Furthermore note that Vi>coth(/i) and Vj<coth((i). Then, by the same way as

above together with Proposition 2.1, we get Vi=coth(<i/2) and y,;=tanh(<i/2).

In seven other cases of (1) and all cases of (2), we can prove similarly that

2. and va(＼^a^2?n ―2) are all constant.

Now, for r&R, we consider a map Fr:M >M by

Fr (x) = exp (rN(x) ) x e M,

where N(x) denotes the inward unit normal vector at x and exp is the exponential

map on the normal bundle of M. By the way, if ^ = 2coth((i) or y = coth(<i/2),

then (M, x)-Jacobi fields Y(t) and Z(t) along yx in the proof of Proposition 2.2

vanish in t = d/2. Hence the exponential map on the normal bundle of M is

degenerate at (d/2)N(x~) for any point x^M in above situation, whose nullity is

n. Therefore Fd/2 has constant rank 2m ―n ―1. By the inverse function theorem,

for Xq G M, there exists an open neighborhood W of xo such that Fa/ 2(W) ―V is

a (2m ―n ―V) -dimensional real submanifold embedded in M. Now, from Theorem

4.2 in [1] we can get the following fact; if ^ = 2coth(<i), then JT^-VczTj-V, that

is, V is complex, or if ^ =£2coth(<i), then JT^-VczTpV, that is, V is anti-holomor-

phic, where T^-V is the complement of the tangent space TpV of V at pe.V.

From the completeness of M a global version can be obtained. Namely, in the

case of (1) (resp. (2)) Mis a tube of radius d/2 over (2m ―n ―1)/2-dimensional

complex submanif old (resp. over (2m ―n ―V) -dimensional anti-holomorphic sub-
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manifold). Furthermore also we have the following facts in general. (See section

5 in [1]) ; principal curvatures of Fr(M) are 2(Acoth(2r) -2)/(2coth(2r) -X) and

(yacoth(r) ―1)/(coth(r) ―va) for ^=£2coth(2r) and va=£coth(r). Hence, substitu-

ting r = d/2, -2= 2tanh(<f) and ya = tanh(^/2), we have that (2m ―n ―1) -principal

curvatures of i^/2(M) are all zero in any cases. So Fdf2(M) is totally geodesic

and we can get the theorem. q.e.d.
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