ON PRIME TWINS IN ARITHMETIC PROGRESSIONS

By
Hiroshi Mikawa

1. Introduction.

Let q and a be coprime positive integers. Put, for a non-zero integer k,

$$
\Psi(x ; q, a, 2 k)=\sum_{\substack{0<m, n \leq x \\ m m=2 k \\ n \equiv a(\bmod q)}} \Lambda(m) \Lambda(n)
$$

where Λ is the von Mangoldt function. It is expected that, provided $(a+2 k, q)$ $=1, \Psi$ is asymptotically equal to

$$
H(x ; q, 2 k)=\Im \prod_{\substack{p \mid q k \\ p>2}}\left(\frac{p-1}{p-2}\right) \cdot \frac{x-|2 k|}{\varphi(q)}
$$

where

$$
\Im=2 \prod_{p>2}\left(1-\frac{1}{(p-1)^{2}}\right)
$$

Let

$$
E(x ; q, a, 2 k)= \begin{cases}\Psi-H, & \text { if }(a+2 k, q)=1 \\ \Psi, & \text { otherwise } .\end{cases}
$$

It is well known that $E(x ; 1,1,2 k)$ is small in an averaged sense over k.
In 1961 A.F. Lavrik [5] showed that, for any $A, B>0$,

$$
\sum_{0<2 k \leq x}|E(x ; q, a, 2 k)| \ll x^{2}(\log x)^{-A}
$$

uniformly for $(a, q)=1$ and $q \leqq(\log x)^{B}$. Recently H. Maier and C. Pommerance considered the inequality

$$
\sum_{q \leqq Q} \max _{(a, q)=1} \sum_{0<2 k \leqq x}|E(x ; q, a, 2 k)| \ll x^{2}(\log x)^{-A}
$$

which may be regarded as an analogue to the Bombieri-Vinogradov theorem. They [3] showed that the above is valid for $Q \leqq x^{\delta}$ with some small $\delta>0$, and applied their formula to a problem concerned with gaps between primes. Later A. Balog $[1]$ generalized this to the case of prime multiplets, and extended the
range of validity, in the general case, to $Q \leqq x^{1 / 3}(\log x)^{-B}$ with some $B=B(A)$ >0.

In this paper we make a further improvement, only for the simplest case, so as to give a close analogue to the Bombieri-Vinogradov theorem.

Theorem. Let $A>0$ be given. There exists $B=B(A)>0$ such that

$$
\sum_{q \leqslant x^{1 / 2}(\log x)^{-B}} \max _{(a, q)=1} \sum_{0<2 k \leq x}|E(x ; q, a, 2 k)| \ll x^{2}(\log x)^{-A}
$$

where the implied constant depends only on A.
Our argument is, of course, based upon the bound for $E(x ; 1,1,2 k)$ and the Bombieri-Vinogradov theorem. In contrast to $[1,3]$ we employ a variant of Ju. V. Linnik's dispersion method. We use a standard notation in number theory, and, for simplicity, write $\mathcal{L}=\log x$.

I would like to thank Professor S. Uchiyama for encouragement and careful reading of the original manuscript.

2. Proof of Theorem.

We call a remainder $R(x ; q, a)$ "admissible", if for any $A>0$ there exists $B=B(A)>0$ such that

$$
\sum_{q \leq x^{1 / 2} \mathcal{L}-B} q \max _{(a, q)=1}|R(x ; q, a)| \ll x^{3} \mathcal{L}^{-A} .
$$

An admissible remainder is abbreviated to "A.R." in a formula.
We first consider the following quantity:

$$
\begin{align*}
\mathscr{D}(x ; q, a) & =\sum_{0<12 k 1 \leq x}|E(x ; q, a)|^{2} \tag{2.1}\\
& =W-2 V+U,
\end{align*}
$$

where

$$
\begin{equation*}
V=\frac{\mathbb{S}}{\varphi(q)} \sum_{\substack{0<12 k, \leqslant x \\(a+2 k, q)=1}}(x-|2 k|) \prod_{\substack{p, q k \\ p>2}}\left(\frac{p-1}{p-2}\right) \sum_{\substack{m \\ m \\ m=n \leq x, z \\ n \equiv a(\bmod q)}} A(m) \Lambda(n) \tag{2.2}
\end{equation*}
$$

and

$$
U=\left(\frac{\mathbb{S}}{\varphi(q)}\right)^{2} \sum_{\substack{0<2 k \leq x \\(a+2 k, q)=1}}(x-|2 k|)^{2} \prod_{\substack{p, q k \\ p>2}}\left(\frac{p-1}{p-2}\right)^{2} .
$$

In sections 3, 4 and 5 , we shall show

$$
\begin{equation*}
W \leqq T+\mathrm{A} . \mathrm{R} . \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
V=T+\mathrm{A} \cdot \mathrm{R} \cdot \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
U=T+\mathrm{A} . \mathrm{R} ., \tag{2.5}
\end{equation*}
$$

where

$$
T=2 \frac{\mathfrak{Y}(q)}{\varphi^{2}(q)} \frac{x^{3}}{3}
$$

with

$$
\mathfrak{G}(q)=\prod_{p}\left(1+\frac{1}{(p-1)^{3}}\right) \prod_{p!q}\left(\frac{(p-1)^{2}}{p^{2}-3 p+3}\right) .
$$

Then, because of (2.1), $\mathscr{D}(x ; q, a)$ is admissible. By Cauchy's inequality, we therefore have

$$
\begin{aligned}
& \left(\sum_{q \leq Q} \max _{(a, q)=1} \sum_{0<2 k \leq x}|E(x ; q, a)|\right)^{2} \\
& \quad \leqq\left(\sum_{q \leq Q} \frac{1}{q} \sum_{0<2 k \leq x} 1\right)\left(\sum_{q \leq Q} q \max _{(a, q)=1} \sum_{0<2 k \mid \leq x}|E(x ; q, a)|^{2}\right) \\
& \quad<x \mathcal{L} \cdot \sum_{q \leq Q} q \max _{(a, q)=1} \mathscr{D}(x ; q, a) \\
& \quad<x^{4} \mathcal{L}^{-2 . A}
\end{aligned}
$$

for any $A>0$ and $Q \leqq x^{1 / 2} \mathcal{L}^{-B}$ with some $B=B(A)>0$. Thus, apart from the verification of (2.3), (2.4) and (2.5), we get Theorem.

In order to prove (2.3) and (2.4), we appeal to the following Lemmas. Lemma 1 follows from [4] immediately. Lemma 2 is a minor modification of the Bombieri-Vinogradov theorem, see [2, sect. 28].

Lemma 1. For any $A>0$ we have

$$
\sum_{0<2 k \leq x} \tau(2 k)|E(x ; 1,1,2 k)| \ll x^{2} \mathcal{L}^{-4}
$$

where the implied constant depends only on A.
Lemma 2. Put

$$
E_{1}(x ; q, a)=\sum_{\substack{n \leqslant x \\ n \equiv a(\bmod q)}} \Lambda(n)-\frac{x}{\varphi(q)} .
$$

Then, for any $A>0$, there exists $B=B(A)>0$ such that

$$
\sum_{q \leq x 1 / 2 \mathcal{L}-B} \tau_{3}(q) \max _{(a, q)=1} \max _{t \leq x}\left|E_{1}(t ; q, a)\right| \ll x \mathcal{L}^{-4}
$$

where the implied constant depends only on A.

3. Estimation of W.

In this section we prove (2.3). Expanding the square, we have

The above condition $m_{1}-n_{1}=m_{2}-n_{2}$ is equivalent to $n_{1}-n_{2}=m_{1}-m_{2}$. Write $r^{\prime}=n_{1}-n_{2}=m_{1}-m_{2}$. Then $q \mid r^{\prime}$, since $n_{1} \equiv n_{2}(q)$. The terms with $r^{\prime} \equiv 1(2)$ or $r^{\prime}=0$ contribute

$$
\ll x \mathcal{L}^{6}+x^{2} q^{-1} \mathcal{L}^{4}
$$

which is admissible trivially. On rewriting $r^{\prime}=2 r$, we have

$$
\begin{aligned}
& W \leqq \sum_{\substack{0<12 r \mid \leq x \\
q 12 r \\
q}}\left(\sum_{\substack{n_{1}, n_{2} \leq x \\
n_{1} \leq n_{2}=2 r \\
n_{1}=n_{2}=2(q)}} \Lambda\left(n_{1}\right) \Lambda\left(n_{2}\right)\right)\left(\sum_{\substack{m_{1}, m_{2} \leq x \\
m_{1}-m_{2}=2 r}} \Lambda\left(m_{1}\right) \Lambda\left(m_{2}\right)\right)+\text { A.R. }
\end{aligned}
$$

We now replace Ψ by H. Then the resulting error is
which is admissible, since

$$
\begin{aligned}
& \sum_{q \leqq x} q \cdot \sum_{\substack{0 \ll 2 r \leq x \\
q / 2 r}} \frac{x}{q} \mathcal{L}^{2}|E(x ; 1,1,2 r)| \\
& \quad<x \mathcal{L}^{2} \sum_{0<2 r \leq x} \tau(2 r)|E(x ; 1,1,2 r)| \\
& \quad<x^{3} \mathcal{L}^{-4},
\end{aligned}
$$

by Lemma 1. Hence

$$
W \leqq 2 \widetilde{c}_{\substack{0<r \mid r \leq x \\ q 12 r}}(x-2 r) \prod_{\substack{p r r \\ p>2}}\left(\frac{p-1}{p-2}\right) \sum_{\substack{m, n \leq x \\ m=n \leq 2 r \\ m \equiv n \equiv a(q)}} \Lambda(m) \Lambda(n)+\text { A.R.. }
$$

Let φ_{1} denote the multiplicative completion of $\varphi_{1}(p)=p-2$. Then

$$
\prod_{\substack{p, r \\ p>2}}\left(\frac{p-1}{p-2}\right)=\sum_{\substack{d, r \\(d, 2)=1}} \frac{\mu^{2}(d)}{\varphi_{1}(d)} .
$$

Since $\varphi_{1}(p) \geqq(1 / 2)(p-1)$ for $p \geqq 3$, we see

Here $D=9+A$. This contributes to W

$$
\ll x \sum_{\substack{0<2 r|\leq 1 \\ q| r}} \mathcal{L}^{1-D} \tau_{3}(r) \cdot \frac{x}{q} \mathcal{L}^{2},
$$

which is also admissible, since

$$
\begin{aligned}
& \sum_{q \leq x} q \circ \frac{x^{2}}{q} \mathcal{L}^{3-D} \sum_{\substack{0,2 r_{\leq} \leq x \\
q \mid 2 T}} \tau_{3}(r) \\
& \ll x^{2} \mathcal{L}^{3-D} \sum_{r \leq x} \tau_{3}(r) \tau(r) \\
& \\
& \ll x^{2} \mathcal{L}^{9-D} .
\end{aligned}
$$

By partial summation, we therefore have

$$
W \leqq 2 \subseteq \int_{0}^{x} \omega(x, y ; q, a) d y+\mathrm{A} . \mathrm{R} .
$$

where

We proceed to consider ω. Since $(d, 2)=1$, the condition $m-n=2 r$ and $d \mid r$ is equivalent to $m \equiv n(2 d)$. Thus,

The above simultaneous congruences are soluble if and only if $n \equiv a((2 d, q))$, which is satisfied. Moreover, $\mu^{2}(d)=1$ and $(d, 2)=1$ imply $(2 d /(2 d, q), q)=1$. Hence, if $(n, 2 d /(2 d, q))=1$, then m is restricted by a reduced residue class to modulo $[2 d, q]$. The terms with $(n, 2 d /(2 d, q))>1$ contribute negligibly. Therefore the innermost sum of (3.1) is equal to

$$
\begin{equation*}
\frac{\min (y, x-n)}{\varphi([2 d, q])}+O\left(\max _{\substack{t \leq x \\(b,[2 d, q])=1}}\left|E_{1}(t ;[2 d, q], b)\right|\right) \tag{3.2}
\end{equation*}
$$

The contribution of the O-term is admissible. Actually, Lemma 2 yields that

$$
\begin{aligned}
\sum_{q \leq Q} q \cdot x & \sum_{\substack{d \leq T \\
(d, 2)=1}} \frac{\mu^{2}(d)}{\varphi_{1}(d)}\left(\sum_{\sum_{n \leq x}^{n \leq x} x=a(q)} A(n)\right) \max _{\substack{t \leq x \\
(b,[2 d, q])=1}}\left|E_{1}(t ;[2 d, q], b)\right| \\
& \ll x^{2} \mathcal{L} \sum_{c \leq 2 Q \mathcal{L} D}\left(\sum_{[2 d, q]=c} 1\right) \max _{\substack{t \leq x \\
(b, c)=1}}\left|E_{1}(t ; c, b)\right| \\
& \ll x^{2} \mathcal{L} \sum_{c \leq 2 Q \mathcal{L}^{\prime} D} \tau_{3}(c) \max _{\substack{t \leq x \\
(b, c)=1}}\left|E_{1}(t ; c, b)\right| \\
& \ll x^{3} \mathcal{L}^{-A},
\end{aligned}
$$

provided $Q \leqq(1 / 2) x^{1 / 2} \mathcal{L}^{-(B+D)}$ with B in Lemma 2. Let ω_{1} denote the remaining terms. Then we have showed that

$$
\begin{equation*}
W \leqq 2 \widetilde{S} \int_{0}^{x} \omega_{1}(x, y ; q, a) d y+\mathrm{A} . \mathrm{R} . \tag{3.3}
\end{equation*}
$$

We turn to $\omega_{1} . \quad B y$ (3.1) and (3.2),

$$
\begin{align*}
\omega_{1} & =\sum_{\substack{d \leq f \\
(d, 2)=1}} \frac{\mu^{2}(d)}{\varphi_{1}(d)} \sum_{\substack{n \leq x \\
n \leqq x(q) \\
(n, 2 d /(2 d, q))=1}} \Lambda(n) \frac{\min (y, x-n)}{\varphi([2 d, q])} \tag{3.4}\\
& \leqq\left(\sum_{(d, 2)=1} \frac{\mu^{2}(d)}{\varphi_{1}(d) \varphi([2 d, q])}\right) \cdot \sum_{\substack{n \leq x \\
n \equiv a(q)}} \Lambda(n) \min (y, x-n) \\
& =\sigma \cdot \sum, \text { say. }
\end{align*}
$$

By partial summation, we see

$$
\begin{equation*}
\Sigma=\int_{0}^{y} \frac{x-t}{\varphi(q)} d t+O\left(y \max _{t \leqq x}\left|E_{1}(t ; q, a)\right|\right) \tag{3.5}
\end{equation*}
$$

Because of $(2 d /(2 d, q), q)=1$ and $(d, 2)=1$,

$$
\varphi([2 d, q])=\frac{\varphi(d) \varphi(q)}{\varphi((d, q))}
$$

So,

$$
\begin{align*}
\varphi(q) \sigma & =\sum_{(d, 2)=1} \frac{\mu^{2}(d) \varphi((d, q))}{\varphi_{1}(d) \varphi(d)} \tag{3.6}\\
& =\prod_{\substack{p \neq 2}}\left(1+\frac{1}{(p-2)(p-1)}\right) \cdot \prod_{\substack{p>q}}\left(1+\frac{1}{p-2}\right) \\
& =\prod_{p>2}\left(\frac{p^{2}-3 p+3}{(p-2)(p-1)}\right) \cdot \prod_{\substack{p>2 \\
p>q}}\left(\frac{(p-2)(p-1)}{p^{2}-3 p+3} \cdot \frac{p-1}{p-2}\right) \\
& =\prod_{p>2}\left(\frac{(p-1)^{2}}{p(p-2)} \cdot \frac{p\left(p^{2}-3 p+3\right)}{(p-1)^{3}}\right) \cdot \prod_{p, q}\left(\frac{(p-1)^{2}}{p^{2}-3 p+3}\right) \\
& =\Im^{-1} \mathfrak{\varphi}(q) .
\end{align*}
$$

In conjunction with (3.4), (3.5) and (3.6), we have

$$
\omega_{1} \leqq \Im^{-1} \frac{\tilde{\varphi}(q)}{\varphi^{2}(q)}\left(x y-\frac{y^{2}}{2}\right)+O\left(x \frac{\tau(q)}{\varphi(q)} \max _{t \leqq x}\left|E_{1}(t ; q, a)\right|\right),
$$

since $\mathfrak{g}(q) \ll \tau(q)$. Combining this with (3.3), we get

$$
\begin{aligned}
W \leqq & \leqq \subseteq \cdot \Im^{-1} \frac{\mathfrak{G}(q)}{\varphi^{2}(q)} \int_{0}^{x}\left(x y--\frac{y^{2}}{2}\right) d y \\
& +O\left(x^{2} \frac{\tau(q)}{\varphi(q)} \max _{t \leq x}\left|E_{1}(t ; q, a)\right|\right)+\mathrm{A} . \mathrm{R} . \\
= & 2 \frac{\mathfrak{F}(q)}{\varphi^{2}(q)} \cdot \frac{x^{3}}{3}+\omega_{2}+\mathrm{A} . \mathrm{R} ., \quad \text { say },
\end{aligned}
$$

Since

$$
\sum_{q \leq Q} \sum_{(a, q)=1} q \max _{\substack{ \\ }}\left|\omega_{2}\right| \ll x^{2} \mathcal{L} \sum_{q \leq Q} \tau \tau(q) \max _{\substack{t a x \\(a, q)=1}}\left|E_{1}(t ; q, a)\right|,
$$

ω_{2} is admissible by Lemma 2. Hence we conclude

$$
W \leqq T+\mathrm{A} . \mathrm{R} .,
$$

as required.

4. Evaluation of V.

By the argument similar to that in the previous section, we have

$$
V=\frac{\mathbb{S}}{\varphi(q)} \int_{0}^{x} v(x, y ; q, a) d y+\mathrm{A} . \mathrm{R} .
$$

where

Here $D=A+7$. We approximate u by

$$
v_{1}(x, y ; q)=\mathbb{S}^{-1} \frac{\mathfrak{F}(q)}{\varphi(q)} 2\left(x y-\frac{y^{2}}{2}\right) .
$$

Let $v_{2}(x, y ; q, a)$ denote the resulting remainder. We then have

$$
\begin{align*}
V & =\frac{\mathfrak{S}}{\varphi(q)} \int_{0}^{x} v_{1}(x, y ; q) d y+O\left(\frac{x}{\varphi(q)} \max _{y \leqslant x}\left|v_{2}(x, y ; q, a)\right|\right)+\mathrm{A} . \mathrm{R} . \tag{4.2}\\
& =2 \frac{\mathfrak{y}(q)}{\varphi^{2}(q)} \frac{x^{3}}{3}+v_{3}+\mathrm{A} . \mathrm{R} ., \quad \text { say. }
\end{align*}
$$

If v_{3} is admissible, then (2.4) follows.
We proceed to consider v defined by (4.1). If $\mu^{2}(d) \neq 0$, then the congruence
$q k \equiv 0(d)$ reduces to $k \equiv 0(d /(d, q))$. Since $(d, 2)=1$, the condition $m-n=2 k$ and $k \equiv 0(d /(d, q))$ is equivalent to $m \equiv n(2 d /(d, q))$. Thus, we have

$$
\begin{align*}
& v=\sum_{\substack{d \leq S D \\
(d, 2)=1}} \frac{\mu^{2}(d)}{\varphi_{1}(d)} \sum_{\substack{m, n \leq x \\
m \equiv n(2 d y) \\
n \equiv a(d, q) \\
n=a(q)}} \Lambda(m) \Lambda(n) \tag{4.3}\\
& =\sum_{\substack{d \leq f D \\
(d, 2)=1}} \frac{\mu^{2}(d)}{\varphi_{1}(d)} \sum_{\substack{n \leq x \\
n=a(q) \\
(n, 2 d /(d, q))=1}} \Lambda(n) \sum_{\substack{n<m \leq \min (x, n+y) \\
\text { or max } \\
m \equiv n(2 d /(d, q) \\
m \in n}} \Lambda(m)+O\left(\mathcal{L}^{5}+\frac{x}{q} \mathcal{L}^{3}\right) .
\end{align*}
$$

We replace the innermost sum by

$$
v_{0}=\frac{\min (n, y)+\min (y, x-n)}{\varphi(2 d /(d, q))}
$$

Then the resulting error is

$$
\begin{align*}
& \ll \sum_{d \leqq \perp} \frac{\mu^{2}(d)}{\varphi_{1}(d)} \frac{x}{q} \max _{(b, 2 d /(d, q))=1}\left|E_{1}(u ; 2 d /(d, q), b)\right| \tag{4.4}\\
& \ll \frac{x^{2}}{q} \mathcal{L}^{-3-A},
\end{align*}
$$

by the Siegel-Walfisz theorem [2, sect. 22]. The contribution of v_{0} is equal to

$$
\begin{align*}
& \left(\sum_{\substack{d(d, 2)=1}} \frac{\mu^{2}(d)}{\varphi_{1}(d) \varphi(2 d /(d, q))}\right) \sum_{\substack{n \leq x \\
m \equiv a(q)}} A(n)(\min (n, y)+\min (y, x-n))+O\left(x \mathcal{L}^{3}\right) \tag{4.5}\\
& =\sigma \cdot \Sigma+O\left(x \mathcal{L}^{3}\right), \quad \text { say } .
\end{align*}
$$

By partial summation,

$$
\begin{equation*}
\Sigma=\frac{2\left(x y-y^{2} / 2\right)}{\varphi(q)}+O\left(x \max _{u \leq x}\left|E_{1}(u ; q, a)\right|\right) \tag{4.6}
\end{equation*}
$$

$\mu^{2}(d)=1$ and $(d, 2)=1$ imply $\varphi(2 d /(d, q))=\varphi(d) / \varphi((d, q))$. Hence,

$$
\begin{align*}
\sigma & =\sum_{(d, 2)=1} \frac{\mu^{2}(d) \varphi((d, q))}{\varphi_{1}(d) \varphi(d)}+O\left(\sum_{d>\Sigma_{D}}(\log d) \frac{(d, q) \tau(d)}{d^{2}}\right) \tag{4.7}\\
& =\Im^{-1} \mathfrak{S}(q)+O\left(\mathcal{L}^{3-D} \tau_{3}(q)\right)
\end{align*}
$$

In conjunction with (4.3)-(4.7), we get

$$
\begin{aligned}
u=\left\{\mathcal{S}^{-1} \mathfrak{F}(q)\right. & \left.+O\left(\mathcal{L}^{3-D} \tau_{3}(q)\right)\right\}\left\{\frac{2\left(x y-y^{2} / 2\right)}{\varphi(q)}+O\left(x \max _{u \leqq x}\left|E_{1}(u ; q, a)\right|\right)\right\} \\
& +O\left(x \mathcal{L}^{3}\right)+O\left(\frac{x^{2}}{q} \mathcal{L}^{-A-3}\right)
\end{aligned}
$$

$$
\begin{aligned}
&=\mathfrak{S}^{-1} \frac{\mathfrak{F}(q)}{\varphi(q)} 2\left(x y-\frac{y^{2}}{2}\right)+O\left(x^{2} \mathcal{L}^{3-D} \frac{\tau_{3}(q)}{\varphi(q)}\right) \\
& \quad+O\left(x \tau(q) \max _{u \leq x}\left|E_{1}(u ; q, a)\right|\right)+O\left(\frac{x^{2}}{q} \mathcal{L}^{-A-3}\right) . \\
&= v_{1}+O\left(x^{2} \mathcal{L}^{-A-3} \tau_{3}(q) q^{-1}+x \tau(q) \max _{u \leq x}\left|E_{1}(u ; q, a)\right|\right) .
\end{aligned}
$$

Combining this with (4.2) we see

$$
\begin{aligned}
\sum_{q \leq Q} q \max _{(a, q)=1}\left|v_{3}\right| & \ll x \sum_{q \leq Q} \frac{q}{\varphi(q)} \max _{(a, q)=1}\left|v-v_{1}\right| \\
& \ll x^{3} \mathcal{L}^{-A}+x^{2} \mathcal{L} \sum_{q \leq Q} \tau(q) \max _{\substack{u \leq x \\
(a, q)=1}}\left|E_{1}(u ; q, a)\right|
\end{aligned}
$$

Hence Lemma 2 yields that u_{3} is admissible, as required.

5. Calculation of U.

It remains to show (2.5). By the definition (2.2) of U,

$$
U=\frac{2 \Xi^{2}}{\varphi^{2}(q)} \sum_{\substack{0,2 k, x, x \\(a+2 k, q)=1}}(x-2 k)^{2} \prod_{\substack{p, q k \\ p \geqslant 2}}\left(\frac{p-1}{p-2}\right)^{2} .
$$

Now,

$$
\prod_{\substack{p \not p k \\ p \rightarrow 2}}\left(\frac{p-1}{p-2}\right)^{2}=\sum_{\substack{d, q, k \\(d, 2)=1}} \frac{\mu^{2}(d)}{\varphi_{2}(d)}
$$

where φ_{2} is the multiplicative completion of $\varphi_{2}(p)=(p-2)^{2} /(2 p-3)$. Since $\varphi_{2}(p)$ $>(p-1)^{4} /\left(2 p^{3}\right)$ for $p \geqq 3$, we see

$$
\frac{\mu^{2}(d)}{\varphi_{2}(d)}<\mu^{2}(d) \frac{\tau(d)}{d}\left(\frac{d}{\varphi(d)}\right)^{4}
$$

or

$$
\sum_{\substack{d, \ldots k \\ \text { and } \\ d>2, \tilde{D}^{1}}} \frac{\mu^{2}(d)}{\varphi_{2}(d)} \ll \mathcal{L} \sum_{\substack{d \backslash q^{k} \\ d>\mathcal{L}^{D}}} \frac{\tau(d)}{d} \ll \mathcal{L}^{1-D} \tau_{3}(q k) .
$$

Here D is a constant. By partial summation, we then have

$$
\begin{aligned}
& =\frac{2 \mathbb{S}^{2}}{\varphi^{2}(q)} \int_{0}^{x} 2 y \cdot u(x, y ; q, a) d y+O\left(x^{3} \mathcal{L}^{3-D} \frac{\tau_{3}(q)}{\varphi^{2}(q)}\right), \quad \text { say },
\end{aligned}
$$

We proceed to u. We treat the condition $(a+2 k, q)=1$ by the Moebius function and interchange the order of summation, getting

$$
u=\sum_{\substack{d, t, D \\
(d, 2)=1}} \frac{\mu^{2}(d)}{\varphi_{2}(d)} \sum_{e \backslash 1} \mu(e) \#\left\{0<2 k \leqq x-y: \begin{array}{l}
q k \equiv 0(d) \\
a+2 k \equiv 0(e)
\end{array}\right\} .
$$

The above congruence $q k \equiv 0(d)$ is equivalent to $k \equiv 0(d /(d, q))$, because of $\mu^{2}(d)=1$. Since $(a, q)=1$ and $e \mid q$, the congruence $a+2 k \equiv 0(e)$ is soluble if and only if $(e, 2)=1$, and reduces to $k \equiv-a \overline{2}(e)$. Moreover, $\mu^{2}(d)=1$ and $e \mid q$ imply $(d /(d, q), e)=1$. Hence k is determined by some congruence to modulo $d e /(d, q)$. We therefore have

$$
\begin{aligned}
& u=\sum_{\substack{d \in \leq \\
(a, 2)=1}} \frac{\mu^{2}(d)}{\varphi_{2}(d)} \sum_{\substack{e, f=q \\
(e, 2)=1}} \mu(e)\left\{\frac{(x-y) / 2}{d e /(d, q)}+O(1)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{x-y}{2}\left(\sum_{(d, 2)=1} \frac{\mu^{2}(d)(d, q)}{\varphi_{2}(d) d}+O\left(\mathcal{L}^{3-D} \tau_{3}(q)\right)\right)\left(\sum_{\substack{e, q \\
(e, q)=1}} \frac{\mu(e)}{e}\right)+O(\tau(q) \mathcal{L}) \\
& =\mathbb{S}^{-2} \mathfrak{G}(q)(x-y)+O\left(x \mathcal{L}^{3-D} \tau_{3}(q)\right) \text {. }
\end{aligned}
$$

Combining this with (5.1), we get

$$
U=\frac{2 \mathbb{S}^{2}}{\varphi(q)} \cdot \mathbb{S}^{-2} \mathfrak{5}(q) \int_{0}^{x} 2 y(x-y) d y+O\left(x^{3} \mathcal{L}^{3-D} \frac{\tau_{3}(q)}{\varphi^{2}(q)}\right) .
$$

On choosing $D=7+A$, the above O-term is admissible, since

$$
\sum_{q \leq Q} q \cdot x^{3} \mathcal{L}^{2-D} \frac{\tau_{3}(q)}{\varphi^{2}(q)} \ll x^{3} \mathcal{L}^{\tau-D} .
$$

Thus,

$$
U=2 \frac{\mathfrak{F}(q)}{\varphi^{2}(q)} \cdot \frac{x^{3}}{3}+\text { A.R. },
$$

as required.
This completes our proof of Theorem.

References

[1] Balog, A., The prime k-tuplets conjecture on average., in Analytic number theory, Progress in Math. 85 Birkhäuser 1990, 47-75.
[2] Davenport, H. rev. by Montgomery, H.L., Multiplicative number theory., Springer 1980.
[3] Maier, H. and Pommerance, C., Unusually large gaps between consecutive primes., Trans. Amer. Math. Soc. 322 (1990), 201-237.
[4] Lavrik, A.F., On the twin prime hypothesis of the theory of primes by the method of I.M. Vinogradov., Dokl. Acad. Nauk SSSR 132 (1960), 1013-1015.
[5] Lavrik, A.F., The number of k-twin primes lying on an interval of a given length., Dokl. Akad. Nauk SSSR 136 (1961), 281-283.

Institute of Mathematics
University of Tsukuba

