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§ 0. Introduction.

Let X be a 2-dimensional manifold, then we say that X is finitely connected

if the fundamental group rn{X) is finitely generated. If X is noncompact and

finitely connected, then it is homeomorphic to a compact surface with a finite

number of points removed. Let M be a 2-dimensional finitely connected complete

noncompact Riemannian manifold without boundary. The Euler characteristic of

M, X(M), equals the Euler characteristic of the associated compact surface minus

the number of points removed. A geodesic ;-:[0, oo) ―>M is called a ray when any

subarc of ;-is the shortest connection between its end points. And all geodesies

are assumed to be parametrized by arc length. Let TVM be the tangent space of

M at p and SPM be the unit circle of TPM centered at the origin. SPM may be

regarded as a standard unit circle S1 from the Euclidean metric on TPM. Hence

we can consider the Riemannian measure on SPM. Let A(p) be the subset of SPM

consisting of vectors v in SPM such that the geodesic yv:[0, oo) -> M, yv(t)= exp ptv,

is a ray, where exp p is the exponential map of M.

Recently, Maeda has proved in [4] the following theorem with interest in a

problem whether less curvedness of a Riemannian manifold in some sense implies

the existence of rays on it in large quantities or not when the manifold is non-

negatively curved ;

Theorem ([4]).Let M be a 2-dimensionalcomplete Riemannian manifoldwith

nonnegative Gaussian curvature G^G diffeomorphic to a Euclidean plane. If

I Gdv<2n, then for any pointp in M such that%A(p)^2, we have
JM

r
measure A(p) ^ 2tt―I G c/i>.

Here the total curvature I G dv of a noncompact Rieraannian manifold M is by
JM
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definitionthe limit of a sequence ＼＼Gdv＼ which does not depend on the choice

of a sequence of compact domains {F,}/e,vsuch that F/cFy+i and VJ%iVj = M.

And we admit +00 and ―00 to be the value of a total curvature. Hence the total

curvature always exists if the Gaussian curvature is nonpositive or nonnegative.

Moreover, we know that if there exists the total curvature of a complete finitely

connected surface M, the following well know inequality of Cohn-Vossen holds ([3]);

f
Gdv^2xX(M).

JM

The aim of this note is to give a relation between the total curvature and the

measure of rays, the abundance of rays, on a 2-dimensional complete finitelycon-

nected Riemannian manifold M. We shall prove the following theorem;

Theorem 1. Let M be a 2-dimensional finitely connected complete noncompact

f
Riemannian manifold with nonpositive Gaussian curvature G. If I G dv>2K(X(M) ―l),

JM
thpn wp havP"

f
measure A(p) ^ 2nX(M)― ＼ G dv for any point p$M.

J M

And from the proof we can get the followingtheorem which includesMaeda's

rpsiiif*

Theorem 2. Let M be a 2-dimenslonalcomplete Riemannian manifold horaeo-

morphic to a Euclidean plane. If I G+ dv < 2?r,then we have
JM

measure A(p) ^ 2k―＼ G+ dv for any point peM,

where G^(＼G＼+G)I2.

We remark that the right quantity

guaranteed to be bounded above by 2k.

of the inequality in Theorem. 1 is not

The assumption,
f Gdv>2n(X(M)-l),

is
JM

put for the inequality to have geometric meaning. The assumption, I G+ dv < 2tt,
JM

in Theorem 2 is put by the same reason.

The author would like to express his thanks to Professor K. Shiohama and

Professor H. Nakagawa for their valuable suggestions and Mr. Innami for his useful

conversation during the preparation of this paper.

§1. Preliminaries.

In this section, we shallintroduce the various terminologies which follow [2],

[3] and modifications of Shiohama [5]. Hereafter M always denotes a 2-dimensional
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finitelyconnected complete noncompact Riemannian manifold without boundary

unless otherwise mentioned. Now let M be homeomorphic to Ma/{p＼,Pu ･･■>/>≪}

under a homeomorphism /, where Mo is a compact surface and pi,pz,･■-,Pnare

pointsof M.

Definition 1. An open set U in M Is called an open tube if U is homeomorphic

to S'x(0, 00) and the boundary of U(: ―dll) is homeomorphic to SM. And a closed

set of M is called a tube or an i?0-tube if it is homeomorphic to S'x[0, oo) and its

boundary is a noncontractible simply closed geodesic polygon Ro. It is written as

U(R0).

Now, for each point pj,j = l, 2, ･■･, n, we can choose mutually disjoint open neigh-

bourhood Oj of pj in Mo such that Uj: =f"＼Oj＼{Pj}) is a tube.

Let U(R0) be a given tube of M and let Puat^ be the distance function on

U(R0), that is, for any points p,q U(R0), Pu<.x0AP,q) is defined to be the infimum of

the lengths of all piecewise smooth curves joining p and q in U(R0). Then the

function X[f(.xoi:{0,oo)-+ R is defined as follows; Xu<.xo)(t) is the infimum of the

lengths of all piecewise smooth noncontractible closed curves R in U(R0) which

satisfies pU(rq^(R, R0)^t. It is easily seen that the function Xo(.r0-> is Lipschitz

continuous. We shall classify tubes by making use of Xuoi0) in accordance with

[2]. The following three cases may occur for i?0~tubes;

Case 1. Xircff0)does not attain inf {XuirO)(s) : s^O},

Case 2. XUCR) attains inf {XU(jd(s) : si?0} for any subtube U(R) in U(R0),

Case 3. Xmn^ attains inf {XU(:r^(s) : s^O} but Xuir-) does not attain inf {Xmx}(s):

s^0＼ for some subtube U(R) in U(R0),

Definition 2. An i?0-tube U(R0) is said to be contracting,expanding or bulging

if the function X(r0> satisfiesCase 1, Case 2 or Case 3, respectively.

According to this definition,a bulging tube is essentially a contracting tube.

Hence we have only to consider the contracting or expanding tubes. And note

that subtubes of a contracting (expanding) tubes are also contracting (expanding).

Deinition 3, Let U(RQ) be a given tube and A* be a noncontractible simply

closed geodesic polygon in U(R0). If all verticalangles of R which are measured

in U(R) are less (more) than n, then the geodesic polygon R is said to be convex

(concave).

Definition A. Let an J?0-tube U(R0) and a nonnegative number t be arbitrarily

given, if a noncontractible closed curve R{t) in U(R0) satisfiesfollowing two con-

ditions,then R(i) is called the solution of Minimal Problem (or simply M.P.) for
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U(Ro) and I;

!XR{i))^X,;,R,m and /'^/^(.fr,,*?(/));s/.

Definition 5. Let the following objects be arbitrarily given; a nonnegative

number /, a tube U(R0) and a ray j :[0, co) -- M such that /-([a,oo))c U(R0) and

y(a)£Ra (a>0). If a noncontractible closed curve i?(/)in f/(i?0)which passes through

j{a-＼-t)satisfies L(R(t))― Yuat^it), then R(f) is called the solution of Minimal Problem

along j (or simply ^--M.P.) for U{R<>) and t. Here the function Yjjcr^ :[0, oo)- >R is

defined as follows; YmR^ii) is the infiraum of the lengths of piecewise smooth

noncontractible closed curves R in U(R0) v/hich pass through yia + t).

As is seen in [2] and [3], two kinds of solutions surely exist and they satisfy

the following facts;

Fact 1. Let U(K0) be a contracting tube. Then the solution of M.P, R(l) for

U(R0) and t'^0 is either a closed geodesic or a convex geodesic loop. Hence the

distance between R(l) and Ro is equal to the distance between the vertex of R(l)

and Ro if R(t) is a convex geodesic loop. The solution of /-M.P, for U(Rn) and

/"-;;?:Gis either a closed geodesic or a geodesic loop.

Fact 2. Let f/(AJ0)be an expanding tube. Then the solution of M.P. R(l) for

U(Rn) and /^O is either a closed geodesic or a concave geodesic polygon. And for

some to^O,R(to) is the shortest noncontractible closed curve in U(R(h)). The solu-

tion of /--M.P.for U(R0) and t is either a closed geodesic or a geodesic polygon

whose vertical angles except for the verticalangle at yC＼Ro measured in U(Ro) are

more than k.

For the solution of 7-M.P. we can not get the general information about the

verticalangle which is on ;-. See Cohn-Vossen ([3]),Busemann ([2])and Bleecker

(fl))for more detailsof the properties on the solution of M.P.

§2. Construction of an expanding filtration.

Throughout this section,let p be an arbitrarilyfixed point of M. And let N

denote the set of natural numbers. It is our purpose in this section to construct

a family of compact domains {F,};e/ywith properties (1),(2) and (3);

(1) Vrjp,

(2) VjdVj+1 and U~=.Vj = M,

(3) dVj is a ctovSed geodesic or a geodesic polygon which intersects any ray

emanating from p at most once.

Liimma 1. If U(R0) is a contracting tube which does not contain the point p,
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then there exist noncontractible closed curves RjJqN, in U(R0) such that

(1) Rj is either a closed geodesic or a convex geodesic loop whose vertex lies on

a fixed ray,

(2) limi-.w,iW()>(#o,f?/)= °o,

(3) Rj intersects any ray with at most one point.

Proof. Let Co be the length of Ro and let y be a ray emanating from p and

diverging in U(R0). Set X(t): =Xoat0M) and Y(t): =YUiRo)(t). Then we know the

existence of a number tj (C0+j, co) with F(/y)< F(Q)^C0. In fact, the contracting

condition implies the existence of a number Sj (C0 + ;,oo) with X(Sj)<X(0)^C0,

X(sj)―L(R(Sj)) and Puijro>(Ro,R(sj))-Sj, where J?(sj)is the solution of M.P. for

U(Rq) and ,s> Let tj be the number with j(a + tj):
~R{sj)V＼j.

Then we can get

the following relations; tj>C0 + j and Y(tj)^X{Sj)<X(0)^Y(0)^C0 Hence tj is a

required number,

Now let Rj: = R{t,) be the solution of f-M.P. for U(R0) and th then /^-satisfies

Pc/(RQ)(Ro,Rj)>j- This implies RjORo ―^- Hence i?j is either a closed geodesic or

a geodesic loop. Let Sj£(lj,oo) be the number such that X(Sj)<X(tj). Such a number

surely exists from the contracting condition. And putting y(a + tj):=R(s'j)r＼y,we

have Y(tj):£X(s'j)<X(tj) Ŷ(tj).Therefore there exists a number uj (tj,tj)such that

Y is decreasing at uj. R(uj) must not be a concave geodesic loop. Set newly

Rj: =R(uj), then Rj satisfies(1) and (2). Moreover it can be easily proved that

any ray which is divergent in U(R0) never intersects Rj twice because of their

minimality.

Lemma 2, If U(R0) is an expanding tube which does not contain the point p,

then there exist noncontractible closed curves RjJzN, in U(R0) such that

(1) Rj is either a closed geodesic or a concave geodesic polygon,

(2) linv_,_,,f>u(Ro>[Ro,Rj) = oo,

(3) Rj intersects any ray with at most one point.

Proof. From Fact 2, we know the existence of the shortest noncontractible

closed curve Ri in U(Ri) which is either a closed geodesic or a convave geodesic

polygon in U(R0). Let a be any ray emanating from p and diverging in U(R0).

Then a does not meet J?i at more than one point. In factif J?iis a closed geodesic,

then our assertion is trivialbecause of the minimality of Ri and a. Hence we may

assume that R, is a concave geodesic polygon. Let q{: =a{tx) and q-r.=a(t2),ti<t^,

be the firstpoint of intersection and the second point of intersection of a and Ru

respectively. Then a{[tut-z])is contained in U(Ri) because of the concavity of RL.

Let R[ be a new noncontractible geodesic polygon which is gotten by exchanging
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the subarc of Rx between qt and qx for a |[tu /2]. The R[ is contained in U(Ri)

and has the same length as that of R, because of the minimality of a and Ru

Since R[ has a vertex at qu we can get a shorter noncontractible curve in U(Ri)

by exchanging a subarc of R[ for a minimal geodesic in a neighbourhood of qx.

This contradicts the shortestness of Rx in U{Ri). Consequently, a does not meet

R, at more than one point. For j^2, let Rj be a noncontractible geodesic polygon

such that Pu(R0)(Ru Rj)>j and let Rj be the shortest noncontractible closed curve

in U(Rj). Then we can see that Rj satisfies(1),(2) and (3).

Since M is finitelyconnected, M＼K can be represented to a union of n tubes

Ua, a = 1,2,･･ -,n,for a large compact set K whose boundary consists of n geodesic

polygons each of which may be considered such as an Ro in the proceeding Lemmas.

Thus Lemma 1 and Lemma 2 imply the existence of noncontractible closed curves

RjcjzN, in each Ua. Let Vj be the compact domains in M bounded by ＼JaRja.

Then we have

(1) Vi dp, Vj c Vj+1 and IJJ=i Vj = M,

(2) aVjf] Un( = Rja) is a noncontractible geodesic polygon in Ua which does not

intersect any ray at more than one point.

The proof of our theorem is achieved by constructing such a special family of

compact domains that are chosen by taking into account of the position of rays

emanating from p. F(p) is by definition the set of all points on rays emanating

from p. And set D(p): =M＼F(p). F{p) is a closed set which is homeomorphic

to a closed set of TVM under exp^. Hence F(p) contains no handles on it. To

compute the total curvature of M, we must compute that of Vj. And it is a

sum of those of F(p)C＼Vj and clD(p)f]Vj, where clD(p) denotes the closure of

D(p). It is difficultto compute the total curvature of clD(p)f]Vj because of the

existence of handles. However, we can get an information about the totalcurvature

of clD(p). Hence we must take into account of the position of rays emanating

from p to relate the total curvature of F(p)f＼Vj and that of D(p)＼int Vj. Namely

we need the following lemma.

Lemma 3. There exists a family of compact domains {Vj}j n in M which

satisfiesthe above properties (1),(2) and the following properties; For each a

(a) if Ua is expanding, then there is no vertices of dVjCi Ua on the rays which are

boundaries of D(p),

(b) if Ua is contracting and if int(F(/>)n Un) is not empty, then there is no vertices

of dVjC＼Un on the rays which are boundaries of Dip),

(c) if Un is contracting and if int {F(p)n Ua) is empty, then the vertex of dV, n Ua

lies on a ray which is a boundary of D{p) if the vertex exists.
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Proof, (a) In the case of Ua being expanding, the construction follows from

Lemma 2. Take Ro and R'j in the proof of Lemma 2 so that their vertices do not

lie on the rays which are boundaries of D(p). This is possible because the rays

which are boundaries of D(p) are measure zero. Since Rj is a solution of M.P.

for U(Rj), Rj is either a closed geodesic or a concave geodesic polygon whose

vertices are on those of Rj. In this way, we can get a family {Rj)mn of closed

geodesies or concave geodesic polygons without their vertices on the rays which

are boundaries of D(p).

(b) and (c).In the case of Ua being contracting, the construction follows from

Lemma 1. Take a ray y which passes through the interior of F(p) n Ua if it is

not empty and take a ray which is a boundary of D(p)C＼Ua if int(F(p) n Ua) is

empty. And applying Lemma 1, we get a family {RjJj^n of closed geodesies or

convex geodesic loops which has the desired properties.

§3. Proof of Theorems.

Let {Vjljzjybe the family of compact domains obtained in Lemma 3. Let D

be one of the connected components of D(p)＼VL. And let a and t be the rays

which are boundaries of D, Let D be one of the connected components of D(p) n Vi

and set F: =F'＼J{p) and F: = Ff] Vu where F' is one of the connected components

F(P)＼iP}- Let W+ and W~ be the vertical angles of c＼D at dVifto and dViftr,

respectively. And let 0? be a vertical angle of dViftclD measured in clD.

Under these notations, we can prove the following Lemma by following Maeda

[4].

Lemma 4. The following inequality holds good;

f Gdv^ qr*+yr--K
3KlltclZ>

(p),

where the summation is taken over all verticesof dViHclD, And the equality

holdsif the Gaussian curvature G is nonpositive.

Proof. Let Ej: =3F,-ncl D. Ap and A]e are by definitionthe set of allinitial

tangent vectors f(Q) of the shortest geodesic j connecting between p and q of Ej

which satisfy 3(f(O),d(O))^0 and <l{j{Q>),i(0))^6, respectively. And let At and A;

be the set of all unit vectors v which satisfy Q(v,d(0))^d and 3L(v,i(0))^d, re-

spectively. Moreover define the number 6{j) for each natural number / by

0(j):―inf{0 R; there exists a geodesic j in G{p,q)

such that f{0)£A:L[jAj()for any geis,}.
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Here G{p,q) denotes the set of all the shortest geodesic connections from p to q.

We assert that 0(j) tends to zero as j goes to infinity. In fact, if 6{j) does not tend

to zero, then there is a constant C0>0 and a subsequence {ji}a{j} such that #(/<)=

Co for any jiG{ji}, Hence for any jit there is a point qjt in Eit and jj^Gip^j^

such that f.//())does not belong to Ajt,a/2)c0l)Ajiyamco- From the sequence {f./?;(0)},

we can choose a convergent subsequence ＼ij,-k(0)}.Let vo SpM be the limit vector of

{fjik(O)},then from the construction v0 is not contained in A{us)c0U
^4a/3>c0

and the

geodesic y0 '■[0, oo) -> M defined by ;-0(/):=exp1/y0 is a ray. This contradicts the

fact that j-o belongs to the domain which no ray passes through. Let the set Ej

and El be defined as follows;

Ej : ={q£Ej; there exists a geodesic j£G{p,q) such that j^e/l^o-)},

E] : ={qeEj; there exists a geodesic yeG(p,q) such that /･(O)g.Ajj0O-)}.

Then it is easily seen that Ej = Ej＼JEj and Z?t and Ej are nonempty closed sets

in Ej from the connectivity of the cut point. The connectivity of Ej implies the

existence of a point qjGE}f]Ej such that the initial vectors ^(O) and fj(0) of

minimal geodesies between p and qj which belong to AHj) and Aj(j), respectively.

Therefore y) tends to a and jj tends to - as j goes to infinity. Let Dj be the

subset of D bounded by ;･-/,yj and dVt. Then we can get the following inequality

from Theorem of Gauss-Bonnet,

f
_G dv =

JcW

f
limi G dv

lira[2ffZ(Dy)-(^-y>7)

where ?P*} and '^7 are the vertical angles of cl D, at dV1 n j^ and 3Ki n 7-7,respectively.

And <Vi} is a vertical angle of 3Ki ncl 25j measured in clD,- and (Ioj=^i(fj(tj),fj(tj)),

where tj is the distance from p to qj. Thus the inequality is verified.

Next, consider the case that the Gaussian curvature of M is nonpositive. Let

pj : = 3Vi fl yj and r,･: =dFi n y]- And let (/>y,<?,,■,r,-)be the geodesic triangle determined

by the three shortest geodesic segments. Let c : [0,1] -> M be the shortest geodesic

segment with c(0)=pj and c(l) = r7-. Since {pj,Qj,Tj) is contractible, we can consider

the homotopy //: [0, l]X[0,1] -> M such that for any s [0,1], //((),s) = c{s), 77(1, s)=^,-

and //([0,1], s) = the shortest geodesic segment between c(s) and r/;. Let (pj,qj,rj)

be a lift of (pj, qj, rj) in the universal Riemannian covering space M of M which

is gotten by making use of the homotopy II and let #>,,･be the vertical angle of

(pj,qj,rj) at <jj. Then from the construction we have <pj― <pj and it is seen that

Pit(pj, qi) -^ 00, pjjf(rj,(jj) -> 00 and Pm(Pj>?j)<C as ;->oo, where C is a constant.
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Hence making use of the law of cosines, we can see that <pj-> 0 as j ―>oo. There-

fore the equality holds when Gaussian curvature of M is nonpositive.

Hereafterlet D1 and D11be connected components of D(p)＼Vi and D(p)C＼Vu

respectively.And let F** be a connected component of (F(p)f]Vi)＼{p)and set

F*: =F**＼J{p＼. Then we can get the followingProposition which implies our

theorem.

Proposition 5. The following inequality holds good;

measure A{p) ^ 2ny(M)-
f

G dv
JclZXp)

at any pointp of M. And the equalityholds when Gaussian curvature of M is

nonpositive.

Proof. Let Fx be the one such that intF^0. Since FX is diffeomorphic to a

polygon in TPM, we have

■■■(*)

where a* is a vertical of F* at p, ('//'/i)hand (llfi)'are the vertical angles of Fx

formed with dVi and the rays which are the boundaries of Fl and (ftis a vertical

angle of dViCiF* measured in M＼Vt. From our construction, there is no vertex

of dVi on the rays which are the boundaries of Fhs. Hence we can get the fol-

lowing inequality by using (*),Lemma 4 and the factthat verticallyopposite angles

are identical;

f
Gdv = 2

f
Gtfy + Z

[
;/./"/

all£^L 3Fin£* J all^JclC

^ measure

dVi JclZXju)

On the other hand, we have

Hence we get the desiredInequality and the equality holds when Gaussian curvature

of M is nonpositive.

Now Theorem 1 and 2 are the direct consequences of Proposition 5.
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