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A COMBINATORIAL PROOF FOR ARTIN'S

PRESENTATION OF THE BRAID GROUP

B,, AND SOME CYCLIC ANALOGUE

By

Tun Morita

1. Artin's presentation.

For each n^l, let Sn be the symmetric group on n letters {1, 2, ■■■, n)

and Bn the geometric braid group with n strings.

1 2 3 Ti-1 n

1
2 3 h-1 n

There is a natural homomorphism, calledln, of Bn onto Sn. As usual, Sn-i

and fin_xare regarded as subgroups of Sn and Bn respectively,and then the

restrictionof ln to Bn^l coinsides with Xn-i- Put B^―ln^Sn-j). Then Bn-X

is a subgroup of B£.

Let Bn be the group presented by the generators:

and the defining relations

Put

!

OiOjGi ―

ou az, ･■･, On

GjGiG) if ＼i―j＼=l

OiGj ― OjOi
if ＼i―j＼^Q i

Ti = anl1 ■■■<JiUo＼<Ji+i ■■■ffn-i for l^i^n ― 2

Let Bn be the subgroup of Bn generated by ai, ･･･ , Gn-2, T＼, ■■■, Tn-i- Then

thereis a naturalhomomorphism of 5n_, into Bl
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Taking at to the z-thfundamental braid:

1

(I

I)

1

2

f

m

2

i
i + l n

for l<Li<^n ―l, we obtain a homomorphism, called 0n, of Bn onto Bn. Then

the following result is well-known.

Artin's Theorem. <f>nis an isomorphism.

Proof. We proceed by induction on n. The result is trivialif n=l, 2.

Suppose n^3, and that 0n_! is an isomorphism. Forgetting the n-th string,

we obtain a homomorphism, called 6, of Bl onto Bn-i- Hence, Bl=Bn-xK

Kerd, and Ker d = Fn.1, where Fn_i is the free group of rank n ―1. This fact

implies that Bl is isomorphic to B＼ under 6n. Let p=a1a2 ･･･on-＼>^nd put

x= BlUBlpVJ-uHp71-1

Then Bn=<B

Therefore, X

＼_Bn:Bl1 = n.

I, p}, and I is a subgroup since

p0i=0i+1p (l<,i£n―2),

pTi ―(jx(s% ■■■Gi-xolotU ■■■(J^la＼lp (l^/<;n―2),

ptn-1=T1p ,

pn = (a1a2 ･･･are_2)n-1rn_1rn-2･･･tzt1,

=Bn, and the group index [_Bn: B£] is at most n, which implies

Hence, 6n is an isomorphism. S

2. Some cyclic analogue.

Here we consider the braid group Bn+l=(au a2, ･･■, #n> with n2g3 and a

certain subgroup. Put

7Z= OiOt ･･■On-iGn

and set Cl+l ―<ax, ■■■, an-u 8)dBn+1. Then 5S+1 = <Cii+,, n). Let C%+1 be the
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group presented by the generators:

Pu &, -,j8B

and the defining relations:

( PibPi^faPifo if |i-/l=l, n-1

1
PiPj=PjPi ^ |/-/|*0, 1, w-1

and Z the infinitecyclic group generated by £･ We construct the semi-direct

product, called B*+1=ZtxCfl+l of Z and C£+1 with Ci8tC~1= i8i+i(l^^n-1)

and C/SnC~1=^1. Then there is a homomorphism 0X of Bf+1 onto 5^+i with

01

& '―>at (l^i£n-l);

C ' "w.

On the other hand, there is a homomorphism </>2of Bl+1 onto B%+1 with

where B%+i = <0i, ･･･, an-u rlt ･･･, rny^BnKFn and

Ti ―Pi-l P2 Pi S>Pn^l Pi+lPi ･

Then one can see both (b^ib^―id. and (b2d)l=id. Hence we obtain the following

Theorem. BZ+1 = Bt+i and CJUi =
r*
･^ n + l

Therefore, the group C£+x may be called a braid covering of the affine

Weyl group Wa(Sn) associatedwith Sn. We can describe this fact more pre-

cisely as follows. Let /, be the canonicalgradationhomomorphism of Fn =

<Ti,･･-,?*> onto Z, and put En=Ker fn. Then C%+1= BnxEn and En is the

normal subgroup of Fn generated bv

TiT2＼ T2T3l, ■･･, Tn^Tn1

Hence, we obtain a homomorphism vn +l of Cl+l^Bnv,En onto

SnxEJlFn, Fn-]^SnKZn-'~Wa(Sn).

The (C£+i,yre+i)gives the above braid covering of Wa(Sn). Put Qn+1=Kervn+1.

Then (5n+1^PnK [_Fn,Fn], where Pn is the kernel of Zn and called the pure

braid group with n strings.

We refer to [1], [2] for braid groups, and [31 for affine Weyl groups.
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