A COMBINATORIAL PROOF FOR ARTIN'S PRESENTATION OF THE BRAID GROUP B_{n} AND SOME CYCLIC ANALOGUE

By
Jun Morita

1. Artin's presentation.

For each $n \geqq 1$, let S_{n} be the symmetric group on n letters $\{1,2, \cdots, n\}$, and B_{n} the geometric braid group with n strings.

There is a natural homomorphism, called χ_{n}, of B_{n} onto S_{n}. As usual, S_{n-1} and B_{n-1} are regarded as subgroups of S_{n} and B_{n} respectively, and then the restriction of χ_{n} to B_{n-1} coinsides with χ_{n-1}. Put $B_{n}^{0}=\chi_{n}^{-1}\left(S_{n-1}\right)$. Then B_{n-1} is a subgroup of B_{n}^{0}.

Let \tilde{B}_{n} be the group presented by the generators:

$$
\sigma_{1}, \sigma_{2}, \cdots, \sigma_{n-1}
$$

and the defining relations:

$$
\begin{cases}\sigma_{i} \sigma_{j} \sigma_{i}=\sigma_{j} \sigma_{i} \sigma_{j} & \text { if }|i-j|=1 \\ \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} & \text { if }|i-j| \neq 0,1\end{cases}
$$

Put

$$
\begin{aligned}
& \tau_{i}=\sigma_{n-1}^{-1} \cdots \sigma_{i+1}^{-1} \sigma_{i}^{2} \sigma_{i+1} \cdots \sigma_{n-1} \quad \text { for } 1 \leqq i \leqq n-2 \\
& \tau_{n-1}=\sigma_{n-1}^{2}
\end{aligned}
$$

Let \tilde{B}_{n}^{0} be the subgroup of \tilde{B}_{n} generated by $\sigma_{1}, \cdots, \sigma_{n-2}, \tau_{1}, \cdots, \tau_{n-1}$. Then there is a natural homomorphism of \widetilde{B}_{n-1} into \tilde{B}_{n}^{0}.

[^0]Taking σ_{i} to the i-th fundamental braid:

for $1 \leqq i \leqq n-1$, we obtain a homomorphism, called ϕ_{n}, of \tilde{B}_{n} onto B_{n}. Then the following result is well-known.

Artin's Theorem. ϕ_{n} is an isomorphism.
Proof. We proceed by induction on n. The result is trivial if $n=1,2$. Suppose $n \geqq 3$, and that ϕ_{n-1} is an isomorphism. Forgetting the n-th string, we obtain a homomorphism, called θ, of B_{n}^{0} onto B_{n-1}. Hence, $B_{n}^{0}=B_{n-1} \ltimes$ $\operatorname{Ker} \theta$, and $\operatorname{Ker} \theta \cong F_{n-1}$, where F_{n-1} is the free group of rank $n-1$. This fact implies that \widetilde{B}_{n}^{0} is isomorphic to B_{n}^{0} under ϕ_{n}. Let $\rho=\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}$, and put

$$
\tilde{X}=\tilde{B}_{n}^{0} \cup \tilde{B}_{n}^{0} \rho \cup \cdots \cup \tilde{B}_{n}^{0} \rho^{n-1}
$$

Then $\tilde{B}_{n}=\left\langle\tilde{B}_{n}^{0}, \rho\right\rangle$, and \tilde{X} is a subgroup since

$$
\begin{aligned}
& \rho \sigma_{i}=\sigma_{i+1} \rho \quad(1 \leqq i \leqq n-2), \\
& \rho \sigma_{n-2}=\sigma_{n-2}^{-1} \cdots \sigma_{2}^{-1} \sigma_{1}^{-1} \rho^{2}, \quad \rho^{2} \sigma_{n-2}=\sigma_{1} \sigma_{2} \cdots \sigma_{n-2} \tau_{n-1} \rho, \\
& \rho \tau_{i}=\sigma_{1} \sigma_{2} \cdots \sigma_{i-1} \sigma_{i}^{2} \sigma_{i-1}^{-1} \cdots \sigma_{2}^{-1} \sigma_{1}^{-1} \rho \quad(1 \leqq i \leqq n-2), \\
& \rho \tau_{n-1}=\tau_{1} \rho, \\
& \rho^{n}=\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-2}\right)^{n-1} \tau_{n-1} \tau_{n-2} \cdots \tau_{2} \tau_{1},
\end{aligned}
$$

Therefore, $\tilde{X}=\tilde{B}_{n}$, and the group index $\left[\tilde{B}_{n}: \tilde{B}_{n}^{0}\right]$ is at most n, which implies $\left[\tilde{B}_{n}: \tilde{B}_{n}^{0}\right]=n$. Hence, ϕ_{n} is an isomorphism.

2. Some cyclic analogue.

Here we consider the braid group $B_{n+1}=\left\langle\sigma_{1}, \sigma_{2}, \cdots, \sigma_{n}\right\rangle$ with $n \geqq 3$ and a certain subgroup. Put

$$
\begin{gathered}
\delta=\sigma_{n}^{-2} \sigma_{1} \sigma_{2} \cdots \sigma_{n-2} \sigma_{n-1} \sigma_{n-2}^{-1} \cdots \sigma_{2}^{-1} \sigma_{1}^{-1} \sigma_{n}^{2}, \\
\pi=\sigma_{1} \sigma_{2} \cdots \sigma_{n-1} \sigma_{n}^{2}
\end{gathered}
$$

and set $C_{n+1}^{0}=\left\langle\sigma_{1}, \cdots, \sigma_{n-1}, \delta\right) \subset B_{n+1}$. Then $B_{n+1}^{0}=\left\langle C_{n+1}^{0}, \pi\right\rangle$. Let C_{n+1}^{*} be the
group presented by the generators:

$$
\beta_{1}, \beta_{2}, \cdots, \beta_{n}
$$

and the defining relations:

$$
\begin{cases}\beta_{i} \beta_{j} \beta_{i}=\beta_{j} \beta_{i} \beta_{j} & \text { if }|i-j|=1, n-1 \\ \beta_{i} \beta_{j}=\beta_{j} \beta_{i} & \text { if }|i-j| \neq 0,1, n-1\end{cases}
$$

and Z the infinite cyclic group generated by ζ. We construct the semi-direct product, called $B_{n+1}^{*}=Z \ltimes C_{n+1}^{*}$ of Z and C_{n+1}^{*} with $\zeta \beta_{i} \zeta^{-1}=\beta_{i+1}(1 \leqq i \leqq n-1)$ and $\zeta \beta_{n} \zeta^{-1}=\beta_{1}$. Then there is a homomorphism ψ_{1} of B_{n+1}^{*} onto B_{n+1}^{0} with

$$
\psi_{1}:\left\{\begin{array}{l}
\beta_{i} \longmapsto \sigma_{i} \\
\beta_{n} \longmapsto \delta ; \\
\zeta \longmapsto \pi
\end{array} \quad(1 \leqq i \leqq n-1) ;\right.
$$

On the other hand, there is a homomorphism ψ_{2} of B_{n+1}^{0} onto B_{n+1}^{*} with

$$
\psi_{2}:\left\{\begin{array}{cl}
\sigma_{i} \longmapsto \beta_{i} & (1 \leqq i \leqq n-1) ; \\
\tau_{i} \longmapsto \gamma_{i} & (1 \leqq i \leqq n),
\end{array}\right.
$$

where $B_{n+1}^{0}=\left\langle\sigma_{1}, \cdots, \sigma_{n-1}, \tau_{1}, \cdots, \tau_{n}\right\rangle \cong B_{n} \ltimes F_{n}$ and

$$
\gamma_{i}=\beta_{i-1}^{-1} \cdots \beta_{2}^{-1} \beta_{1}^{-1} \zeta \beta_{n-1}^{-1} \cdots \beta_{i+1}^{-1} \beta_{i}^{-1}
$$

Then one can see both $\psi_{1} \psi_{2}=i d$. and $\psi_{2} \psi_{1}=i d$. Hence we obtain the following.
THEOREM. $\quad B_{n+1}^{0} \cong B_{n+1}^{*}$ and $C_{n+1}^{0} \cong C_{n+1}^{*}$.
Therefore, the group C_{n+1}^{0} may be called a braid covering of the affine Weyl group $W_{a}\left(S_{n}\right)$ associated with S_{n}. We can describe this fact more precisely as follows. Let f_{n} be the canonical gradation homomorphism of $F_{n} \cong$ $\left\langle\tau_{1}, \cdots, \tau_{n}\right\rangle$ onto Z, and put $E_{n}=\operatorname{Ker} f_{n}$. Then $C_{n+1}^{0} \cong B_{n} \ltimes E_{n}$ and E_{n} is the normal subgroup of F_{n} generated by

$$
\tau_{1} \tau_{2}^{-1}, \tau_{2} \tau_{3}^{-1}, \cdots, \tau_{n-1} \tau_{n}^{-1}
$$

Hence, we obtain a homomorphism ν_{n+1} of $C_{n+1}^{0} \cong B_{n} \ltimes E_{n}$ onto

$$
S_{n} \ltimes E_{n} /\left[F_{n}, F_{n}\right] \cong S_{n} \ltimes \boldsymbol{Z}^{n-1} \cong W_{a}\left(S_{n}\right) .
$$

The $\left(C_{n+1}^{0}, \nu_{n+1}\right)$ gives the above braid covering of $W_{a}\left(S_{n}\right)$. Put $Q_{n+1}=\operatorname{Ker} \nu_{n+1}$. Then $Q_{n+1} \cong P_{n} \ltimes\left[F_{n}, F_{n}\right]$, where P_{n} is the kernel of χ_{n} and called the pure braid group with n strings.

We refer to [1], [2] for braid groups, and [3] for affine Weyl groups.

References

[1] J.S. Birman, "Braids, links, and mapping class groups," Ann. Math. Studies 82, Princeton Univ. Press, Princeton, 1975.
[2] V.L. Hansen, "Braids and coverings," London Math. Soc. Student Texts 18, Cambridge Univ. Press, Cambridge, New York, Port Chester, Melbourne, Sydney, 1989.
[3] J. E. Humphreys, "Reflection groups and Coxeter groups," Cambridge Studies in Advanced Math. 29, Cambridge Univ. Press, Cambridge, New York, Port Chester, Melbourne, Sydney, 1990.

Institute of Mathematics
University of Tsukuba
Tsukuba, Ibaraki, 305
Japan

[^0]: Received November 12, 1991.

