UNITARY-SYMMETRIC KÄHLERIAN MANIFOLDS AND POINTED BLASCHKE MANIFOLDS

By
Yoshiyuki Watanabe

Introduction.

A unitary-symmetric Kählerian manifold is a Kählerian version of a rotationally symmetric (Riemannian) manifold (cf. Choi [3], Greene-Wu [5]). Precisely, a Kählerian manifold (M, g, J) of complex dimension n is unitary-symmetric at a point p of M if the linear isotropy group at p of the automorphism group of (M, g, J) is the unitary group $U(n)$. Of course, the complex space form is unitary-symmetric at every point.

The first purpose of this paper is to give one characterization of a connected, simply-connected, complete, unitary-symmetric Kählerian manifold. If M is compact, then the tangential cut locus C_{p} of p is spherical. Hence (M, g, J) is a Blaschke manifold at p and has a $S L^{p}$-structure (cf. Besse [1]). Then the second purpose is to give a sufficient condition in order that a connected, compact, unitary-symmetric Kählerian manifold has a $S C^{p}$-structure (Theorem D) (see Besse [1, p. 181]).

On the other hand, Greene-Wu [5, p. 85] introduced the notion of a Hermitian rotationally symmetric manifold of complex dimension 1 and Shiga [12] studied a Kählerian model, which is by defintion a Kählerian manifold with a pole p such that the linear isotropy group at p of the isometry group is $U(n)$. Note that their manifolds are unitary-symmetric Kählerian manifolds. The unitarysymmetric condition is a fairly strong one, because the result of Kaup [8, Folgerung 1.10] implies that a connected, unitary-symmetric Kählerian manifold is biholomorphic to one of the complex space forms. But there exist many complete unitary-symmetric Kählerian metrics, which are not isometric to them (see Mori-Watanabe [10]).

Throughout this paper, (M, g, J) is assumed to be a connected, complete Kählerian manifold of complex dimension $n \geqq 1$. To state our results, we prepapre the following. By Ω we denote the Kählerian form of (M, g, J). We frequently identify the tangent space $T_{p}(M)$ at a point p of M with the complex number n-space C^{n}. Let $\exp _{p}$ be the exponential map of $T_{p}(M)$
to M and δ be the distance from the origin O of $T_{p}(M)$ to the first conjugate locus Q_{p} in $T_{p}(M)$ of p. If M is simply-connected and $\delta=\infty$, i.e., p has no conjugate points, then M is diffeomorphic to $\boldsymbol{R}^{2 n}$ (cf. Kobayashi-Nomizu [9, II, p. 105]). We put $S_{\bar{\delta}}^{2 n-1}=\left\{X \in T_{p}(M) ;|X|=\delta\right\} \widetilde{B}_{\delta}=\left\{X \in T_{p}(M) ;|X|<\delta\right\}$, where $|X|$ is the norm $\sqrt{g_{p}(X, X)}$ of X. On the other hand, it is well known (cf. SasakiHatakeyama [11]) that there exists a Sasakian structure $\left(d \Theta^{2}, \phi, \xi, \eta\right)$ on the sphere $S_{1}^{2 n-1}$ in \boldsymbol{C}^{n}, called the standard one, where $d \Theta^{2}$ denotes the canonical metric of constant curvature 1 . We set $\Psi()=,d \Theta^{2}(\phi$,$) .$

Theorem A. Let (M, g, J) be a connected, complete Kählerian manifold of complex dimension n. If (M, g, J) is unitary-symmetric at a point p, then the Kählerian metric \tilde{g} and the Kählerian from $\tilde{\Omega}$, pulled back under the exponential map $\exp _{p}$, are given by

$$
\begin{align*}
& \tilde{g}=\exp _{p}^{*} g=d r^{2}+f(r)^{2} d \Theta^{2}+f(r)^{2}\left(f^{\prime}(r)^{2}-1\right) \eta \otimes \eta \tag{*}\\
& \tilde{\Omega}=\exp _{p}^{*} \Omega=2 f(r) f^{\prime}(r) \eta \wedge d r+f(r)^{2} \Psi
\end{align*}
$$

on $\tilde{B}_{\dot{\delta}}-\{O\}$ for some function $f(r)$ such that $f(r)>0, f^{\prime}=d r / d r>0$ on $(0, \delta)$, where (r, Θ) is the usual polar coordinate system of $\boldsymbol{R}^{2 n}$ and $\left(d \Theta^{2}, \phi, \xi, \eta\right)$ is the standard Sasakian structure on $S_{1}^{2 n-1}$.

Theorem B. Let (M, g, J) be a connected, simply-connected, complete Kählerian manifold of complex dimension $n \geqq 2$. If there exists a point p in M such that $\exp _{p}^{*} g$ and $\exp _{p}^{*} \Omega$ satisfy $(*)$, then (M, g, J) is unitary-symmetric at p.

Corollary C. Under the assumption of Theorem B, if M is compact, then (M, g, J) is a Blaschke manifold at p and the cut locus $C(p)$ of p in M is a totally geodesic, complex hypersurface of M.

Remark. Let us consider $S_{1}^{2 n-1}$ as a principal circle bundle over the complex projective space $\boldsymbol{C} P^{n-1}$ with the canonical Kählerian metric $d \sigma^{2}$ of constant holomorphic curvature 4. Then, since $d \Theta^{2}=\pi^{*} d \sigma^{2}+\eta \otimes \eta, \tilde{g}$ may be represented by
$(*)^{\prime}$

$$
\tilde{g}=d r^{2}+f(r)^{2} f^{\prime}(r)^{2} \eta \otimes \eta+f(r)^{2} \pi^{*} d \sigma^{2}
$$

where π denotes the canonical projection: $S_{1}^{2 n-1} \rightarrow \boldsymbol{C} P^{n-1}$. Note that when $n=1$, $\tilde{g}=d r^{2}+f(r)^{2} f^{\prime}(r)^{2} d \Theta^{2}$.

Theorem D. Let (M, g, J) be a connected, simply-connected, compact Kählerian manifold. Suppose that there exists a point p in M such that $\exp _{p}^{*} g$ and $\exp _{p}^{*} \Omega$, pulled back under $\exp _{p}$, satisfy the condition (*). If its function $f(r)$ satisfies
$f(\delta) f^{\prime \prime}(\delta)=-1$, then any geodesic issuing from the point p is always closed.
In §1, we introduce some basic facts about Kählerian manifolds, complex hypersurfaces, almost contact metric manifolds and Sasakian manifolds. In §2, by using the results of Ziller [16] and Kato-Motomiya [8] we study $U(n)$ invariant Kählerian structures on the open ball $\tilde{B}_{\tilde{\delta}}$, centered at the origin in \boldsymbol{C}^{n} and then prove Theorem A in $\S 3$. In §4, we investigate the conjugate locus $Q(p)=\exp _{p} Q_{p}$ of a point p of a Kählerian manifold satisfying the conditions of Theorem B, and give a proof of Corollary C. $\S 5$ is devoted to construct an automorphism F_{A} of M for each A of $U(n)$ and complete the proof of Theorem B. In the last section, we prove Theorem D , concerning with the closedness of geodesics issuing from one point.

The author would like to express his sincere thanks to Professor H. Kitahara for valuable suggestions and guidances.

1. Preliminaries.

Let M be a complex manifold of complex dimension n. Then M admits an almost complex structure J on M, i.e., a tensor field J on M of type $(1,1)$ such that $J^{2} X=-X$ for any vector field X on M. A Riemannian metric g on M is a Hermitian metric if

$$
\begin{equation*}
g(J X, J Y)=g(X, Y) \tag{1.1}
\end{equation*}
$$

holds for any vector fields X and Y on M. Here we define a 2 -form Ω on M, called the fundamental 2-form ; $\Omega(X, Y)=g(J X, Y)$. If in addition, J is parallel with respect to the Riemannian connection ∇ of g, then $g($ resp. Ω) is called a Kählerian metric (resp. a Kählerian form); (M, g, J) (resp. (g, J)) is then called a Kählerian manifold (resp. a Kählerian structure).

Let (M, g, J) be a connected Kählerian manifold of complex dimension n and let \hat{M} be a connected complex hypersurface of M, i.e., there exists a complex analytic mapping $e: \hat{M} \rightarrow M$, whose differential e_{*} is $1-1$ at each point of \hat{M}. All metric properties on \hat{M} refer to the Hermitian metric \hat{g} induced on \hat{M} by the immersion e. In order to simplify the representation, we identify for each $\hat{x} \in \hat{M}$, the tangent space $T_{\hat{x}}(\hat{M})$ with $e_{*}\left(T_{\hat{x}}(\hat{M})\right)\left(\subset T_{e(\hat{x})}(M)\right)$ by means of e_{*}. Since $e^{*} g=\hat{g}$ and $J^{\circ} e_{*}=e_{*} \cdot \hat{J}$, where \hat{J} is the almost complex structure of \hat{M}, the structures \hat{g} and \hat{J} on $T_{\hat{x}}(\hat{M})$ are identified with restrictions of the structures g and J to the subspace $e_{*}\left(T_{\hat{x}}(\hat{M})\right)$ respectively. Then it follows that there exists a coordinate neighborhood $\hat{U}(\hat{x})$ of \hat{x} in \hat{M} on which there is a field ζ of unit vectors normal to \hat{M}. Now, if X and Y are vector fields on $\hat{U}(\hat{x})$, we
may write

$$
\nabla_{X} Y=\hat{\nabla}_{X} Y+h(X, Y) \zeta+k(X, Y) J \zeta
$$

where $\hat{\nabla}_{X} Y$ denotes the components of $\nabla_{X} Y$ tangent to \hat{M}. Then we have the Weingarten's formula (for example, cf. Smyth [13])

$$
\begin{equation*}
\nabla_{X} \zeta=-H X+\boldsymbol{s}(X) J \zeta \tag{1.2}
\end{equation*}
$$

where $H X$ is tangent to \hat{M}. Then H and s are tensor fields on $\hat{U}(\hat{x})$ of type $(1,1)$ and $(0,1)$, respectively. Further, H satisfies

$$
\begin{equation*}
h(X, Y)=\hat{g}(H X, Y), \quad k(X, Y)=\hat{g}(\hat{J} H X, Y) \tag{1.3}
\end{equation*}
$$

for any vectors X and Y tangent to \hat{M} at a point of $\hat{U}(\hat{x})$.
On the other hand, an almost contact structure on an odd-dimensional manifold N is by definition a triple (ϕ, ξ, η), where ϕ is a tensor field of type (1,1) on N, ξ is a vector field on N and η is a 1-form on N satisfying

$$
\begin{equation*}
\phi \xi=0, \quad \eta(\phi X)=0, \quad \eta(\xi)=1, \quad \phi^{2} X=-X+\eta(X) \xi \tag{1.4}
\end{equation*}
$$

for any vector field X on N. An almost contact structure is said to be normal if the torsion tensor $N_{j k}^{i}$ (see [11, p. 255]) vanishes. If N has an associated Riemannian metric g such that

$$
\begin{equation*}
g(\xi, X)=\eta(X), \quad g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{1.5}
\end{equation*}
$$

for any vector fields X and Y on N, then (N, g, ϕ, ξ, η) is called an almost contact Riemannian manifold: (g, ϕ, ξ, η) is then called an almost contact metric structure. If they satisfy

$$
\begin{equation*}
d \eta(X, Y)=2 g(\phi X, Y), \quad\left(\nabla_{X} \phi\right) Y=\eta(Y) X-g(X, Y) \xi \tag{1.6}
\end{equation*}
$$

for any vector fields X and Y on $N,(N, g, \phi, \xi, \eta)$ is called a Sasakian manifold: (g, ϕ, ξ, η) is then called a Sasakian structure.

2. A $U(n)$-invariant Kählerian structure on an open ball in \boldsymbol{C}^{n}.

In this section, we consider a $U(n)$-invariant Kählerian structure (\tilde{g}, \tilde{J}) on an open ball \tilde{B}_{l} of radius l in \boldsymbol{C}^{n}, centered at the origin O. Then, by the result of Kaup stated in the Introduction we may regard \tilde{J} as the complex structure induced from the canonical one J_{0} of \boldsymbol{C}^{n}. Identifying \boldsymbol{C}^{n} with $\boldsymbol{R}^{2 n}$ naturally, we introduce the usual polar coordinate system (r, θ) on $\tilde{B}_{l}-\{O\}$, centered at O. Then \tilde{g} can be expressed in the form

$$
\begin{equation*}
\tilde{g}=d r^{2}+\bar{h}_{j k}(r, \Theta) d \theta^{j} \otimes d \theta^{k} \tag{2.1}
\end{equation*}
$$

where $\left(\theta^{i}\right)$ denotes a local coordinate system of $S_{1}^{2 n-1}$ and small Latin indices
run on the range $1, \cdots, 2 n-1$. Note that for each fixed $r \bar{h}=\bar{h}_{j k} d \theta^{j} \otimes d \theta^{k}$ defines a Riemannian metric on $S_{r}^{2 n-1}$.

On the other hand, if we set

$$
\begin{equation*}
\bar{\phi}_{j}^{i}=d \theta^{i}\left(\tilde{J}\left(\frac{\partial}{\partial \theta^{j}}\right)\right), \quad \bar{\xi}^{i}=d \theta^{i}\left(\tilde{J}\left(\frac{\partial}{\partial r}\right)\right) \quad \text { and } \quad \bar{\eta}_{j}=d r\left(\tilde{J}\left(\frac{\partial}{\partial \theta^{j}}\right)\right), \tag{2.2}
\end{equation*}
$$

then \tilde{J} is represented by

$$
\tilde{J}=\left(\begin{array}{cc}
\bar{\phi}_{j}^{i} & -\bar{\eta}_{j} \tag{2.3}\\
\bar{\xi}^{i} & O
\end{array}\right)
$$

with respect to the coordinate system. Since (\tilde{g}, \tilde{J}) is Hermitian, by (1.1) we have

$$
\begin{aligned}
& \bar{\phi}_{j}^{k} \bar{\phi}_{k}^{i}=-\delta_{j}^{i}+\bar{\eta}_{j} \bar{\xi}^{i}, \quad \bar{\phi}_{j}^{i} \bar{\xi}^{j}=\bar{\phi}_{j}^{i} \bar{\eta}_{i}=0, \quad \bar{\eta}_{i} \bar{\xi}^{i}=1, \\
& \bar{h}_{k h} \bar{\phi}_{j}^{k} \bar{\phi}_{i}^{h}=\bar{h}_{j i}-\bar{\eta}_{j} \bar{\eta}_{i}, \quad \bar{\eta}_{i}=\bar{h}_{j i} \bar{\xi}^{j}, \quad \bar{h}_{j i} \bar{\xi}^{j} \bar{\xi}^{i}=1 .
\end{aligned}
$$

Therefore, this implies that $\bar{\xi}=\bar{\xi}^{i}\left(\partial / \partial \theta^{i}\right), \bar{\eta}=\bar{\eta}_{i} d \theta^{i}$ and $\bar{\phi}=\bar{\phi}_{j}{ }^{i}\left(\partial / \partial \theta^{i}\right) \otimes d \theta^{j}$ define an almost contact metric structure on $S_{r}^{2 n-1}$. Therefore, from the assumption that (\tilde{g}, \tilde{J}) is $U(n)$-invariant we see that $U(n)$ acts transitively on $S_{r}^{2 n-1}$ as a group of diffeomorphisms which leave the structure ($\bar{h}, \bar{\phi}, \bar{\xi}, \bar{\eta}$) invariant and from a result of Tanno [14, p. 25] that ($S_{r}^{2 n-1}, \bar{h}, \bar{\phi}, \bar{\xi}, \bar{\eta}$) is normal and homogeneous. Thus, for each $r \in(0, l)$ we can regard $S_{r}^{2 n-1} \cong U(n) / U(n-1)$ as a manifold having a normal almost contact metric structure ($\bar{h}, \bar{\phi}, \bar{\xi}, \bar{\eta}$) where $U(n-1)$ is the isotropy subgroup at the point $q_{r}=(r, 0, \cdots, 0)$ of $S_{r}^{2 n-1}$.

We now are going to show that a splitting of the Lie algebra g of $U(n)$ induces another $U(n)$-invariant almost contact metric structure on the homogeneous space $U(n) / U(n-1)$ and $(\bar{h}, \bar{\phi}, \bar{\xi}, \bar{\eta})$ is described by means of it. Let g_{0} be the Lie algebra of $U(n-1)$. Then the splitting

$$
\begin{equation*}
\mathfrak{g}=g_{0} \oplus \mathfrak{m} \tag{2.4}
\end{equation*}
$$

is an ad g_{0}-invariant, i.e., $\left[g_{0}, \mathfrak{m}\right] \subset \mathfrak{m}$. Then \mathfrak{m} can be identified with the tangent space of $U(n) / U(n-1)$ at the coset $(U(n-1))$. The isotropy subgroup $U(n-1)$ acts on \mathfrak{m} by the adjoint map and induces a splitting $\mathfrak{m}=\mathrm{g}_{1} \oplus \mathrm{~g}_{2}$:

$$
\mathrm{g}_{1}=\left\{\left(\begin{array}{cc}
0 & -{ }^{-} \overline{\boldsymbol{b}} \tag{2.5}\\
\boldsymbol{b} & O
\end{array}\right) ; \boldsymbol{b} \in \boldsymbol{C}^{n-1}\right\}, \quad \mathrm{g}_{2}=\left\{\rho\left(\begin{array}{cc}
\sqrt{-1} & 0 \\
0 & O
\end{array}\right), \rho \in \boldsymbol{R}\right\}
$$

where \bar{b} means the complex conjugate of \boldsymbol{b}. Let \mathfrak{B} be a bi-invariant metric on $U(n)$. The $U(n)$-invariant metric \bar{h} on $U(n) / U(n-1)$ can be uniquely described by giving its value on \mathfrak{m}, and is of the form

$$
\begin{equation*}
\langle,\rangle=\left.\alpha \mathfrak{B}\right|_{g_{1}}+\left.\mathfrak{H}\right|_{g_{2}}, \tag{2.6}
\end{equation*}
$$

where $\alpha>0$ and \mathfrak{f} is an arbitrary metric on \mathfrak{g}_{2} (cf. Ziller [16]). The inclusion of
$1 \times U(n-1)$ in $U(n)$ is the standard one. The metric (2.6) is identical with the one on the homogeneous space $S U(n) / S U(n-1)$, since $U(n)$ clearly also acts by isometries on the metrics in $S U(n) / S U(n-1)$ (cf. Ziller [16, p. 352]). But since $S U(n)$ is simple and $\left.\mathfrak{B}\right|_{9_{1}}$ and the inner product

$$
-\frac{1}{2 n} \operatorname{trace} X Y=\frac{1}{2 n} \operatorname{trace} X^{t} \bar{Y} \quad(X, Y \in \mathfrak{\mathfrak { h } u (n))}
$$

are $\operatorname{Ad}(S U(n)$)-invariant, where $\mathfrak{s u}(n)$ is the Lie algebra of $S U(n)$, we have

$$
\left.\mathfrak{B}\right|_{g_{1}}(Z, W)=-\frac{1}{2 n} \operatorname{trace} Z W=\operatorname{Re}(\boldsymbol{b}, \boldsymbol{c})\left(Z=\left(\begin{array}{cc}
0 & -t \bar{b} \\
\boldsymbol{b} & 0
\end{array}\right), W=\left(\begin{array}{cc}
0 & -{ }^{t} \overline{\boldsymbol{c}} \\
\boldsymbol{c} & O
\end{array}\right)\right),
$$

where $\operatorname{Re}($,$) denotes the real part of the natural Hermitian inner product on$ \boldsymbol{C}^{n-1}. Therefore, from (2.6) we have

$$
\begin{equation*}
\langle,\rangle=\alpha \operatorname{Re}(,)+\lambda^{*} \mathfrak{u} \otimes \otimes^{*} \tag{2.7}
\end{equation*}
$$

for a positive constant λ, where $\mathfrak{u}=\left(\begin{array}{cc}\sqrt{-1} & 0 \\ 0 & O\end{array}\right)$ and $*_{\mathfrak{u}}$ is a 1 -form on \mathfrak{g}_{2} defined by $*_{\mathfrak{u}}(\mathfrak{u})=1,{ }^{*} \mathfrak{u}(X)=0$ for all $X \in g_{1}$.

After some long calculations, we can confirm that g_{0}, g_{1} and g_{2} satisfy all conditions of Theorem 1 of Kato-Motomiya [7]. This implies that on the homogeneous space $U(n) / U(n-1)$ there is a unique $U(u)$-invariant normal almost con-
 denotes the restriction of $a d \mathfrak{u}$ on \mathfrak{m}. In fact, let q be an arbitrary point of $S_{r}^{2 n-1}$. Choose $A \in U(n)$ such that $A\left(q_{r}\right)=q$. We define $\xi_{q}=\left(\tau_{A}\right)_{*}$ u where τ_{A} denotes the left translation on $U(n) / U(n-1)$ given by $\tau_{A}(B \cdot U(n-1))=A B \cdot U(n-1), B \in U(n)$. Hence we have a $U(n)$-invariant vector field ξ on $S_{r}^{2 n-1}$ such that $\xi_{q_{r}}=\mathfrak{u}$, where $T_{q_{r}}\left(S_{r}^{2 n-1}\right)$ is canonically identified with m . Similarly we can define a $U(n)$ invariant tensor field ϕ of type $(1,1)$ and a $U(n)$-invariant 1-form η on $S_{r}^{2 n-1}$ satisfying the initial conditions $\phi_{q_{r}}=-a d_{\mathfrak{n} \mathfrak{u}}$ and $\eta_{q_{r}}=*_{\mathfrak{u}}$ respectively. Since $(\exp t \mathfrak{u}) q_{r}=\left(r e^{\sqrt{-1} t}, 0, \cdots, 0\right)$, we have $\mathfrak{u}=\hat{\xi}_{q_{r}}=\sqrt{-1} q_{r}=J_{o} q_{r}$. Moreover, since

$$
\left(-a d_{\mathfrak{R}} \mathfrak{u}\right)(X)=\sqrt{-1}\left(\begin{array}{cc}
0 & t \bar{b} \\
\boldsymbol{b} & O
\end{array}\right) \quad\left(X=\left(\begin{array}{cc}
0 & --^{t} \overline{\boldsymbol{b}} \\
\boldsymbol{b} & O
\end{array}\right) \in \mathfrak{g}_{1}\right)
$$

holds, we see that ϕ is nothing but the standard tensor field of type $(1,1)$ on $S_{r}^{2 n-1}$, introduced from J_{o} by Sasaki-Hatakeyama [11]. Therefore, between the two $U(n)$-invariant normal almost contact structures $(\bar{\phi}, \bar{\xi}, \bar{\eta})$ and (ϕ, ξ, η) we obtain the following relations

$$
\begin{equation*}
\bar{\phi}=\phi, \quad \bar{\xi}=\frac{1}{\mu} \xi, \quad \bar{\eta}=\mu \eta \tag{2.8}
\end{equation*}
$$

where $\mu=\sqrt{\tilde{g}_{q_{r}}\left(q_{r}, q_{r}\right)}$, by consequence of their initial conditions at the point
$q_{r}=(r, 0, \cdots, 0) \in S_{r}^{2 n-1}$. Assigning ϕ, ξ and η to each sphere $S_{r}^{2 n-1}$ of radius r, we can naturally define a tensor field ϕ of type (1, 1), a vector field ξ and a 1 form η on $\tilde{B}_{l}-\{O\}$ respectively though they are written in the same letters. Then (2.8) implies that

$$
\begin{equation*}
\bar{\phi}=\phi, \quad \bar{\xi}=\frac{1}{\mu(r)} \xi, \quad \bar{\eta}=\mu(r) \eta, \tag{2.8}
\end{equation*}
$$

where $\mu(r)=\left|q_{r}\right|=\sqrt{\tilde{g}\left(q_{r}, q_{r}\right)}$ is a function on (0, l), because of (2.1).
Let us turn to \bar{h} in (2.1) again. Give an inner product

$$
\begin{equation*}
(,)=\operatorname{Re}(,)+*_{u} \otimes^{*} u \tag{2.9}
\end{equation*}
$$

on \mathfrak{m}. Then by (2.7) and (2.9) we may put

$$
\begin{equation*}
\langle,\rangle=\alpha(,)+\beta^{*} \mathfrak{u} \otimes \otimes^{*} \mathfrak{u} \tag{2.10}
\end{equation*}
$$

where $\alpha+\beta>0$, because \langle,$\rangle is positive definite. By d \Theta^{2}$ we denote the $U(n)$ invariant Riemannian metric of constant curvature 1 on $S_{r}^{2 n-1}$, induced from (,). Then from (2.10) we may write

$$
\begin{equation*}
\bar{h}=\alpha(r, \Theta) d \Theta^{2}+\beta(r, \Theta) \eta \otimes \eta \tag{2.11}
\end{equation*}
$$

where $d \Theta^{2}$ and $\eta \otimes \eta$ are usually regarded as tensor fields of type $(0,2)$ on $\tilde{B}_{l}-\{O\}$. Especially, we see from (2.9) and the statements of Example 10.5 in Kobayashi-Nomizu [9, II] that ($d \Theta^{2}, \phi, \xi, \eta$) is nothing but the standard Sasakian
 defined independently of r, we may think that ($d \Theta^{2}, \phi, \xi, \eta$) assigns the standard Sasakian structure to each sphere $S_{r}^{2 n-1}$ of radius r. Since (\tilde{g}, \tilde{J}) is Hermitian, the above facts imply that

$$
\begin{equation*}
\mu(r)=\sqrt{\alpha(r, \Theta)+\beta(r, \Theta)}, \tag{2.12}
\end{equation*}
$$

taking account of (1.4)-(1.6), (2.3) and (2.11). From (2.6), $\alpha(r, \Theta)$ is a function of r only. Hence we have $\alpha=\alpha(r), \beta=\beta(r)$ and further,

$$
\begin{equation*}
\mu(r)=\sqrt{\alpha(r)+\beta(r)}, \tag{2.12}
\end{equation*}
$$

form which \tilde{g} and $\tilde{\Omega}$ are given by

$$
\begin{align*}
& \tilde{g}=d r^{2}+\alpha(r) d \Theta^{2}+\beta(r) \eta \otimes \eta \\
& \tilde{\Omega}=\alpha(r) \Psi+2 \sqrt{\alpha(r)+\beta(r)} \eta \wedge d r \tag{2.13}
\end{align*}
$$

on $\tilde{B}_{l}-\{O\}$, where Ψ denotes $d \Theta^{2} \circ \phi$. A direct computation of $\tilde{\nabla} \tilde{\Omega}$, using (1.4), (1.5) and (1.6), implies that $d \alpha / d r=\sqrt{\alpha+\beta}$, where $\tilde{\nabla}$ denotes the Riemannian connection of \tilde{g}, because of the Kählerian condition $\tilde{\nabla} \tilde{\Omega}=0$. Putting $\alpha=f(r)^{2}$ we have that $f^{\prime}=d f^{\prime} d r$ is also positive on $(0, l)$. This implies that

$$
\begin{equation*}
\beta(r)=f(r)^{2}\left(f^{\prime}(r)^{2}-1\right) \tag{2.14}
\end{equation*}
$$

From (2.12)', (2.13) and (2.14), we see that \tilde{g} and $\tilde{\Omega}$ are given by

$$
\begin{align*}
& \tilde{g}=d r^{2}+f(r)^{2} d \Theta^{2}+f(r)^{2}\left(f^{\prime}(r)^{2}-1\right) \eta \otimes \eta \tag{2.15}\\
& \tilde{\Omega}=f(r)^{2} \Psi+2 f(r) f^{\prime}(r) \eta \wedge d r
\end{align*}
$$

on $\tilde{B}_{l}-\{O\}$ respectively, where $f(r)$ is a positive function on $(0, l)$ such that $d f / d r>0,(r, \Theta)$ is the usual polar coordinate system of $\boldsymbol{R}^{2 n}$ and $\left(d \Theta^{2}, \phi, \xi, \eta\right)$ is the standard Sasakian structure on $S_{1}^{2 n-1}$. Thus our purpose has been established.

3. Proof of Theorem A.

We regard $T_{p}(M)$ as a unitary space with the Hermitian inner product g_{p} and fix an orthonormal basis of $T_{p}(M)$ with respect to g_{p}. By exp we denote the exponential map of $T_{p}(M)$ to M. We define δ to be the distance from the origin to the first conjugate locus Q_{p} in $T_{p}(M)$. If $\delta=\infty$, then M is diffeomorphic to C^{n}. At first, we shall show that for $\delta<\infty Q_{p}$ is the sphere $S_{\dot{\delta}}^{2 n-1}=$ $\left\{X \in T_{p}(M) ;|X|=\delta\right\}$. Let $\tilde{q}=X$ be a point of $Q_{p},|X|=\delta$, and Y an arbitrary point of $S_{\delta}^{2 n-1}$. Then since $U(n)$ acts transitively on $S_{\dot{\delta}}^{2 n-1}$, there exists $A \in U(n)$ such that $Y=A X$. From the assumption that (M, g, J) is unitary-symmetric at p it follows that there exists an automorphism Φ such that $\Phi(p)=p$ and $\left(\Phi_{*}\right)_{p}$ $=A$. On the other hand, since \tilde{q} is a conjugate point, there is a non-zero vector $v \in T_{\tilde{q}}\left(T_{p}(M)\right)$ such that $\left(\exp _{*}\right)_{\tilde{q}} v=0$. Then, from the fact that the isometry Φ commutes with the exponential map (cf. Kobayashi-Nomizu [9, I, p. 225]) it follows that at $\tilde{q}^{\prime}=A \tilde{q}$

$$
\left(\exp _{*}\right)_{\tilde{q}} A_{*} v=\left(\exp _{*}\right)_{\tilde{q}}\left(\Phi_{*}\right)_{p} v=\left(\Phi_{*}\right)_{\exp \tilde{q}}\left(\exp _{*}\right)_{\tilde{q}} v=0 .
$$

Hence Q_{p} is the sphere $S_{\delta}^{2 n-1}$ which consists of conjugate points of constant order. By the proof of Theorem 4.4 in [15] the tangential cut locus C_{p} of p coincides with Q_{p} and $\left.\exp \right|_{B_{\bar{\delta}}}$ is a diffeomorphism of $\tilde{B}_{\tilde{o}}=\left\{X \in T_{p}(M) ;|X|<\delta\right\}$ onto $B_{\tilde{\delta}}=\exp \tilde{B}_{\dot{\delta}}$. Then $\tilde{g}=\exp ^{*} g$ and $\tilde{\Omega}=\exp ^{*} \Omega$, pulled back under $\left.\exp \right|_{B_{\dot{\delta}}}: \tilde{B}_{\dot{\delta}}$ $\rightarrow B_{\delta}$, give a Kählerian structure on $\tilde{B}_{\tilde{\delta}}$. We now going to show that \tilde{g} and $\tilde{\Omega}$ are $U(n)$-invariant on $\tilde{B}_{\tilde{\delta}}$. Let $\tilde{q} \in \widetilde{B}_{\tilde{\delta}}, q=\exp \tilde{q}$ and $A \in U(n)$. Let \tilde{X} and \tilde{Y} be any tangent vectors at \tilde{q}. Then, using the fact that $\exp \cdot A=\bar{\Phi} \cdot \exp$, we have

$$
\begin{aligned}
\left.\left(A^{*} \tilde{g}\right)_{\tilde{q}} \tilde{X}, \tilde{Y}\right) & =\tilde{g}_{A(\tilde{q})}\left(A_{* \tilde{q}} \tilde{X}, A_{* \tilde{q}} \tilde{Y}\right) \\
& =g_{\exp A(\tilde{q})}\left(\left(\exp _{*}\right)_{\tilde{q}^{\prime}}\left(A_{*}\right)_{\tilde{q}} \tilde{X},\left(\exp _{*}\right)_{\tilde{q}^{\prime}}\left(A_{*}\right)_{\tilde{q}} \tilde{Y}\right) \\
& =g_{\left.\Phi_{(\alpha)}\right)}\left(\left(\Phi_{*}\right)_{q}\left(\exp _{*}\right)_{\tilde{q}} \tilde{X},\left(\Phi_{*}\right)_{q^{\prime}}\left(\exp _{*}\right)_{\tilde{q}} Y\right) \\
& =\tilde{g}_{\tilde{q}}(\tilde{X}, \tilde{Y}),
\end{aligned}
$$

putting $\tilde{q}^{\prime}=A(\tilde{q})$ and $q^{\prime}=\exp \tilde{q}^{\prime}$ and identifying $T_{p}(M)$ with $T_{\tilde{q}}\left(T_{p}(M)\right.$). Similarly, we have

$$
\left(A^{*} \tilde{\Omega}\right)_{\tilde{q}^{\prime}}(\tilde{X}, \tilde{Y})=\tilde{\Omega}_{\tilde{q}}(\tilde{X}, \tilde{Y})
$$

for any vectors \tilde{X}, \tilde{Y} at $\tilde{q} \in \tilde{B}_{\tilde{\delta}}$. Then we see that (\tilde{g}, \tilde{J}) is a $U(n)$-invariant Kählerian structure on \tilde{B}_{δ}, where \tilde{J} denotes the almost complex structure given by \tilde{g} and $\tilde{\Omega}$. Therefore, (2.15) implies that \tilde{g} and $\tilde{\Omega}$ are in the form

$$
\begin{align*}
& \left.\tilde{g}=d r^{2}+f(r)^{2} d \Theta^{2}+f(r)^{2} f^{\prime}(r)^{2}-1\right) \eta \otimes \eta \\
& \tilde{\Omega}=f(r)^{2} \Psi+2 f(r) f^{\prime}(r) \eta \wedge d r \tag{3.1}
\end{align*}
$$

on $\tilde{B}_{\tilde{\delta}}-\{O\}$ for some function f on $(0, \delta)$ with positive derivative $f^{\prime}=d f / d r$, where (r, Θ) is the usual polar coordinate system of $\boldsymbol{R}^{2 n}$ and $\left(d \Theta^{2}, \phi, \xi, \eta\right)$ is the standard Sasakian structure on $S_{1}^{2 n-1}$.

Finally, we shall show that f in (3.1) is extendible to a function \tilde{f} defined on $(-\infty, \infty)$. For a unit tangent vector X at p, γ_{x} denotes the geodesic with $\gamma_{X}(0)=p$ and $\gamma_{X}^{\prime}(0)=X$. Let E_{0} be a unit vector at p, which is perpendicular to X and $J_{p} X$. By a direct computation from (3.1), using (1.4)-(1.6), we obtain

$$
\begin{equation*}
R\left(\gamma_{x}^{\prime}, Y\right) \gamma_{x}^{\prime}=-\frac{f^{\prime \prime}}{f} Y, \quad R\left(\gamma_{x}^{\prime}, J \gamma_{x}^{\prime}\right) \gamma_{x}^{\prime}=-\left(\frac{3 f^{\prime \prime}}{f}+\frac{f^{\prime \prime \prime}}{f^{\prime}}\right) J \gamma_{x}^{\prime} \tag{3.2}
\end{equation*}
$$

for any vector field Y along $\left.\gamma_{x}\right|_{(0, \delta)}$ such that $g\left(\gamma_{x}^{\prime}, Y\right)=g\left(J \gamma_{x}^{\prime}, Y\right)=0$ where R denotes the curvature tensor of g (cf. Ejiri [4]). This implies that the Jacobi field V along γ_{x} with the initial conditions $V(0)=0$ and $\left(\nabla_{r_{X}} V\right)(0)=E_{0}$ satisfies

$$
V(t)=f(t) E(t)
$$

on $(0, \delta)$, where $E=E(t)$ is a parallel vector field along γ_{x} with the initial condition $E(0)=E_{0}$ (see $\S 4$ for detail). Now, from the assumption that M is connected and complete, we may define \tilde{f}_{X} by

$$
\tilde{f}_{X}(t)=g(V(t), E(t))
$$

on $(-\infty, \infty)$. Then since $\tilde{f}_{x}=f$ on $(0, \delta)$, we see that \tilde{f}_{X} is an extension of f. We now are going to show that the definition of \tilde{f}_{X} is independent of the choice of a unit vector X at p. For an arbitrary vector $Y \in S_{1}^{2 n-1}$ in $T_{p}(M)$, there exists $A \in U(n)$ such that $Y=A X$. From the assumption that M is unitarysymmetric at p, there exists an automorphism Φ of M onto itself such that $\Phi(p)=p,\left(\Phi_{*}\right)_{p}=A$. Let $\gamma_{A X}$ be the geodesic such that $\gamma_{A X}(0)=p, \dot{\gamma}_{A X}(0)=A X$, where (\cdot) denotes the derivative with respect to t. Then since $A E_{0}$ is perpendicular to both $A X$ and $J_{p} A X=A J_{p} X$ and $\Phi_{*} E(t)$ is parallel vector field along the geodesic $\Phi\left(\gamma_{X}(t)\right)=\gamma_{A X}(t)$, the Jacobi field W along $\gamma_{A X}$ with the initial conditions $\left.\left.W(0)=0, \nabla_{r}\right)_{\gamma_{A X}} W\right)(0)=A E_{0}$ satisfies $W(t)=f(t) \Phi_{*} E(t)$ on ($\left.0, \delta\right)$. Summing
up the above facts, it follows that

$$
\tilde{f}_{Y}(t)=\tilde{f}_{A X}(t)=g\left(W(t), \Phi_{*} E(t)\right)=g\left(\Phi_{*} V(t), \Phi_{*} E(t)\right)=\tilde{f}_{X}(t) .
$$

Therefore, we may write \tilde{f} instead of \tilde{f}_{X} and adopt f instead of \tilde{f}. Thus the proof of Theorem A is complete.

4. Compact Kählerian manifolds satisfying the condition (*).

Let (M, g, J) be a complex $n(\geqq 2)$-dimensional, connected, simply-connected, compact Kählerian manifold satisfying the condition (*). Let p be the fixed point and exp be the exponential map of $T_{p}(M)$ onto M. By $\delta(>0)$ we denote the distance from the origin O of $T_{p}(M)$ to the first tangential conjugate locus Q_{p} in $T_{p}(M)$. We define $\tilde{B}_{\dot{\delta}}=\left\{X \in T_{p}(M) ;|X|<\delta\right\}$ and $B_{\delta}=\exp \tilde{B}_{\tilde{\delta}}$, where $|X|$ is the norm $\sqrt{g_{p}(X, X)}$ of X. Then B_{o} may possibly contain a cut point of p, but exp: $\tilde{B}_{\delta} \rightarrow M$ is an immersion. So we calculate the geometric objects in $B_{\bar{\delta}}$ in terms of the metric $\left.\exp ^{*} g\right|_{B_{\delta}}$. Let $\gamma=\exp r X$ be a geodesic issued from p such that $X \in S_{1}^{2 n-1}$ and $\gamma^{\prime}=\gamma^{\prime}(r)$ be the tangent vector field along γ. Then $J \gamma^{\prime}$ is a parallel unit vector field such that $g_{\gamma(r)}\left(\gamma^{\prime}, J \gamma^{\prime}\right)=0$, since J is parallel and satisfies (1.1). Recall the assumption

$$
\begin{equation*}
f(r)>0 \quad \text { and } \quad f^{\prime}(r)>0 \tag{4.1}
\end{equation*}
$$

on $(0, \delta)$. Then we have the following lemma.

Lemma 4.1. $f(r)$ satisfies

$$
\begin{equation*}
\lim _{r \downarrow 0} f(r)=0, \quad \lim _{r \downarrow 0} f^{\prime}(r)=1 \tag{4.2}
\end{equation*}
$$

Proof. Let $\left(x^{A}\right)$ be a normal coordinate system, centered at p with respect to g and let (r, Θ) be the geodesic polar coordinate system induced from (x^{A}). By $\left(\theta^{i}\right)$ we denote a local coordinate system of $S_{1}^{2 n-1}$. Then we know that

$$
x^{A}=r a^{A}
$$

where $a^{A}=a^{A}\left(\theta^{i}\right)$ satisfies $\sum_{A=1}^{2 n} a^{A} a^{A}=1$. Choose a vector field Y along a geodesic γ issuing from p such that $g\left(Y, \gamma^{\prime}\right)=g\left(Y, J \gamma^{\prime}\right)=0$ and $d \Theta^{2}(Y, Y)=1$. Then we have

$$
f(r)=r\left(\frac{\partial a^{A}}{\partial \theta^{i}} \frac{\partial a^{B}}{\partial \theta^{j}} \tilde{g}_{A B} Y^{i} Y^{j}\right)^{1 / 2}
$$

where $\tilde{g}_{A B}$ are the components of g with respect to $\left(x^{A}\right)$ and Y^{j} are components of Y with respect to $\left(\theta^{i}\right)$. This implies (4.2).

Let γ be a geodesic issuing from p. Let $E=E(r)$ be a parallel vector field
along γ such that $E(0)$ is perpendicular to the holomorphic section $\left\{\gamma^{\prime}(0), J \gamma^{\prime}(0)\right\}$. By (3.2) we have the following two kind of Jacobi fields Ξ and V along γ,

$$
\begin{equation*}
\Xi(r)=f(r) f^{\prime}(r) J \gamma^{\prime}(r), \quad V(r)=f(r) E(r) \tag{4.3}
\end{equation*}
$$

with the initial conditions

$$
\begin{equation*}
\boldsymbol{E}(0)=0 \quad\left(\nabla_{\gamma^{\prime}} \Xi\right)(0)=J \gamma^{\prime}(0), \quad V(0)=0 \quad\left(\nabla_{\gamma^{\prime}} V\right)(0)=E(0), \tag{4.4}
\end{equation*}
$$

respectively.
From the assumption on δ, it follows that there exists a point $\tilde{q}=\delta X \in Q_{p}$, $X \in S_{1}^{2 n-1}$. Since any Jacobi field along the geodesic $\gamma=\exp r X$ with the initial condition (4.4) is given by (4.3), Lemma 4.1 together with (4.3) implies that

$$
\begin{equation*}
f^{\prime}(\boldsymbol{\delta})=0 . \tag{4.5}
\end{equation*}
$$

Hence it follows that the first conjugate locus Q_{p} in $T_{p}(M)$ of p is the sphere $S_{\delta}^{2 n-1}$ and that the order of each point of it as a conjugate point must be constantly equal to 1 .

Since $T_{p}(M)$ is a unitary space with the Hermitian inner product g_{p}, it can be naturally identified with \boldsymbol{C}^{n}. Further, identifying $T_{p}(M)$ with the tangent space $T_{\tilde{q}}\left(T_{p}(M)\right)$ at each point \tilde{q} of $T_{p}(M)$, we regard $T_{p}(M)$ as a flat Kählerian manifold with the canonical structure $\left(d s_{o}{ }^{2}, J_{o}\right)$. Since Q_{p} is $S_{\delta}^{2 n-1}$ in $T_{p}(M)$, we can define a global unit vector field $\tilde{\xi}$ on Q_{p} by

$$
\bar{\xi}: \tilde{q} \longrightarrow \bar{\xi}_{\tilde{q}}=J_{0} X
$$

for $\tilde{q}=\delta X \in Q_{p}$, where X is regarded as a tangent vector to the ray $r X$ at \tilde{q}. Then we see that $\bar{\xi}$ is regular and that its maximal connected integral curve through $\delta X \in S_{\dot{\delta}}^{2 n-1}$ is a great circle in $S_{\hat{\delta}}^{2 n-1}$, which is given by

$$
\begin{equation*}
X(\theta)=\delta\left(\cos \theta X+\sin \theta J_{o} X\right) \tag{4.6}
\end{equation*}
$$

for $0 \leqq \theta \leqq 2 \pi$. Let \hat{C} be the quotient space of Q_{p} obtained by identifying maximal connected integral curves of $\bar{\xi}$ to points. Since Q_{p} is the sphere $S_{\dot{\delta}}^{2 n-1}$ in C^{n} and has the canonical differentiable structure induced from C^{n}, from the regularity of $\hat{\xi}$ we see that \hat{C} has a natural manifold structure for which the projection $\pi: Q_{p} \rightarrow \hat{C}$ is a Riemannian submmersion. Thus \hat{C} becomes a Kählerian manifold of positive constant holomorphic curvature (cf. KobayashiNomizu [9, II, p. 134]).

First, we describe the relation of Jacobi fields to the exponential map in the following lemma.

Lemma 4.2. (cf. Chavel [2]). Let $p \in M, u \in T_{p}(M)$ and $v \in T_{p}(M)$ and $Y(t)$ be the Jacobi field along the geodesic $\gamma(t)=\exp _{p} t u$, determined by the initial conci-
tions $Y(0)=0,\left(\nabla_{u} Y\right)(0)=v$. Then we have

$$
\left(\exp _{*}\right)_{t u} v=\frac{1}{t} Y(t)
$$

for $t \neq 0$, where v is canonically identified with an element of the tangent space $T_{t u}\left(T_{p}(M)\right)$.

Lemma 4.3. Let $\tilde{q}=\delta X$ be a point of Q_{p}, and let $\tilde{Y}_{\tilde{q}}$ be a tangent vector of $T_{\tilde{q}}\left(T_{p}(M)\right)$ such that $\tilde{Y}_{\tilde{q}}$ is perpendicular to X and $\tilde{\xi}_{q}$. Then we have
(2)

$$
\begin{gather*}
\left(\exp _{*}\right)_{\tilde{q}} \tilde{\xi}_{\tilde{q}}=0 \tag{1}\\
\left(\exp _{*}\right)_{\tilde{q}} J_{0} \tilde{Y}_{\tilde{q}}=J_{q}\left(\exp _{*}\right)_{\tilde{q}} \tilde{Y}_{\tilde{q}}
\end{gather*}
$$

where $q=\exp \tilde{q}$.
Proof. Let $\gamma=\exp r X$ be the geodesic issuing from p such that $\gamma(0)=p$, $\gamma^{\prime}(0)=X$. Recall that a Jacobi field Z along γ is uniquely determined by the initial values $Z(0)$ and $\left(\nabla_{r^{\prime}} Z\right)(0)$. Then using Lemma 4.2 together with (4.2)(4.5), we have

$$
\left(\exp _{*}\right)_{\tilde{q}} \bar{\xi}_{\tilde{q}}=\lim _{r \uparrow \bar{\delta}} \frac{1}{r} E(r)=\frac{1}{\delta} f(\delta) f^{\prime}(\delta) J \gamma^{\prime}(\delta)=0
$$

Next, let Y be a parallel vector field along γ such that $Y(0)=\tilde{Y}_{\tilde{q}}$. Since J is parallel, it follows from (3.2), (4.2) and (4.3) that the vector fields $V(r)$ and $W(r)$ defined by

$$
V(r)=f(r) Y(r), \quad W(r)=f(r) J Y(r)
$$

are both Jacobi fields along γ with the initial condition

$$
\begin{array}{ll}
V(0)=0 & \left(\nabla_{\gamma^{\prime}} V\right)(0)=Y(0)=\tilde{Y}_{\tilde{q}}, \\
W(0)=0 & \left(\nabla_{\gamma^{\prime}} W\right)(0)=J Y(0)=J_{o} \tilde{Y}_{\tilde{q}}
\end{array}
$$

respectively. By using these and Lemma 4.2, we have

$$
\left(\exp _{*}\right)_{\tilde{q}} J_{o} \tilde{Y}_{\tilde{q}}=\frac{1}{\boldsymbol{\delta}} W(\boldsymbol{\delta})=\frac{f(\boldsymbol{\delta})}{\boldsymbol{\delta}} J_{q} Y(\boldsymbol{\delta})
$$

and

$$
J_{q}\left(\exp _{*}\right)_{\tilde{q}} \tilde{Y}_{\tilde{q}}=J_{q}\left(\frac{1}{\delta} V(\delta)\right)=\frac{f(\delta)}{\delta} J_{q} Y(\delta)
$$

This proves the assertion (2).
Here we define a mapping $e: \widehat{C} \rightarrow M$,

$$
\begin{equation*}
e(\pi(\tilde{q}))=\exp \tilde{q} \tag{4.7}
\end{equation*}
$$

for any point \tilde{q} of Q_{p}. This definition is well defined. In fact, if we set $X(\theta)$ $=\delta\left(\cos \theta X+\sin \theta J_{0} X\right)$ for each $\tilde{q}=\delta X$ in Q_{p}, we have

$$
\frac{d}{d \theta} \exp X(\theta)=\left(\exp _{*}\right)_{X(\theta)} J_{0} X(\theta)=0,
$$

taking account of Lemma 4.3 (1).
We now are going to prove that the image of e is the first conjugate locus $Q(p)$ of p and that e is an immersion. For any point q of $Q(p)$, there exists a vector $X \in S_{1}^{2 n-1}$ such that $q=\exp \delta X$. From this fact and (4.7) it follows that $q=e\left(\pi(\delta X)\right.$), proving $e(\hat{C})=Q(p)$. Since $Q_{p}=S_{\hat{\delta}}^{2 n-1}$ is a principal circle bundle over \hat{C}, for each point $\hat{q} \in \hat{C}$ there exists an open neighborhood \hat{U} of \hat{q} in \hat{C} and a diffeomorphism $\psi: \hat{U} \times S^{1}$ onto $\pi^{-1}(\hat{U})$. Using this diffeomorphism ψ, we have that for any $\hat{q}^{\prime} \in \hat{U}$

$$
e\left(\hat{q}^{\prime}\right)=e\left(\pi\left(\psi\left(\hat{q}^{\prime}, \theta_{0}\right)\right)\right)=\exp \psi\left(\hat{q}^{\prime}, \theta_{0}\right),
$$

from which the differentiablity of e follows. Then by using Lemmas 4.2 and 4.3 we can show that e is a C^{∞}-mapping of maximal rank. The following lemma implies that (\hat{C}, e) is a regular submanifold of M such that e is an imbedding and $e(\hat{C})=Q(p)$.

Lemma 4.4 (cf. Warner [15, Lemma 3.3]). Let (M, g, J) be a connected, simply-connected, compact Kählerian manifold of complex dimension $n \geqq 2$. If there exists a point p in M for which each point of the first conjugate locus Q_{p} in $T_{p}(M)$ has the constant order 1 , then for any posnt q of $Q(p)=\exp Q_{p}, \exp ^{-1}(q)$ $\cap Q_{p}$ consists of a single, maximal, connected, integral curve of $\bar{\xi}$.

Lemma 4.5. Let \hat{J} be the canonical complex structure on \hat{C}, induced from $S_{\delta}^{2 n-1}$ in \boldsymbol{C}^{n}. Give the canonical Kählerian metric $d \sigma^{2}$ of constant holomorphic curvature 4 on $i t$, which is compatible with \hat{J}. Then we have

$$
\begin{align*}
& e_{*} \cdot \hat{J}=J \cdot e_{*} \tag{1}\\
& e^{*} g=f(\delta)^{2} d \sigma^{2} \tag{2}
\end{align*}
$$

Proof. Let d be any point of \hat{C} and \hat{Y}_{d}, \hat{Z}_{d} any tangent vectors of $T_{d}(\hat{C})$. Then there is a point $\tilde{q} \in S_{\tilde{\delta}}^{2 n-1}$ such that $d=\pi(\tilde{q})$ and there are tangent vectors $\tilde{Y}_{\tilde{q}}, \tilde{Z}_{\tilde{q}}$ of $T_{\tilde{q}}\left(S_{\tilde{\delta}}^{2 n-1}\right)$ such that $\left(\pi_{*}\right)_{\tilde{q}} \tilde{Y}_{\tilde{q}},\left(\pi_{*}\right)_{\tilde{q}} \tilde{Z}_{\tilde{q}}=\hat{Z}_{\tilde{d}}$. Then we have

$$
\left(e_{*}\right)_{d} \hat{J}_{d} \hat{Y}_{d}=\left(e_{*}\right)_{d}\left(\left(\pi_{*}\right)_{d}\left(J_{0} \tilde{Y}_{\tilde{q}}\right)\right)=\left(\exp _{*}\right)_{\tilde{q}}\left(J_{o} \tilde{Y}_{\tilde{q}}\right)=J_{q}\left(\exp _{*}\right)_{\tilde{q}} \tilde{Y}_{\tilde{q}},
$$

taking account of (4.7) and Lemma 4.3 (2). Similarly we have

$$
\begin{aligned}
\left(e^{*} g\right)_{d}\left(\hat{Y}_{d}, \hat{Z}_{d}\right) & =g_{q}\left(\left(e_{*}\right)_{d} \hat{Y}_{d},\left(e_{*}\right)_{d} \hat{Z}_{d}\right) \\
& =g_{q}\left(\left(e_{*}\right)_{d}\left(\pi_{*}\right)_{\tilde{q}} \tilde{Y}_{\tilde{q}},\left(e_{*}\right)_{d}\left(\pi_{*}\right)_{\tilde{q}} \tilde{Z}_{\tilde{q}}\right) \\
& =g_{q}\left(\left(\exp _{*}\right)_{\tilde{q}} \tilde{Y}_{\tilde{q}},\left(\exp _{*}\right)_{\tilde{q}} \tilde{Z}_{\tilde{q}}\right) \\
& =f(\delta)^{2}\left(d \sigma^{2}\right)_{d}\left(\hat{Y}_{d}, \hat{Z}_{d}\right) .
\end{aligned}
$$

This shows the assertion (2).
Proposition 4.6. Let (M, g, J) be a connected, simply-connected, compact Kählerian manifold of complex dimension $n \geqq 2$. Suppose that there is a point p of M such that $\exp ^{*} g$ and $\exp ^{*} \Omega$ pulled back under exp, satisfy the condition (*). Then the first conjugate locus $Q(p)$ of p is a totally geodesic, complex hypersurface of M.

Proof. Since we have already proved that (\hat{C}, e) is a complex hypersurface of M in Lemma 4.5, we show only that $Q(p)$ is totally geodesic in M. Let $q=$ $\exp \delta X$ be a point of $Q(p)$ and $\gamma=\exp r X$ a geodesic issuing from p. For any vector $v \in T_{q}(Q(p))$ there exists a unique Jacobi field $V(r)=f(r) E(r)$ along γ such that $V(\delta)=v$, because of (4.3) and (4.4), where $E(r)$ is a parallel vector field along γ and is perpendicular to γ^{\prime} and $J \gamma^{\prime}$. We put $w=E(0)$ and define a curve in $S_{1}^{2 n-1}$

$$
\begin{equation*}
Z(t)=\cos (|w| t) X+\sin (|w| t) \frac{w}{|w|} \tag{4.8}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
g_{p}(\delta Z(t), \delta \dot{Z}(t))=g_{p}\left(J_{o}(\delta Z(t)), \delta \dot{Z}(t)\right)=0 \tag{4.9}
\end{equation*}
$$

where $\dot{Z}(t)=d Z / d t$ is a tangent vector to the curve $Z(t)$. Therefore, $c(t)=$ $\exp \delta Z(t)$ is a curve in $Q(p)$. Moreover, we define a geodesic variation of γ by

$$
\begin{equation*}
\alpha(r, t)=\exp r Z(t) \tag{4.10}
\end{equation*}
$$

Then it is easily seen from (4.9) and the Gauss's lemma that $\zeta=(\partial \alpha / \partial r)(\delta, t)$ is a normal vector field to $Q(p)$ along the curve $c(t)$. Especially, we see that

$$
\zeta_{0}=\frac{\partial \alpha}{\partial r}(\delta, 0)=\gamma^{\prime}(\delta)
$$

and from Lemma 4.3 that ζ_{0} and $J_{q} \zeta_{0}$ span the normal space at q to $Q(p)$. Since $\alpha(r, t)$ is a geodesic variation of γ, it follows that the induced vector field $(\partial \alpha / \partial t)(r, 0)$ is a Jacobi field along γ and so that

$$
\left(\frac{\partial \alpha}{\partial t}\right)(r, 0)=\left(\exp _{*}\right)_{r X} r w
$$

Then by consequence of their initial conditions we can show that $(\partial \alpha / \partial t)(r, 0)$ coincides with the Jacobi field $V=f(r) E(r)$. Recall the Weingarten's formula (1.2) on a complex hypersurface of a Kählerian manifold. Then by an elementary property of variation we have

$$
\begin{aligned}
-h_{q}(v, v) & =g_{q}\left(\nabla_{v} \zeta, v\right)=\left.g\left(\nabla_{\partial \alpha / \partial t} \frac{\partial \alpha}{\partial r}, \frac{\partial \alpha}{\partial t}\right)\right|_{t=0} ^{t=0}=\left.g\left(\nabla_{\partial \alpha / \partial r} \frac{\partial \alpha}{\partial t}, \frac{\partial \alpha}{\partial t}\right)\right|_{\substack{t=0 \\
r=\bar{\delta}}} \\
& =g\left(\nabla_{r^{\prime}} V(r), V(r)\right)_{r=\bar{\delta}}=g_{q}\left(f^{\prime}(\delta) E(\delta), f(\delta) E(\delta)\right)=0,
\end{aligned}
$$

taking account of (4.5). Similarly we have

$$
\begin{aligned}
-k_{q}(v, v) & =g_{q}\left(\nabla_{v} J \zeta, v\right)=-g_{q}\left(\nabla_{v} \zeta, J v\right)=-\left.g\left(\nabla_{\hat{\partial} \alpha(\partial t} \frac{\partial \alpha}{\partial r}, J \frac{\partial \alpha}{\partial t}\right)\right|_{\substack{t=0 \\
r=\bar{\delta}}} \\
& =-\left.g\left(\nabla_{r^{\prime}} V(r), J V(r)\right)\right|_{r=\delta}=-g_{q}\left(f^{\prime}(\delta) E(\delta), f(\delta) J_{q} E(\delta)\right)=0
\end{aligned}
$$

by means of $\nabla J=0$. Hence both h_{q} and k_{q} vanish for all tangent vectors of $T_{q}(Q(p))$ at any point q of $Q(p)$. Thus we conclude that $Q(p)$ is totally geodesic. By Lemma $4.5(\hat{C}, e)$ is a totally geodisic, complex hypersurface of M. This completes the proof and also gives Corollary C.

5. Proof of Theorem B.

Our purpose in this section is to construct an automorphism F_{A} of M for each $A \in U(n)$ and to complete the proof of Theorem B. Let (M, g, J) be a connected, simply-connected, complete Kählerian manifold of complex dimension $n \geqq 2$. Suppose that there is a point $p \in M$ such that $\exp ^{*} g$ and $\exp ^{*} \Omega$, pulled back under exp, satisfy the condition (*). If M is non compact, $\delta=\infty$, then exp is a diffeomorphism of $T_{p}(M)$ onto M as is"described in Introduction. Then the reader will see that the discussions on B_{o} in the case $\delta<\infty$ are just applicable to the case $\delta=\infty$. So in the following, M is assumed to be compact.

Since the first tangential conjugate locus Q_{p} of p in $T_{p}(M)$ is the sphere $S_{\tilde{\delta}}^{2 n-1}$ and the order of each point of Q_{p} as a conjugate point is constantly equal to 1 as is seen in $\S 4$, by means of the proof of Theorem 4.4 in [15] Q_{p} coincides with the tangential cut locus C_{p} of p in $T_{p}(M)$. In the following, we write C_{p} for Q_{p}, and use the fact that M is a disjoint union of $B_{\delta}=\exp \widetilde{B}_{\dot{\delta}}$ and $C(p)=\exp C_{p}$ (cf. Kobayashi-Nomizu [9, II, p. 100]).

Since M is complete, we know from the theorem of Hopf-Rinow (cf. Helgason [6]) that any point q of M is written by $q=\exp r X$ for some $r \in \boldsymbol{R}$ and some unit vector X. Then for each $A \in U(n)$ we define a transformation $F_{A}: M$ $\rightarrow M$,

$$
\begin{equation*}
F_{A}(q)=\exp r A X \tag{5.1}
\end{equation*}
$$

We show that the definition of F_{A} is well defined. Since $A\left(\tilde{B}_{\delta}\right)=\tilde{B}_{\dot{\delta}}$ and $\left.\exp \right|_{\tilde{B}_{\bar{\delta}}}$ is a diffeomorphism of $\tilde{B}_{\dot{o}}$ onto $B_{\tilde{\partial}}$, it is obvious that $\left.F_{A}\right|_{B_{\tilde{o}}}$ is a diffeomorphism of B_{δ} onto itself with the only fixed point p. Next, let $q=\exp \delta X$ be a point of $C(p)$. Then, it follows from (5.1) that $F_{A}(q) \in C(p)$. Suppose that q has
another representation $q=\exp \delta Y$ such that $Y \in S_{1}^{2 n-1}$. Then Lemma 4.4 implies that there is a number $t \in \boldsymbol{R}$ such that $Y=\cos t X+\sin t J_{0} X$. Therefore we have

$$
\begin{aligned}
F_{A}(\exp \delta Y) & =\exp \delta A\left(\cos t X+\sin t J_{o} X\right) \\
& =\exp \delta\left(\cos t A X+\sin t J_{o} A X\right) \\
& =F_{A}(\exp \delta X)
\end{aligned}
$$

taking account of the properties $A X \in S_{1}^{2 n-1}$ and $A \circ J_{0}=J_{0} \circ A$. This implies that F_{A} is well defined. Moreover, let $q=\exp \delta X$ be a point of $C(p)$ such that $X \in$ $S_{1}^{2 n-1}$. Since A is non singular, if we put $q^{\prime}=\exp \delta A^{-1} X$, where A^{-1} denotes the inverse matrix of A, then

$$
F_{A}\left(q^{\prime}\right)=\exp \delta A A^{-1} X=\exp \delta X=q
$$

This implies that F_{A} maps M onto M.
Let $q=\exp \delta X$ and $q^{\prime}=\exp \delta Y$ be two points of $C(p)$ such that $F_{A}(q)=F_{A}\left(q^{\prime}\right)$, that is, $\exp \delta A X=\exp \delta A Y$. Then by using Lemma 4.4 we see that there is a number $t \in \boldsymbol{R}$ such that $A Y=\cos t A X+\sin t J_{0} A X$. By the fact $J_{0} \circ A=A \circ J_{0}$, we have

$$
Y=\cos t X+\sin t J_{o} X
$$

from which it follows that

$$
q^{\prime}=\exp \delta Y=\exp \delta\left(\cos t X+\sin t J_{o} X\right)=q
$$

This means that F_{A} is $1-1$ on M.
First, we show that $\left.F_{A}\right|_{B_{\delta}}$ and $\left.F_{A}\right|_{C(p)}$ are differentiable and leave the Kählerian structure invariant on B_{δ} and $C(p)$ respectively. By these facts, it will be shown that F_{A} is an automorphism of (M, g, J).

We now consider about $\left.F_{A}\right|_{B_{\delta}}$: Since $\left.\exp \right|_{\tilde{B}_{\delta}}$ is a diffeomorphism of \tilde{B}_{δ} onto B_{δ}, we may write

$$
\begin{equation*}
\left(\left.F_{A}\right|_{B_{\delta}}\right)_{*}=(\exp)_{*}(A)_{*}\left(\left.\exp \right|_{\tilde{B}_{\delta}}\right)^{-1} \tag{5.2}
\end{equation*}
$$

In order to show that F_{A} leaves (g, J) invariant on B_{δ}, it is sufficient to prove that $\tilde{g}=\exp ^{*} g$ and $\tilde{\Omega}=\exp ^{*} \Omega$ are A-invariant on $\tilde{B}_{\tilde{\delta}}$. In fact, if \tilde{g} and $\tilde{\Omega}$ are A-invariant, then

$$
\begin{aligned}
\left(F_{A}^{*} g\right)_{q}\left(X_{q}, Y_{q}\right) & =\left(\exp ^{*} g\right)_{A(\tilde{q})}\left(\left(A_{*}\right)_{\tilde{q}}\left(\exp _{*}^{-1}\right)_{q} X_{q},\left(A_{*}\right)_{\tilde{q}}\left(\exp _{*}^{-1}\right)_{q} Y_{q}\right) \\
& =\left(\exp ^{*} g\right)_{\tilde{q}}\left(\left(\exp _{*}^{-1}\right)_{q} X_{q},\left(\exp _{*}^{-1}\right)_{q} Y_{q}\right) \\
& =g_{q}\left(X_{q}, Y_{q}\right)
\end{aligned}
$$

for any tangent vectors X_{q}, Y_{q} of $T_{q}\left(B_{\delta}\right)$, where $q=\exp \tilde{q}$. Similarly we obtain

$$
\left(F_{A}^{*} \Omega\right)=\Omega
$$

on B_{δ}. We show that \tilde{g} and $\tilde{\Omega}$ are A-invariant on \tilde{B}_{δ}. Let $\tilde{q}=r X$ be a point of \tilde{B}_{δ} such that $X=\left(b^{\alpha}\right) \in S_{1}^{2 n-1}$ and $\sum_{\alpha=1}^{n} b^{\alpha} \bar{b}^{\alpha}=1$. As is seen from the right hand side of (*), it is sufficient to show that $d \Theta^{2}, \eta$ and Ψ are A-invariant. It is known (cf. Sasaki-Hatakeyama [11]) that they are represented by

$$
d \Theta^{2}=\sum_{\alpha=1}^{n} d b^{\alpha} d \bar{b}^{\alpha}, \quad \eta=\sqrt{-1} \sum_{\alpha=1}^{n} \bar{b}^{\alpha} d b^{\alpha}, \quad \Psi=\sqrt{-1} \sum_{\alpha=1}^{n} d b^{\alpha} \wedge d \bar{b}^{\alpha},
$$

from which by the property $\sum_{\beta=1}^{n} a_{\alpha \beta} \bar{a}_{\gamma \beta}=\delta_{\alpha \gamma}$ of $A=\left(a_{\alpha \beta}\right) \in U(n)$, we have

$$
A^{*} d \Theta^{2}=\sum_{\alpha, \beta, \gamma=1}^{n} d\left(a_{\alpha \beta} b^{\beta}\right) d\left(\bar{a}_{r \alpha} \bar{b}^{r}\right)=\sum_{\alpha, \beta, \gamma=1}^{n} a_{\alpha \beta} \bar{a}_{r \alpha} d b^{\beta} d \bar{b}^{r}=\sum_{\alpha=1}^{n} d b^{\alpha} d \bar{b}^{\alpha}
$$

and similarly $A^{*} \eta=\eta$ and $A^{*} \Psi=\Psi$. Thus it follows that F_{A} leaves g and Ω invariant on B_{δ}.

We shall consider about the mapping $\left.F_{A}\right|_{C(p)}$ in the following. Since $e: \hat{C} \rightarrow$ $C(p) \subset M$ is diffeomorphic, the differentiability of $\left.F_{A}\right|_{c(p)}$ follows from (4.7) and the fact that for $q=\exp \delta X \in C(p)$

$$
\begin{equation*}
F_{A}(q)=\exp \delta A X=e(\pi(A(\delta X)))=e \circ \hat{A} \circ \pi(\delta X)=e \circ \hat{A} \circ e^{-1}(q), \tag{5.3}
\end{equation*}
$$

where \hat{A} denotes a $U(n)$-action on $\hat{C}=\boldsymbol{C} P^{n-1}$. Recall that the canonical Kählerian structure ($d \sigma^{2}, \hat{J}$) on \hat{C} is $U(n)$-invariant (cf. Kobayashi-Nomizu [9, II, p. 273]). Then by (5.3) and Lemma 4.5, (2) we have

$$
\begin{aligned}
\left(F_{A}^{*} g\right)_{q}\left(Y_{q}, Z_{q}\right) & =g_{F_{A}(q)}\left(\left(e_{*}\right)_{\hat{A}(d)}\left(\hat{A}_{*}\right)_{d}\left(e_{*}^{-1}\right)_{q} Y_{q},\left(e^{*}\right)_{\hat{A}(d)}\left(\hat{A}_{*}\right)_{d}\left(e_{*}^{-1}\right)_{q} Z_{q}\right) \\
& =\left(e^{*} g\right)_{\hat{A}(d)}\left(\left(\hat{A}_{*}\right)_{d}\left(e_{*}^{-1}\right)_{q} Y_{q},\left(\hat{A}_{*}\right)_{d}\left(e^{-1}\right)_{q} Z_{q}\right) \\
& =f(\delta)^{2}\left(d \sigma^{2}\right)_{\hat{A}(d)}\left(\left(\hat{A}_{*}\right)_{d}\left(e_{*}^{-1}\right)_{d} Y_{q},\left(\hat{A}_{*}\right)_{d}\left(e_{*}^{-1}\right)_{q} Z_{q}\right) \\
& =g_{q}\left(Y_{q}, Z_{q}\right)
\end{aligned}
$$

for any tangent vectors $Y_{q}, Z_{q} \in T_{q}(C(p))$, where $d=e^{-1}(q)$ and $\hat{A}(d)=\hat{A}(\pi(\delta X))$ $=\pi(\delta A X)$. Similarly we obtain

$$
F_{A}^{*} \Omega=\Omega
$$

on $C(p)$.
Though $\left.F_{A}\right|_{B_{\delta}}$ and $\left.F_{A}\right|_{C(p)}$ are differentiable, it remains to be shown that F_{A} is differentiable on M. Then by the following lemma (cf. Helgason [6, p. 61], Kobayashi-Nomizu [9, I, p, 169]) we now are going to show that F_{A} is an isometry of (M, g).

Lemma 5.1 (Myers-Steenrod). Let (N, g) be a connected Riemannian manifold and F a distance-preserving mapping of N onto itself, that is $d(F(p), F(q))=$ $d(p, q)$ for $p, q \in N$. Then F is an isometry.

First of all, we show that F_{A} is continuous on M. Since $\left.F_{A}\right|_{B_{\delta}}$ is differnti-
able and B_{δ} is an open set of M, it remains to show that F_{A} is continuous at the point $q=\exp \delta X \in C(p)$. Let $q^{\prime}=\exp Y, 0<|Y|<\delta$, be a point sufficiently near q. Putting $q^{\prime \prime}=\exp \delta(Y /|Y|)$ and using the triangle inequality, we have $d\left(q^{\prime}, q^{\prime \prime}\right)$ $\leqq d\left(q, q^{\prime}\right)$, from which $d\left(q, q^{\prime \prime}\right) \leqq 2 d\left(q, q^{\prime}\right)$. Then we have

$$
\begin{aligned}
& d\left(F_{A}(q), F_{A}\left(q^{\prime}\right)\right) \leqq d\left(F_{A}(q), F_{A}\left(q^{\prime \prime}\right)\right)+d\left(F_{A}\left(q^{\prime \prime}\right), F_{A}\left(q^{\prime}\right)\right) \\
&=d\left(q, q^{\prime \prime}\right)+d\left(q^{\prime \prime}, q^{\prime}\right) \leqq 3 d\left(q, q^{\prime}\right),
\end{aligned}
$$

taking account of the properties of $\left.F_{A}\right|_{B_{\delta}}$ and $\left.F_{A}\right|_{C(p)}$, since $C(p)$ is totally geodesic. This implies that F_{A} is continuous at q.

Next, we show that F_{A} is a distance-preserving mapping on (M, g). Let q and q^{\prime} be two points of M. The set of all continuous piecewise C^{1}-curves from q to q^{\prime} in M will be denoted by $\Gamma\left(q, q^{\prime}\right)$. Then for any curve c of $\Gamma\left(q, q^{\prime}\right), F_{A^{\circ}} c$ belongs to $\Gamma\left(F_{A}(q), F_{A}\left(q^{\prime}\right)\right)$ by virtue of \mathfrak{l} continuity of F_{A}. Conversely, if $c \in$ $\Gamma\left(F_{A}(q), F_{A}\left(q^{\prime}\right)\right)$, then $F_{A^{-1}}{ }^{\circ} c \in \Gamma\left(q, q^{\prime}\right)$. Then F_{A} induces a mapping of $\Gamma\left(q, q^{\prime}\right)$ onto $\Gamma\left(F_{A}(q), F_{A}\left(q^{\prime}\right)\right)$. Since $C(p)$ is a totally geodesic submanifold of M and since $\left.F_{A}\right|_{C(p)}\left(\right.$ resp. $\left.\left.F_{A}\right|_{B_{\bar{\delta}}}\right)$ is an isometry of $\left(C(p),\left.g\right|_{C(p)}\right)$ (resp. ($\left.B_{\bar{\partial}},\left.g\right|_{B_{\dot{\delta}}}\right)$) onto itself, we have to consider only the curves $c \in \Gamma\left(q, q^{\prime}\right)$ such that $c(a)=q \in B_{\bar{\delta}}, c(b)=q^{\prime} \in C(p)$ and $C([a, b)) \subset B_{\dot{j}}$. But for such curves c it can be easily shown that length of $c=$ length of $F_{A}{ }^{\circ}$. Thus F_{A} is a distance-preserving mapping of M onto itself. Thanks to Lemma 5.1, we establish that F_{A} is an isometry of (M, g) onto itself.

Finally, it remains to be shown that F_{A} is holomorphic on M, though $\left.F_{A}\right|_{B_{\delta}}$ and $\left.F_{A}\right|_{c(p)}$ are already so. But as is seen in (5.7), it is sufficient to show that $\left(F_{A *}\right)_{q} J_{q} \gamma_{X}^{\prime}(\delta)=J_{F_{A}(q)}\left(\gamma_{A X}^{\prime}(\delta)\right)$ at $q \in C(p)$, where γ_{X} denotes a geodesic issuing from p satisfying $\gamma_{X}^{\prime}(0)=X$. Since F_{A} is differentiable, by (5.2) we have

$$
\begin{aligned}
\left(F_{A *}\right)_{q} J_{q} \gamma_{X}^{\prime}(\delta) & =\lim _{r \hat{\delta}}\left(\exp _{*}\right)_{A(r X)}\left(A_{*}\right)_{(r X)}\left(\frac{J_{o} X}{f(r) f^{\prime}(r)}\right) \\
& =\lim _{r \hat{\delta}} J \gamma_{A X}^{\prime}(r)=J \gamma_{A X}^{\prime}(\delta),
\end{aligned}
$$

taking account of (4.3), (4.4) and $A \circ J_{o}=J_{o} A$. Therefore, F_{A} defined by (5.1) is an automorphism of M onto itself such that $F_{A}(p)=p$ and $\left(F_{A *}\right)_{p}=A$. Thus (M, g, J) is unitary-symmetric at p and the proof of Theorem B is complete.

6. Proof of Theorem \mathbf{D}.

Let X be a unit tangent vector in $T_{p}(M)$ and $\gamma_{x}=\gamma_{X}(r)(0 \leqq r \leqq \delta)$ be the geodesic issuing from p such that $\gamma_{X}^{\prime}(0)=X$. For simplicity we put $X(\theta)=$ $\cos \theta X+\sin \theta J_{o} X(0 \leqq \theta \leqq 2 \pi)$ and define

$$
\begin{equation*}
\omega(t, \theta)=\exp ((\delta+t) X(\theta)) \tag{6.1}
\end{equation*}
$$

for $-\delta \leqq t \leqq 0,0 \leqq \theta \leqq \pi$. Then by Lemma 4.2 we have

$$
\begin{align*}
\left.\nabla_{\theta} \partial_{t} \omega\right|_{t=0} & =\left.\nabla_{t} \partial_{\theta} \omega\right|_{t=0} \tag{6.2}\\
& =\left.\nabla_{t}\left[\left(\exp _{*}\right)_{(\delta+t) X(\theta)}(\delta+t) J_{0} X(\theta)\right]\right|_{t=0} \\
& =\left.\nabla_{t}\left[f(\delta+t) f^{\prime}(\delta+t) J \gamma_{X(\theta)}^{\prime}(\delta+t)\right]\right|_{t=0} \\
& =f(\delta) f^{\prime \prime}(\delta) J \gamma_{X(\theta)}^{\prime}(\delta) .
\end{align*}
$$

Recall that as in the definition of the mapping $e: \hat{C} \rightarrow Q(p) \subset M$ we have $\omega(0, \theta)$ $=q$ for each $\theta(0 \leqq \theta \leqq 2 \pi)$. Therefore it follows that for each $\theta, \rho(\theta)=\left(\partial_{t} \omega\right)(0, \theta)$ is a tangent vector in $T_{q}(M)$, from which $\nabla_{\theta} \rho(\theta)$ is always in $T_{q}(M)$. From this observation and Lemma 4.2, the assumption $f(\delta) f^{\prime \prime}(\delta)=-1$ together with (6.2) implies that $\rho=\rho(\theta)$ is a unit circle in $N_{q}=T_{q}(Q(p))^{\perp}$, whose tangent vectors are always of length 1 , where $T_{q}(Q(p))^{\perp}$ is the 2 -dimensional plane in $T_{q}(M)$ orthogonal to the tangent space $T_{q}(Q(p))$. Since $\left\{\gamma_{X}^{\prime}(\boldsymbol{\delta}), J \gamma_{X}^{\prime}(\delta)\right\}$ is an orthonormal basis of $N_{q}, \rho(\theta)$ may be represented up to an orientation by

$$
\rho(\theta)=\cos (\theta+\alpha) \gamma_{X}^{\prime}(\delta)+\sin (\theta+\alpha) \int \gamma_{X}^{\prime}(\delta),
$$

where α is a constant. This implies that $\rho(\pi)=-\rho(0)$, that is,

$$
\begin{equation*}
\gamma_{-X}^{\prime}(\delta)=-\gamma_{X}^{\prime}(\delta), \tag{6.3}
\end{equation*}
$$

Since geodesics in M are determined uniquely by their initial conditions at one point in M, by (6.3) we have

$$
\exp (\delta-t)(-X)=\exp (\delta+t) X
$$

for $0 \leqq t \leqq \delta$, form which

$$
\gamma_{X}(t)=\exp t X=\exp (2 \delta-t)(-X) \quad(0 \leqq t \leqq 2 \delta)
$$

follows. Thus we see that any geodesic issuing from p is closed.
Remark. Using Theorem D, Mori-Watanabe [10] has shown that there exist non-canonical $S C^{p}$-Kählerian structures on $\boldsymbol{C} P^{n}$.

References

[1] Besse, A., Manifolds all of whose geodesics are closed. Ergebnisse der Mathematik. Springer-Verlag, Berlin and New York, 1978.
[2] Chavel, I., Eigenvalues in Riemannian Geometry. Academic Press, New York, 1985.
[3] Choi, H.I., Characterizations of simply connected rotationally symmetric manifolds. Trans. Amer. Math. Soc. 275 (1983), 723-727.
[4] Ejiri, N., A generalization of minimal cones. Trans. Amer. Math. Soc. 276 (1983), 347-360.
[5] Greene, R. and Wu, H., Function theory on manifolds which possess a pole. Lec-
ture Note in Math. Springer-Verlag, Berlin and New York, 1979.
[6] Helgason, S., Differential Geometry, Lie group and Symmetric spaces. Academic Press, New York, 1979.
[7] Kato, A. and Motomiya, K., A study on certain homogeneous spaces. Tôhoku Math. J. 21 (1969), 1-20.
[8] Kaup, W., Reelle Transformationsgruppe und invariante Metriken auf komplexen Räumen. Invent. Math. 3 (1967), 43-70.
[9] Kobayashi, S. and Nomizu, K., Foundations of Differential Geometry I, II. Interscience Tract, 1963, 1969.
[10] Mori, H. and Watanabe, Y., A Kähler deformation of $\boldsymbol{C P}^{n}$. to appear in Proc. Amer. Math. Soc. 103 (1988).
[11] Sasaki, S. and Hatakeyama, Y., On differentiable manifolds with contact metric structures. Jour. Math. Japan 14 (1962), 249-271.
[12] Shiga, K., A geometric characterization of C^{n} and open balls. Nagoya Math. J. 75 (1979), 145-150.
[13] Smyth, B., Differential geometry of complex hypersurfaces. Ann. Math. 85 (1967), 246-266.
[14] Tanno, S., The automorphism groups of almost contact Riemannian manifolds. Tôhoku Math. J. 21 (1969), 21-38.
[15] Warner, F. W., Conjugate loci of constant order. Ann. of Math. 86 (1967), 192-212.
[16] Ziller, W., Homogeneous Einstein metrics on spheres and projective spaces. Math. Ann. 259 (1982), 351-358.

Department of Mathematics
Faculty of Science
Toyama University
Toyama, Japan

