ON COMPACTA WHICH ARE l-EQUIVALENT TO I^{n}

By
Akira Koyama and Toshinao Okada

1. Introduction.

All spaces considered in this paper are assumed to be metrizable. A compactum is a compact space. A continuum is a connected compactum, and a mapping is a continuous function. For a space X we denote by $C(X)$ the space of all real-valued mappings on X with the topology of uniform convergence. Then by Milutin's interesting work [8], we have known that for each pair of uncountable compacta X and $Y, C(X)$ is linearly isomorphic to $C(Y)$ (see [12] for the details and generalizations). On the other hand, for space X we denote by $C_{p}(X)$ the space of all real-valued mappings on X with the topology of pointwise convergence. Spaces X and Y are said to be l-equivalent [1] provided that $C_{p}(X)$ is linearly isomorphic to $C_{p}(Y)$, written $C_{p}(X) \cong C_{p}(Y)$. Recently, Pavlovskii [11] showed the following.
1.1. Theorem. (1) If locally compact spaces X and Y are l-equivalent, then for each non-empty open or closed set \tilde{X} of X, there exists a non-empty open set in \tilde{X} which can be embedded in Y. Therefore, $\operatorname{dim} X=\operatorname{dim} Y$ (see also [4] and [13]).
(2) Non-zero-dimensional compact polyhedra P and Q are l-equivalent if and only if $\operatorname{dim} P=\operatorname{dim} Q$.
(3) Let B be the Pontryagin's 2-dimensional continum with the property $\operatorname{dim}(B \times B)=3$. Then B is not l-equivalent to I^{2}, where I is the unit interval $[0,1]$.

Being motivated by Theorem 1.1 (2), readers may consider that for $n \geqq 1$, all n-dimensional compact ANR's are l-equivalent to I^{n}. However, by Theorem 1.1 (1) and [3, Theorem VI. (6.1)], we can easily see that for each $n \geqq 1$, there exists a collection of $2^{\times_{0}}$ n-dimensional compact $A R^{\prime}$ s in R^{n+1} which are not l equivalent to each other. On the other hand, let X be a compactification of the half-open interval $[0,1)$ whose remainder is I^{n}. Then X is l-equivalent to I^{n}, although X is not even locally connected. Therefore it seems to be difficult to

[^0]control n-dimensional compacta which are l-equivalent to I^{n}.
In this paper we will show a criterion of an n-dimensional locally compact space which is l-equivalent to an n-manifold. Concerning 1 -dimensional compacta, Lelek [7] introduced the class of finitely Suslinian compacta, which contains all hereditarily locally connected continua, and therefore all 1-dimensional comapct ANR's. We will also show a simple criterion of a curve (=1-dimensional continuum) which is l-equivalent to a finitely Suslinian compactum. Hence we can easily see that neither the Cantor fan nor the Knaster indecomposable curve are l-equivalent to any finitely Suslinian compacta. Moreover, we will investigate a class of curves which are l-equivalent to I. So we have a desired class of special comapct ANR's which contains all graphs, and show that every continuum which is a one-to-one continuous image of $[0, \infty)$ is l-equivalent to I.

Most of our results can be applied to the theory of free topological groups in the sense of Graev [5]. So we may have interesting examples concerning free topological groups in the sense of Graev.

We denote by $\operatorname{dim} X$ the covering dimension of a space X. Let A be a subset of a space X. We denote its interior and closure in X by int A and $c l A$, respectively. The symbol ANR is used to specify an absolute neighborhood retract for the class of all metric spaces. Undefined terms and notations in continuum theory may be found in [6] and [14].

The authors would like to express their thanks to Professor A. Okuyama for his valuable and kind suggestions.

2. Criterions for being l-equivalent to special spaces.

First, we will discuss a compactum which is l-equivalent to I^{n}. A space X is locally contractible at a point x of X if for every open neighborhood U of x in X, there exists an open neighborhood V of x in X such that $V \subset U$ and V is contractible in U. We denote the set of all points of X at which X are locally contractible by $L_{c}(X)$. Now we have
2.1. Theorem. Let X be an n-dimensional locally compact space and \tilde{X} be the closure of the set of all points of X whose local dimensions are exactly n. If X is l-equivalent to an n-manifold, then $L_{c}(\tilde{X})$ is dense in \tilde{X}.

Proof. Note that $\operatorname{dim} A=n$ for any non-empty open subset A of \tilde{X}. Suppose that X is l-equivalent to an n-manifold M. First, we show that for an arbitrary open subset U of \tilde{X}, there is an open subset of U which is contractible in U. By Theorem 1.1 (1), there exists a non-empty open subset V of
U and there exist maps $f: V \rightarrow M$ and $g: f(V) \rightarrow V$ such that $g f=1_{V}$. Since $f(V)$ is the n-dimensional subset of M, int $f(V) \neq \varnothing$. Hence there is a point x_{0} of V and there is an open subset W of M such that $f\left(x_{0}\right) \in W \subset c l W \subset$ int $f(V)$ and $c l W$ is homeomorphic to I^{n}. Particularly, W is contractible in $f(V)$, and therefore there is a homotopy $G: W \times I \rightarrow f(V)$ such that $g(y, 0)=y$ and $G(y, 1)=f\left(x_{0}\right)$ for all $y \in W$. Take an open subset V_{0} in V such that $x_{0} \in V_{0}$ and $f\left(V_{0}\right) \subset W$ and define a homotopy $H: V_{0} \times I \rightarrow U$ by $H(x, t)=g G(f(x), t)$ for $(x, t) \in V_{0} \times I$. Then $H(x, 0)=x$ and $H(x, 1)=x_{0}$ for all $(x, t) \in V_{0} \times I$. Hence V_{0} is contractible in U.

Next, we show that $L_{c}(\tilde{X})$ is dense in \tilde{X}. Let U an arbitrary non-empty open subset of \tilde{X}. By the first part of the proof, we have a sequence $\left\{U_{n}\right\}_{n \geq 0}$ of non-empty open subsets of \tilde{X} such that for every $n=0,1,2, \cdots$,
(1) $c l U_{n+1} \subset U_{n}$, where $U_{0}=U$
(2) $\operatorname{diam}\left[U_{n}\right]<\frac{1}{n}$, and
(3) U_{n+1} is contractible in U_{n}.

Then by (1) and (2), we have a point $x_{*} \in \bigcap_{n \geq 0} U_{n} \subset U$, and by (2) and (3), we can see that $x_{*} \in L_{c}(\tilde{X})$. Therefore $L_{c}(\tilde{X})$ is dense in \tilde{X}.
2.2. Corollary. Let X be an n-dimensional compactum and \tilde{X} be the closure of the set of all points of X whose local dimensions are exactly n. Then if X is l-equivalent to $I^{n}, L_{c}(\tilde{X})$ is dense in \tilde{X}.

Next, we will consider the case of curves. A compactum X is finitely Suslinian [7] if for every $\varepsilon>0$, each collection of pairwise disjoint subcontinua of X having diameters greater than ε is finite. We note that every finitely Suslinian continuum is at most 1 -dimensional, and that every hereditarily locally connected continuum is finitely Suslinian. Hence every 1-dimensional compact ANR is finitely Suslinian, and there exist finitely Suslinian compacta which are not ANR's. In order to show a criterion of a curve which is l-equivalent to I, we introduce a notation as follows. A space X is locally connected at a point x of X if for every open neighborhood U of x in X, there exists a connected open neighborhood V of x in U. By $L(X)$, we denote the set of all points of X at which X is locally connected. Clearly a space X is locally connected if and only if $L(X)=X$. Then we have
2.3. Theorem. If a curve X is l-equivalent to a finitely Suslinian compactum, then the following conditions are satisfied:
(i) $L(X)$ is dense in X, and
(ii) $L(X)$ has non-empty interior in X.

Proof. Suppose that X is l-equivalent to a finitely Suslinian compactum Y but $L(X)$ is not dense in X. Then there is a non-empty open subset U of X such that $U \cap L(X)=\varnothing$. By Theorem 1.1 (1), there is a non-empty open subset V of U such that $c l V \subset U$ and there exists an embedding $f: c l V \rightarrow Y$. Since $V \cap L(X)=\varnothing$, by [14, Theorem I.12.1], there exist a positive number $\varepsilon>0$ and a sequence $K_{0}, K_{1}, K_{2}, \cdots$ of pairwise disjoint subcontinua of $c l V$ such that

$$
\operatorname{diam}\left[K_{i}\right]>\varepsilon \quad \text { for all } i \geqq 0 \text {, and } K_{0}=\operatorname{Lim}_{i} K_{i} .
$$

Then the sequence $f\left(K_{0}\right), f\left(K_{1}\right), f\left(K_{2}\right), \cdots$ consists of pairwise disjoint subcontinua in Y and satisfies the following properies:

$$
f\left(K_{0}\right)=\operatorname{Lim}_{i} f\left(K_{i}\right), \quad \text { and } \operatorname{diam}\left[f\left(K_{0}\right)\right]>0 .
$$

But this contradicts to the assumption that Y is finitely Suslinian, because $\operatorname{diam}\left[f\left(K_{i}\right)\right] \geqq 1 / 2 \operatorname{diam}\left[f\left(K_{0}\right)\right]$ for almost all $i \geqq 1$. Namely, the curve X satisfies the condition (i).

If int $L(X)=\varnothing$, then $X-L(X)$ is dense in X. Hence we can similarly prove that the condition (ii) is satisfied.
2.4. Corollary. Neither the Cantor fan nor the Knaster indecomposable curve (see [6, Example 1, p. 204]) are l-equivalent to any finitely Suslinian compactum.

A space X has a decomposable local system if every non-empty open subset of X contains a non-degenarate decomposable continuum. For example, n manifolds, polyhedra, hereditarily decomposable continua, the Knaster indecomposable curve, the dyadic solenoid have decomposable local system. By Theorem 1.1 (1), we can easily show the following.
2.5. Lemma. No compactum which has a decomposable local system is l equivalent to any hereditarily indecomposable continuum.

Considering the arc, the Knaster indecomposable curve and the pseudo-arc [2], by Corollary 2.4 and Lemma 2.5, we have.
2.6. Corollary. There exist three arc-like continua which are not l-equivalent to each other.

Finally, we will construct a finitely Suslinian continuum which is not locally
contractible at any point. Namely, for a curve X, the density of $L(X)$ is a criterion for being l-equivalent to a finitely Suslinian compactum but is not one for being l-equivalent to I.
2.7. Example. Let S_{0} be the unit circle in the plane R^{2}. Let $\left\{a_{i} \mid i \geqq 1\right\}$ be a countable dense subset of S_{0}. Then we can take a sequence $\left\{S_{1, i}\right\}_{i z 1}$ of pairwise disjoint circles inside of S_{0} satisfying the conditions;
(1) $S_{0} \cap S_{1, i}=\left\{a_{i}\right\}$ for every $i \geqq 1$, and
(2) $\operatorname{diam}\left[S_{1, i}\right] \leqq \frac{1}{2^{i}}$ for every $i \geqq 1$.

Define

$$
X_{1}=S_{0} \cup\left(\bigcup_{i \geq 1} S_{1, i}\right)
$$

For $n \geqq 1$, assume that we have constructed a sequence $\left\{S_{n, i}\right\}_{i \geq 1}$ of pairwise disjoint circles and a continuum X_{n} of the form $X_{n-1} \cup\left(\bigcup_{i \geq 1} S_{n, i}\right.$, where $X_{0}=S_{0}$, such that for every $i \geqq 1$,
(3) $X_{n-1} \cap S_{n, i}=\left\{a_{n, i}\right\}, X_{n-2} \cap S_{n, i}=\varnothing$,
(4) $\operatorname{diam}\left[S_{n, i}\right] \leqq \frac{1}{n \cdot 2^{i}}$,
(5) $\left\{a_{n, i} \mid i \geqq 1\right\}$ is dense in X_{n-1}.

Then for every $i \geqq 1$, take a countable subset $\left\{b_{i, j} \mid j \geqq 1\right\}$ of $S_{n, i}-X_{n-1}$ which is dense in $S_{n, i}$. Further let us take a sequence $\left\{S_{n, i, j}\right\}_{j z 1}$ of pairwise disjoint circles inside of $S_{n, i}$ such that for every $i \geqq 1$,
(6) $X_{n} \cap S_{n, i, j}=\left\{b_{i, j}\right\}$, and
(7) $\operatorname{diam}\left[S_{n, i, j}\right] \leqq \frac{1}{(n+1) \cdot 2^{i^{2}+j}}$.

Then define

$$
X_{n+1}=X_{n} \cup\left[\bigcup_{i \geq 1}\left(\bigcup_{j \geq 1} S_{n, i, j}\right)\right] .
$$

It is easily seen that X_{n+1} can be represented in the form which satisfies the inductive assumptions (3)-(5) in replacement of X_{n} by X_{n+1}. So we define a curve

$$
X=\bigcup_{n \leqq 1} X_{n} .
$$

Now we can rewrite X as follows;

$$
Y_{i}=S_{1, i} \cup\left(\bigcup_{j \geq 1} S_{1, i, j}\right) \cup\left(\bigcup_{j \geq 1} \bigcup_{k \geq 1} S_{1, i, j, k}\right) \cup \cdots \quad \text { for } i \geqq 1 \text {, and } X=\bigcup_{i \geq 1} Y_{i} .
$$

By the construction, every subcontinuum of X having diameter greater than $1 / 2^{i}$, which intersects Y_{i}, must contain a_{i}. Hence it is easily seen that X is
finitely Suslinian. By the conditions (3)-(7), every non-empty open subset of X contains simple closed curves. Hence $L_{c}(X)=\varnothing$. Therefore the curve X is the required one.

3. Curves which are l-equivalent to I.

In this section we will show that certain curves are l-equivalent to I. We need the following lemma as elementary and key tools for calculations.
3.1. Lemma (Pavlovskii [8]). (1) For a closed subset S of $I, C_{p}(I) \cong C_{p}(S)$ $\times C_{p}(I ; S)$, where for a subset A of a space X, we define $C_{p}(X ; A)=$ $\left\{f \in C_{p}(X) \mid f(A)=0\right\}$, and if $A=\{a\}$, we write $C_{p}(X ; A)=C_{p}(X ; a)$.
(2) Let A be a closed subset of a space X, which is a neighborhood retract of X. Then $C_{p}(X) \cong C_{p}(A) \times C_{p}(X ; A)$.
(3) Let X_{1} and X_{2} be closed subsets of a space X such that $X=X_{1} \cup X_{2}, X_{0}$ $=X_{1} \cap X_{2}$ is a neighborhood retract of X and $C_{p}\left(X_{0}\right) \cong C_{p}\left(X_{0}\right) \times C_{p}\left(X_{0}\right)$. Then $C_{p}(X) \cong C_{p}\left(X_{1}\right) \times C_{p}\left(X_{2}\right)$.
(4) $C_{p}(I) \times C_{p}(I) \cong C_{p}(I)$.
3.2. Theorem. Every dendrite ($=1$-dimensional compact $A R$) with finite ramification points is l-equivalent to I.

Proof. By Theorem 1.1 (2), we consider only a dendrite which is not a tree. Let X be a dendrite with ramification points $x_{1}, x_{2}, \cdots, x_{n}$. Let A be a tree in X which contains all x_{i}. Then by Lemma 3.1 (2) and (4),

$$
\begin{aligned}
C_{p}(X) & \cong C_{p}(A) \times C_{p}(X ; A) \cong C_{p}(I) \times C_{p}(X / A ;[A]) \\
& \cong C_{p}(I) \times R \times C_{p}(X / A ;[A]) \\
& \cong C_{p}(I) \times C_{p}(X / A),
\end{aligned}
$$

where [A] is the identification point of A in X / A. Since X / A is a dendrite with exactly one ramification point, by Lemma 3.1 (4), it suffices to show the case of dendrites with exactly one ramification point.

Let p be the pole (i.e., the origin) in the polar coordinate system in the plane R^{2}. Define in the polar coordinate (r, θ),

$$
p_{n}=\left(\frac{1}{n}, \frac{1}{n}\right) \quad \text { for every } n \geqq 1
$$

and let

$$
Y=\bigcup_{n \cong 1} \overline{p p}_{n}
$$

where $\overline{x y}$ stands for the straight line segment joining x and y. Now it is easily
seen that every dendrite, which is not a tree and has exactly one ramification point, is homeomorphic to Y. Hence it suffices to prove that
(*) $C_{p}(Y) \cong C_{p}(I)$.
Let $S=\left\{0,1, \frac{1}{2}, \frac{1}{3}, \cdots, \frac{1}{n}, \cdots\right\}$. Then by Lemma 3.1 (2),

$$
C_{p}(I) \cong C_{p}(S) \times C_{p}(I ; S) \cong R \times C_{p}(S ; 0) \times C_{p}(I ; S)
$$

We note that we can identify each $\alpha \in C_{p}(S ; 0)$ with the sequence $\left\{a_{n}\right\}_{n \geqq 1}$ defined by $a_{n}=\alpha(1 / n)$, which converges to 0 . So for each $(\alpha, f) \in C_{p}(S ; 0) \times C_{p}(I ; S)$, we define $\varphi(\alpha, f) \in C_{p}(Y ; p)$ by the formula;

$$
\varphi(\alpha, f)\left(r, \frac{1}{n}\right)=f\left(\frac{r+1}{n+1}\right)+n r a_{n} \quad \text { for each } r, 0 \leqq r \leqq \frac{1}{n}, n \geqq 1 .
$$

Namely, we have the continuous linear function $\varphi: C_{p}(S ; 0) \times C_{p}(I ; S) \rightarrow C_{p}(Y ; p)$. On the other hand, for each $g \in C_{p}(Y ; p), \psi_{1}(g) \in C_{p}(S ; 0)$ and $\psi_{2}(g) \in C_{p}(I ; S)$ are defined as follows;

$$
\begin{aligned}
& \psi_{1}(g)(t)= \begin{cases}g\left(p_{n}\right) & \text { if } t=\frac{1}{n} \text { for some } n \geqq 1, \\
0 & \text { if } t=0,\end{cases} \\
& \psi_{2}(g)(t)= \begin{cases}g\left((n+1) t-1, \frac{1}{n}\right)+\{n-n(n+1) t\} g\left(p_{n}\right) \\
0 & \text { if } t \in\left[\frac{1}{n+1}, \frac{1}{n}\right] \text { for some } n \geqq 1,\end{cases} \\
& \text { if } t=0 .
\end{aligned}
$$

Hence we have the continuous linear function $\psi: C_{p}(Y ; p) \rightarrow C_{p}(S ; 0) \times C_{p}(I ; S)$ given by $\psi(g)=\left(\psi_{1}(g), \psi_{2}(g)\right)$. Then we can see that $\varphi \psi=1_{C_{p}(Y ; p)}$ and $\psi \varphi=$ $1_{C_{p}(S ; 0) \times C_{p}(I ; S)}$. Hence $C_{p}(S ; 0) \times C_{p}(I ; S) \cong C_{p}(Y ; p)$. Therefore we have
(*) $C_{p}(I) \cong R \times C_{p}(S ; 0) \times C_{p}(I ; S) \cong R \times C_{p}(Y ; p) \cong C_{p}(Y)$.
3.3. Corollary. Every 1-dimensional compact ANR with finite ramification points is l-equivalent to I.

Proof. Let X be a 1 -dimensional compact ANR with finite ramification points. By Lemma 3.1 (4) and (3), we may assume that X is connected. We will prove by the induction on the number of simple closed curves in X. If there is no simple closed curve in X, then X is a dendrite. Hence by Theorem 3.2, the assertion holds.

Assume that the assertion holds for ANR's which has at most $n-1$ simple
closed curves, where $n \geqq 1$. Let X be 1 -dimensional compact ANR which has n simple closed curves. Take a simple closed curve L in X. Then X / L is a $1-$ dimensional compact ANR and has at most $n-1$ simple closed curves, because a 1 -dimensional locally connected continuum with the finite Betti number is an ANR. Hence by the assumption, Theorem 1.1 (2) and Lemma 3.1,

$$
\begin{aligned}
C_{p}(X) & \cong C_{p}(L) \times C_{p}(X ; L) \cong C_{p}(I) \times C_{p}(X / L ;[L]) \\
& \cong C_{p}(I) \times C_{p}(X / L) \cong C_{p}(I) \times C_{p}(I) \\
& \cong C_{p}(I) .
\end{aligned}
$$

Therefore X is also l-equivalent to I. The induction is completed.
3.4. Corollary. Let X be a dendrite. If there exists an increasing finite sequence $X_{0} \subset X_{1} \subset \cdots \subset X_{n+1}=X, n \geqq 0$, of snbcontinua of X such that
(1) X has at most finite ramification points, and
(2) for $i=0,1, \cdots, n$, the continuum X_{i+1} / X_{i} has at most finite ramification points,
then X is l-equivalent to I.
Next, we will give other curves which are l-equivalent to I.
3.5. Theorem. Every continuum which is a one-to-one continuous image of $[0, \infty)$ is l-equivalent to I.

Proof. Let X be a continuum which admits a bijective map $f:[0, \infty) \rightarrow X$. Then by [9, Structure Theorem and its Remark], X can be written in the form $X=\alpha \cup C \cup L$, where α is an arc or a point, C is an arc-like continuum with at most two arc-components, L is an arc, $L \cap C$ is exactly the two non-cutpoints of L which are also opposite endpoints of C, and $\alpha \cap(C \cup L)$ is a single point of C which is a non-cutpoint of α and which, if C is not an arc (i.e., $C \cup L$ is not a simple closed curve), is the non-cutpoint not in $L \cap C$ of the arc-component of C which is an arc. In fact, by the proof, there are real numbers $0 \leqq a \leqq b<c$ such that $\alpha=f([0, a]), C=f([a, b]) \cup f([c, \infty))$ and $L=f([b, c])$.

If $a=b$, namely, $C \cup L$ is a simple closed curve, by Theorem 1.1 (2), X is l-equivalent to I. So we may assume that $a<b$. Let define

$$
X_{1}=\alpha \cup C,
$$

and

$$
X_{2}=f([0, d]), \quad \text { where } d \text { is an arbirary real number with } d>c
$$

Then by Lemma 3.1 (2) and (4),

$$
\begin{aligned}
C_{p}\left(X_{1}\right) & \cong C_{p}(f([0, b])) \times C_{p}\left(X_{1} / f([0, b]) ;[f([0, b])]\right) \\
& \cong C_{p}(I) \times C_{p}(I ; 0) \\
& \cong C_{p}(I)
\end{aligned}
$$

Note that $X=X_{1} \cup X_{2}$ and $X_{0}=X_{1} \cap X_{2}$ is a disjoint union of two arcs. Hence by Lemma 3.1 (3) and (4),

$$
C_{p}(X) \cong C_{p}\left(X_{1}\right) \times C_{p}\left(X_{2}\right) \cong C_{p}(I) \times C_{p}(I) \cong C_{p}(I)
$$

Therefore such a curve X is l-equivalent to I.
3.6. Corollary. Every continuum which is a one-to-one continuous image of the real line R is l-equivalent to I.

Curves described in Theorem 3.5 and Corollary 3.6 are called half-real curves and real curves, respcetively [10]. By Theorem 3.5 and Corollary 3.6, we see that the property of being l-equivalent to I does not imply even local connectivity. Hence Theorem 2.1 and Theorem 2.3 may be interesting properties. As mentioned in Introduction, for each $n \geqq 1$, there exist uncountable many n dimensional compact AR's which are not l-equivalent to each ohther. Hence characterizatios of continua or compact AR's which are l-equivalent to I^{n} are important. In the case of curves we pose the following problem related to our result;

Problem. Characterize dendrites which are l-equivalent to I. Particularly, is the converse of Corollary 3.4 valid?

References

[1] Arhangel'skiǐ, A. V., The principal of τ-approximation and a test for equality of dimension of compact Hausdorff spaces, Soviet Math. Dokl. 21 (1980), 805809.
[2] Bing, R. H., Snake-like continua, Duke Math. J. 18 (1951), 653-663.
[3] Borsuk K., Theory of retracts, Monografie Mat. PWN, 1967.
[4] Burov, Yu. A., On reciprocal expansions of weak topological vector spaces, Russian Math. Surveys. 39-5 (1984), 271-272.
[5] Graev, M. I., Free topological groups, Izv. Acad. Nauk SSSR. Ser. Mat. 12 (1948), 279-324. English transl., Amer. Math. Soc. Transl. (1) 8 (1962), 305-364.
[6] Kuratowski, Topology, vol. II, PWN-Academic Press, 1968.
[7] Lelek, A., On the topology of curves II, Fund. Math. 70 (1971), 131-138.
[8] Milutin, A. A., Isomorphisms of the spaces of continuous functions over compact sets of the cardinality of the continuum (Russian), Teor. Funkcii. Funkcional Anal. i Prilozen. (Kharkov) 2 (1966), 150-156.
[9] Nadler, Jr., S.B., Continua which are a continuous one-to-one image of [$0, \infty$), Fund. Math. 75 (1972), 123-133.
[10] and Quinn, J., Embeddability and structure properties of real curves, Memoirs Amer. Math. Soc. no. 125. 1972.
[11] Pavlovskiǐ, D. S., On spaces of continuous functions, Soviet Math. Dokl. 22 (1980), 34-37.
[12] Pelczyński, A., Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions, Dissertationes Math. 58 (1968).
[13] Pestov, V.G., The coincidence of the dimension dim of l-equivalent topological spaces, Soviet Math. Dokl. 28 (1982), 380-383.
[14] Whyburn, G.T., Analytic topology, Amer. Math. Soc. Colloq. Publ. vol. 28, 1942.
A. Koyama

Department of Mathematics
Osaka Kyoiku University
Ikeda-city, Osaka, 563
Japan
T. Okada

Department of Mathematics
Facluty of Education
Kagawa University
Takamatsu-city, Kagawa, 760
Japan

[^0]: Received April 10, 1986.

