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Akira Koyama and Toshinao Okada

1. Introduction.

All spaces considered in this paper are assumed to be metrizable. A com-

pactum is a compact space. A continuum is a connected compactum, and a

mapping is a continuous function. For a space X we denote by C(X) the space

of all real-valued mappings on X with the topology of uniform convergence.

Then by Milutin's interesting work [8], we have known that for each pair of

uncountable compacta X and Y, C{X) is linearly isomorphic to C(Y) (see [12]

for the detailsand generalizations). On the other hand, for space X we denote

by CP(X) the space of all real-valued mappings on X with the topology of

pointwise convergence. Spaces X and Y are said to be l-equivalent[1] provided

that CP(X) is linearly isomorphic to CP(Y), written CP(X) = CP(Y). Recently,

Pavlovskii [11] showed the following.

1.1. Theorem. (1) // locally compact spaces X and Y are l-equivalent,then

for each non-empty open or closed set X of X, there existsa non-empty open set

in X which can be embedded in Y. Therefore, dimX=dimF (see also [4] and

[13]).

(2) Non-zero-dimensional compact polyhedra P and Q are l-equivalent if and

only if dimP=dimQ.

(3) Let B be the Pontryagin's 2-dimensional continum with the property

dim(5x5)=3. Then B is not l-equivalent to P, where I is the unit interval

[0, 11.

Being motivated by Theorem 1.1 (2), readers may consider that for nSgl,

all n-dimensional compact ANR's are /-equivalent to /". However, by Theorem

1.1 (1) and [3, Theorem VI. (6.1)],we can easily see that for each n^l, there

exists a collectionof 2*°n-dimensional compact AR's in Rn+1 which are not l-

equivalent to each other. On the other hand, let X be a compactification of the

half-open interval [0, 1) whose remainder is In. Then X is /-equivalent to In,

although X is not even locally connected. Therefore it seems to be difficultto
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control n-dimensional compacta which are /-equivalent to /".

In this paper we will show a criterion of an n-dimensional locally compact

space which is /-equivalent to an n-manifold. Concerning 1-dimensional com-

pacta, Lelek [7] introduced the class of finitelySuslinian compacta, which con-

tains all hereditarily locally connected continua, and therefore all 1-dimensional

comapct ANR's. We will also show a simple criterion of a curve (=l-dimen-

sional continuum) which is /-equivalentto a finitelySuslinian compactum. Hence

we can easily see that neither the Cantor fan nor the Knaster indecomposable

curve are /-equivalent to any finitelySuslinian compacta. Moreover, we will

investigate a class of curves which are /-equivalent to /. So we have a desired

class of special comapct ANR's which contains all graphs, and show that every

continuum which is a one-to-one continuous image of [0, oo) is /-equivalent to /.

Most of our results can be applied to the theory of free topological groups

in the sense of Graev [5]. So we may have interesting examples concerning

free topological groups in the sense of Graev.

We denote by dimZ the covering dimension of a space X. Let A be a

subset of a space X. We denote its interior and closure in X by int A and clA,

respectively. The symbol ANR is used to specify an absolute neighborhood

retract for the class of all metric spaces. Undefined terms and notations in

continuum theory may be found in [6] and [14].

The authors would like to express their thanks to Professor A. Okuyama

for his valuable and kind suggestions.

2. Criterions for being /-equivalent to special spaces.

First, we will discuss a compactum which is /-equivalent to In. A space

X is locally contractibleat a point x of X if for every open neighborhood U of

x in X, there exists an open neighborhood V of x in X such that VdU and

V is contractiblein U. We denote the set of all points of X at which X are

locally contractible by LC{X). Now we have

2.1. Theorem. Le£ X be an n-dimensional locally compact space and X be

the closure of the set of all points of X whose local dimensions are exactly n. If

X is l-equivalent to an n-manifold, then LC(X) is dense in X.

Proof. Note that dim A=n for any non-empty open subset A of X. Sup-

pose that X is /-equivalent to an n-manifold M. First, we show that for an

arbitrary open subset U of X, there is an open subset of U which is con-

tractiblein U. By Theorem 1.1 (1), there exists a non-empty open subset V of
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U and there exist maps / : V-+M and g: f(V)->V such that gf=lv. Since f{V)

is the n-dimensional subset of M, int f(V)^0. Hence there is a point xo of V

and there is an open subset W of M such that f(xo)^W(ZclWczint f(V) and

clW is homeomorphic to In. Particularly, W is contractiblein f(V), and there-

fore there is a homotopy G:WxI-*f(V) such that g(y, Q)=y and G(y, l)=f(x0)

for all y^W. Take an open subset Vo in V such that xqgV0 and /(V^CW7

and define a homotopy H:V0Xl-+U by H{x,t)=gG{f{x),t) for (x, OeFoX/.

Then //(x,0)=x and H(x, l) = x0 for all (x, t)GV0Xl. Hence Fo is contractible

in U.

Next, we show that LC(X) is dense in X. Let f/ an arbitrary non-empty

open subset of X. By the firstpart of the proof, we have a sequence {Un}ni0

of non-empty open subsets of X such that for every n=0, 1, 2, ･･･,

(1) clUn+1dUn, where £/,=£/

(2) diam[f/7J]<―, and
n

(3) Un+i is contractible in t/re.

Then by (1) and (2), we have a point ;c*e f＼UnCLU, and by (2) and (3), we
71S0

can see that x*<^Lc(X). Therefore LC(X) is dense in X.

2.2. Corollary. Let X be an n-dimensional compactum and X be the closure

of the set of all points of X whose local dimensions are exactly n. Then if X

is l-equivalentto In, Le(X) is dense in X.

Next, we will consider the case of curves. A compactum X is finitely

Suslinian [7] if for every e>0, each collection of pairwise disjointsubcontinua

of X having diameters greater than e is finite. We note that every finitely

Suslinian continuum is at most 1-dimensional, and that every hereditarilylocally

connected continuum is finitelySuslinian. Hence every 1-dimensional compact

ANR is finitelySuslinian, and there exist finitelySuslinian compacta which are

not ANR's. In order to show a criterion of a curve which is /-equivalent to /,

we introduce a notation as follows. A space X is locally connected at a point x

of X if for every open neighborhood U of x in X, there exists a connected

open neighborhood V of x in U. By L(X), we denote the set of all points of

X at which X is locally connected. Clearly a space X is locally connected if

and only if L{X)=X. Then we have

2.3. THEOREM. // a curve X is l-equivalentto a finitelySuslinian compactum,

then the following conditions are satisfied:
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L(X) is dense in X, and

L(X) has non-empty interior in X,

Proof. Suppose that X is /-equivalent to a finitelySuslinian compactum Y

but L(X) is not dense in X. Then there is a non-empty open subset U of X

such that Ur＼L{X)―0. By Theorem 1.1 (1), there is a non-empty open subset

V of U such that clVdU and there exists an embedding f:clV-*Y. Since

7nL(Z)=0, by [14, Theorem 1.12.1], there exist a positive number s>0 and

a sequence /Co,-Ki,̂ > "-of pairwise disjoint subcontinua of clV such that

diam[i^]>e for all z^O, and K0=LimiKi.

Then the sequence f(K0), f(K^), f(K2), ･■･consistsof pairwise disjointsubcontinua

in Y and satisfiesthe following properies:

/(/Co)=Lim</(/iri), and diam[/(tf0)]>0.

But this contradicts to the assumption that Y is finitely Suslinian, because

diam[/(/Q]^l/2diam[/(.KT0)] for almost all i7>l. Namely, the curve X satisfies

the condition (i).

If int L(X)=0, then X―L(X) is dense in X. Hence we can similarly prove

that the condition (ii)is satisfied.

2.4. Corollary. Neither the Cantor fan nor the Knaster indecomposable

curve (see [6, Example 1, p. 204]) are l-equivalent to any finitelySuslinian com-

pactum.

A space X has a decomposable local system if every non-empty open subset

of X contains a non-degenarate decomposable continuum. For example, n-

manifolds, polyhedra, hereditarily decomposable continua, the Knaster indecom-

posable curve, the dyadic solenoid have decomposable local system. By Theorem

1.1 (1), we can easily show the following.

2.5. Lemma. No compactum which has a decomposable local system is I

equivalent to any hereditarilyindecomposable continuum.

Considering the arc, the Knaster indecomposable curve and the pseudo-arc

[2], by Corollary 2.4 and Lemma 2.5, we have.

2.6. Corollary. There existthree arc-likecontinua which are not l-equivalent

to each other.

Finally, we will construct a finitelySuslinian continuum which is not locally
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contractible at any point. Namely, for a curve X, the density of L(X) is a

criterion for being /-equivalent to a finitelySuslinian compactum but is not one

for being /-equivalent to /.

2.7.Example. Let So be the unit circlein the plane Rz. Let {ajz^l} be

a countable dense subset of 50. Then we can take a sequence {Si.jJiaiof

pairwise disjointcirclesinside of So satisfyingthe conditions;

(1) SonS^i^icii} for every z^l, and

(2) diam[5!,i]^-^- for every z^l.

Define
X1=S0＼J({JS1,i)

For n^l, assume that we have constructed a sequence {Sn.ihai of pairwise

disjointcirclesand a continuum Xn of the form IB-iW(lJ5n,i), where X0=S0,

such that for every z^l,

(3) Xn-1r＼Sn.i={an.i}, Xn-sr＼Sn.t=0,

(4) diam[SB>4]^

1

x≫+i=xn＼j＼:iK＼jsn.i.j)i

is1 j^l

X={JXn

nil

for *^1, and X={JYi.

of X having diameter greater than

Hence it is easily seen that X is

n-2"

(5) {an,i＼i^l} is dense in Xn-!.

Then for every z^l, take a countable subset {6^1/^1} of Snii―Xn-i which is

dense in Snii. Further let us take a sequence {Sn!iij}jtl of pairwise disjoint

circlesinside of Sn>i such that for every /^l,

(6) XnnSn.t.j={bilJ}, and

(7) diam[S≫, ≪,,]<;
(w+1).2<.iT-

Then define

It is easily seen that Xn+1 can be represented in the form which satisfiesthe

inductive assumptions (3)-(5)in replacement of Xn by Xn+1. So we define a

curve

Now we can rewrite X as follows:

Yi=S1,i＼J({JS1,iJ)＼J({J U.W*)U-

By the construction, every subcontinuum

l/2＼ which intersects Yu must contain a%.
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finitelySuslinian. By the conditions (3)-(7),every non-empty open subset of X

contains simple closed curves. Hence Lc(JY)=0. Therefore the curve X is

the required one.

3. Curves which are /-equivalent to /.

In this section we will show that certain curves are /-equivalent to /. We

need the following lemma as elementary and key tools for calculations.

3.1. Lemma (Pavlovskii [8]). (1) For a closed subset S of I, CP(I)^CP(S)

XCP(I;S), where for a subset A of a space X, we define CP(X; A)=

{f<ECp(X)＼f(A)=0}, and if A={a}, we write CP(X; A)=CP(X; a).

(2) Let A be a closed subset of a space X, which is a neighborhood retract

of X. Then CP(X) s CP(A) X CP(X; A).

(3) Let Xx and X2 be closed subsets of a space X such that X=X1＼jX2, Xo

^XiC^Xz is a neighborhood retract of X and Cp(X0)^Cp(X0)xCp(X0). Then

Cp(X)^Cp(X1)xCp(X2).

(4) cp(i)xcp(mcp(i).

3.2. Theorem. Every dendrite (=l-dimensional compact AR) with finite

ramification points is l-equivalent to L

Proof. By Theorem 1.1 (2), we consider only a dendrite which is not a

tree. Let X be a dendrite with ramification points xu x2, ■■■, xn. Let A be a

tree in X which contains all x%. Then by Lemma 3.1 (2) and (4),

CP(X) s CP(A) XCP(X;A) = CP(I) XCP(X/A;IA])

^Cp(I)xRxCp(X/A;lA-])

^CP(I)XCP(X/A),

where [A] is the identification point of A in XIA. Since XIA is a dendrite

with exactly one ramification point, by Lemma 3.1 (4), it suffices to show the

case of dendrites with exactly one ramification point.

Let p be the pole (i.e., the origin) in the polar coordinate system in the

plane R2. Define in the polar coordinate (r, d),

Pn ―(―, ―) for every n>l,
＼n ns

and let

Y=＼jJPn,
nil

where x~ystands for the straight line segment joining x and y. Now it is easily
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seen that every dendrite, which is not a tree and has exactly one ramification

point, is homeomorphic to Y. Hence it sufficesto prove that

(*) CP(Y) = CJI).

Let 5= k!
1

_

2

_

1

_

3
―,･･･}. Then by Lemma 3.1 (2),

CP(I)= CP(S)XCP(I ;S) = RxCP(S; 0)XCP(I; 5)

We note that we can identify each aeCp(S; 0) with the sequence {an}nil defined

by an=a{l/n), which converges to 0. So for each (a,/)eCp(S;0)xCP(/;S),

we define (p(a, f)^Cp(Y; p) by the formula;

<p(a,f)(r, ―)=f(r , . }+nran for each r, O^r^ ―, n^l

Namely, we have the continuous linear function <p:CP(S; 0)X CP(I; S)->CP(Y; p).

On the other hand, for each ge=Cp(Y; p), ^)eCp(S;0) and <p2(g)(ECp(I;S)

are defined as follows:

&(*)(*)=

&te)(O=

if t=―
n

if t=0,

for some n^l,

(n+Df-1, -) + {

if * =[

if f= 0

n-n(n + l)t＼g(pn)

in
for some n^l

1

n+1

Hence we have the continuous linear function <p:CP(Y ; p)-*Cp{S; 0)X CP(I; S)

given by <p(g)=((pi(g),</>z(g)).Then we can see that <p(p―Icpcy;P^and <p<p=

lcpts;o≫<cpa;s> Hence CP(S; 0)XCP(I; S)^CP(Y; p). Therefore we have

(*) CP(I)= RxCp(S; 0)XCp(/; S)^RxCp(Y; p)= CP(Y).

3.3. Corollary. Every l-dimemional compact ANR with finite ramification

points is l-equivalent to I.

Proof. Let X be a 1-dimensional compact ANR with finiteramification

points. By Lemma 3.1(4) and (3),we may assume that X is connected. We

will prove by the induction on the number of simple closed curves in X. If

thereis no simple closed curve in X, then X is a dendrite. Hence by Theorem

3.2,the assertionholds.

Assume that the assertionholds for ANR's which has at most n ―1simole
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closed curves, where n^l. Let X be 1-dimensional compact ANR which has n

simple closed curves. Take a simple closed curve L in X Then X/L is a 1-

dimensional compact ANR and has at most n―1 simple closed curves, because

a 1-dimensional locally connected continuum with the finiteBetti number is an

ANR. Hence by the assumption, Theorem 1.1 (2) and Lemma 3.1,

CP(X)^CP{L)XCP(X; L) = Cp(I)xCp(X/L; [L])

s CP{I)X CP{X/L) ~CP(I) X Cp(7)

= CP(I).

Therefore X is also /-equivalent to /. The induction is completed.

3.4. Corollary. Let X be a dendrite. If there exists an increasing finite

sequence XodXid ･･･dXn+1―X, n|2;0,of snbcontinua of X such that

(1) X has at most finiteramification points, and

(2) for 2=0, 1, ･･･,n, the continuum Xi+1/Xi has at most finite ramification

points,

then X is l-equivalent to I.

Next, we will give other curves which are /-equivalent to /.

3.5. Theorem. Every continuum which is a one-to-one continuous image of

[0, oo) is l-equivalent to L

Proof. Let X be a continuum which admits a bijectivemap / :[0, oo)―>X

Then by [9, Structure Theorem and its Remark], X can be written in the form

X=a＼jC＼jL, where a is an arc or a point, C is an arc-like continuum with at

most two arc-components, L is an arc, Lr＼C is exactly the two non-cutpoints

of L which are also opposite endpoints of C, and aC＼{C＼jL)is a single point

of C which is a non-cutpoint of a and which, if C is not an arc (i.e.,C＼JL is

not a simple closed curve), is the non-cutpoint not in Lf~＼Cof the arc-component

of C which is an arc. In fact, by the proof, there are real numbers 0^a^b<c

such that a=/([0, a]), C=/([fl, &])U/([c, oo)) and L=f([b, cj).

If a=b, namely, C＼JL is a simple closed curve, by Theorem 1.1 (2), X is

/-equivalent to /. So we may assume that a<b. Let define

Xx=a＼jC,

and

^2~/([0, dj), where d is an arbirary real number with d>c.

Then by Lemma 3.1 (2) and (4),
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C^sCpCftCO, &]))XCP(X1//([O,≪);[/([0,6])])

= CP(/)XCP(/;O)

3C,(/)

Note that X―X^X* and Z0=XinZ2 is a disjointunion of two arcs. Hence by

Lemma 3.1(3) and (4),

CP(X)s CV{XX)X CP(Z2)s C,(/)X CP{I)= CP(I)

Therefore such a curve X is /-equivalentto /.

3.6. Corollary. Every continuum which is a one-to-one continuous image of

the real line R is l-equivalent to L

Curves described in Theorem 3.5 and Corollary 3.6 are called half-real curves

and real curves, respcetively [10]. By Theorem 3.5 and Corollary 3.6, we see

that the property of being /-equivalent to / does not imply even local con-

nectivity. Hence Theorem 2.1 and Theorem 2.3 may be interesting properties.

As mentioned in Introduction, for each n^l, there exist uncountable many n-

dimensional compact AR's which are not /-equivalent to each ohther. Hence

characterizatios of continua or compact AR's which are /-equivalent to In are

important. In the case of curves we pose the following problem related to our

result:

Problem. Characterize dendrites which are l-equivalent to I. Particularly

is the converse of Corollarv 3.4 valid?
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