TSUKUBA J. MATH.
Vol. 19 No. 1 (1995), 173—185

SOME GENERALIZATIONS OF RAPID ULTRAFILTERS
IN TOPOLOGY AND ID-FAN TIGHTNESS

By

Salvador GARCIA-FERREIRA and Angel TAMARIZ-MASCARUA

Abstract. In this paper, we introduce the weakly k-rapid points,
for 1£k<w, and the rapid points of topological spaces. They ex-
tend the concept of rapid ultrafilter. It is evident from the defini-
tion that every weak P-point is a rapid point and a weakly k-rapid
point for 1<k<w. We show: (a) there is a space containing a
rapid, non-weak-P-point & there is a rapid ultrafilter on @; and (b)
there is a space containing a weakly k-rapid, non-weak-P-point, for
some 1<k<we there is a Q-point in Blw)\ws for every 1<k<w,
there is a space which is weakly (k+1)-rapid and is not weakly
k-rapid. Assuming the existence of a Q-point in B(w)\@, we give
an example of a zero-dimensional homogeneous space without weak
P-points such that all its points are rapid. Finally, the concept of
Id-fan tightness is introduced as a generalization of countable strong
fan tightness.
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1. Preliminaries.

By a space we mean a completely regular Hausdorff space, i.e. Tychonoff
space. If X is a space and x<X, then 7I(x) denotes the set of all neighborhoods
of x. The closure of A in X is denoted by Cl,(A) or Cl(4). For a set X, the
set of all finite subsets of X is denoted by [X]<® and if 1<m<w, then [X]=™
={ASX:|A|<m}. The Stone-Cech compactification 8(w) of the natural num-
bers @ with the discrete topology can be viewed as the set of all ultrafilters
on o, and the remainder w*=g(w)\w consists of all free ultrafilters on w. For
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pEw*, £(p) stands for the subspace {p}' o of B(w). All functions f&“w con-
sidered throughout this paper assume only positive values.

G. Mokobodski [Mo] introduced the following class of ultrafilters to respond
to a problem in measure theory.

1.1. DEFINITION. pEw* is rapid if

VheodAspVn<w(|ANh(n)|<n).
Other two kinds of interesting ultrafilters on w are:

1.2. DEFINITION. Let pew*. Then

(1) p is a Q-point if for every partition {B,: n<e} of w in finite subsets,
there is A= p such that |ANB,| =1 for every n<w;

(2) p is semiselective if A,ep for n<w, then there is a,&A4, for each
n<w such that {a,: n<w}<p.

In [CV], the authors say that pcew* is a Q-point if V{B,: n<w}Sle]<*3A
cp¥n<w(|ANB,|<1). But, this definition is wrong since none pcw* satisfies
such a condition ; indeed, if pew* and B,=n for n<w, then there is not A=)
such that |ANB,| <1 for each n<w.

We know that every semiselective ultrafilter is rapid and every @Q-point is
rapid. The inclusions among these sorts of ultrafilters on @ are proper: It is
shown in [M] that if there is a rapid ultrafilter, then there is also a rapid
ultrafilter which is neither P-point and nor Q-point; (Kunen [K]) MA—-Jpcw*
(p is semilective and not @-point); and Lafflamme [L] proved that CON(ZFC)
—CON(ZFC+3pew* (p is Q-point and not semiselective)). The existence of
these ultrafilters is independent from the axioms of ZFC. In fact, Mokobodki
[Mo] proved that CH implies the existence of rapid ultrafilters on w; Miller
[M] established that CON(ZFC)—CON(ZFC+there are no rapid ultrafilters);
Mathias [Ma] and Taylor [T] showed that if there is a dominant family of
functions in “w@ of cardinality ,, then there exists a @-point in @* (for another
sufficient condition see [CV]); and the existence of semiselective ultrafilters
under MA (o-centered) is shown in [Bo].

In the next theorem, we give four conditions which are equivalent to the
rapidness of ultrafilters on w: clauses (4) and (5) motivated the notions of rapid
points and weakly k-rapid points, for 1<k<w, which will be studied in sec-
tion 2.

1.3. THEOREM. For p=w*, the following are equivalent:
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(L) p is rapid.
(2) For every sequence (B,)n<, of finite subsets of o,

JAcpHVn<w(|ANB,|<n).

(3) There is h&“w such that for every sequence (B,)n<w of finite subsets of
o, JASpVn<o(|ANB,| <h(n)).

(4) For every finite-to-one function f&®w and every sequence (B,)p<w of
finite subsets of @, AA€pVn<w(|ANB,| < f(n)).

(8) For every finite-to-one function f<®w and given B,e[w]<®, for n<w,
such that B,N\Br=@ whenever n<m<w,

JAepVn<o(| ANBLI < f(n)).

PrROOF. The equivalences (1)=(2) and (2)e(3) are shown in [M], and the
implications (1)=(5), (4)=(3) are evident.

(1)>(4). Let f=“w be finite-to-one. Without loss of generality, we may
assume that B,SB,,, for each n<w. Define he“w so that h(m)=max f~(m)
it f7'm)#@, for m<w, and put D,=B,m, for m<w. By assumption, there
is Aep such that |AND,|=1ANBym, | <m for all m<w. If f(n)=m for n<w,
then we have that nef~'(m) and |ANB,| S |ANBy | <m=f(n), as desired.

(5)=@3). Let f=“w be finite-to-one and define h:w—w by A(n)=r, f()
for each n<w. We shall verify that h satisfies our conditions. In fact, let
(Br)a<e be a sequence of finite subsets of w. For n<w, set Ap=B\\Uj<n Bj.
By hypothesis, there is A<p such that |ANA,|<f(n) for all n<w. Since
B,S\Ujsa Aj for each n<w, we have that |ANB,| <%, f¢)=h(n) for each
n<wo.

We remark that if a function h satisfies the condition of (3), then & must
be finite-to-one. If not, then there is m<w such that A~'(m)={m,: j<w}, where
m;<m;., for j<w, but there is not A=p such that | Anm;| <h(m;=m for every
<.

Our work in section 3 is based on the following definition.

1.4. DEFINITION. Let X be a space. Then

(1) [Ar.] X has countable tighiness if for each x=X and ASX such that
x=CI(A) there is a countable subset B of A4 such that x=Cl (B);

(2) [Ar,] X has countable fan tightness if for every x=X and every sequence
(An)nce of subsets of X such that x&(,«, Cl(4,), there exists F,e[A4,]<
such that x&Cl (\J,<uFr) ;

) [SI X has countable strong fan tightness if for every x=X and every
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sequence (A,)n<o Of subsets of X such that x& M\ ,«, Cl (4,), there exists x,€A,
such that x=Cl ({x,: n<w}).

A natural generalization of countable strong fan tightness is investigated
in section 3.

2. Rapid points and weakly k-rapid points.

Clauses (4) and (5) of Theorem 1.3 suggest the following definition.

2.1. DEFINITION. Let f=“w and X a space.

(1) A point x=X is called f-rapid if for every sequence (B,)n<, 0f finite
subsets of X\ {x}, IVehn(x)Vn<w(|VNB,| <f(n). X is said to be f-rapid if
all points of X are f-rapid.

(2) A point x&X is called weakly f-rapid if for every sequence (Bj)n<, Of
finite subsets of X\ {x} such that B,N\B,=@ whenever n<m<w, AVEIN(x)Vn
<o(|lVNBL|I<f(n)). X is said to be weakly f-rapid if all points of X are
weakly f-rapid.

If f is the identity function from w to @, then we simply say rapid (resp.
weakly rapid) instead of f-rapid (resp. weakly f-rapid). The meaning of k-rapid
and weakly k-rapid should be clear, for 1<k<w. It is evident that pSw* is a
Q-point iff it is weakly k-rapid in &(p) for some 1=k <w.

Observe from Theorem 1.3 that pcw* is a rapid ultrafilter iff p is f-rapid
in &(p) for each finite-to-one function f<“w iff p is weakly f-rapid in &(p) for
each finite-to-one function f&“w. The next lemma shows that we cannot with-

dram the finite-to-one condition.

2.2. LEMMA. For pcw* and f=“w, the following are equivalent.
(1) p is f-rapid in &(p).

(2) 1 is finite-to-one and p is a rapid ultrafilter.

(3) [ is finite-to-one and p is weakly f-rapid in &(p).

PROOF. The implications (2)=(3) and (3)=3(1) are direct consequences of
Theorem 1.3.

(1)=(2). According to Theorem 1.3, it is enough to prove that f is finite-
to-one. In fact, assume that there is m<w such that f'(m)={m;: j<w}, where
m;<ms., for j<w. Define B,={j<w:j<n} for each n<w. Then there is
Aep such that |ANB,I < f(n) for each n<w. In particular, |ANB g, | < f(my)
—m for every k<w®. Since A is infinite, there must be % <@ such that |ANB,, |
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>m, which is a contradiction.

2.3. LEMMA. If f:w—w is not finite-to-one, then pEw* is a Q-point iff p is
weakly f-rapid in &(p).

PROOF. Only the sufficiency requires proof. Let {B,:n<w} S[®]<® be a
partition of @ and let m<w such that [ m)={m;: j<w}, where m;<mj,;, for
j<w. Define {A,: k<w} by Amj:U,,ngn<mj+1 B,, for each j<w, and A,=¢@
otherwise. By assumption, there is A& p such that | ANA, [ f(k) for all k<w.
Hence, if m;<n<m,,,, for some j<®, then 1A(\Bn|§|AmAmj|§f(mj):m.
We may write A=\J,<n 4; so that |A:N\B,| <1 for each i<m and each n<a.
Since A=p, there is i<m such that A;€p and then | A;,NB,| <1 for every
n<w. Therefore, p is a Q-point.

We omit the proof of the next theorem since it is completely similar to that
of Theorem 1.3.

2.4. THEOREM. For a finite-to-one function fe“w and xeX, the following
are equivalent.

(1) =x is rapid in X.
(2) xis f-rapid in X.
(3) x is weakly f-rapid in X.

The relationship between weakly k-rapid points, for 1<k<w®, and rapid
points is established in the next corollary.

2.5. COROLLARY. For 1<k<w, every weakly k-rapid point is rapid.

PROOF. Let 1=k<w and x<X. Suppose that x is weakly k-rapid in X.
Let (Bu)ncw be a sequence of finite subsets of X\{x}. For n<e, set A,=
Ba\Uj<a B;. By assumption, there is Ve9(x) such that |VNA,|<Fk for each
n<o. Hence, |VNB,|=Zjs. |VNA;| <(n+1)k, since B,SU;sn A;, for each
n<w. Thus, x is f-rapid, where f(n)=(n+1)k for every n<w. The conclu-
sion now follows from 2.4.

Next, we shall show that if f€%w is not finite-to-one, then there is £<w
such that weak f-rapidness agrees with weak k-rapidness. It will be shown in
2.11 that for every 1<k<w there is a space which is weakly (k-41)-rapid and
is not weakly k-rapid.

2.6. THEOREM. Let f&“w be non-finite-to-one and X a space. If k=
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min {m<w: f~'(m) is infinite}, then x&X is weakly k-rapid iff it is weakly f-
rapid.

PROOF. First, assume that x&X is weakly k-rapid. Let (B,).<o be a
sequence in [X\{x}]<® such that B;N\B,=@ whenever i<j<w. Choose r<w
such that f-'(m)Sr for each m<k. Then, we may find V&(x) such that
|[VNB,| <k, for each n<w, and VNB,=@ for every n<r. Hence, if f(n)<k,
then |VNB,|=0<f(n). Thus, |VNB,| < f(n) for all n<w.

Now suppose that x&X is weakly f-rapid and let (B,).<o be a seguence in
[X\{x}]<® such that B;N\B;=@ whenever i<j<w. Enumerate f~'(k) by
{k,: n<w}, where k,<k,, for n<w. For every n<w, set D, , =B, and D,=@
otherwise. Then, there is V&Ji(x) such that |VND,|<f(m) for each m<w.
Hence, |VNB,|=|VND; |<f(ky)=Fk for n<w. This shows that x is weakly
k-rapid.

The weakly f-rapid points, for f&“w, satisfy the following property.

2.7. THEOREM. If x&X is a weakly f-rapid point for fE“w, then no non-
trivial sequence converges to X.

PROOF. Assume that {x,}.<. IS a non-trivial sequence converging to a
weakly f-rapid point x of a space X. We may assume that x+#x, for all n<e
and x,#Xn for n<m<w. Define, for each n<w, B,={xn: n+3ks fO)Em<
n4+1+37, fG@)}. Notice that |B,|=f(n)+1 for each n<w. By assumption
there exists VeJ(x) such that |VUB,|< f(n) for each n<w. So we may pick
v.(X\V)NB, for each n<w; that is, B,\V=@ for each n<w. This implies
that (X.)n<e does not converge to x, which is a contradiction.

Observe from 2.7 that every non-isolated, weakly f-rapid point of a space
has uncountable character.

It is evident that every weak P-point is an f-rapid point for each f&“w.
For the converse, we have the following two results. Firt, we state a definition.

2.8. DEFINITION (Bernstein [B]). Let p=w* and X a space. We say that
xeX is the p-limit of a sequence (¥,)ncw, We Write x=p-lim x,, if for every
Vea(x), {n<w: x.€V}ep.

2.9. THEOREM. Let f€“w. There is a space X containing an f-rapid, non-
weak-P-point iff f is finite-to-one and there is a rapid ultrafilter on w.

PrROOF. Necessity. Let X be a space and x&X a f-rapid, non-weak-P-
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point. Then there exists {x;:j<®} SX\{x} such that xeCly{x;: j<w}. Itis
not hard to prove (see [GS, Lemma 2.2]) that there is p<=w* such that x=
p-lim x;. We shall verify that p is a rapid ultrafilter on w. Indeed, let {B,:
n<w}S[w]<® and define D,={x;:j=B,} for n<w. By assumption, we can
find Vedi(x) such that |VND,|<f(n) for each n<w. Since x=p-lim x;, A=
{j<w:x;&€Viep. If j€ANB,, then x;&€VND, Thus, Ap and |ANB,|
< f(n) for each n<w. The conclusion now follows from Lemma 2.2.

Sufficiency. If p=w* is a rapid ultrafilter and f is finite-to-one, by Lemma
2.2, then p is an f-rapid, non-weak-P-point of &(p).

As an immediate consequence of the previous theorem we have:

2.10. COROLLARY. If f&“w is not finite-to-one, then the concepts of weak
P-point and f-rapid point coincide.

We remark that if M is a model of ZFC in which there are not rapid
ultrafilters on @ (see [M]), then M= If X is a space, then x&X is a weak
P-point iff x is f-rapid in X for every fc&“w.

2.11. THEOREM. The following statements are equivalent.

(1) There is a space X containing a non-weak-P-poit, weakly k-rapid for
some 1< k<w.

(2) There is a Q-point pEw*.

(3) For every 1<k<w, there is a space which is weakly (k-+1)-rapid and is
not weakly-k-rapid.

ProOOF. To prove (1)=(2) we apply the same reasoning used in the proof
of Theorem 2.9 and Lemma 2.3, and (1) is the particular case of (3) when k=1.

(2)=@3). Fix 1<k<w and let pcw*. We define a topology on Z(p, k)=
{(Ppruily, n): j<k, n<w} as follows: {(j, n)} is open for all ;7<% and n<ew.
VS &(p, k) is a neighborhood of p if pV and {n<w: (7, n)eV}<p for each
j<k. Assume that p is a @-point. First, we show that Z(p, k) is weakly
(k+1)-rapid. Let (Bn)n<e be a sequence in [H(p, )\ {p}]1<®. For each j<k,
put B n=B.N{{J, n): n<w}. Since p is a @-point there is A;&p such that
1A;NBj ml<1 for m<w®. Then V={p} U;<:{{(j, n): n€A;} €71(p) and it is evident
that |VNB,|<k+1 for each m<w. Thus, 5(p, k) is weakly k-rapid. Now,
define Bo={(j, m): j<k}, for each m<w, and suppose that 5Z(p, k) is weakly-
k-rapid. So there is WeJi(p) such that |WNB,|<k for each m<w. Set A;=
(n<w: (j, n)eW} for j<k. We have that A=<, Ajep. If meA, then
(7, mY&WNB, for each 7<k and so |WNB,|=*k+1, which is a contradiction.
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For 1Lk <w, it is not hard to show that if X; is a weakly k-rapid (resp.
rapid) space with more than two points, for 7€/, and 7 is infinite, then [l;er X;
has no weakly k-rapid (resp. rapid) points. For finite products, we have that
(p, p) is not weakly (k+1)-rapid in Z(p, k)X E(p, k), and if x is rapid in X
and y is rapid in V, then (x, ») is rapid in XXV,

Next, we give an example, assuming the existence of a rapid ultrafilter on
w, of a rapid homogeneous space without weak P-points.

2.12. ExaMPLE. In [AF], the authors defined the homogeneous zero-dimen-
sional space S,. In a similar way, for every pcw*, we may define the space
S.(p) by replacing convergence sequences by p-limits in the construction (for a
similar procedure see [G-F]). S,(p) is also a homogeneous, zero-dimensional
space without weak P-points. For pew*, set S,(p)={x}U{xys, .0, n;<w for
1<7<r<w}. Then, we have that x=p-lim x, and Xy wyn,=p-liM %o, o) 0
for every ny, -+, n,<w. To describe a neighborhood of x in S,(p), we put
S(A)={xn:n€A} and S(Xn, .0, AD={xn, n,n:nEA} for x4, ..., ESu(p)
and for ASw. If {A}UUisrco {Anyn, : n;<0 for 1<7<r} are elements of p,
then the set {x}\US(A) U Uisrco (\Un ea Ungetn, = Unyedy, oon,  SEnp iy,
An, ..n,)) is a basic neighborhood of x in S,(p). It is shown in the proof of
2.11 ((2)=(3)), the condition of Q-point is not essential, that the space Z(p, k)
is not weakly k-rapid for each 1<k <w and for each p=w*. Since H(p, k) is
homeomorphic to the subspace {x}\U{x; ,: <k, n<w} of S,(p) for each 1<k <w,
S.(p) is not weakly k-rapid for all 1<k<w. Now suppose that p is a rapid
ultrafilter on w. We shall show that S,(p) is a rapid space. It is enough to
prove that x is a rapid point of S,(p). In fact, let (Bn)m<w be a sequence of
finite subsets of S,(p)\{x} and let ¢: w—Uisr<o {(n1, -, 7,): n3<0 for 1<7<7)
be a bijection. Since p is a rapid ultrafilter, we may find A= p such that
| BaN\S(A)| <m for each m<w. By induction, for each x,, ..., ES.(p) we de-
fine Ay, ..., Ep such that

Q) 1BanS(xn,.cnn,, Anpn,)| =m for each m<w; and

2) BaNS(xa,,n,, Anyon,)=@ for every m<a(n,, -, n,).

Define

r?

V= {x} US(A)U Urgr<o (UnleA k)nzeALn1 U"re"‘nl."', -1 S<xn,,m. N Anl.---,nr))-

nr

For every m<w, let zim)=|VNB,|. Fix an arbitrary m<e and put VNB,=
{xni»"w"“rs: 1<s<z(m)}. Then xng,..,nsﬂeS(xng,...,,,srs_l, An‘i,-»-‘nigmBm for each

1<s=<z(m). From (1) and (2) it follows that ¢7'((ni, ---, n%,_1))<<m, for each
1<sZz(m), and |{1<tZz(m): (n}, -, n}_O=(nf, -, n%, ), n% #nt }|<m, for
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each 1<s<z(m). So zim)<m? Thus, |VNB,|<m? for every m<w. Theorem
2.4 implies that x is rapid in S,(p).
Finally, we state some problems.

2.13. QUESTION. Assume the existence of a @-point pew*.

(1) Is there a compact weakly k-rapid (resp. rapid) space without weak P-
points, for each 1<k <w?

(2) It there a weakly k-rapid (resp. rapid) topological group without weak
P-points, for each 1<k<w?

(3) For every 1<k<w, is there a weakly (k+1)-rapid homogeneous space
which is not weakly k-rapid?

3. On ld-fan tightness.

We begin with a definition that generalizes countable strong fan tightness
(1.4 (3)).

3.1. DEFINITION. Let he®w. A space X has h-fan tightness if for every
reX and for every sequence (A,).<, Of subsets of X such that xEMNn<o Cl(Ar),
there is Fp,e[A,]3"™, for every n<w, such that x&Cl(\Ur<w F2)-

If he“w is the constant function of value 2 for 1<k<w, then k-fan tight-
ness stands for h-fan tightness. Henceforth, Id: w—w will denote the identity
map on w. It is evident that countable strong fan tightness & l-fan tightness
= h-fan tightness for each h&“w =) countable fan tightness = countable tight-
ness. There is an easy example of a space with countable tightness which does
not have countable fan tightness. In fact, for pcw*, we define a topology on
Z(p, 0)={p} JoXw as follows: the singleton {(n, m)} is open for every (n, m)
oXw, and Vea(p) provided that peV and {m<w:(n, m)eV}<p for each
n<w (see the proof 2.11). It is not hard to show that Z(p, w) has countable
tightness and does not have countable fan tightness for every h&“w. Example
3.7 has Id-fan tightness and does not have countable strong fan tightness, and
Example 3.8 has countable fan tightness and does not have h-fan tightness.

Next, we shall show that if he“w, then h-fan tightness coincides with
gither 1-fan tightness (=countable strong fan tightness) or Id-fan tightness,
First, we give some preliminary results.

3.2. LEMMA. Let h€®w and let fE“w be non-bounded. Then every space
with h-fan tightness has f-fan tightness.
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ProoFr. Let X be a space with h-fan tightness, x&X and (A,).<» 2 sequence
of subsets of X such that x&M\,«, Cl(4,). Since f is not bounded, we may
choose positive integers n,<n;< -+ <n,< --- such that h(£)<f(n,) for each
k<w. Define B,=A,, for each k<w. Then, for every k<w there is E,&E
[B.]5"*®> such that x&Cl{Ui<w E1). For n<e, put F,=E, if n=n, and F,=9¢
otherwise. Thus, we have that \Un<e Fa=U<o Ei and F,,=E, &[4, ]*® /"8
for each 2<w. Therefore, xEUpco Frn and F,&[A,]37™ for all n<o.

The following two corollaries are direct consequences of 3.2.

3.3. COROLLARY. If h, f&€%w are non-bounded, them the notions of h-fan
tightness and f-fan tightness are the same.

3.4. COROLLARY. If h&“w, then every space with h-fan tightness has Id-fan
tighness.

3.5. LEMMA. If h<“w is bounded then h-fan tightness agrees with countable
strong fan tightness.

PROOF. Assume that he“w is bounded by the integer 2<w. Let X be a
space with h-fan tightness, x&X and (4.).<» & sequence of subsets of X such
that x&M\p<o Cl(4,). By assumption, for each n<w there is F,e[A,]* such
that x&Cl (Unr<o Fr). We may suppose that |F,|=*#k for all n<w. Enumerate
each F, by {x%, ---, x}} and set B;={x7; n<w} for each 1<;<k. Since x&
Cl(Un<o Fr)=Cl(B,\U --- \UB)=Cl(B)\U -+ UCI(B,), there is 1<j<k such that
xeCl(By). Thus, x7€A, for each n<w and x&Cl({x}: n<o}).

We turn now to the principal result of this section.

3.6. THEOREM. If h&“w, then h-fan tightness coincides with either 1-fan
tightness or Id-fan tighiness.

The next two examples show that Id-fan tightness is a new concept.

3.7. EXAMPLE. Let x¢&wXw. We consider the following topology on X=
{x} U@\ {0} ) Xw: the set (w\{0})Xw has the discrete topology and a neighbor-
hood of x consists of a finite intersection of the sets V,={x} U {(n, m)s(w\{0})
Xw: (n, m)y#(n, f(n))} for f&“w. Notice that X is a zero-dimensional space.
We shall verify that X with this topology has Id-fan tightness and does not
have strong fan tightness. Indeed, for 1<n<w, we put A,={(n, m): m<w}.
In order to show that X has Id-fan tightness we note that x<Cl(B)\B, for
BgX, whenever for every 1<n<w there is k,<w such that |BNA, |>n.
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For each 1<n<w, let B,SX such that x&/N\isn<w CL(B,) and x¢& B,, for each
n<w. Then for each 1<n<we there is k,<w such that {B,NA,,|>n. For
every 1<n<w, choose F,SB»NA,, such that |F,|=n. Let V=, Vy,E9x),
where f;&%0 for j<s<w. Since |Fp,N\{(kas, fi(kes)): F<s}|<s+1 and |Fz|=2s,
we obtain that F,,\V # @ and hence VN\Uisn<o Fa#x @. Thus, x&Cl(Uisn<olr).
Suppose that X has countable strong fan tightness. Then for every 1=n<ew
there is t,<® such that xeCl({(n, t,): 1Sn<w}). Let f&“w be defined by f(n)
=t, for each 1<n<w. Then V,N{(n, t»):1=n<eo}=¢@, which is a contra-
diction.

3.8. EXAMPLE. Let YV ={y}U(w\{0})Xw, where y&Eoxo. We equip (@\{0})
Y@ with the discrete topology and let 71(y) be the set of all finite intersections
of the sets Wg, where Ws={y}\U{(n, m): m&S,, 1<n<w} and S=(Sp)isn<w 8 @
sequence of subsets of w such that |S,|=n for each l=n<w. We claim that
Y is a zero-dimensional space which has countable fan tightness and does not
have Id-fan tightness. It is evident that Y is zero-dimensional and does not
have Id-fan tightness. We claim that ¥ does not have countable fan tightness.
First, observe that y=Cl(B)\B if and only if for every 1<n<w there is ka<o
such that |BNA,|>nk,, where A,={(n, m): m<w} for 1I<n<w. Assume that
YEMNisn<o C1(B,) and y&B, for each 1<n<w. Then, for each l=n<w there
is k,<w such that |B,NA,, |>nk,. For each 1<n<w, choose F,EB,NA;,
with |Fp|>nk,. Let W=\;s, W,;E9(y), Where S;=(S%)n<w for j<r<w. Since
\Fo N\ {(ky, m): meS, , j=r}|<rk, and |F,|>rk,, we have that WNF,#@ and
hence WN(Uisnco Fa)#=@. Thus, yEC(Uisn<o Fr)-

Certain ultrafilters on @ can be characterized in terms of countable fan
tightness and Id-fan tightness.

3.9. THEOREM. An ultrajilter p on w is a P-point iff &(p) has countable fan
tightness.

3.10. THEOREM. For pew*, the following statements are equivalent.

(1) p is semiselective;

(2) &(p) has countable strong fan tighiness;

(3) E&(p) has Id-fan tighiness;

(4) there is kew such that given A,€p for n<w, there exists F,e[A, 5™
such that \Un<o FrEP.

ProoF. The proofs of (1)&(2), (2)=(3) and (3)=(4) are direct from the de-
finitions, and (4)=(3) follows from 3.2. Only the implication (3)=(1) requires
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proof. Assume that &(p) has Id-fan tightness. Let (An)n<o be a sequence of
elements of p. Without loss of generality, we may suppose that A,,,SA4, for
n<w. Define B,=A,u.1 e for each n<w. By hypothesis, for each n<w there
is F,e[B,]5" such that A=Un<o Frsp. By adding integers if it necessary
and by induction, we may assume that |Fypl=n, for each n<w, and F,N\Fpo=0
whenever n<m<w@. Enumerate successively the F,’s by {a,;: j<w}. Then we
have that A={q;: j<w}<p. Fix l<j<wandlet 1<n<w be such that a;=F,.
It then follows that j<n(n-+1)/2 and hence GEF S Anminn S A, as desired.

3.11. QUESTION. Is there a topological group G such that G has Id-fan
tightness (resp. countable fan tightness) and does not have countable strong fan
tightness (resp. Id-fan tightness)?

For a space X we denote by C,(X) the function space on X with the topo-
logy of pointwise convergence. In the next theorem, we shall show that the
concepts of countable strong fan tightness and Id-fan tightness coincide on the
class of spaces of the form Cn(X). Recall that X has property C” if for every
sequence (&,)n<o 0f open covers of X there is G,=¢,, for each n<w, such that
X=Un<e Gn. The following lemma is needed.

3.12. LEMMA. For a space X, the following are equivalent.

(1) X has property C”;

(2) for every sequence (G,)n<w of open covers of X, for each n<w there is
DnE[8r]5" such that X=\Un<o \JDp ;

() there is h&“w such that for every sequence (Gp)n<e 0f open covers of X
there is D, [G,]5"™, for each n<w, for which X=\Un<o \JD,.

PROOF. Only (3)=(1) requires proof. Let he“w satisfy the conditions of
clause (3) and let (4,)n<v be a sequence of open covers of X. Without loss of
generality we may suppose that A is strictly increasing. Put 4,=G,A -
NA8nw-1 and for n<w, we define H,=G,mA -+ AGrmsy-1, Where GA L=
{GNH: Geg and He 4} for ¢ and 4 covers of X. Then for each n<w there
is DpelH,15*™ such that X=\Jp<, UD,. We may assume that D,={H,;: j<
h(O)} and Dp={Hpnysj: j<h(n+1)—h(n)} for every 1<n<w. Now, we have
that if n<e and j<h(n+1)—h(n) (resp. if j<h(0)), then there is Gpemy.;E
Grinyes (resp. G;E6G;) such that Hy ) ; S Ghnyyy (resp. H;SG;). It then follows
that X=\Un<w Gn and G,&4,, for each m<w.

3.13. THEOREM. [or a space X, the following are equivalent.
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(1) CxX) has countable strong fan tighiness;
(2) each finite product of X has property C”;
(3) CiX) has Id-fan tightness.

PROOF. The equivalence (1)&(2) is shown in [S] and by a slight modifica-
tion of Sakai’s argument we can prove that C.X) has Id-fan tightness iff each
finite product of X satisfies the property of clause (2) of 3.12. Thus, (2)=(3)
follows from 3.12.
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