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ON SOME CLASSES OF ALMOST CONTACT

METRIC MANIFOLDS
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Jong Taek Cho*

1. Introduction

In [1] J. Berndt and L. Vanhecke introduced two classes ((£-and 93-spaces)

of Riemannian manifolds which include the class of locally symmetric spaces

using the properties of Jaoobi operators along geodesies. They provided some

characterizations of (£-and 23-spaces and gave the classificationsfor dimensions

two and three. For further developments on the two spaces, we refer to [2],

[3] and [8]. Further, T. Takahashi ([19]) introduced the notion of a (Sasakian)

locally ^-symmetric space which may be considered as the analogue in the

almost contact metric case of locally Hermitian symmetric spaces. Also he

gave examples and equivalent properties of Sasakian locally ^-symmetric spaces.

For further results about the Sasakian locally ^-symmetric spaces, we refer to

[5], [6].

In the present paper, we introduce in an analogous way as in [1] four

classes of almost contact metric manifolds involving Sasakian locally ^-symmetric

spaces. In section 2, we recall definitionsand several elementary properties of

an almost contact, a contact, a if-contact metric manifold and a Sasakian mani-

fold. In sections 3 and 4 we give the definitionsof a %^,-space, a %%-space, a

%&-space and a ^-space which are almost contact metric analogues of a (£-space

or a $J$-spacein the Riemannian case. We may observe that a Sasakian mani-

fold is a £(£-spaceand at the same time a f^-space. Also we prove that a

Sasakian manifold is locally ^-symmetric if and only if it is a SDS-space and at

the same time a RSJ3-space. In section 5, we show that the tangent sphere

bundle of a 2-dimensional Riemannian manifold is a f$-space if and only if the

base manifold is flat or of constant curvature 1. Furthermore, we give some

examples of almost contact metric R(S-spaces and c^-spaces. In section 6, we

consider real hypersurfaces of a complex projective space CPn with Fubini-

Study metric and determine £S)8-hypersurfacesof CPn. We also show that a

homogeneous real hypersurface of CPn is a fK-space, and moreover, we give
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a characterization of homogeneous real hypersurfaces of two types which ap-

peared in the classificationgiven by R. Takagi ([18]). All manifolds in the

present paper are assumed to be connected and of class C°°unless otherwise

specified.

The author wishes to express his gratitude to Prof. K. Sekigawa for his

many valuable advices and constant encouragement and to the referee for his

valuable comments.

2. Preliminaries

In the present section, we recall definitions and elementary properties of an

almost contact, a contact, a /C-contact metric, and a Sasakian manifold. We

refer to [4] for more details. A (2rc + l)-dimensional differentiate manifold M

is called an almost contact manifold it it admits a (1, 1)-tensor field (p, a vector

field £ and a 1-form rj satisfying

(2.1) i?(£)=l and ^2=-/+>?(g>|

where / denotes the identity transformation. From (2.1) we get

(2.2) <p%=0 and r]°(p=0.

Moreover, it is easily observed that an almost contact manifold M admits a

Riemannian metric g such that

(2.3) g(<pX, <pY)=g(X, Y)-V(X)V(Y)

for all vector fields X and Y tangent to M. Setting Y=$ in (2.3), we also see

that 7]{X)―g{X, £). A Riemannian manifold equipped with structure tensors

(<p,£, V' S) satisfying (2.1) and (2.3) is called an almost contact metric manifold

and denoted by (M, <p,£, -q,g). For an almost contact metric manifold M―

(M, <p,£, -q,g), one may define an almost complex structure / on MxR by

J(X, f(d/dt))=(<pX―f£, 7}(X){d/dt)), where X is tangent to M, f is a function

on MxR and t the coordinate on R. If the almost complex structure / is

integrable, M is said to be normal. The integrability condition for the almost

complex structure / is the vanishing of the tensor field ＼jp,<p]+2dr}(&£, where

＼_(p,<p] denotes the Nijenhuis torson of cp.

Also, for an almost contact metric manifold we define its fundamental 2-

form 0 by

<D{X,Y)=g(X,<pY).

If 0 ―drj, M=(M, <p,|, rj,g) is called a contact metric manifold. In particular,

we have r)/＼{dr])ni^ti. If the characteristic vector field £ of a contact metric
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manifold M is a Killing vector fieldwith respect to g, then M is called a K-

contact metric manifold. We denote by R the curvature tensor defined by

R(X, Y)Z―1x{^yZ)~1y{^xZ)―1zx,yiZ, where V is the Levi-Civita connection

and X, Y, Z are vector fields. It is known that the curvature tensor of a K-

contact metric manifold satisfies

(2.4) R(X, M=X-V(XK.

A normal contact metric manifold is called a Sasakian manifold. We may see

that the conditions of being normal and contact metric are equivalent to

(2.5) &x<p)Y=g(X, Y%-V(Y)X.

We note that (2.5) implies

(2.6) VxS=-<pX,

from which it follows that £is a Killing vector field. The curvature tensor of

a Sasakian manifold satisfies

(2.7)

(2.8)

R(X,Y)Z=V(Y)X-V(X)Y,

R(X,t)Y=v(Y)X-g(X,Y)Z.

3. R(£-spaces and c^-spaces

In this section, we introduce two classes (c(£- and 'Qty-spaces)of almost

contact metric manifolds which extend Sasakian locally ^-symmetric spaces.

Let M―{M, <p,$, 7],g) be an almost contact metric manifold. Let T be a tensor

fieldof type (1, 2) defined by (cf. [17])

for all vector fields X and Y. We define a linear connection on M by

(3.1) 1XY=1XY + TXY.

The linear connection 7 has the torsion tensor TXY ―TYX. Also, using (2.1)

and (2.2), we have

(3.2) 7^=0, 7f=0, 7^7=0, %=0.

We remark that the above connection 7 coincides with the Tanaka connection

(defined in [20]) on a strongly pseudo-convex integral C/?-manifold whose struc-

ture is determined by a given contact metric structure (see Proposition 2.1 in

[22]).

The tangent space TPM of Mat p<=M decomposes as TVM=%PQ)^P (direct
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sum), where we denote cp= {v^TpM＼r}(v)=0}. Then R: p^'&p defines a dis-

tribution orthogonal to £. From (3.2)we see that a 7-geodesic (not necessarily

a (V-)geodesic) which is initiallytangent to c remains tangent to c, where a

7-geodesic means a geodesic with respect to the linear connection 7. We call

such a 7-geodesic which is tangent to c a horizontal 1-geodesic. Let f be a

horizontal 7-geodesic parametrized by the arc-length parameter s. We denote

f=y*(d/ds) where j* is the differentialof y: 1-*M. Using the Jacobi operator

Rf=R(-} f)f along y, we introduce two new classes c(£ and c5)3 of almost con-

tact metric manifolds as analogous concepts of the (£-and ^-classes (defined in

[1]) of Riemannian manifolds. Namely, we denote by c(£ the class of almost

contact metric manifolds such that the eigenvalues of Rf are constant along y

and by c5)3 that of almost contact metric manifolds such that Rf is diagonaliza-

ble by a parallel orthonormal frame field along y with respect to 7, for any

7-geodesic y whose tangent vectors belong to c. An almost contact metric

manifold M is said to be a cS-s/>ace (resp. c33-s/>ace)if M belongs to c(£

(resp. c5)3).

In particular,let M―{M, <p,£,t],g) be a Sasakian manifold. Then by (2.5)

and (2.6) we have

TxY=g(X, <pY^-V(X)<pY+v(y)<pX

for all vector fields X and Y on M. Moreover, we have TxX―0 and

(3.3) 7^=0, 7£=0, 7)7=0, %=0, 7T=0.

Also, we have

(3.4) (%R)(X, Y)Z-(1VR)(X, Y)Z+g(V, <pR(X, Y)Z)$―r)(V)<pR(X, Y)Z

+ r}(R(X, Y)Z)<pV-g(V, <pX)R($, Y)Z+V(V)R{<pX, Y)Z

-V{X)R(<pV, Y)Z-g(V, <pY)R(X, &Z+V{V)R(X, <pY)Z

~r]{Y)R{X> <pV)Z-g(V, <pZ)R(X, Y)$+V(V)R(X, Y)9Z

-V(Z)R(X, Y)<pV

for all vector fields V, X, Y, Z on M. From (3.4),using (2.7)and (2.8) we have

(3.5) g{&vR){X,Y)Z,$)=Q,

(3.6) g((lvR)(X, Y)Z, W)=g{(lvR)(X, Y)Z, W)

for all V, X, Y, Z, Wec. Taking account of the fact TXX=Q and from (3.3),

we have
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Lemma 3.1. Let M be a Sasakian manifold. Then a 1-geodesic coincides

with a CJ-)geodesic,and a geodesic which is initiallytangent to SD remains tangent

to c.

We recall the definition of a Sasakian locally ^-symmetric space ([19]).

Definition 3.2. A Sasakian manifold M―{M, <p,£,-q,g) is said to be a

locally(p-symmetric space if the curvature tensor R satisfies(p2C7vR)(X, Y)Z=0

for all V, X, Y, ZgR.

Taking account of (2.1), we see that the condition (p＼lvR)(X, Y)Z-0 is

equivalent to g(WrR)(X, Y)Z, W)=0 for all V, X, Y, Z, WeR.

Now we give a characterizationof a Sasakianlocally^-symmetric space.

Theorem 3.3. Let M be a Sasakian manifold. Then M is locally <p-sy?n-

metric if and only if M belongs to RSnR$, i.e.,M is a %^-space and at the

same time a %%-space.

Proof. Let M be a locally ^-symmetric space and j: I-*M be a geocesic

parametrized by the arc-length parameter s with f(0)eRr(0). Then from Lemma

3.1 we see that j is also a 7-geodesic and f(s)eS£)for all sg/. At first,for

the vector field£, we see that 7^=0 and Rf£=t; from (2.8). Thus it is suffi-

cient to consider the Jacobi operator Rf on R. Now we assume Rf(s0)v=icv for

some soe/ and yeSDr(So). Let Ev be the parallelvector fieldwith respect to 7

along j with Ev(s0)=v. Then since M is locally ^-symmetric, from (3.5) and

(3.6) we see that RfEv and kEv are parallelvector fieldsalongs j with respect to

7. Thus we have RfEv=/cEv. Therefore we have the conclusion.

Conversely, let us assume that M is a SDS-space and at the same time a

"S^-space. Then by definition we may assume that RfEi=iCiEi, i―1, 2,･･･,

2n + l, where ycfare constant along j and {£<}is an orthonormal parallel frame

fieldalong j with respect to 7. By covariantly differentiating both sides of

the above equations with respect to 7 along j (as a 7-geodesic), we get (7?i?)

(･,i)f=0, which implies (7ci?)(-,v)v=0 for any y<=cp and p^M. Thus with

(3.6) we have g((%R)(X, V)V, W)=g({lvR)(X, V)V, W)=0 for all V, X, T^eR.

By polarization of the above equation and using the firstand the second Bianchi

identities, we have g((lvR)(X, Y)Z, W)=0 for all V, X, Y, Z, W^.% (cf. [9],

[23]). Therefore from Definition 3.2 we see that M is locally co-symmetric.

(Q.E.D.)
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Remark 3.4. In particular,let M be a 3-dimensional Sasakian manifold.

It is well-known that the curvature tensor R of a 3-dimensional Riemannian

manifold is expressed by

(3.7) R(X, Y)Z=p(Y, Z)X-p{X, Z)Y+g(Y, Z)QX~g(X, Z)QY

-jz{g(Y,Z)X-g(X,Z)Y}

for all vector fieldsX, Y, Z, where Q is the Ricci (1, l)-tensor determined by

p{X, Y)=g(QX, Y) and r is the scalar curvature of the manifold. Let j be a

geodesic parametrized by the arc-length parameter s with 7-(s)eRr(s)(see Lemma

3.1). From (3.3) we see that {j, <pf,£}is a parallelorthonormal frame field

along y with respect to 7. From (2.8) and (3.7), we have R($, i)i=R($, <pf)<pt

=£ and R(<pf, T)f= {(l/2)r―pig,$)}<pf. Thus we see that a 3-dimensional Sasa-

kian manifold is a 'Qty-space. Applying Theorem 3.3 to the 3-dimensional case,

we see that a 3-dimensional Sasakian manifold is locally <p-symmetric if and only

if the scalar curvature is constant for all directions orthogonal to $. This gives

another proof of Theorem 4.1 in [241.

Returning to the general case, we characterize an almost contact metric

SD(£-spaceand c^-space in a similar way as in [1]. We prove

Proposition 3.5. An almost contact metric manifold M is a ^^-space if

and onlyif for each />eM and vg%, there existsan endomorphism Sv of TPM

such that Rv=Rv°Sv―Sv°Rvwhere we denote R'V=(VVR){- v)v.

Proof. Let M be a c(5-space and j be a horizontal V-geodesic in M which

is parametrized by the arc-length parameter s and j{Qi)―p and f(Q)=v for any

p<=M and yeRp. Let r£,,be the parallel translation along y from y(0) to f(s＼

with respect to 7. Then from the property lg=0, we see that vr is an iso-

metry along j. Now we put A(s)=TrSi0°Rf°To,s,then A(s) is a family of self-

adjoint endomorphisms of TPM and the eigenvalues of A(s) are constant. Thus

applying Lemma 4 in [1], there exists a family of endomorphisms S(s) of TPM

such that A'(s)=A(s)°S(s)-S(s)°A(s). This implies A'(0)=A(Q)oS(0)―S(0)-A(0).

Thus we have i?^(0)=i?f(0)≪≫S(0)-S(0)o/?f(0),and hence Rv=Rv°Sv-Sv°Rv where

Sc=5(0). In order to prove the converse, let j: I^>M be a horizontal V-geodesic

parametrized by the arc-length parameter s with y(so)=P, sog7. Let A(s)=

Trs,So°Rf(s)oTrSo,sand S(s)=Tj,SooSf(s)°rJ0,s.Then we see that A(s) and S(s) are

families of endomorphisms of TVM and by a calculation we have
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A'(s) ― T7
°R'-°Tr-~Ls,s0 iVj- TSq,s

=TiSo°(Rf°St―Sf°Rt)°TrSo,s(by the assumption)

= A(s)oS(s)-Sls)oA(s),

207

i.e., there exists a family of endomorphisms S(s) of TPM such that A'(s)=A(s)

°S(s)―S(s)°A(s).Thus by Lemma 4 in [1], we see that the eigenvalues of the

endomorphism A, and therefore also of Rf are constant. (Q.E.D.)

On the other hand, as a characterization of an almost contact metric S£)5)3-

snace. we have.

Proposition 3.6. // M is a ^^-space, then Rv°R'v= R'v°Rv for all v^.Qv,

p^M, where R'V―(1VR){-,v)v. Moreover, if M is real analytic, then also the

converse holds.

We refer to Lemma 5 in [1] for the proof of the above Proposition 3.6.

4. f(S-spaces and ^-spaces

In this section, we study local symmetry in the direction £. All almost

contact metric manifolds do not satisfy the following condition: (*) each tra-

jectory of £is a geodesic. However some special cases of almost contact metric

manifold do satisfy it. For example, the tangent sphere bundle of a Rieman-

nian manifold as a hypersurface of the tangent bundle with an almost Kahler

structure inherits an almost contact metric structure and satisfies(*) (cf. chapter

7 in [4]). Another example is a homogeneous real hypersurface of an n-dimen-

sional complex projective space CPn with Fubini-Study metric (cf. [11]). We

may also observe that every contact metric manifold satisfiesthe condition (*)

(cf. [4]). Moreover, from (2.4) and (2.7), we see that a /^-contact metric mani-

fold and a Sasakian manifold satisfy in addition C7?R)(- $)$=0.

Definition 4.1. An almost contact metric manifold M with a structure

(<p,£,rj,g) is said to be a locally ^-symmetric space if M satisfies (*) (i.e., Vef

=0) and (7f/?)(-, e)l=0.

We remark that a contact metric manifold whose characteristic vector field

$ belongs to the ^-nullitydistribution(see [21]) is a locally ^-symmetric space.

We may characterize a locally ^-symmetric space using the Jacobi operator

Rs―R(', $)$ associated with the vector field£in a similar way as in Theorem

1 in Til. Namely, an almost contact metric manifold M satisfying the condi-
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tion (*) is locally ^-symmetric if and only if M satisfiesthe following two con-

ditions: (c) the eigenvalues of R? are constant along each trajectory of £and

(p)R$ is diagonalizable by a parallelorthonormal frame fieldalong each trajectory

of £. We denote by £(£the class of almost contact metric manifolds with (*)

and (c), and by f^B that of almost contact metric manifolds with (*) and (/>).

An almost contact metric manifold M is said to be a %&-space (resp. ^%-space)

if M belongs to £(£(resp. £5)3).

From Theorem 2 (resp. Theorem 5) in [1], we immediately have the fol-

lowing Remark 4.2 (resp. Remark 4.3) as a characterization of a £(£-(resp.£5)3-)

space.

Remark 4.2. An almost contact metric manifold M is a £(£-spaceif and

only if M satisfies(*) and there exists a skew-symmetric (1, l)-tensor field Bt

such that Rt=Rz°Bz-Bz°Rz where we denote /?f=(Vfi?)(-,£)£.

Remark 4.3. If an almost contact metric manifold M is a £5j}-space,then

we have R^RS=RS°R^ and moreover, if M satisfies(*) and is real analytic,

then the converse holds.

Also, we have some interesting equivalent properties of a £5|3-spacerelated

to the geometry of Jacobi vector fieldsand the geometry of geodesic spheres

along geodesic trajectoriesof £. For more details concerning that, we refer to

[1] and [2].

5. Tangent sphere bundle of a surface

Let M be a 2-dimensional Riemannian manifold and 7＼M the tangent sphere

bundle of M (i.e., the set of all unit tangent vectors of M) with the projection

map re:TiM―>M. As we stated in the firstpart of section 4, it is known that

the tangent bundle TM admits an almost Kahler structure (/, g) (cf. chapter 7

in [4]). Let (x1, x2) be an isothermal local coordinate system on M such that

the Riemannian metric is of the form

p2((dxl)2+(dx2)2)

where p is a function on M. Then by a calculation we see that the Gauss

curvature k of M is ―(Ao log p/p2) where Ao is the Laplacian with respect to

Euclidean metric. Let (u＼ u2, yl, y2) be a local coordinate system around a

point p of T,M in TM sucn that ui=xio7i and p＼{ylf-＼-{y^)=l. The vector

field N=y1(d/dy1) + y2(d/dy2) is a unit normal and the position vector for the

point /> of 7＼M. Denote by g the metric of 7＼M induced from g on TM.
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Define <p,{･,-q by

' JN=-£, JX=(pX+rj{X)N.

Then we see that (cp,f, 7],g) is an almost contact metric structure of TXM and

we have a local orthonormal frame fieldle,.e≫.e*＼as follows:

(5.1) *.=£=

a i

s

iik

?*'

Vdu*~{j

<L
dy

i

for

{

e2=~(pel ―

i

k
h'?>l)

ijk＼ dul [j k＼ dy1/

it jt k = l, 2 where we denote (z1, z2)=(―y2, yl), ＼.
I 7 KM

For the local orthonormal frame field we have

(5.2) [>!,e2]――e3, [e8, e{＼――keu [e8,≪i]= ―e2,

where /c=/c°tt. Put

rijk=g(^eiej> ek) for i, j, k
= l, 2, 3

Then we have rijk= ―Fiki- We recall the formula

TV and where

of M

2g{lxY, Z)=Xg(Y, Z)+Yg{Z, X)-Zg(X, Y)+g(Y, {_Z, XJ)

+g(Z, ＼_X,Yl)-g(X, [Y, Z])

for all vector fields X. Y, Z on T-,M. Using this formula, we obtain

(5.3) ' 123 '― T(*-2> An
r
<i2i―~2 all other rijk being zero

From (5.3) we see that eu e%,e% are all geodesic vector fields,

vector fieldsand from (5.2) and (5.3) we get

(5.4)

(5.5)

R(eu es)es―

R(ett e3)e3

R(e2, 0i)0!=

1

_

4

2

JL

_

4

≪2ei +
1
/ -x-iy＼QiK)et,

(esK)e1―
^―
icz― Kje2

K2e2

R(e3, e1)e1― ― Kzes
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Moreover, we have

(5.6)

Jong Taek Ceo

R(el, e2)e2――K2e1 ― -^(e2K)es

R(e3, e2)e2= -^{fiik)ei-(jK2-^)e3

(Ve3i?)Oi, ez)e^k{ezK)el+-w{es{eiK)-k3jrk'l}ei

(7e,/?)(e2, ea)et=
2
＼ez{e3it) ― ics+ic2} ex-＼-{esic―2ic(e3fc)} e2

Proposition 5.1. The tangent sphere bundle TXM of a 2-dimensionalRie-

mannian manifold M is a %&-space if and onlyif the Gauss curvatureof M is

constant.

Proof. From (5.4) we have the following matrix representation of R$ with

respect to {elt <?2,e3}:

Rt=

AK

0

yOs*)

0

The eigenvalues Xt, i=l, 2, U3=0) of i?f are

*1

h

0

0

0

+it+VicXic-l)2+(esie)2

2

- A-/e2+≪- V*2(*-l)8+(e,*)B

2

Now we assume that the tangent sphere bundle TXM of a 2-dimensional Rie-

mannian manifold M is a £(£-space,that is, the eigenvalues Xt (/=1, 2) of i?f

are constant along each trajectory of f. Let PF= {/jeTiMI^/O^zC/O}- Then

W is an open and dense subset of TXM. Thus we have £Ui+^2)=0 on W,

which implies that ££=0 on W. From the continuity of k, we see that £k=Q

on TiM and from (5.1) we conclude that k is constant on M. Conversely, if tc

is constant on M, then ≪=/c° îs also constant on TXM. Thus, from (5.4) and

(5.6), we have
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h2 o 0

0

0

-jiC2 + K 0

0 0

with resoect to le,. e*. es＼. Put

Bs=

and Rv

0

1.

"2*

0

1
2*

0

0

0
-^3+-rf

2 + 2~

0

0

0

0

0

0

0

0

0
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Then we have Rs=R^oBs―B^Rs. Thus from Remark 4.2 we see that the

tangent sohere bundle T^M is a £(£-soace.fO.E.D.)

Theorem 5.2. The tangent sphere bundle TXM of a 2-dimensional Rieman-

nian manifold M is a ^-space {or locally ^-symmetric space) if and only if the

Gauss: curvature of M is 0 or 1.

Proof. Assume that 7＼M is a f^-space. Then from Remark 4.3 we see

that TXM satisfiesR^Re=RrRs> where /?f=(Vffl)(-,£)£.From (5.4) and (5.6),

we calculate R£R^et))=R£Rs(et)) for i―＼,2. Then we have

From the above equation, we have ic5―2/c4+£3=/c3(/c2―2/c+l)―0.Thus we see

that /c=0 or 1. Conversely, if k=0 or 1, then from (5.4) we see that TXM is

flator a space of constant sectional curvature 1/4. Thus we see that TXM is

of course a £^-space. We recall that a locally f-symmetric space is equivalently

characterized as a £(£-which is at the same time a £5}3-space.Thus from the

result of Proposition 5.1 we see that TXM is a £5|B-spaceif and only if it is a

locallv £-svmmetric soace. (O.E.D.)

We remark that ([13]) T^S2) is isometric to the ellipticspace RPS of con-

stant curvature 1/4, where S2 is the unit sphere in a Euclidean space E3 with

the*inrhirpH me^trir

On the other hand, from (3.1),(3.2) and (5.3) we have

(5.7) %G=0 and %ej=O for ;, /=1, 2

and moreover, we have
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(5.8)
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(Veii?)(e2, e1)el=O,

($eiR)(es, el)e1=0,

FJetR)＼es,e*)e*=

1

_

2

― g2(e2£)e3

e2(e2K)e1―-^- {3/c(e2£)―2(e2ff)}03

Proposition 5.3. The tangent sphere bundle 7＼M of a 2-dimensional Rie-

mannian manifold M is a %&-space if and only if the Gauss curvature of M is

constant.

Proof. Assume that the tangent sphere bundle 7＼M of a 2-dimensional

manifold M is a SDR-space. Using a similar calculation and argument as in the

proof of Proposition 5.1, we see that k is constant on M. Conversely, we

assume that k is constant on M. Taking an endomorphism Sv―0 of Tp(TiM)

for any t>eSDp and p^TxM, then from (5.5),(5.8) and Proposition 3.5, we see

that 7＼M is a $)(S-space. (Q.E.D.)

Proposition 5.4. The tangent sphere bundle TXM of a 2-dimensional Rie-

mannian manifold is a ^ty-space if and only if the Gauss curvature of M is con-

stant.

Proof. Assume that TXM is a R5J$-space. Then from Proposition 3.6 we

see that TXM satisfiesRv°Rv=Rv°Rv for all v(E<£>p,p^TxM, where R'V-{1VR)-

(･, v)v. From (5.5) and (5.8) we calculate Rez(R'e2(ea))=R'e2(Re<2(ea))for a = l, 3.

Then we get

(e2K)2(l-2ic)+(≪2(eJK))≪(ff-l)=0.

From the above equation, we see that a;is constant. Conversely, if k is con-

stant, then with (5.8) taking account of (5.3) and (5.7), we have (7eii?)(-,ej)ek

―0 for i, j, k~l, 2. It may be observed that a £)(£-which is at the same time

a R$p-space is equivalently characterized by (VFi?)(-,V)V=0 for any FeR.

Thus we see that T,M is a R5B-soace. (Q.E.D.)

6. Real hyper surfaces of CPn

Let (CPn, g, J) be an n-dimensional complex projective space with Fubini-

Study metric g of constant holomorphic sectional curvature 4, and let M be an

oriented real hypersurface of CPn. We denote by the same g the induced
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metric on M. Let N be a unit normal vector field of M in CPn. For any

vector field X tangent to M, we put

(6.1) JX=<pX+v(X)N, JN=-$.

Then we may see that the structure (<p,£,rj,g) is an almost contact metric

structure on M. By 7 we denote the Riemannian connection on CPn and by 1

the one on M determined by the induced metric. The the Gauss and Weingarten

formulas are given respectively by

*zY=VzY+g{AX, Y)N, *ZN=-AX

for any vector fieldX and Y tangent to M, where A is the shape operator of

M in CPn. An eigenvector (resp. eigenvalue) of the shape operator A is called

a principal curvature vector (resp. principal curvature). Also we denote by Vx

the eigenspace of A associated with an eigenvalue X. From the fact 7/=0 and

(6.1), making use of the Gauss and Weingarten formulas, we have

(6.2) lz£=<pAX.

Let R be the curvature tensor of M. Then we have following Gauss and

Codazzi equations:

(6.3) R(X, Y)Z=g(X, Z)X-g{X, Z)Y+g(<pY, Z)<pX-g{(pX, Z)<pY

+2g(X, <pY)<pZ+g(AY, Z)AX-g{AX, Z)AY,

(6.4) {lxA)Y-{lYA)X^rj{X)iPY―n{Y)iPX+2g{X, <pY)£.

From (6.2), we have

Lemma 6.1. Each trajectory of | is a geodesic if and only if f is a principal

curvature vector.

Typical examples of real hypersurfaces in CPn on which the trajectory of

£is a geodesic are homogeneous ones which are classified by R. Takai ([18]).

T.E. Cecil and P. J. Ryan ([7]) investigated real hypersurfaces of CPn on which

£is a principal curvature vector. They showed that if £ is a principal curva-

ture vector and the corresponding focal map has constant rank, then M lies on

a tube of constant radius over a certain Kahler submanifold. Making use of

this notion and the result of R. Takagi's classification,M. Kimura ([11]) proved

the following

Theorem 6.2. Let M be a real hypersurface of CPn. M has constant

principal curvatures and f is principal if and only if M is locallyisometric to a
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homogeneous real hyper surface i.e.,a tube of radius r over one of the following

Kdhler submanifolds:

(AO a hyperplane CPn~＼ where 0<r<7r/2;

(A2) a totallygeodesic CPk (l^jfe^n―2), where 0<r<7r/2;

(B) a complex quadric Qn~＼ where 0<r<7r/4;

(C) a CPlxCP^-lli), where Q<r<jr/4 and n (^5) is odd;

(D) a complex Grassmann G2,B(C), where 0<r<7r/4, n=9;

(E) a Hermitian symmetric space SO(10)/U(5), where 0<r<^/4, n = 15.

We note that the number of distinct eigenvalues of the above real hyper-

surfaces is 2, 3 or 5, and the principal curvature a corresponding to the vector

field£is 2cot2r with multiplicity 1. For more details, we refer to [11] and

[181. We only state two lemmas without proofs.

Lemma 6.3 ([14]). // £is principal curvature vector, then the corresponding

principal curvature a is constant.

Lemma 6.4 ([14]). Assume Ag=a$. If AX=XX for Xl_£j,then we have

A<pX=:(ak+2/2X-(x)<pX.

Now we give a characterizationof real hypersurfacesof CPn in the class

|S|3introducedin section4.

Proposition 6.5. Let Mzn~l be a ^-hypersurface of CPn. Suppose A^Q.

Then M is locallyisometric to a homogeneous real hypersurface of type (Ax) or

(A2). Moreover, any real hypersurface of type (Ax) or (A2) is a gfy-space.

Proof. Assume M is a £$-hypersurface of CPn. We see from Lemma

6.1 that $ is a principal curvature vector and from Lemma 6.3 that the corre-

sponding principal curvature a is constant. Thus from (6.3) we have

(6.5)

and

(6.6)

R^X=X+aAX-(X+a2)r]{X)^

i?fX=(Vfi?)(X, £)£

for any X tangent to M.

From Remark 4.3,we have
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0
― (/?£ °R%― i?!° Rg)X

= a*{A(lzA)X-(VsA)AX}.
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Since a^O (the assumption),we have A(X1SA)X―C;7SA)AX=O, and hence taking

account of Lemma 6.3,from (6.2),(6.4)and (6.7),we have

b=(aA(pAX~A2<pAX+AipX)-(a(pA*X-A<pA*X+(pAX)

for any
^YeSD.
Assume XgV*. Then from Lemma 6.4 we have

Thus we have

aX-X

aX-X
cd+2

21-a

aX+2

21-a

+1

-≫x

=0 or

aX+2

21- a

aX+2

21-a

X

X=0

which implies i2―aX―1=0 (≪^0), and hence A(2A―a)=aA+2, that is, ^ =

(≪^+2/2>?―≪). From this we conclude that ^V^V; and our real hypersurface

M must be locally isometric to one of real hypersurface of type (Ax) and (A2)

(cf. [16]). Taking account of the fact that every homogeneous manifold admits

an analytic structure (refer to p. 123 in [10]), from the Remark 4.3 and (6.7),

we see that any real hypersurface of type (Ax) or (A2) is a f$-space. (Q.E.D.)

The above Proposition 6.3 is an improvement of the result obtained by M.

Kimura and S. Maeda ([12]). Also we remark that a homogeneous real hyper-

surface of type (A2) is a locally ^-symmetric space which is not a /("-contact

metric (and of course, not Sasakian) manifold, (cf. [15]).

We see from (6.5) that homogeneous real hyper surfaces,of CPn are ^-spaces.

Applying Remark 4.2, then from (6.5) and (6.6) we have

Proposition 6.6. A homogeneous real hypersurface of CPn admits a skew-

symmetric (1, l)-tensor field B% such that

a(VtA)X=a(ABsX-BzAX)+a+a2){g(X, Bg)£-g(X, $)B£＼

for any vector fields X tangent to M.

We note that in particular for a homogeneous one of type (Ax) and (A2),

there exists a skew-symmetric (1, l)-tensor field B%=<p such that

l^A=A"ip―(p°A (=0).

(See [12] and [16]). Thus we are motivated to prove the following

Proposition 6.7. Let M be a real hypersurface of CPn. Suppose that 1£
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=0 and A$=£―2. If ^7^A=A≪(p―<poA, then M islocally isometric to a homogeneous

real hyper surface of type (Ax) and (A2).

Proof. Using the same notations and similar calculations as in the proof

of Proposition 6.5, from the resumption we have

A similar argument as in the proof of Proposition 6.5 then yields our assertion.

(Q.E.D.)
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