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ON THE NEUMANN PROBLEM FOR SOME LINEAR
HYPERBOLIC SYSTEMS OF 2ND ORDER WITH
COEFFICIENTS IN SOBOLEV SPACES
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Introduction.

Let © be a domain in an n-dimensional Euclidean space R", its boundary I’
being a C* and compact hypersurface. Throughout the present paper, we assume
that n=2%, Let x=(x, -, X,) denote points of R and ¢ a time variable.
For differentiations we use the symbols: 8,=08,=d/0t and 9,=08/dx; (j=1, ---, n).
In this paper, we consider the following mixed problem:

P(t)[zl(t)]=3%ﬂ(t)—ai(A”(t)azﬁ(t)+A”(t>ajﬂ(t)>=f‘ ot) in (0, T)XQ,
N) Q(t)[ﬂ(t)]=wA‘J’(t)ajﬁ(t>+B"(t)ajﬂ(t)+B"(t)atﬁ(t)zf r@ on (0, T)XI,
a(@=it, , 0:4(0)=1, in Q,

where T is a positive constant and #="%(u, -, um) (=the row vector of length
m and ‘M means the transposed vector (resp. matrix) of the vector (resp. matrix)
M). Here and hereafter, the summation convention is understood such as the
sub and superscripts ¢, ¢, 7, j/ (resp. p, q) take all values 1ton (resp. 1 to
n—1). For any vector valued function #=%u,, ---, un), We put 001 ="(00%u,
wr, 0J0%un). The y;=v;(x) are real-valued functions in CF(R") such that the
vector v(x)=((x), -+, va(x)) represents the unit outer normal to I at xT.
In the present paper, functions are assumed to be real-valued, unless ortherwise
specified. Below, I will always refer to the closed interval containing [0, 7]
strictly, say, I=[—r, T+7] (>>0). And also, K will always refer to the fixed
integer =[n/2]+2, which represents the order of regularitiy of solutions and
coefficients of the operators P(f) and Q(t). The A()=A"(, x) and BYt)=
BYt, x) (=0, 1, -, n;i=1, -, n) are mXm matrices of functions satisfying the

(1) When n=1, excepting the notations, we can treat the same problem without essential
change. However, for the notational simplicity, we shall only treat the case where
n=2, below.
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following five assumptions,

(A.1); The A* are decomposed as follows: A''=A"+AY where Allc 3X(Ix D)

and A¥eYX-1Y], O); the BteYE-tvy [ I,
Here, we should explain the notations for some function spaces used in
the present paper. Let 8%(G) be the set of all v& C%(G) such that v and all
derivatives of v up to K are everywhere bounded in G. For any time interval
J and Hilbert space X, CXJ, X), L=(J, X) and Lip (J, X) denote the sets of all
X-valued functions which are /-times continuously differentiable in J, measurable
and bounded everywhere in J and Lipschitz continuous in J, in the sense of the
strong topology of X, respectively. Since X is a Hilbert space, if u(t)eLip(J, X),
then the strong derivative of u(¢) exists almost everywhere. Usually, L=-func-
tions mean the measurable and almost everywhere bounded ones. However, to
make may proofs as short as possible the functions are assumed to be bounded
everywhere in the definition of L=-functions. Let H"(G) denote the usual Sobolev
space over G of order »&R defined exactly in the section of Notations below.
Put

X7, )= [, CHJ, HH"HG)); Yo7, O)=L=(], H"(G));
yeer(], G)y={us X" "(G)|ojuit)e L=(J, H**"-{G)NLip (J, H*"-(G))
for 05

For any function space S, we denote a product space SX --- XS by also S.
The second and third assumptions are the following.

(A.2);  ‘tA®=A" and ‘AY=A% on IX3;
‘B°=B° and '‘B*+B*=0 on IXI" (i, j=1, -, n).
(A.3);.5 There exist positive constants 8, and J, such that
(AY(t)9,0, 8;0)+<BI1)0;8, 5>= 8. 5]3—8,]| 53
for any t<I and 3= HYQ).

Here and hereafter, we use the following notations:
(u, v)zggﬂ(X)-ﬁ(x)dx; <a, 17>=Srﬂ(x)-13(x)df; lali= % (92, 65a)

where “-” denotes the usual innerproduct of R™ and dI” is the surface element
of I.
The fourth and final assumptions are the following.
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(A.4); vi(x)B¥t, x)=0  for all (¢, x)eIXI,
(A.5); (—y(x)AN(, x)+2B¢, x)n-9<0 for all (¢, x)eIX[ and n=R™.

It is essential that all the assumptions are valid on whole I containing
[0, T] strictly. Because, in proving our main results, we use the results ob-
tained by Shibata [9]. In that proof, it was used essentially that the coefficients
are defined on some closed interval I containing [0, T'] strictly and the assump-
tions (A.2)-(A.5) are valid on whole I with respect to t. Below, if no sub-
scripts occur on the numbers of assumptions, (A.3) and (A.N) are understood to
be (A.3);.; and (A.N); (N=1, 2, 4 and 5), respectively. In fact, excepting Theo-
rems 2.1, 2.2 and 5.3 and Lemma 2.3, we always state that (A.1)-(A.5) are
valid.

The reason why we must consider (N) under the assumptions (A.1)-(A.5),
especially (A.l), is the following: When we solve the Neumann problem for
the nonlinear hyperbolic system of 2nd order, as the linearized problem, we
meet the present problem. And, the key of solving the nonlinear problem lies
in proving the unique existence theorem of solutions to (N) and sharp energy
inequalities stated in Theorems 1.2 and 1.3 of §1 below. Of course, such linear
systems have their own interests. And also, in proving main results, we need
some new technique which can be applied to treating many other problems, for
example, Schriodinger equations, heat equations and so on.

T. Kato [4] treated the same linear problem in his abstract frame work
and applied his linear theory to solving the Neumann problem for nonlinear
hyperbolic systems of 2nd order, which was first done by Shibata [8] and Shi-
bata and Nakamura [10]. Especially, the result due to Kato [4] attained some
improvements of that due to [8] and [10] regarding the minimum order of the
Sobolev space in the solutions to the nonlinear problem exist. But, Kato [4, § 14]
treated only the case where nonlinear functions do not contain ¢ and d,%. But
using the results on the linear theory in the present paper, Shibata and Kikuchi
[11] got the same improvements as in Kato [4] in the case where nonlinear
functions do contain ¢ and 9,%. Our proof is elementary and completely different
from Kato’s one. The advantage of our approach is that the assumptions:
317 o()Lip ([0, T), H-'(2)) and 8¢ r(t)<Lip([0, T), H-*/*(I")) are not needed,
while it seems that these assumptions are essential in the Kato’s approach (cf.
Theorem 1.2 below and [4, Theorem 12.4]); that some hyperbolic-parabolic
coupled systems of 2nd order containing the thermoelastodynamic as an im-
portant physical example can be treated in the same manner as in the present
paper.
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In solving the nonlinear problem, if we know the unique existence theorem
to (N) under the assumption (A.l), especially, the coefficients are Lipschits con-
tinuous (not in C?) in ¢, it is very easy to show the regularity of solutions to
the nonlinear problem. One can find this approach since Kato’s Cortona Lec-
ture [3].

Our idea of proving the existence of a solution 2= X?° to (N) is as follows.
First, approximating the coefficients of the operators P(¢) and @Q(t) by smooth
functions and using the existence theorem in the case of the operators with
smooth coefficients, which was obtained by Shibata [9], we can prove the ex-
istence of a solution # in Y*° Our main task is to prove that 4= X*° i.e.,
the continuity of second derivatives of # in Z. To prove this, we use the idea
due to lkawa [2] (originally goes back to Mizohata’s work on the Dirichlet
problem in 1966). Namely, we mollify # with respect to { by Friedrichs’ method
and prove that the sequence of mollified functions converges to # uniformly in
t. The key of proving the convergence lies in obtaining the right continuity of
the second derivatives of # at t=0. By employing the arguments due to Majda
[5, pp. 44], we can get this right continuity.

Our idea of proving the further regularities of solutions in X2*° to (N) is
the following. Differentiate (N) / times (0</<K—2) in ¢ formally and consider
the resulting equations as the K—1 systems: o} { P(:)[ &)} =3£fg(t) with boundary
conditions: 3 {Q(t)[a(t)]} =aif r(t) (=0, 1, ---, K—2) for unknowns &, d,4, -,
0K-%1. The system: 0K {P@[a@®)]}=0K-2fgo(t) with boundary condition:
oF “Z{Q(t)[ﬁ(t)]}::af“zfp(t) can be regarded as a hyperbolic system for unknown
oF ~%4(t), and other equations can be regarded as an elliptic system for unknowns
@, -+, 0F %i. These systems forms a “hyperbolic-elliptic” system. With the
help of the existence theorems obtained in §§ 2.3 and 5, we can solve this system
by the method of successive approximations. And then, we can prove that
e X% It is first for Shibata [8] and Shibata-Nakamura [10] to treat such a
“hyperbolic-elliptic” system. Kato also treated this system in his abstract frame
work.

Notations.

Now, we shall explain our basic notations. To denote differentiations of
higher order, we use the symbols:

D D¥i=(00%; j+|a| < L+M, j<L); DED%u=Dt4; D' D¥a=D"u .

For any r R, we put
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|lv|i§"-f:SRn|ﬁ(5)I2(1+lElz)TdE; H(R")={veS [[v]gn, »<oo}
where 7 is the Fourier transform of ». For any domain GCR", we put

H"(G)={ulu(x)=U(x) in G for some UcH"(R™)};
lulle, r=inf {|Ullgn, - lu=U on G}.

As is well-known, if » is a non-negative integer and G=R", R? or 2, then
lvlle.» is equivalent to the usual norm:

> S |dsu(x)|2dx
1ais7J6G

where R?={x=(x,, -, *#2)| x,>0}. For the notational simplicity, we use the
abbreviation: ||v|,=|v|le.,. For any integer /=0 and ¢<(0, 1), put B(G)=
{UEQ’(G)] ivlm,l+a,6<°o}, Where

[V]w 6= > sup |05v(x)];
laisl xe@G

lviw,z+o.a=|vlm,z,a+12 sup{|9sv(x)—0%v(y)| lx—y1"7|x, yEG, x#y}.

al|=1

Especially, we write [|“llw.i+0=|"lw140.0 a0d |*|w1r0.1=1" 0140, 1x0 0= <1).

Since I" is a C* and compact hypersurface, we may assume that there exist
finite number of open sets @, in B®, @, in R*™, p,=C>(w) and integers d(/)&
[1, n] (=1, -, Ny) such that O,N['={xsr=pux") for x’€w,} and O,NQ2=
{xaawy>piu(x") for x’Ewi} where x'=(xy, =+, Xawr-1, Xaw+, %a). Letus de-
fine @,,(x), k=1, -, n, I=1, -, N, as follows: @,,(x)=x, for 1Sk=d()—1;
D1u(x)=%xz4, for dDSkZn—1; @(x)=x4>—pi(x"). Then, we may assume
that @(x)=(D,,(x), ---, D,.(x)) are C>-diffeomorphisms of ©, onto Q(g)={y=
1 s J)ER™ 19" 1=1(1, =+, Ya-0)| <04, |ya1 <0} such that @, (0:NQ2)=
Q(a)={y€Q(e))|y,>0} and P (O.N)={yEQ(0,)|y,=0}. There will be no
confusion as to whether Q(-) denotes the boundary operator or the set defined
just now, because this will always be clear from the context. Note that the
Jacobian of the change of variables: y=@,(x) is equal to 1, i.e., dx=dy. Let
¥, be the inverse map of the @,. Let @, and ¢; (k=0, 1, ---, N,) be functions
in C5(R™) having the following properties:

(No. 1) supp @oCsupp ¢sC£2 ; supp ¢, Csupp $; 0O, for [=1, -+, Ny;
No Ny _
k§¢k(x)2=1 and kgl or(x)=1 on Q2.

Put
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No
(@)= X lvallkn-1,,  where V=0T (3", NG F (", 0)).
Note that there exists a constant C>0 such that
cons| Jumidrscon,

and that each H7(I") is a Hilbert space equipped with norm: {-)»,. For any
functions v(x) and w(t, x) defined on I” and I'X[", we put

No No
(<U>>m,z+a:k§ [ Vel 140,005 5 <w>w,z+o.1=k§ [ Wl 140, 1xQeap) s

where v,=v@ (', NG :(y’, 0)) and we=w, ¥u(y’, )T (y’, O).
Now, let us define the norms of XX "(J, G) and Y% "(J, G). Put

IUIO,T.J,G: sup ”V(t)”G rs
teJ

_ B (1Y Ak
it r.0.6=1Vl0,24r. 0.6 :21 sup |0kt =9, Lr-1- for L=1.

=0 trses |t—s|
Let us use ||z r.s.c as the norms of both X*"(J, G) and YZ"(J, G). If ve
YZ7(]J, G), from the definition of the derivatives, we have

(No. 2.2) [0w®le.z4r-2=|v]L r.s.¢ for almost all t=J and 1<k<L.

If veXL7(J, G), obviously we have
L

(No. 2.b) vz r.s.6= 2 sup [0(®)llc,4r-2-
k=0 teJ

Put vz r.0=\vl1.r.s.@ and <>z - s=|vl1.r.s.r. Let us use the same notations
to denote various norms of vector or matrix valued functions.
For the operators P(t) and Q(t) we use the following notations:

3 5 1AL oo

b=

(No. 3.2) [P()]er= 3

1

3

o

105 AYEM 12— 2 +COEBH ) Lo ar-2-care}-

(No. 3.b) [POIQs.u=3 3} {3

k=0 i

Let M.(K) and Mg (K) be constants such that

D | AY ek, 1 SMAK);

=1

(No. 3.¢)

1

<.

(No. 3.d) 31 { 2 1A kons 1 H<Bxonum, 1 SMs(E)

We use the same letter C to denote different constants depending on the same
set of arguments. C=C(-+) denotes a constant depending essentially on the
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quantities appearing in the parentheses.
Now, let us prepare some notations to define the first energy norm of (N).
Put

0;=0/0y;, (9= F(»), Y5(»)=0D1:/0x )T (»)),
JON={ B Y, 0P,
Note that
(No. 4) dI'=](¥")dy"; vi(x)=—Y2(y", 0)/Ji(»")
for x=¥(y’, 0)=0,NI". Since
(No. 5) Bi(t, ¥u(y', Y 1(y’, 0)=0
as follows from (A.4) and (No. 4), we can write

(BI@)0;i, D)
=— ggﬁﬁaa{sbf(y)Bf(t, Vi(y', Y 2(y’, 00,4 F o(y)- 0@ 9NN (") y
If we put
(No. 6) Qp(t, y")=B¢t, Tu(y’, Y &', OJ(y"), p=1, -, n—1;
(No. 7)  3(, u, 17)225122 FNQPE, ¥)07a(T () 050(F ()
Qrt, y)0pu(¥ ()0, 9T (yN}dy;
(No. 8) <, %, v)= gg[{ag(sbf(y)Qf(t, YN0 () 9T ()

{0t QP ¥)0,a T (y)- 9T u(y)]dy,
then by integration by parts with respect to y, (p=1, ---, n—1), we have
(No. 9) <B/(t)d;it, vy=B({, @, ¥)+C¢, @, #) for any a=H*Q) and s H'(Q).
By the assumption: *B/+-B’=0 on IxI, we see that
(No. 10) =@, @, 9)=938(t, 0, #).

Furthermore, we have
(No. 11) 18, @, 9)| SCMs(K)lal.fol:;
(No. 12) €@, @, 9)| <CMs(K)l|allll 7l

for all t=l. In fact, since (n—1)/2<K—(3/2) and the dimension of I is n—1,
we have

(No. 13.2) (ADw,o<C{AVk-w/> for any AcH¥-(M),
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By (No. 13.a) and (A.1) we see that (B (f))e =CMy(K) for j=1, ---, n and
tel. Noting this and applying Schwarz’s inequality to (No. 7) and (No. 8), we
have (No. 11) and (No. 12). For the further references, we give the following
inequality :

(No. 13.b) [|All«.oZCliAllx-, for any AcHXY(2);

This follows from the assumption: K=[n/2]+2 and Sobolev’s imbedding Theo-
rem, too. Put

(No. 14) B.;[t, @, 91=(AY(t)0;i, 0;0)+ B({, @, D)+C(, 4, D)+A(d, §).
In view of (No. 11), (No. 12) and (No. 13.b), we have
(No. 15) |B;[t, #, ]| S[C{MA(K)+Ms(K)}+ |21 llalll o],

which implies that B; is a continuous bilinear form on H'(2)X H'(£). Since
H¥($) is dense in HYQ), by (No. 9) and (A.3) we have

(No. 16) B[t @, #]=0:|#||} provided that =0, .

Furthermore, since |C(¢, @, @)| <(0,/2)| |2+ {(CMs(K))Y/20,}||i|3 as follows from
(No. 12), by (No. 15) and (No. 16) we have

(No. 17) (8/2)llali=Nali. c<ell@ll} for any a=H () and te],

where ¢,=C(M(K), Ms(K), 8.);

(No. 18) |l&ll2,.=Bs,[t, @, #a]1—C(t, @, #);

(No. 19) 0,=0:+(CMg(K))*/20, .

In view of (A.2), (No. 10) and (No. 17), H'(£2) is a Hilbert space equipped with
norm: {[-ll,.. and the norms ||, and ||-]l,,; are equivalent for any t<I. Since

(BI()— B/(sNe, o S C{BH)—BAsN k- ey S CMs(K) [ 151 ;
[AZ(0)— A¥($S)lle, e S C AY()— A¥ ()l k-1 SCM(K) |t — 5]
as follows from (No. 3) and (No. 13), and since
[AZ(t)— AY(S)lleo, o S CMK) | t—5]|

as follows from the mean value theorem, we have

(No. 20)  Tllll, e —Nallt, o | = C{M(K)+Ms(K)} [t—s| @]}

for any #=HY(Q) and ¢, s<1.
Now, let us define the energy norm E(t, #(s)) for the operators P(¢) and

Q) by
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(No. 21) E(t, a(s)=8.a(s)|3+lla(s)l}.. for any tl, a(s)= X (], 2).

By (No. 17) we see that there exists a ¢,=C(,, d,, M(K), Ms(K)) such that
(No. 22) ¢35 E(t, a(s) | D a(s)IE=c. E(t, a(s))

for any a(s)eX*°(J, ) and t=l. In view of (No. 20), we have

(No. 23) | E(t, a(r)—E(s, a(r)] S C{MAK)+Ms(KO}t—s|la(r)]}

for any t, sl and a(r)sX*°(J, 2).
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§1. Compatibility condition and statements of main results.

First, we shall define the compatibility condition for (N). To do this, we
define @ y=in(x) @M< LK) successively by the following formula:

M-2
l
K a=X>%[0, T), ) is a solution to (N), noting (Ap. 14), we see that 8¥a(0)
=i, Here and hereafter, (Ap. N), Theorem Ap. N’ and Corollary Ap. N” (N
1-18; N’'=1,2,4 and 6; N”=4,5,7 and 8) can be found in Appendix below.

We begin with

L) =0 ] o= 5 (] *)OlBA O ar-1+ AKO s -s-1}.
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LEMMA 1.1. Assume that (A.1) is valid. Let L be an integer<[2, K]. If
a, s HYR), i, H*(2) and E"'ng(O)eU(.Q), then 4y sHE-%(2) for 0=MZL.

PrRooOF. By induction on M we prove the lemma. Assume that i, HL-*(Q)
for 0=k<M—1. Let 0=/xM—2. Applying (Ap. 1) with a=K—[—1, B=
L—M+1+41 and y=L—M+1, we have

[0:(0F AR(0)at a-1-ll - s+ 110:(@L AT (0008 31-2-1) | -1t

< C{ 33 10448 - s- -t et

+ 33 1Y O sems-all sl a0}

Since 0} A¥(0)e HX'-Y2) for 0</<K—2 as follows from (A.l), we see easily
that @y HL¥(2), which completes the proof.

If a()eX™([0, T); 2) 2<L<K)is a solution to (N), in view of (Ap. 14),
we have that 0¥ {Q(H)[#(t)]} |[=0=8£’fp(0) on I' for 0SN=L—2. Keeping this
in mind, let us define the compatibility condition of order L—2 to (N) as fol-
lows: We say that the data a,cHXQ), i, H*\(R), focXL2%[0, T), 2) and
freXxt-siyo, T), I') satisfy the compatibility condition of order L—2 if the
equalities :

y /N g 2
L2 2 () YOt AKOR 1+ OLBYON sy 1+93BOix 111} =07 1(0)

hold on I’ for all Ne[0, L—2]. For the sake of simplicity, by D(J) let us
denote the set of all systems (i, %, fg, fp) of data for (N) satisfying the con-
ditions:

(13.2) @eHXQ); tsH" (Q); foc Xt %], Q); FreXt>vi], I');

(L3.b) 8F*fosLip(J, LAQ); 3 *freLip(J, H(I);

(1.3.¢)  dty, i@, fg and fp satisfy the compatibility condition of order L—2 to (N)
where ] is a time interval containing 0 and contained in I.

Our main purpose of this paper is to prove the following two theorems.

THEOREM 1.2. Assume that (A.1)-(A.5) are valid. Let L be an integer
€[2, K1. Then, for a given system (ito, ih, [a, Jr)EDX[0, T)) of data for (N),
(N) admits a unique solution i X ([0, T), 2).

THEOREM 1.3. Assume that (A.1)-(A.5) are valid. Let L be an integer
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€2, K] and #=XL[0, T), ). Put Fot)=P@®La@®] and Jr)=Q®[a®)].
Assume that
(1.4) ok focLip ([0, T), LX) and 8+*freLip((0, T), HVXI)).

Then, there exists a constant C(T)=C(T, 6,, 0., L, T, I', M(K), Ms(K)) such that

the following two inequalities ave valid for any t<[0, T):

@ 10401 CID O+ Fol Eoro ot <Frt s
+{ (08 F oM+ @ Frisntmds} 5
b) B, 8 )< e ™| BO, 3~ a(0)+CD{ 1D aO)+1 ol L-s.o.t0.
FF P esmco.t | (1087 o+ Fr(sNt} {KID OIS
+|fg|z-“,m,ﬂ+<fp>i-2.1/2.w,u>+S:<||aé-lfg<s>us+<<a§-‘fr<s>>>%,z>éis}"2].

REMARK. (1) By (Ap. 14) we know that P(H)[a(t)]e XL-%%[0, T); £) and
QW at) e XL-+v¥[0, T); I') provided that #(t)eX®%[0, T); 2). Hence, in
Theorem 1.3 we see that foe XE-2%[0, T), 2) and freXLt-213[0, T), I').

(2) Since L¥2) and HV*I") are Hilbert spaces, (1.4) implies that 9+~*7 o(t)
and af"fp(t) exist in the strong derivative sense of L%2) and HY*I") for
almost all t={0, T), respectively. Furthermore, by (No. 2.a) we know that
1917 o®)llo and (@27 (1)1 are bounded for almost all ¢<[0, T). Hence,
35“/%(1‘) and 95-'fp(t) are L* functions in t=(0, T) having their values in
L¥£) and HY¥I), respectively.

§2. The first energy inequality.

The goal of this section is to prove

THEOREM 2.1. Assume that (A.1);, (A.2);, (A.3);.5 (Ad); and (A.5); are
valid. Let a€X?°[0, T), ) and put

F(t, a@)=| (IPSa]+HQ A DS -

Then, there exists a constant C(T)=C(T, 8, 0,, I, M(K), Ms(K)) such that the
following two estimates are valid for t<[0, T):

2.1) E(, a(t)=2e°PHEWQ, a(0)+C(TIF(, at)};
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(2.2) E@t, a()< e LEQ, @0)+C(THID O3+ F(t, a)} *F(t, a@®)'"].

If the coefficients of the operators P(t) and Q(t) belong to %, then (2.1)
and (2.2) were already obtained by Shibata [9]. Namely,

THEOREM 2.2. Let I'=[~1/2, T+(r/2)]. Instead of (A.l);, we assume that
(A1) AMt, x)e B*(I'X2) and BYt, x)= $*I'xI)
for 1=0,1, -, n and i=1, -, n.

In addition, (A.2);, (A.4); and (A.5); are valid. Furthermore, we assume that
there exist positive constant 8, and 03 such that (A.3);: s is valid. Let p be a
small number=(0, [n/2]+1—(n/2)) and A be a constani such that

2.3) R DV UIIMPERS: DU EVE

= =1

Then, there exists a constant C(T)=C(T, &1, 85, A, I, p) such that (2.1) and (2.2)
are valid for any 4 X>%[0, T), 2) and t<[0, T) with this constant C(T).

REMARK. The estimate (2.1) of Theorem 2.2 was first proved by Miyatake
[6] in the scalar operators case (i.e., m=1). But, Miyatake assumed that the
coefficients of the operators are sufficiently smooth and did not show how the
constant C(T') in (2.1) of Theorem 2.2 depends on the coefficients of the opera-
tors. It is first for Shibata [9] to prove that the constant C(T) depends essen-
tially only on A, which implies that the constant C(T") in Theorem 2.1 depends
on M(K) and Mg(K). This fact is quite important to solve the corresponding
nonlinear problem. The results due to [9] did not follow from [6] directly.
Because, to prove that C(T)=C(T, 4, ---), to the auther it seems that one needs
more ideas, in particular, sharp estimates for L2-boundedness of pseudo-differ-
ential operators developed recently.

To prove Theorem 2.1 by using Theorem 2.2, we use the following lemma
concerned with the approximations of the coefficients of the operators P(¢) and

Q).

LEMMA 2.3. Assume that (A.1);, (A.2);, (A.3);.5 (A.4); and (A.5); are valid.
Then, there exist a number 2,>>0 and sequences of matrices: (AL} C 3" X 2);
{A%,}CC=(", H=(Q)); {BycC=(I', HXI") (I'=[~7/2, T+(z/2)] and 0 (0, X))
having the following properties: (a)-(f).

(a.l) ljl’l'%[Agola—AQh,K—l,l':O; 131'1'(1‘| Y A¥ | k-2, 1r=0;
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(a.2) 1313 {Bt=Bk 3,172, 1=0;

M=

b1 3 3 Al r SCMLE); 2 3V AR s, SCMSAK);

[}

0

°

0.2 BB SCMs(K),

for any o<(0, 2,).
(c) There exists a sequence {x(a)} of positive numbers which tends to zero as
0—0 and has the following property: If we put

AP, x)=AL, x)+ASE, x)—&(o)wi(x)n

where In is the mXm unit matrix, then AL(t, x) and BYt, x) satisfy (A.5); for
any a=(0, 2,).

(d) If we put

AP, x)=AE(t, x)+AY(, x)

then there exist constants 81 and 0; depending only on 8,, 8, M(K) and Ms(K)
and independent of o such that AY(t, x) and Bi(t, x) satisfy (A.3);.s for any
a0, Z,).

(&) vi(x)BYt, x)=0 for any (t, x)eI'XI" and 6 <=(0, 2y), i. e., (A.4); is valid.
(f) A and B! satisfy the (A.2); for any ¢<=(0, 2y) and i=1, -, n; =0,

1, n

Deferring the proof of Lemma 2.3, we shall first give a

PrOOF OF THEOREM 2.1. Let A%, AY, B %, and (o) (i=1, ---, n; =0,
1, .-, n) be the same as in Lemma 2.3. Let gz be a small positive number
€0, [n/2]4+1—(n/2)) and ¢<(0, 3,). Since 1+p<2<K, by (b) of Lemma 2.3
we have

(2.4.2) VA o, s 1+ Ale— (0 Wil m oo, 10, 1 S C{M(K)+1}.

By Corollaries Ap. 7 and Ap. 8 and (b) of Lemma 2.3, we have also that
(2.4.b) [AY o 1ap 1 SCIAY ko1, 1 SCM(K);
(2.4.c) {B oo 1oy 1 SCLBO k1,112, 1+ SCM(K) .

From these points of view, let us put A=C{M(K)+MsK)+1}. Then, Lemma
2.3 implies that for each ¢<(0, ), A and B! satisfy all the assumptions of
Theorem 2.2. Note that 4 and constants d{ and d, depend on M.(K), Mg(K),
d, and J,, but independent of ¢. Put
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Py a(t)]=0ta(t)—0:(AP(0)0.4(t)+ AF(1)9,1(D)) ;
Q (O a()]=v: A¥()0,4(t)+ BY(t);4(t)+ B4(2)0. (1) .

If we denote the energy corresponding to P,(¢) and Q,(t) by E,, then by Theo-
rem 2.2, we see that there exists a constant C(T)=C(T, &, 8., I', M{K), Ms(K))
independent of ¢ such that

(2.5)

(2.6) E (1, w()=2e°DHE,0, a(0)+C(T)F,(, at)} ;
©2.7) Eot, ()< eCDHE 0, @0)+C(TY | D a(0)|3+Fo(t, @) /2F,(, a(t)*)},
where F,(t, a()=| (IPA&)La(s II3-H(Qu()a(s D)ds.
Now, we shall prove that
(2.8) E,(t, a(t)) — E@, a(t)); Fo(t, a(t)) — F(¢t, a(t)) as 6—0 for all t<[0, T).

Noting the definition of energy (cf. (No. 21)) and using the definitions (No. 7)
and (No. 18), we have

n

(2.9.2) |E,t, a)—E(Q, ()] éC{jE (BHB)—BA))es. 0

=1

+ iél(llAé’éx(t)—AZJ(t)llm.ﬁ-HA?;(t)—A"s"(t)llw. o} la®Ii< CUDOIa@®l}
where
(2.9.b) Ust)=[Po(t)—P(t)]w, & -1+ Po()—P(O)| Qo) = Q(1)]s. k-2.1 (cf. (No. 3)).
Here, we have used (No. 13). Thus, by (a) of Lemma 2.3 we have the first
part of (2.8). Applying (Ap. 1)-(Ap. 3) with a=K—1 and f=y=1, we have
|Fot, at)—F(t, a0 SC| U} D'als)lids (C=CUMLK), Ms(K)

Since 2= X>%[0, T); 2), by (a) of Lemma 2.3 we have the second part of (2.8).
Hence, letting ¢—0 in (2.6) and (2.7) and using (2.8), we have Theorem 2.1.
To complete the proof of Theorem 2.1, we give a

PrROOF OF LEMMA 2.3. First, we shall discuss about the approximations of
B! (I=0,1, -, n). Let ¢, be functions satisfying (No. 1). Put
ST W (y', M)BUL, Ti(y', 0)) for [y'[<as,

Bit, y'>={
* 0 for |y'| >0,

for k=1, -+, N, and [=0, 1, ---, n. By (No. 1) we have

Ng
@100 B, 0= 3 ginBE 0=Sgi@ 40", 0B Taly', 0),

where the summation 3’ is taken over all £ such that x=¥,(y’, 0)e0.NI.
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Since supp ¢, without loss of generality, we may assume that supp 6T ()
COQ(gl) with some g,(0, ox). As a result, since B'eY¥1V¥[, T, Bie
YE-112([, R*) and supp Bi(t)c{|y'| <a}} for all teI. Furthermore, we may
assume that Y2(y’, 000 on {|y’|<c.} for some 7, say i=n. By (No. 5) we
have

~ n-1
(2.11) Bit, y)=—Y (', 0)‘1{17223135@ Y 505, 0)}‘-
Let o(t, ) be a function in CHRXR""') such that supp pC{|¢]*+]y’'|*<1},
=0 and SSPU» y)dtdy'=1. Put p,(, y)=0c""p(s"?, y'¢7") and

[Bi1.¢, J")=Sgpa(t—s, y'—z")BYs, z")dsdz’ for (=0, 1, -, n—1

(i.e., we mollify each component of Bl by means of the usual Friedrichs”
method). In view of (2.11), we put

@12) [Br1.(t, y)=—Ya(s", 0 2 [Bitt, 3OV B, OO}

Since 0<a;< 0}, there exists a X,>0 such that [Bv,i]‘,(t, y’) are well-defined for
t, y)elI’Xx R*"* and supp [BL1.¢, v)C{ly'|<@a:} for any teI’ and ¢<(0, 2)).
Furthermore, [ﬁzjgeC“(l’, H=(R""). From the second part of (A.2) it follows
that

(2.13) (B9, v)=[B2.¢, ¥); (LB, »)+IBil(t, »)=0
for all (¢, y)eI’XR""! and ¢=(0, 2,). Put
L, x)=[BL1,¢, ®u(x)) for x0.NI" and =0 otherwise.

Since [E,ﬁ]g(t, y"=0 for |y’|=0: and t€l’, Bl,(t, x) are not only well-defined
but also in C=(I’, H*(I")). Put

Mo
B, x)zkg1 Bi.(t, x).

Then, by (2.12) and (2.13) we see easily that *B(, x)=B5(¢, x) and *Bi(t, x)+
Bit, x)=0 (=1, ---, n); vBit, x)==0 for any (¢, x)I’xXI". Namely, the third
and fourth parts of (A.2); and (A.4);. are valid for any o¢<(0, 2,). Obviously,
we have that <BisYx-1,1/2, 1 = CLBBD k1,170, 1 SCM(K) and {Bls — ;B k2,172, 1
—0 as ¢—0 for [=0, 1, ---, n—1. With the help of (2.11) and (2.12), we see
also that <BLYx-1 12 1 SCMs(K) and {BL—@iB > k1,112, 1+ —0 as ¢—0. Noting
(2.10), by these results we see easily that (a.2) and (b.2) of Lemma 2.3 are valid.

Now, we consider the approximations of A%. In view of (A,1) and (A.2),
without loss of generality we may assume that



298 Yoshihiro SHIBATA

(2.14) 'AP=AY and ‘Af=A} for U=co and S and 7, j=1, -, n.

By well-known Lions’ method of extending functions defined on £ to whole
R", we have that there exist [AY]< 3¥(IXR") and [A¥]eYX*-2%], R") such
that A%=[A%] and A¥=[A¥] on IXQ, and
(2.15) ILAZ ] ok, xpn SClAS oo k.13

[[LA¥] k-1.1, 1,20 SC |A¥ k-1 (C=C(K, ).
Furthermore, in view of (2.14), we may assume that
(2.16) ‘[AY1=[A¥] and ‘[AF]=[A¥] for U= and S and ¢, j=1, ---, n.
By using Friedrichs’ method mentioned previously we mollify [A%7] and [A¥]
with respect to (f, x). Then, noting (2.15), we see that there exist a small

constant X, and sequences {A%}C B~(I'xQ2); {A¥}cC=I", H*(2)) (¢=(0, 25)
such that

@.17) |A%—AZ|w k-1,r—0 and |A%—A¥ |k 51,0 as 6—0;

218) 33 3 1A% |, 1 SCMoK) and 33 33 1A oy 1 SCM(K)

for 6<(0, 2,).

n
4 i=1

In view of (2.16), obviously we have
(2.19)  ‘AF,=A¥, and 'Af,=A}, for U=c and S and i, j=1, -, n.

In particular, (2.7) and (2.18) mean that (a.1) and (b.1) of Lemma 2.3 are valid.
Hence, we have proved (a), (b), (¢) and (f) of Lemma 2.3 if we choose X, so
that Xo<min (2, X,).

Now, we shall prove (c¢) of Lemma 2.3. Noting (A.1) and (A.5), we have

{—v()(AL(, x)+ALE, x)+2BYE, x)lg-y

Z(—vi(x)A™(t, x)+2B°t, x)n-n—k(o)| 9|*=—x(a)|7|?
where

£(0)=(ideo, o | Ae— AL Neo,0, 1+ | ASe— AR | 0,0, 1)+ 2{ BS— B s, 0. 1 .

Obviously, by (No. 13) and (a) of Lemma 2.3 we know that x(¢)—0 as ¢—0.
Since the u(x) is the unit outer normal of I at x&l, |u(x)|?’=1 for x<T.
Hence, if we put AI'(#, x)=A&(, x)+AL{E, x)—r(o)vi(x)],, then we see that
(¢)is valid for any ¢=(0, 2;). Furthermore, putting A¥(¢, x)=A¥(t, x)+AL(, x),
from (2.19) it follows that the first and second parts of (A.2),  are valid for
c=(0, X).

Our final task is to prove (d) of Lemma 2.3. Let &,(¢, 4, ) and C,(¢, @, 7)
be bilinear forms defined by replacing B’ by Bi in (No. 7) and (No. 8), respec-
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tively. In the same way as in (2.9), we have

(2.20) | B,(t, @, )— B, @, 3)| =CUD]al.lall,
for any tel’, ¢=(0, X,) and @, s H*(2). Noting (No. 8), we have

(2.21) €t @, D1 SC Z (B eIl
for any tel’, 6=(0, X)) and @, 9= H'(£2). Furthermore, we have

(2.22) (Bitdi, b>=B(t, @t, D)+C.(t, 4, D)
for a= H¥(Q) and s HY(Q) (cf. (No. 9)).
By (A.3);, (No. 9) and (2.22), we have
(2.23) (AY(t)d;it, 0i0)+<Bi(t)0;, w>Z=dl|il}—0,|la|j—1—I, for acHXQ),

where I,= |((A8(@t)— AH())0,4 ‘0.4)| +| B,(, &, i)— B, @, @) and [,=|C,(¢, 4, V)
—C(t, @, 9)|. Noting (2.20), (2.21) and (No. 12) and using (No. 13) and (b.2) of
Lemma 2.3, we have that I,<CU,®)|#|} and I,<CMs(K)lilllld@lo. In view of
(a) of Lemma 2.3, there exists a X, such that [,=<(d,/4)#|} for a0, X)),
Since I,<(8,/)| a2+ {(CMs(K))*/d,} @3 combining these facts and (2.23) im-
plies that (A.3);..» is valid for any ¢=(0, 2), where 6;=4,/2 and 0,=0+
{(CMs(K))?/8,}. Note that o] and J; are independent of . If we take 2,=
min (%, 3,, 3,), the we have completed the proof of Lemma 2.3.

§3. On some fundamental results on elliptic boundary value problems.

In this section, we shall prove some results on elliptic systems, which will
be used in later sections. In the paragraphes 3.1 and 3.2, we shall discuss the
fundamental principles from which the differentiability of weak solutions in the
interior of £ and near the boundary follows readily. These two paragraphes
are independent of other sections, but to prove results stated in the rest of §3,
the theorems in §§3.1 and 3.2 play an essential role. In the paragraph 3.3, we
shall investigate a unique existence theorem of solutions to some elliptic boundary
value problems in £. In the final paragraph, we shall prove the unique exist-
ence theorem and time-dependence of solutions to some elliptic boundary value
problem with parameter ¢ as a time mentioned in the final part of Introduction.

3.1 Differentiability in the interior of 2. Let a%(x) be mXm matrices of
functions satisfying the following properties:

(a.1.1) Each of a*(x) is decomposed as follows: a“(x)=a¥(x)+a¥(x), where
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aic 3X-4Q), a¥sH*™(Q).
Here and hereafter, K(n)=max ([n/2]+2, K—1).
(a.1.2) There exist constants d, and d,>0 such that
(a*0,;9, 0:9)2d, || 8]i—d»] ] for any T Hiy(R).
Here and hereafter, we put
HY,(2)={s=HXR™") | dist (suppv, I")=¢ for some &>0}.

First, we consider the differentiability of acH() satisfying the variational
equation :

(3.1) (a'd1, 0;9)=(f, #) for all scH(R™).

In this and next paragraphes, we use the notations: [§]4=(d(x+hes)—d(x)Hh";
| =0(x+he,) where ¢,=(0, ---, 0,1, ---, 0) are the k-th coordinate vectors
of R™.

THEOREM 1.3. Assume that (a.1.1) and (2.1.2) are valid. Let L be an integer
€[2, K]. Let a=H Q) satisfy (3.1) and

3.2) dist (supp &, [)=¢e for some >0.
If 7eH>¥Q), then acHYR) and
(3.3) lal.<Cdy, doy Yoo k-1 T5. 803 LN Fl e tldi] zor}.

Here, 7w .x-1 and Vs, x> are constants such that

la¥l k> <Ts xcn> -

n .
2 ”azo]”w,!{—xg)’w.K—ﬁ .

1, j=1 i,

(3.4)

e

Proor. Let 6=(0,, ---, 8,) be any multi-index such that |§|=L—2. Then,
034 satisfies the variational equation:

(3.5) (a¥0,(0%i), 8;9)=(F;, ) for any s<H(R™)

where
- S 5 o
Fo=01f-3 (w)az-wawa,-agu

(w=(w,, -, w,) are also multi-index and w<d means that w,<J; for all .z'=1,
-+, n and |w|<|d]). In fact, if s=H(R"), from (3.1) we have that
(a0, 0:(—8.Y9)=(F, (—d,)°s). Noting (3.2), by integration by parts we see
(3.5) immediately. As will be seen soon, F;=L*). Hence, since HEY(D) is
dense in HY(£), (3.5) follows immediately.
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Now, we shall prove that F;e L¥Q) and

(3.6) IEslo< 17 | oat CONTem kor+7 5 ko Hl | 23 -

Recall that |8]=L—2. Let w<d. Applying (Ap. 1) with a=K(n)—|d—wl,
B=L—2—|w| and y=1, we have that |32} “a¥d,0¢a)lo=<Cla¥lxcm|alL-1
From this, (3.6) follows immediately.

Now, we shall prove that #a=H*£) and

@7 Haiﬂ[lz§c|1?||L—2+Hﬂ||L—1} where C=C(d,, ds, L, Yoo, k-1, T5. K0)) -

Since & is any multi-index such that |8|=L—2, the theorem follows from (3.7)
immediately. For the notational simplicity, we write w=0o%#. Let h be any
number satisfying the condition: 0<|h|<d/2. Since (a'/0;w, 0:[ 91 n)=
(Fs, [9]t,) as follows from (3.5), by the change of variables: x+her—x, we
have that (a¥9,[#1}, 0:9)=—([a*/140,@, 09 1%n)—(Fs [91%,). Note that [3;@ o
<Niilgor; 105 | Enllmn, o<l 6lgns; IL0T2alrn, 0S| 5]lgn... Since |[a¥Ih|Sla e =
C{Yew k1 +7s. x>} as follows from (No. 13.b), by Schwarz’s inequality and (3.6)
we have

3.8) [(a¥8,[@14, 0:0) SCIFlz-at @i} 18]l mn.s

where C=C(Tw k-1, Is. k>, L). Since dist (supp [@]5, I')>¢/2 provided that
0<|h|<e/2, by (a.1.2) we have

3.9 D@3 L <(d)  [(a¥a;lwTh, d:.Lwlh) | +dl[ @151}
Since [[@]illo<é|lz-1, combining (3.8) with s=[w]% and (3.9), we have that

L@ < C{I 7l -at 1l L} where C=C(d,, ds, L, o, k-1, Ts.x3). From this
it follows that w=acH%Q) and (3.7) is valid, which completes the proof.

As an easy corollary of Theorem 3.1, we shall give a theorem on further
differentiability of # satisfying the equation:

(3.10) —3(a¥ () u(x)=F(x) in 2.

COROLLARY 3.2. Assume that (a.1.1) and (a.1.2) are valid. Let L be’an
integer<[3, K], acH* () and fEHL'z(.Q). If @ satisfies (3.2) and (3.10),
then acHY(Q) and (3.3) is valid.

ProOF. Multiplying (3.10) by &, integrating over R™ and noting (3.2), by
integration by parts we have that @ satisfies (3.1). Hence, Theorem 3.1 implies
immediately Corollary 3.2.
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3.2 Differentiability in R?. In this paragraph, first we consider the differentia-
bility of a solution to the variational equation:

(3.11)  B[&, 51=(f, 8)+<Fs, 8-, O +(fi, d:5) for any s=H (R?).

Here, f,, fg and fﬁ are given functions; B is a bilinear form of the form:
Bla, 91=(a%0;i, 0;0) +(b?0,4, 0,3) —(bP0,d, 8,D) .

Here and hereafter, for the notational simplicity, we use the following abbre-

viations:

@, oY=\ a)sdz; <@ oy ={ a0 o6dx r=ta, -, xa);
~Ei

1=l lgp 5 D= lns,r

Let a* and b? (4, j=1, --+, n; p=1, -+, n—1) be mXm matrices of functions
satisfying the following assumptions:
(a.2.1) The a* are decomposed as follows: a®/=ali+a¥ where aiic @X-Y(R?)

and a¥=HX™(R?).
(a.2.2) bP=HEM(RY).
(a.2.3) ‘ta/=a’.
(a.2.4) Let ¢ be a positive constant. There exist positive constants d, and d,

which may depend on ¢ such that

B[9, 9]=ds([| 911 —d.(I9]:)* for any s€HIRE).
Here and hereafter, we set
HYR?)={9cHYR}) | suppvCQ(e)} (Qe)={x&R" | [x'|<¢, | xa|<e}).

As a corresponding theorem to Theorem 3.1, we shall prove

THEOREM 3.3. Assume that (a.2.1)-(a.2.4) are valid. Let L be an integer
€[2, K]. Assume that J.€HL¥RY), fo,eHL- (R and ficHXYR?) (i=
1, -, n). If acHYY(RY) for some e<(0, ) and satisfies (3.11), then i HL(R?)
and

(3.12) e < CU et (Fodi-cm+ 2 1 it l)2-0)

where C=C(ds, ds, L, 7o k-1, T5. xeny). Here, 754 g1 and T5s kx> are constants

such that

n . n . n-1
iz_ |ad e, k-1, RSV k15 2 @kt 2 6Pl x>y STs, k-
,j=1 i, j=1 p=1
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PrOOF. Let k be any integer €[1, n—1] and a’'=(a,, -+, @,-,) be any
multi-index such that |a’|=L—2. First, we shall prove that 0,0% #=0,0;" -
0x*Ttae HY(R?) that

(3.13) 19:05 alli<C4.

In the present proof, for the notational simplicity we use the same letter C to
denote various constants depending at most on L, ds, dy, 7%, k-1 and 7%, gy and

put A=[Fls-st+(Fo)s-cm+ 2 1 Fillii+ Il To prove (3.13), we shall use
the fact that 0% 4 satisfies the variational equations:

(3.14)  B[w, 31=(F,, 6)+<Fs, 9(-, 00y’ +(Fi, 8,0) for any s=HY(R?)
where F,=0% f,; F,=0% fs; w=0%4;

Fr=duj1— 3 (5, )05 % ar0,08a+os 079,084} (p=1, -, n—1);
a’Zp \B

n—_na’ fn__ a’ a'-Br iy AR __fal -f’ B! 7
F1=3%11 ﬁig,(ﬁ,){az, a™3,98 a—0%. P 670,08 ).

In fact, if 5€HL\(R?), replacing & by (—d,)* 9 in (3.11) and applying inte-
gration by parts, we have (3.14). As will be seen below, FicH'(R?). Further-
more, F,eHY*(R* ') and F,= L*R?). Since HLY(R7?)is dense in H'(R?), (3.41)
is also valid for any s H(R?).

Applying (Ap. 1) with o=K(n)—|a'—p'|, B=L—-2—|8'| and y=1 for
B'<a’, we have

”ag:—‘B'afsjajag;Z?|I{§CT§,K(n)Hm|L-1; “ag:_ﬂ'bpazag:ﬁ”{§crfs,K(n)”ﬁ”L-x
for =1, ---, n and p=1, ---, n—1. From this it follows immediately that

(3.15) 1B+ (Fadit X IFil=CA.

Now, we prove (3.13). Let h satisfy the condition: (< |h|<o—e. By the
change of variables: x+he,—x, from (3.14) we have

(3.16) BlLwl, 91=—([a*1%40;®, 0:0]%4) —([b712n0n, 8,0 |%4)
F([6P1er0,1, 001 20) —(Fy, [9124)
—<F, [0(-, 0)12,>"+([F31%, 0:9) .
By Schwarz’s inequality and Theorem Ap. 2-(1), we have
(3.17) [<Fa, [9(-, 0)12aD"| SCFD1(L0(, 001D lsre
SCFNi 0, O < CLE N ll o] .
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Hence, applying Schwarz’s inequality to other terms of the right-hand side of
(3.16) and using (3.15) and (3.17), we have

(3.18) |BLL@1}, 911 =Cd|d];.

Here, we have also used the facts that [0,@],< ]z ;
|[ai"]’inléla”lm'x.ngélafﬂw.:.ng-i-cllaisjll'mn); [[6PJEn ] S CIOP 1% cny

(cf. (No. 13.b)). Since [#]% vanishes for |x|=oc as follows from the assump-
tions: e HLY(R?Y), by (a.2.4) we have
(3.19) (I %1 =(ds)"{ BLL@w1}, [@5]1+d.(I[@14 [0}

Substituting the inequality: (|[@J4l)*<|#|z-.lI[#]1%)s into (3.19), putting =
[@w]% in (3.18) and combining the two resulting inequalities, we have that
I[wsli=<C4. From this it follows immediately that 0, =0,0%#<H'(R?) and
{3.13) is valid.

Now, by induction on N we shall prove that 0%dYi< L¥(R2) and
(3.20) l0g:0yali=C4

for any integer N[0, L] and multi-index a’=(a,, -, @,_;) such that |a’'|=
L—N. As was already proved, (3.20) is valid for N=0 and 1. Thus, assume
that 2< N<L and that the assertion is valid for smaller values of N. First,
we prove that ¢"™(x) is a nonsingular matrix for all x=Q.(¢) (Q.(¢)=Q(¢)N\R?)
and

(3.21) la™(x)"'|<C for all x=Q.(0).

To prove this, we need

LEMMA 3.4. Let G be a domain in R™ and P¥(x) be mXm maritces of
Sfunctions in C%G). Assume that *P=P" and that there exist positive constants

¢ and ¢, such that ReLP”"(x)ajz)(x)-aiﬁ(x)dxgcsllﬁllé,l——c,;[iﬁllé_o for any <

CHG) which may be complex-valued. Then, P (x)€:&;2cs|E|%n for any xEG
and §=(&,, ---, &.)ER",

This lemma is well-known and for its proof, see Shibata [9]. Since

(3.22)  <bPdi, ﬁ>’=~—5 0u(b70 it - )d %= — (b7 pil, D &)-+(bPBnil, 35

Ry
+((0,07 )00k, D) —((0207)0ptk, D)

as follows from the integration by parts with respect to x, (p=1, -+, n—1),
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we see that for any 3€C%Q.(0))
B[, 91=(a"8;9, 0:9) —((@,b7)0., #) +(([@.b7)0,9, D)

<(a%9;5, 0;3) +Crs xemll 8111145
Combining this and (a.2.4) implies that

(a'90,;w, 0;w) =(ds/2) w1y —di(l@ o)
for any @< C3(Q.(¢)) which may be complex-valued where di=d,+(C75, xm)t/2ds.
Applying Lemma 2.4 and noting that ¢* is continuous on @.(c) (cf. Sobolev’s
imbedding theorem), we have that a®/(x)&:€;=(ds/2)|&|* I, for any x€Q.(s) and
E=(&, -, &)ER”. In particular, if we put £=(0, -+, 0, 1), we have that a™™(x)
>(dy/2), for any x<Q,(¢), which means that ¢""(x) is non-singular for all
x<0,(¢) and that all eigenvalues of @™ are bounded by ds/2 from below.

Since
a™(x)'={det (a™™(x))} * cofactor matrix of a""(x),

we have (3.21).

Let 9&€C%(Q.(0)) and replace ¥ by (—9;)%% in (3.11) where d=(a’, N—2).
Then, by integration by parts we have

(3.23) (a"328%a, ) =(G, o)

where
Gm=— (000,051 —0,(a™"0,0% i) —0d,(aPI0,0% 1) —0 (b*0,0% i)

0 .
—0,(6°0,0%)— 3 | )10k "0t B2)0,(0% “bPa3u}

— 8@ b))+ F+ 30427

Note that |8]=L—2, because |a'|=L—N. Applying (Ap. 1) with a=K(n)
—|6—w|, f=L—2—|w| and y=1 for w<J, we have

10:(0% a0 ,024) )+ 10,0% bP o)+ 10405 *bP05 ) 0= Crs. kcmr Bl 21 -

Hence, by the inductive assumption we have that GeL¥ R and |Gl}<CA4.
Accordingly, since (3.23) is valid for any #&C%(Q.(s)) and supp #CQ(a),
la*620%a),<C4. Thus, (3.21) implies that 03954 < L*(R}) and that l02d%4 i
<C4. Since 920%54=0%0Ya, we have proved (3.20), which completes the proof
of the theorem.

As an application of Theorem 3.3, we shall prove further differentiability
of a solution # to the boundary value problem:
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(3.24.2) —,(a*¥(x)0i(x)=F(x) in R?,
(3.24.b) —a™i(x’, 0)0,a(x’, 0)+cP(x"),(x’, 0)=F(x’) on R*"!.
Here, a*(x) and c¢?(x’) are mXm matrices of functions satisfying the following
assumptions :
(a.2.5) (a.2.1) and (a.2.3) are valid;
(a.2.6) cPsHEM-WD(RA-1).
(a.2.7) there exist positive constants d; and d, such that

(@¥0;8, 0.5)' +<cP0,9(-, 0), (-, 0))' = d(||51)>—d oI5 ]5)?

for any 9= HAR?).

Note that the unit outer normal of the boundary of R” is (0, ---, 0, —1). The
following theorem can be deduced form Theorem 3.3, which is corresponding

to Corollary 3.2. It is independent of the text, but for the further references
we state and prove it

THEOREM 3.4. Assume that (a.2.5)-(a.2.7) are valid. Let L be an integer
[3, K], acHE(R?) for some (0, o), fEHL'Z(RE) and geHL-C»(R Y, If
@ satisfies (3.24), then s HY(R?) and
(3.25) 102 CL F 22t (@) s-corm+ 2,

where C=C(ds, dg, L, 1% k-1, T kn>). Here, 74, x-1 is the same as in Theorem
3.3 and 14 x> 1S a constant such that

n n~1
”Z:l ”afS'j”;{(n)—l_pgl (M xamr-am =74z -

PrOOF. We shall reduce (3.24) to (3.11). Let b?(x) be mXm matrices of
functions such that b?(x’, 0)=cP(x’) for almost all x’=R""* and
(2.26) 16P | x> S CHe™V e ny-ary < CT%, keny -

The existence of such b7 is assured by Theorem Ap. 3. Since {cPdpa(-, 0),
9(+, 0)>'=<b0,a(-, 0), ¥(-, 0))', by employing the same argument as in (3.22)
we have

3.27) {c?0,i(-, 0), ¥(-, 0)' =(bPB,t, 0,0) —(b?8ptt, 0y, D)
+((apbp)anﬁ; 5)’_((anbp)apa; 77)’ .

Multiplying (3.24.a) by # and integrating over R?, by integration by part and
(3.27) we have
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(3.28)  Bla, 51=(f, 9) +<{fo, v, 00’ +(F%, 38Y for any s H'(RY)

where

Blii, 9]1=(a"0;i, 0:0)+(bP0x1t, 0,0) —(b?0pit, 020)" ;

Fi=F+@.b7)0,1—@,b7)0.00; fo=8; Fi=0.
To apply Theorem 3.3, we must prove thatf,eH L-2(Rmy and (a.2.4) is valid.
Applying (Ap. 1) with a=K(n)—1, B=L—2 and y=L—2 and using (3.26), we
have

@:67)8;8t|| -2 = C 10| k> |18l L1 S C78, kol -1

for i, j=1, ---, n, from which we have immediately that fleHL‘z(RZ) and
1Fills-2 < CUF et 7% kol it} Since HXR?E) is dense in Hi(RY), to prove
that (a.2.4) is valid in the present case, it is sufficient to show that there exists
a d;>0 depending only on d;, d; and 1% k> such that

(3.29) Blv, v1=(ds/2)I511)*—di(I9]5)*  for any s HI(RY).

In the same way as in (3.22) (or (3.27)), we have that for any 9€HIR?Y),
B[#, #1=(a*d;5, 8:5) +<c?,d(-, 0), 5(-, 0)Y' —((@,b7)0nD, D) +((0:b7)0,9, ). Since
| —((8,67)0,D, B) +((3:07)0,8, )| SC1% ken>|8]{[15]l5 as follows from Schwarz’s
inequality, (No. 13.b) and (3.26), by (a.2.7) we have (3.29) with d{=ds+
(C7% kw)?/2ds. Thus, the present bilinear form B satisfies all the assumptions
of Theorem 3.3, and fl, fz, fé and # do, too. Theorem 3.3 implies Theorem
3.4 immediately.

3.3 Unique existence theorem of solutions to some elliptic boundary value
problem.

In this paragraph, we consider the following boundary value problem of elliptic

system of 2nd order in 2:

(3.30.2) —8:(PH(x)0;i(x))+ PH(x)0,4(x)+ PE+ (x)ia(x)+Ad(x)=Fo(x) in 2,
(3.30.b)  we(x)PH(x)8,0(x)+ PHx)dsi(x)+ PFi(x)i(x)=gr(x) on I'.

Here, P¥(x), Pix) and PXx) (i, j=1, -, n; [=1, -+, n+1) are mXm matrices
of functions having the following properties (a.3.1)-(a.3.5):

(a.3.1) P and P} are decomposed as follows: PY=PY+P¥ and P§=P} -+ Ph.s
where Pic @5-Y(2); Ph o= BX¥2); PYcHE™(D); P} scHX ™(Q)
(K(n)=max ([n/2]+2, K—1) and K’'(n)=max ([n/2]+1, K—2).

(@.3.2) PAeHE™-CI() (j=1, -+, n); PpreHX™(I).
(a.3.3) ‘PU=pit,
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(a.3.4) There exist positive constants d, and d, such that
(P01, 0;a)+< Pfdsii, )2 d,l|ili—dg|all} for any = HYRQ).
(a.3.5) vi(x)P(x)=0 for x&Il'.

Since the operators P(¢) and Q(t) of the original problem (N) are homogeneous,
it suffices to consider the case whereP j=Pp3*'=0. But, to the auther it seems
that there are no litratures of treating with (3.30) exactly even in the case where
PY=P} s=0 and P}c 3%-(Q2) (namely, the smooth coefficients case). Thus, we
dare to treat with the general operators for the further references. Let Yoo, -1(£2)
and 7s x(2) be constants such that

n n—-1

2 NP e, k1t 2 1P, colleo, k-2 570, k-2(82)

i, j=1

n B n4+1 n )
2 Pl ket g}l P§. sll & n>+ jzﬂ<<P]]">>K(n)—(1/2)+<<P}7"‘+1>>K—(3/2)éTS,K('Q) .

%, 771

The purpose of this paragraph is to prove

THEOREM 3.6. Let L be an integer =[2, K]. Assume that (a.3.1)-(a.3.5)
are valid. Then, there exists a 2,>0 depending only on d., ds, Jw x -,(2) and
75 x(82) such that for any 2>, Bo=H*¥2)and greH (), (3.41) admits
a unique solution i< HY(Q) having the estimate:

3.31) l2l.=C{Zoll-2+{Zrdei-can}
Where C:C(d7: dS; F; Lr TN.K-I(‘Q)) TS.K(‘Q))'
The following is an easy corollary of Theorem 3.6 and will be used to

derive the “a priori estimate” of derivatives with respect to x in the original
problem (N).

COROLLARY 3.7. Assume that (A.1)-(A.4) are valid. Let L be an integer
€2, K] and a(t)ye L=(J; HX(2)) where [ is a time interval CI. Then,
(3.32) la®) L= C{10:(AY(1)0; ()] 12
+ (v AY()0;a(8)+ B0 501 .- coro>+ 18| -1}
for any t€ ], where C=C(d,, §;, M(K), Ms(K)).
PROOF OF COROLLARY 3.7. If we put Pii=A%(t); Pi=B%t); Pj=0; PEt'=0
@, j=1, -, n; I=, -+, n+1), the assumptions: (A.1)-(A.4) implies that (a.3.1)-

(a.3.5) are valid for each t<]. Furthermore, put ggo=—0,(A)d,a(t))+Ai(t);
Er=v;AY(1)0;a(t)+ B/ ()0;i(t) ; Yoo x-1()=M(K); 75 x-1(2)=Mg(K). Note that
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the present constants y.,x-.(2) and ys, x-() are independent of t. Hence,
Corollary 3.7 follows from Theorem 3.6 immediately.

PrOOF OoF THEOREM 3.6. For the notational simplicity, we use the same
letter C to denote various constants depending on d,, dg, I, L, 7w x-1(£2) and
rs.x(82). First, we shall prove the existence of a unique weak solution in
HY Q). To do this, let us define the bilinear form corresponding to (3.30). Us-
ing the notations defined in the section of Notations, noting (a.3.5) and employ-
ing the same arguments as in (No. 5)-(No. 9), we have

(3.33) (Plosa, 9y=2(a, 0)+0(a, 9)
for acH¥ Q) and s HY(2), where
RE=PHT (¥, Y %', OJe(y"), p=1, -, n—1;

No

@, 0)=2 Snngbi(y){Ré’(y’)a;ﬂ(wk(y))-aéﬁ(qfk(y))
’ —RE(y")050 ¥ +())- 00T (YN} y ;
Q(a, ) ::éol ggﬁ[{a;(gb%(y)Rf(y’))}aéﬂ‘t(wk(y))-ﬁ(wk(y))
— {0k RE(y"0,a(T (y))- 0T w(y)]1d y.
By Schwarz’s inequality and (No. 13.2) we see that
(3.34) |2@@, 9)| <Clal.lal.;
(3.35) |Q@@, )| =Cllal.loll .

In particular, ¢ and Q are continuous bilinear forms on H'(2)x H'(Q) and HYQ)
x L¥2), respectively. Keeping (3.33) in mind, let us define the bilinear form
P; corresponding to (3.30) as follows:

P;la, 91=(PY0;i, 0.5)+(P0;iu-+Pg+a, 0)+A(a, §)
+L(a, 9)+0(@, 9)+<{Prta, 3.

Obviously, by Schwarz’s inequality, (3.34), (3.35), (No. 13) and Corollary Ap.
4-(1).

(3.36) |P;la, ]| <{C+ |2 Hlal.lol, for &, 9=H RQ),

from which it follows that P; is a continuous bilinear form on HQ2)XH(Q).
Let us prove the coercivity of the P,;. Namely,

3.37) P, a1=(d./2)|all} for any #=HYL) provided that i=4,

with some 4, which is a constant depending only on d;, ds, 7w x-(£2) and
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rs, k(). Since H*) is dense in HY(R), it suffices to show that (3.37) is valid
for any s H?*(2). Since

[P, ay| SCai<elalli+C(n, ollall; for any ¢>0

as follows from (No. 13.a) and Corollary Ap. 4-(2), noting (3.33) and (3.35), we
have
Pila, 2]2(PY0;i, 0:8)+<Ppo;i, i>+A|#|}
—Cllallalo—elali—Cn, )l

for any a=H*2). Since Clalhll@lo=(d./4l@li+(C?*/d))alls, taking e=d./4,
from (a.3.4) we have (3.37). In view of (3.36) and (3.37), the P, is a coercive
bilinear form on HYQ2)XH'(2). By well-known Lax and Milgram theorem we
know that there exists a unique solution #=H'(2) of the variational equation:

(3.38) P;la, 5]=(Zg, 9)+<&r, o> for any s€H(Q).
Especially, putting #=i in (3.38) and using (3.37), we have
(3.39) lah, =C{lIgollo+{8 )it <C4

where =120l 1-24+4Erdr-cre>-
Now, by induction on N&[1, L] we shall prove that #<HY(Q) and

(3.40) la|x<C4.

As has been seen, when N=1, the assertion is valid. Assume that 2<NZL,
#sHY-Y(2) and

(3.41) laly=C4d.

We shall use Theorems 3.1 and 3.3. Let ¢, £=0,1, -+, N;,, be the functions
satisfying (No. 1). First, we shall prove that #,=¢,isH"(2) and

(3.42) lallv<C4,

by using Theorem 3.1. To do this, we shall prove that
(3.43) (Pi3d;ity, dyi0)=(fo, ) for any weH(R");
(3.44) 1ol v-2=C4,

where fo:——ai(P”(aquo)ﬁ)—P”ajaaiqio—i-q&og'g—¢0(P53,-12+P}3“ﬁ—|—1z2). First, we
note that

(3.45) P, 0)+0@, w)=0 for any s H (2) and weH»)(2)

where H§,(2) is the same as in §3.1. In fact, since {(P%;3, w)>=0 for any d<
H*(82) and w<Hy(2), (3.45) follows from (3.33) when s H*2). Since H?*($)
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is dense in HYQ) and ¢ and Q are continuous, (3.45) is also valid for any #&
HY(2) and weHYy(Q). Let weH'(R™). Since

(3.46)  (PYd,ity, 0,0)=(P"0;it, 0:(¢ei0))— 0:(P(0,90)i), W)—(P*0;80:¢0, W),

noting that @it € Hi(2), (B9, ¢ew)+<8r, ¢oiwd>=($g, W) and {(P}P*'%, o >=0,
by (3.38), (3.45) and (3.46), we have (3.43).
Applying (Ap. 1) with a=K(n) and f=y=N—1, we have

(3.47.a) 10:(P§0;90)i) | ¥ -e S CIP¥ N ksl vy .
Applying (Ap. 1) with a=K(n) and f=y=N—2, we have

(3.47.b) | P¥0;40:¢ol| v .= C| P¥ | ks lltll -1 -
Applying (Ap. 1) with a=K'(n) and f=y=N—2, we have

: n+1
(3.47.¢) | P4, 50,4 +P;s,+slftnm_2§ng1 1P sllxcnsll@ll vz

(3.44) follows immediately from (3.47) and (3.41).

To use Theorem 3.1, we must check the conditions (a.1.1) and (a.1.2). How-
ever, in this case, (a.1.1) follows from (a.3.1) obviously. If d=H?%,({), then
from (a.3.4) it follows that

3.48) (PY0,0, 0:0)z d, |91} —ds]olIF,

because <P7d;5, 1»=0. Since H%,(£) is dense in H,(£2), (3.48) is valid for any
d=HY%(2). Hence, in the present case, (a.1.2) is also valid. Applying Theorem
3.1 to (3.43) and using (3.44) and (3.41), we see easily that #,=H¥(2) and (3.42)
is valid.

Now, we consider #:(y)=¢:T (¥ (y)) (=1, -, No). By Theorem
3.3, we shall prove that @#,=H”(R?) and that

(3.49) laly<C4.

Here and hereafter, for the notational simplicity, we use the same abbreviation:
|-IlZ as in §3.2. Likewise for {-%7, (-, -), <-, -»’. For given #(x) and W(y),
we write V(y):é(ll"k(y)) and @w(x)=W(@,(x)). For the notational simplicity,
put HXR)={VeHXR2)|supp VCQ(e)} and HXQ)={scH(2)|supp VCQ(a)}.
Since supp #,CQ(g,), we may assume that supp i#;CQ(o;) for some ¢;,=(0, o.).
Let p:(y)=C%5(Q(04)) such that p.(y)=1 on Q(c¢¥) for some ¢} (0, o). Recall
that the Jacobian of the transformation: y=@,(x) is equal to 1, i.e., dx=dy.
Noting (3.33) and (a.3.5), for any ﬁeHﬁ;(Q) and weHY(Q) we have
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(3.49) (P93, 8,0)+ (3, )+0@, w)=(P3,5, 8w)+<{Pid,5, &>
=(a¥3}V, IWY +<c?3,V (-, 0), W(-, 0))’

where 9;=0/0y;; a“(3)=ps(MY LMY eMP7T ()5 3" =0, =0, Yn-i);
cP(y)=pr(¥", OPHT :(y", VY B(y’, 0) Je(¥’, 0). In view of Theorem Ap. 3 and
(a.3.2), there exist b?(y)=HE™(R?) such that b*(y’, 0)=c?(y’) for almost all
y'eR" ' and

(3.50) 1671k S CLePVienr-cin S CTs. x(82) .
And also, we have

(3.51) |a¥|e, K-1.R¢§C7’oe. g-1(Q); la¥ ]k <Crs, x(2)

where af/(9)=ps(MNY NV (NPFF W (y) for U=o0 and S. Put
BIV, W1=(a*0;V, aiW) +(b23,V, WY —(b?a,V, ,WY .
From (3.49) we have
(3.52) B[V, W1=(P"d,3, 0:®)+P®, &)+0@, @)
—(@pbPa T, WY +(@,67)0,V, WY

for any VeH}y (R}) and WeH(RY). In fact, if VeH%(R?) and WeH (RY),
employing the some arguments as in (3.27), from (3.49) we have (3.52). Since
HZ%(R?) is dense in Hé;a(R:';) 0<oi<al<o,) (3.52) is also valid for any Ve
H},rk(Rﬁ) and WeHYR?).

Employing the same arguments as above, from (3.49) and (a.3.4), we have
also

B[V, V1=(Pi49,3, 0:6)+<Pfosp, 0y—({8,b?}0,V, VY +({8.67}8,V, VY
=d |91~ dlloli—Crs. | VIV for any VeH2(RE).

where we have used (No. 13.b) and (3.50). Since H(R*N\Q(s:)) and H'((2)N\O:)
are homeomorphic by the transformation: y=2@,(x), i.e., there exists a constant
¢s>0 such that

CEl”V”RgnQ(ak),xé”77”Qnok.1§6‘sl|vﬂxgnmok),x,
and since HZ (R?%) is dense in H},,k(Rﬁ) (cf. or<el), we have

(3.53) BV, V1zd(IV1P—du(IV 6 for any VeH) (RY)

with some positive constants d, and d,, which depend only on d;, ds, 7w, x-1(2),
75.x(2) and I’. Combining (3.50), (3.51), (3.53) and (a.3.3), we see that the
present bilinear form B satisfies (a.2.1)-(a.2.4) of §3.2.
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Now, we shall prove that
(354  Blas, V1=(F,, VY +<Fs, Vo, 0 +(F4 V) for any VeH(RD);
(355) | fily.<Cd;

(3.56)  (Fodv-am=Cd;
@357 | filya=C4,
where
fl(y)=(¢k§9)(yfk(y))—(¢k(PrJ}5;'ﬁ+P?z“ﬁ+Z12))(Wk(y))
—(PU(0,;64)0,;4) ¥ £(3))— {0pb7(y)} 077k (¥)+ {0267 (9)} 0584 (¥) ;
Foe(9)=($:B )T (3, O)+(PHO;$)B)T (3", 0)— (P PE i) T (3", 0));
Fi)=(P¥ 0,8 )a)¥ (Y i 4(3) -
To prove (3.54), we use the formula:
(3.58) (PY0,(D), 0:)+P(@r, 0)+Q(P:d, W)
=P,[b, ¢+ (P(0;94)0, 0:i0)—(P*(0:0:)0,0, W)
+{PHO:), W>—(ps{PI0 5+ PBT'9+20}, 0)—<P PP*'d, W)
for any ¥ and w<HY Q). Noting the definition of P; and (3.33), for s H¥ Q)
and w=HY(R2) we can check (3.58) easily. Since H* ) is dense and since the
both hand sides of (3.58) are continuous bilinear forms on HY(Q)X HY£) (note
Corollary Ap. 4-(2) and (No. 13.a)), (3.58) is also valid for any & and weHY(2).
Since #x(¥)=¢:@:(y))i¥ (y))=HL (R?), combining (3.52), (3.58) and (3.38) and
making the change of variables: x=¥,(y), we have (3.54).

Now, we check (3.55)-(3.57). Employing the same arguments as in (3.47)
and using (3.50) and (3.41), we have (3.55) easily. Applying (Ap. 2) with o=
K—1 and f=y=N-—1, we have

<<P}‘72>>N-(312)§C((P}'»K—(sm)”ﬁ“N—l for =1, -, n+1.
(3.56) follows immediately from this fact and (3.41). Applying (Ap. 1) with
a=K(n) and f=y=N—1 and using (3.41), we have (3.57).

Hence, applying Theorem 3.3 to (3.54) and using (3.55)-(3.57), we can con-
clude that #,=HY(R?") and that (3.49) is valid. Noting (No. 1) and combining
(3.42) and (3.49), we see easily that #=HY(£2) and (3.40) is valid.

Finally, we shall prove that # satisfies (3.30). First, noting that #=H*2)

and taking $=C(2) in (3.38), by the divergence theorem we see that # satisfies
(3.30.a). Then, applying the divergence theorem to (3.38) again and substituting
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(3.30.2) into the resulting equations, we have
vy P90+ PPo i+ Ppria—g,, 9»=0 for any s HY(Q).

In view of Corollary Ap. 5, for any w<HY*I"), there exists a s€H(2) such
that #(x)=@w(x) for almost all xI'. Combining these two facts implies that
# satisfies (3.30.b). This completes the proof of Theorem 3.6.

3.4 The time dependence of solutions to some elliptic boundary value problem.
In this paragraph, we consider the following problem:

@59 BunO=PyOBD), -, S+ AduD=Fu(®) in JXQ,
(3.59.b)x QuB6(®), -, Iuns(]=En(®) on JXI'.

for 0XM<N,, where JCI; N, is an integer [0, K—3];

¥ M -
Pyu(DLbo, -, w”“]:kgx ( kb >a"(0§Ato(t)wM+1—k+a’ZA”(i)afu7M-k);

QuOLio, -+, Wysr]= éo( b ){Via'fA”(t)ajﬁM—k+a’fB’(t)ajwM—k'*“a'fBJ(t)wMH-k} ;

Ixyal), Dwya(®), Fu®) and Zu(t) (0SM<N,) are given functions; dy(t), -+, ¥x,(1)
are unknown functions. The following theorem will be used in proving the
further regularities of solutions to (N) with respect to x.

THEOREM 3.8. Assume that (A.1)-(A.4) are valid. Let N, and N, be inte-
gers such that 0N, <K—3 and N,+2<N,<K. Then, there exist constants Ay
(0=MZN,) having the following properties: Let t be any fixed time in J. If
Ju€HY=H%Q), gye HY» XTI 0SMSN), by €HY YD) (=1, 2),
then (3.59) admits a unique system (fo, -, Dy )EH Q)X -+ XHY>"¥1(Q) of
solutions having the estimate:

Ny 2 Ny -
(3.60) Eo”ﬁMuNz—M_g C{ z§="i ||77N1+z”Nz—Nl-L‘l';z_lzo(”fM”N2-M—z‘*'(@M»NZ-M-(a/z))}

where C=C(A, -+, An,, 01, 82, MK), Ms(K)).

Furthermore, in addition to what we have assumed, assume that N,+3<N,
<K If Ju®eX Va3 (], ), gy Xt Vet-6m(], ) (0SMZN,), dy,nl)
eX1M NNy ([0 Q) (I=1, 2), then (3.59) admits a unique system (#o(1), -, D (1))
eX1LVa Y J K - X XN N[0 of solutions satisfying the estimates:

Ny 2
(3.61) S 105u Dl v pese-r SC 33 31025, 0tD w111
M=1 h=0 =1

» R
+MZ=0(”aszM(t)”NZ—M—h—2+<(a?gM(t)>>N2—M—h—(3/2))
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for any t=] and k=0, 1, where C=C(y, -, An,, &, 82, MAK), Ms(K).

ProoF. By induction on N, we shall prove the first assertion. When N,;=0,
(3.59) can be written as follows:

(3.62.2) — 3, (AYE)0,80)+ Abo=Fo—s+0:(AV()D;) on 2,
(3.62.b) vi AU B+ BI1)3 9y=E0— B'(t)3, on I.

Since [ AYD)m x 1 SM(K) and [AYDl ki +(B W) knr-am=Ms(K) for any
te] (K(n)y=max [K—1, [n/2]+2]), if the right-hand sides of (3.62.2) and (3.62.b)
belong to HV2"%(Q) and HY1~¢/>(I"), respectively, then by Theorem 3.6 we see
that there exists a 4,>0 depending only on 3, 8., M(K) and My(K) and inde-
pendent of t=] such that for any 1=4, (3.62) admits a unique solution #,&
HY2() and

(3.63) ol v, < C LIl Foll wpmat€BoY oo cormr+ 152l wy-e
1B AEYI s+ (B i p-carnr}

where C=C(Aq, &, 02, M(K), Ms(K)). Since 3, H"2'(2), applying (Ap. 1) and
(Ap. 3) with a=K, B=r=N,—1, we have

10:(AR@I ) w,-2 = CIAS Dl 191l w15
(B)0:) Ny s = CAB OV k-l Ball vy

From this it follows immediately that the right-hand side of (3.62.a) and (3.62.b)
belong to H¥2-%(Q) and HY2~®/>(I"), respectively. And then, noting (3.63), we
see that the first assertion is valid for N,=0.

Now, let us assume that 1<N,<K—3 and that the first assertion is valid
for smaller values of N,. Then, for any N such that M,+1=M<ZK, JQ‘ME
HY-M-2(0Q) g ,cHV-¥-6() (0SM<N,—1), oy, €HY"1(Q) and oynE
HY-V1-1(Q), there exist constants Ao, -+, 4x,-:>0 independent of Fo, B, Oa
and @y 4 such that there exist s HY YD) 0XMZLN,—1) satisfying the equa-
tions (3.59.a)y and (3.59.b)y (0<M<N,). Furthermore, these solutions are
determined uniquely and satisfy the estimate:

Ni-1
(3.64) 2 NDall v -u=Clllow, Iv-wy, H 10w il yow -
H=0

M-t
+ MZ]Q W f el y-p-2 B D w-sr-carr)}

where C=C(A, =+, Ax,-1, 01, 02, M(K), Ms(K)). Let us denote solutions, ob-
tained by putting fxy=8x=0 O<M=N,) and dy,..=0, by Ry=Ry(y,). And
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also, let us denote solutions, obtained by putting in,=0, by SM=SM(fa, I f;vl_l,
&o, =+, Bny-1, Dxy+1). Since the equations are linear, the uniqueness of solutions
implies that each Ry(dy,) is a linear map from H¥-¥1(Q) to H¥-#(Q). Further-
more, by (3.64) we have

Ni-1
(3.65) 3 1Rulw)lv-wSClow,lvon,;

Ny-1 - =
(366> szo ”SM(fO) s le—ly gm T gNl—l) 5N1+1)HN—M

Ny
SCldwmlly-wy-1+ M2=0 f wll w248 ) w-m-caron)}.

Here, C=C(4,, -, ANy-1, 01, 0o, M(K), Mg(K)). Note that general solutions 7
can be written as follows: dy=Ry+Sy. Substituting 7, 0<M<N,—1) into
the equations: (3.59.a)y, and (3.59.b)w,, we have the equations for unknown by,

as follows:

(3.67.2) — Py (D[ Rox,), =+, Ry 0w, By, 014+Ayvw,=Fo in 2,
(3.67.b)  Qw,O[R@w)), -+, Ry,sBw), By, 0]=F on I,
where

(3.68.2) Fo=Fy,—0nat+Py,(O[Se, =, Sy, 0, By,i;

(3.68.b) Fo=gx,—Qu,®So, =, Swy-1, 0, By, 111

Our task is to find a solution Iy, €HY2" V(). As a first step, by the varia-
tional method we prove the existence of a weak solution v, €H'(2). Keeping
this in mind, let us consider the following variational equation:

(3.69) Vo, @al=(F o, @)+<{Fr, &> for any acH Q)

where

(3.70.a) V.[9, al=B;[t, 4, al—C\t, 9, #)+C.@, b, i)

(,70.b) Cu(t, 9, @)=N,(0.0:A*t)D), @)+ (Py )[Ro@), -, Ry, (@), 0,0], @);
(3.70.c) Co(t, 9, @)=N {8, B"(1)D, )+<Qx [ Ro(®), -+, Ry, @), 0, 0], @>;

B, is the same bilinear form as in (No. 14). Here, note that Py (OLR(@), -,
Ry @), 3, 01 =0:(A“(1)3,5 + N,A*(t)9) + Py (D[ R:®), -, Ry,-:(®),0,0] and
Qn,(OLR(@), -+, Ry,-19), 9, 0] = v; A¥(t)3,6 + BX(1)0,5+ N2 B°®)o + Q v () Ro(B),
<, Ry, (9), 0,0]. Let us prove that V; is coercive for large 1>0. For the
notational simplicity, we shall use the same letter C’ to denote various con-
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stants depending on Ao, -, An,-1, 01, 02, M(K) and Ms(K). To estimate ¢, and
C,, we use the following facts: Let L be an integer €[1, N,—N,]. If 9
H4X(Q), then

(B.7La)  [0:0:A*WD)| L1+ | Py (DLRo(®), +++ , Ry -1(D), 0, 0]l 21 =C'|ID]I2 5

(3.7La)  (@:B°M)0)1-ciey+{Quw (ODLR®), -+, Ry,-1(8), 0, 01)r-c1y< C'[[8l .

In fact, since N,+1<N,+L<K, by (3.65) with N=N,+L we know that
Ny-1

(3.72) Mgo IR @) vysr-=C' |81

Hence, letting 1<k<N,, applying (Ap. 1)-(Ap. 3) with a=K—Fk, f=L—1+%k
and y=L and using (3.72), we have

(3.73.2) 10:{0 AROR vy 41- 2@ H 21 = C' 0]z ;
(3.73.b) 10:{0t AY(0)0;R 3y - e @}z =C' 115
(3.73.0) (W0t AYO0;R 3 - 4@ 1- iy = C'lI] 25
(3.73.d) (0:BY(1)0;R wy-s@Nz-ar>=C' 10l
(3.73.¢) (B (DR N y1- @ z-am=C'l1olz,

where we have put Ry, (#)=9% for the notational simplicity. In particular, by
(3.71) with L=1, (No. 11), (No. 12) and (No. 12.b), we have

(3.74) |Vil8, all =C'lgll:llall, for any 9, acH(L).

Recall (No. 16). Namely, we know that B;[t, &, #]=6,[9||? for A>J.. On the
other hand, by (No. 12), Schwarz’s inequality and (3.73.b) and (3.73.a), we have
for any ¢>0

(3.75.2) 1Ci(t, 9, )| SC'|o]l:l1olo=elld|F+{(C")*/4e}|D]F .

And also, noting Corollary Ap. 4-(2), by Schwarz’s inequality and (3.73.b) we
have

(3.75.b) [Cot, B, D)| S C'(aN=C'{eldl}+C(e, n)|lI3}.

Combining (No. 16) and (3.75) and taking &>>0 so small, we see easily that there
exists a A°>0 depending only on Ao, **-, An,, 0;, 0:, M(K) and Ms(K) such
that

(3.76) Vo, 91=06,/2)18)? for any s€HY(2) and 1>AV,

Combining (3.74) and (3.76) implies that V; is a coercive bilinear from on HY(2)
XHY Q) for A>AM,
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Now, we shall prove that
(3.77) IF ol wy-y-et(F r)wyeny-cm<C' 4
where
2 Ny

A= z=21 H11N1+z”N2~N1-z+M§0(||fMHNZ-M-2+<(§M>>N2—M-<3/2)) .
Recall the definitions of Fp and Fp (cf. (3.68). Applying (Ap. 1)-(Ap. 3) with
a=K—Fk, f=N,—N,—1+k and y=N,—N,—1, we have for 2<k<N,,
(3.78.a) [0:0*AXDS vy 41- ) Wy e SCM(E Sy 1| Wge v 148 5
(3.78.b) 1040 A¥®)0,S vy - Wy, -2 S CM (KOS w -#llwy- 4 5
(3.78.0) (it AY)0;S v - 1) N p- -y SCM(K)IS vy el wy-m 48
(3.78.d) §04BH(1)0;S ¥ -1 Ny~ 1~y SCMg(K)ISn -l vy 5,425
(3.78.¢) (OB (DS y yr1-1) N y-m— 31 SCMGEOS v 415l -y 148
And also, applying (Ap. 1) and (Ap. 3) with a=K—1, f=y=N,—N,—1, we
have
(3.79.2) 10:0. A8y 4 )| vy 2 SCM(E Dy 41l -1
(3.79.b) (0: B 0w, e Ny-N - i = CM(K) 0w 1l vy vy -1 -

Combining (3.78), (3.79) and (3.66) with N=N,, we have (3.77). In particular,
since N,—N,—1=2, applying the well-known Lax and Milgram theorem to
(3.69), we see that there exists a unique # satisfying (3.69) provided that 1>,
Furthermore, combining (3.76), (3.77) and (3.69) with #=0, we see that |7, =
C’A.

Now, by induction on L&[1, N,—N,] we shall prove that d=H'(2) and
that
(3.80) IolzsC 4.

As has been seen, we know that the assertion is valid for L=1. Thus, we
assume that 2< L<N,—N,, s€HY () and 7)., <C’A. Let us prove that
J=HLR) and (3.80) is valid. Keeping (3.67) and (3.69) in mind, let us con-
sider the boundary value problem:

(3.81.2) —3:(AY8,w)+Aw=GCo in Q,
(3.81.b) v AY)0,;0+ B8, =Gr on I,
where

G o=F g+ N33, A®®)0)+ Py (DL Ro(®), -+, Rav 1), 0, 01;
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Go=F g— N3, B*(tys—Qn,()[Rs®), -+, Ry, (), 0, 0].

Since L—2<N,—N,—2 and L—(3/2)<N,— N,—(3/2), by (3.71) and (3.77) we know
that GocHL %) and GpreHL-®>(I"). Furthermore, we have

(3.82) I1G allz-2 4G rYr-m=C'4.

Hence, applying Theorem 3.6 to (3.81), we see that there exist a 2>0 depend-
ing only on 8,, 8, M(K) and Mg(K) such that for any 2>4®, (3.81) admits a
unique solution #@ having the estimate:

(3.83) l@l.<C(L, 4, 8,, 82, Mu(K), Ms(K))C' 4.

Final task is to prove that @=d for large 1>0. Since weH(Q)CH*(Q),
multiplying (3.81) by @, integrating the resulting formula and using (No. 9), we
have

(3.84) Bi[w, a]1=(G g, @)+<Gr, @) .

Since (G, #)=(F g, 2)+C\(, 9, &) and <G r, ay=<F r, a>+Cx(t, 9, &) as follows
from the definitions of Gg and Gr and (3.70.b and c), combining (3.69), (3.70.a)
and (3.84), we have

(3.85) B;[w—d, #]=0 for any #cH'(Q).

Hence, putting #=i—% and using (No. 16), we see that @=¢ provided that
2>08,. Summing up, we have obtained that s H*(2) and (3.80) is valid pro-
vided that A=max (8,, A, A®). Accordingly, if we take Ay,=max (A, 1%, 3,),
then we have the first assertion of the theorem.

Now, we shall prove the second assertion, i.e., the dependence on ¢ of solu-
tions. From the first assertion it follows that for each t=J (3.59) admits solu-
tions dy=HY>¥(Q) (0LMZN,). From now on, we write dy=0y(). First,
Ix()eC(J, H¥>"(2)) OZM<N,). Lett and s be any points in J such that
t#s. Putting @, =0,)—dy(s) for 0OSM=<N,+2, by (3.59) we have

(3.86.a) Warsa— PO Wo, -, Ways:1]+AuWa

=1 u(t)— T au(8)+(Poc(t)— Pu(SNIDo(S), -+, Barsa(s)] in 2
(3.86.b) Qu(O)[Wo, -, Ware1]

=8 u(t)— & u(s)—(Qu(s)— Qu(t))[Do(s), =+, Dass(s)] on [’
for 0SM<N,. Applying (3.60) to (3.86) implies that
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Ny 2
B8 S IouO= 3wy, w=C{ Z 10w, O—0,5( vy,

Ny .
+M2=o(”fM(t)'_fM(S)“NZ—M—z+<<gM(t)_gM(s)>>N2-M—(s/2))+R(t: 3)}-
where
R(, s):§0(”(PM(t)_PM(S))[ﬁo(S), oy Oui(8) Il wp-a-n

H(Qu(D)—Qu(NLDS), -+, Dysr() ¥ y-m-carer) -
Recalling the notations (No. 3. a and b), let us put
(3.88) Uut, s)=[PO)—P(8)]w.x-1; Uslt, s)=[P(t)—P(s)| Q)= Q(s)]s. x-2.1+
Applying the mean value theorem to U. and noting the definition of Lipschits
continuous functions, by (A.l) we have that

(3.89) U(t, ) SMo(K)lt—s|; Us(t, s)SMs(K)|t—s].

On the other, by (3.60) we know that

N
(3.90) S 5u(S)ly,-usCA,
where
2 Ny oo
A'= z=21 |On 41 lo,Nz_Nl_l_J'l_Mgo(lfMlo, No-t-2, 0S8 MD0, No-M-ca125, ) «

Applying (Ap. 1)-(Ap. 3) with a=K—k—1, B=N,—M—1+4Fk and y=N,—M-1
(0£kE<MZN,), we have that

Ny+1
(B.91) R(t, $)SCLUa(t, $)+Us(t, 9} 23 10u(S)lvp-u=CLUSAL, )+ Us(t, A’

Here, we have used (3.90). Combining (3.87), (3.89) and (3.91), we see that
SueC(J, H¥="2(Q)) for 0SM<N,. Furthermore, (3.61) follows from (3.60)
when k=0.

Finally, we shall prove that d4(t)eCY(J, H¥>V1¥#(Q)) for 0SM=N, If
iy X e M-y [ Q) applying (A.7)-(A.9) with M,=K—2—Fk, My=N,—M—2+F
and N=1 and noting that M,+M,=K+Ny—M—4=K—1>n/2 (M+3<£N,+3
<N,), we see that Py(®)[#:(2), -, usa()IEX"(J, 2) and Qu(O[0o(t), -+, Dayar(D)]
eXxt12(J, I'). Thus, differentiating (3.59) once in ¢ and putting 0.8y(t)=1 u(?)
(0<MZN,+2), we have

(3.92.2)y W a+2(8)— PuLWo(D), -+ 5 Warsa(D)]
=0, f u(O)+Pu®)[Do@), -, Duaa(®)] in JXQ,



Neumann problem 321

(392b)M Qu(t)[wo(t), ey wM-H(t)]:
0.8 u()+Qu(D[Do@), -+, Dyaa(®]  on JXI7,

where

¥ M ; .
PO, -+, Baend= 2, el A Obsar- s +8 A0 Dun)

. . M M e,
QO3 -+, unl= 5, ) edk A B
k=0
+0¥ 1 BI)0 By—x+04 B ()0 pr41-2)-
From this point of view, first we shall prove the existence of solutions @x(t)E

C°(J, HY>"¥-1(2) 0<MZN,) where @y +1()=0:0x,.()EC(], HYe=N1m1=3()) are
given (/=1 and 2); secondly, we shall prove that

N
(3.93) lim 53 2, (D= DOy -1=0
-0 M=0

where Zy, 1:(0)=0u(t+4t)—0 4 ())(4t) ™ — W 4 (2).

To prove the first assertion, we use the part already proved of the second
assertion of Theorem 3.8. Applying (Ap. 4)-(Ap. 6) with a=K—-2—k, =
N,—M—14F and y=N,—M—2 and noting that &}{"'A¥H)C(J, H***(Q));
FHBUHECJ, HE-CD- (M), by, x(t) and 9,0x-(t)ECY(J, HY2 ¥-1"4(Q)) (i=
1, -, n; 1=0, -+, n; 0SESMZN,+1), we see that Py(O[d«t), -, Iyn(]lE
C(J, HY=>"¥-%Q)) and Qu®)[5o(®), -, dun(DISC(J, HY2M-(I")) for 0<M
<N,. Furthermore, we have

(3.94) ;4]:0{||P1fl(t)[ﬁo(t); o i g s HEQH®), -+, DaraO I v y--ore5}

Ny+1
SC{MAK)+Ms(K)}Y 23 103Dl vy -

Hence, there exists a unique system (i,(t), -, Wx,())EC(J, HY2"¥17Y(Q)) of
solutions to (3.92) having the estimate:

Ny 1
(3.95) D EROTRELD- R b1 O P

Ny N
+ 21087 Ol -2 s H OG-}

Here, we have used (3.94) and (3.61) with 2=0.

Now, we shall prove (3.93). For the notational convenience, we put [f]m(t)
=(Ft+4D)—FOX Aty —8,f(t) and f1| 4()=F(t+4t)—f(t). Combining (3.59) and
and (3.92), we have
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(3.96.2) Zuse, 26— P20, :(2), -, Ewrsr, 22T+ A2, 12(8)
=[Fula®)+Ho y. o) in 2,
(3.96.b) Qu®)[Zo. 2D, +* , Zsar, ss®I=[Eslse+Hr u. 2) on I',

where §N1+z,4t(t)=[17N,+z]Az(f) (=1, 2);

M M )
Ho.ur. )= 2 ('}, )0l 1AL 0@ scss ot 4D~ A™ Db -] ae)
[0 AV ] ()00 -4 (t+ A1) =B A0 0 30-1 | 2D} ;

» M .
Hr oy, (D)= ijo( b )[Pt{[a'fA“]At(f)ajﬁM_k(t+4f)-a’f“A”(t)aﬂ7M-k [ 4:(%)

+[0:B7] 4(1)0,0 - s (t+A)—04 BHE)0 D 1 -1 | 4:(F)
F[0B 4D s41-2E+ A =05 B ()i pr1-2 | 2:(8)] -
Then, applying (3.60) to (3.96), we have

Ny 2
(3.97) o EPRO) PRRRETel ][ RG] P
Moo o
L[ O] PR (7 % P P

+1Ha, st 4Ol wyse-s-HCHE ot 4O - e-co)}

Sincedy ()E X ¥e-N1-=Y [ 0, Fy()e X1 Ve~ M- ] Q)and gy X' Ve H-0m( ] I
for [=1,2 and 0<MZXN,, the first, second and third terms in the brace of
(3.97) tend to zero as 4dit—0. Since FA¥H=CYJ, HE¥Q)); 0:B'(H)=
CY(J, HE-GID-KYy s Gyer 2(t) and 0,0, ) CHJ; NV2~¥-1+4(0)) we see that

(3.98) 1005 AY 14D x-2-2—0; (LB sk -c5120-2—0;
19a41-2) 2:ON ¥ p- 14205 10051 | 2| wy-r-142—0

as 4t—0. Applying (Ap. 1)-(Ap. 3) with a=K—2—k, f=N,—M—1+k and
7=N,—M~—2 and using (3.98) and (3.90), we see that

(3.99) 1 Ho,x, 4:@)] Ng-M—S—_)O ; {Hr.u, 26D N y-m- sr2y—0

as t—0 for 0ZXM<N,. Combining (3.97) and (3.99) and letting 4i—0 in the
resulting estimate, we have (3.93). Since (3.93) means that 8,3() exists every-
where in the strong topology of H¥2 - Q) and 8,0 4(t)= i »(2)= C°(J, HY2~¥-1(Q)),
we see that d,(HeXv¥-¥-Y(J Q) for 0SM<N, Furthermore, substituting
0.0 y(t)=1 4(t) into (3.95), we have (3.61) with £=1. This completes the proof
of the theorem.
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§4. The energy inequalities of higher order

In this section, we shall prove Theorem 1.3. First, we assume that # &
C=(J, HX(£)) where J=[0, T—e] and ¢ is any number e, T). In view (Ap.
10), we can differentiate (N) L—1 times in ¢, Thus, we have

(4.1.2) P(O[OF a(t)]=0E"1F o(t)+F g.1+(t) in JX£,
(4.1.b) Q@orat) =0 f r(t)+Fr 11() on JxI,
where

L-2

Fo.o0= "5 (57 Yoop a%ata+ 0t~ A0 dact)
L2/ —1 L-1-1 Aij 17 L-1-11] %77
Fro.0= ,;0( l ){"’iat AU(1)0 04 (t)+0F "t BY(1)0,0ta (1)
+OF BB A} -

Note that the equalities in (4.1.a) and (4.1.b) hold for almost all teJ as elements
in L¥£) and HY*[), respectively. Applying (Ap. 1)-(Ap. 3) with a=
K—(L—1—1), B=L—I—1 and y=1, we have for almost all te]

310,008 AROOUDH S C 33 107 A Ol k-cos-0l 040Dl -cor>3
(uidF - A (10,00 (D)1= C izf.} 08t AY (D k- cz-1-0[100 D L-r41> 5
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where 0,=0,, From (No. 2.a) it follows that |OE AR k- cz-1-13»
(@F " BH (Y k- cr-1--aim =Ms(K) for almost all ¢t/ and for any /=1, -, n;
k=0, 1, -, n; (=0, 1, -, L—1. Combining these results, we see easily that

(4.2) IF 0. 11 ON3HCF £, )22 < C{MLK)+Ms(K)} D a1}
for almost all ¢/, Applying Theorem 2.1 to (4.1) and using (4.2), we have

(32)  EG, oFa)<2e ™ B, o alo)+ O IDMas)lids

+ O (1987 ()38 T
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432) B, 0 a@)=ec ™| BO, 9 a0)+ T ID4a(0)13

1/2

+{, 0087 Fo()i+@ 7 roMtmds +{ 1 D7a(s)lsds)

x{[ 108 7 o s+@F17 (s W) +[ Dt ],

for any t<J. In the present proof, C(T) denotes various constants depending
only on T, 0,, 0z, L, M(K) and My(K).
Now, we shall prove that

43.0)  ID=OIS CD{ID O+ 1F a1t st <Frdfossmtn

+ UoFF as+(@' 7 r(sNids | for any 1.
If follows from (4.3.a) and (No. 22) that

L
(4.4) =
e

4

I0kDl12-1 < COHID= 2O+ | DFals)lids

+{{00E7 a5+ @ F rMtmds ) for any te,
4.5) 18kl < C {1 (D -0et+404F r(t)z-corer—t
+ 3 105 1o+ PP (D)}

for teJ and 0=I/<L—2, where C=C(3,, 8, L, M(K), Ms(K)). Let0<I<L—2.
Differentiating (N) / times in {, we have

4.6.2) —0(AYW)I,@La())=0L] o(H)—0F *a(t)+( AV a(t)+C o..(t) in 2,
4.6.0) v A1, a(t)+ B (1)9,041)=8f r(t)— B3+ a(®)—Cr.(t) on T,

where

-1, . .
o=l B (5 )adar Araa+a Aadan) for iz1,

0 for 1=0,

51 )i 400 praco+or-+ B staco)+ 3 B0 an)
Cra={ =o\F for 121

0 for /=0.

Since #=C=(J, HX() and 0=/ L—2<K-2, it follows from (Ap. 10) that the
equalities of (4.6.a) and (4.6.b) hold in the sense of L*2) and HY*[") for all
t<H, respectively. Applying (Ap. 1)-(Ap. 3) with a=K—(—%), B=L—-2—*F
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and y=L-—1—I, we see easily that

(%)) 1G 0.1l z-2-1 4G (B 1-carny-1 < C{MK)+Mg(K)} | D))o
for all t=J. On the other hand, we have

(4.8)  [0:(A*@®0 @) 1-2-1, BT A(E)) L-2-1
S C{MAK)+Ms(K)}H 0 3@ | -1+ I1DE"a() o} for all te .
In fact, we can write symbolically
[0:(ARBO aE)l| L2 = zé |AR@®DE 19 a(t) o

+0(L) 5 5| DE- v AR D A, -

i=1 N=0

~

By (No. 13.b) we have
IARODE 0 a@) o S || AR |eo, o105 (D) 1=t S M (K05 (8] -1 -

Let 0SN<L-2—I. Applying (Ap. 1) with a=K—(L—1—[—N), f=L—1—
(N+4{+41) and y=1, we have

IDE~1-1N AR(ODYo a®)lo < CMs(K) [ D= a(®)l)o -

Combining these facts, we see easily that the first part of (4.8) is valid. In
view of Corollary Ap. 5, there exists B (t)eY*-'XI, 2) such that Bl.(H)=
B°(#) almost everywhere on /" and | Bly| k1.1, 1S C<{B* k1,112, ;I <CMs(K). Since

(B @O a(t)) 1-cs12>-1=( B ADY L ca12>-1 S C| B0 a() | 1-1-1

as follows from Corollary Ap. 4-(1), by employing the same arguments we see
that the second part of (4.8) is valid. Hence, applying Corollary 3.7 to (4.6)
and using (4.7) and (4.8), we have (4.5). Repeated use of (4.5) implies that

(4.9) g “a%ﬁ(t>“%-z§C{LL§ Haéfa(t)”L-z-l+<<aff1"(t)>>z-ca/2)-t
L —
+ 33 18wz + D> a)]s)
=I-1

where C=C(L, 8, 8;, M<(K), Ms(K)). Since
1D a@ = 1D+ aO)li+2{ 1 D acs)lids

combining (4.4) and (4.9), we have
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(4.10) [Drat)|i< I]C(T){llﬁLﬁ(O)HH lfg 122,000, 00F<F rDEozirn 003

+{ 108 7o) s+4@1 7 rsmtds +{ 1D acs) s}
To get (4.3.c) from (4.10), we use the well-known

Gronwall’s inequality: Let a(t) and b(t) be non-negative functions in L'(a, b).
If b(t) is non-decreasing and the inequality: a(i)gcgta(s)ds«kb(t) holds for any
ts(a, b) with some constant ¢ independent of t, then a(f)<e®*“~®b(t) for any t<

(a, b).

Applying Gronwall’s inequality to (4.10), we see easily that (4.3.c) is valid.
Furthermore, substituting (4.3.c) into (4.3.b), we have that the estimate (b) of
Theorem 3.1 is valid for any t=J and #=C=(J, H{(2)).

Now, we shall remove the assumption: #<C>(J, HX(2)). To do this, we
use the following lemma.

LEMMA 4.1. Let L be an integer <[2, K] and pst) be a function in
C%([—2, —1]) such that Sp(t)dt=1. Put ps(t)=0""p(07"1), vg(t,x)zgp,;(t—s)v(s,x)ds

and I, x)=(av)s(t, x)—a(t, x)vs(t, x). Then, the following four assertions are
valid.
1° If a=8%([0, TI1X3) and veY LY [0, T), 2), then |I3|1-2.1.00—0 and

S:uagm(s)ngdwo as -0 for any t£(0, T).

2° If ac B0, TIXI) and v=Y 2220, T), I'), then {Isdr-s'vs,0,0—0 and
S:<<a§-11,;<s)>>';‘,zds—>o as 60 for any t<(0, T).

3° If acYE-230, T1, Q) and veY [0, T), D), then |Is|z-n.1.c0.0—0 and
S:naf—lla(s)nwsw as 60 for any t<(0, T).

4 If acYE22(0, T1, ) and veY =220, T), I'), then <Is>r-s1sm.t0.17—0

and S:{(@%“Ia(s)))%/zds—m as 0—0 for any t<(0, T).

Defering the proof of Lemma 4.1, we shall complete the proof of Theorem
1.3. Let the notation vs; be the same as in Lemma 4.1 and put #;=*((v))s, -,
(va)s) for 9=%(vy, ---, vn). Let 8,>0 be a number<(T—e)/2. Note that ;=
C=(J, HXQ)) for 0<d<d, and satisfies the equations:

(4.11.2) P(t)[as(t)]=(F 2)s()—Rsai(t) in JXQ,
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(4.11.b) QWLast)I=(7 r)s®)+Ssa(t) on JxI',

where

(122)  Roi)y= 20 A0 a0 —(A DD}

(4.12.b)  S;a)=vi(AY()8 i s(t)— (A8 1i8)s(1)+ E BY(1)0,5(t)—(B'0.@)s(t) -

Applying (4.3.c) to (4.11) implies that

@13) 1D OB CD{ID a0+l Lo+ FIdEnim i
+{ 198 M+ @F P PN s+ | ot Eoaotm.

(o o | (108 Ro()3+ (@ Sa(s)m)ds)

As was stated in Remark after Theorem 1.3, we know that 7 o= X220, T), 2),
freXxt2anQo, T), I'), and 8477 o(t) and 8+~*fr(t) are L* functions in (0, T)
having their values in L*Q) and H'*(I"), respectively. Thus, we see easily
that

1D s—a)r)3—0; 1(F @ds—F 2l z-2.0.t0.00<(F Vo= F rPr-s.110.r0.e10;
(4.14)

[0 @)= F XSO F o= )N d 50

as 0—0 for any r<[0, T) and t<(0, T). And also, applying Lemma 4.1 to (4.12),
we have easily that

[ Rt} 1-2,0.t0,e3+<Ss#> 12,172, 10,030 ;
(4.15)

[0 Ro(s) 3@k S5 M)ds—0

as 6—0 for any (0, T), because 9, @ Xt°([0, T), Q)Y+ =Y[0, T), £) and
oumeXr2vy[o, T, Y =440, T), I') for {=0, 1, ---, n (the second asser-
tion follows from Corollary Ap. 4-(1)). Letting 6—0 in (4.13), using (4.14) and
(4.15) and noting that ¢ is chosen arbitrarily, we have the estimate (a) of Theo-
rem 1.3. In the same way, we can obtain (b) of Theorem 1.3.

ProoOF OF LEMMA 4.1. The assertions 1° and 2° were essentially proved by
Ikawa [2]. Noting Corollary Ap. 5, by 3° we have 4° immediately. Hence,
we will prove 3° only. Noting (Ap. 15) and (No. 2.b), we have

L-2

Lol
[l z-2n000= 20 2 (k>}(6’za6£"’v)5— lfaaf_kvﬂo.L-l-t,[o,cJ-

=0 k=0
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Let 0<d<0,<(T—1)/2. Applying (Ap. 1) with a=K—~1—k, B=L—1—(—Fk)
and y=L—1—/, we have

1(0%ad}~*v)s(s)—0%a(s)ot *vs(s)l L-1-1

=C Sup{”a]tza(s—r)_afa(s)”K—x—k 10=s<t, re[(—2, =11} vl oo tomm -

Since dta(s)eY X240, T), D) CX*X-1-¥[0, T), ), the uniform continuity of
d%a(s) on [0, t+28,] ([0, T)) in the strong topoloty of HX-'-*(£2) implies that
[ 15} 1-2.1.00,e3—0 as 6—0 for any t<[0, T).

Next, we shall prove the second assertion of 3°. Noting (Ap. 15), we have
for any multi-index @ such that |a| <1,

a3 1e= 5 5 (1 )(§ @eaiads P01 1uy(s)—080a(s) @0+ o).

First, we consider the term where 1<|8|+/<K—1. Applying (Ap. 7.a) with
M,=K—1—|8|—!, My=I—|a—f]| and N=0, we have

10:{(840%ads~PaE 2~ ')y(s)— 0804 a(s)(@%POL 2~ )a(s)} o < T ¥(s)+T(s)
where
I3(s)=|(0504+" a02PaL~*~tv)(s)— 0205+ a(s)(@%~PAF 2~ )a(s)llo ;

I3(s)=(040:ad2PoL " ~"v)s(s)—0ka(s)(@% AL~ )s(s)]lo -
Applying (Ap. 1) with a=K—|B]|—I—1, B=I+1—|a—p]| and y=1, we have

é(S)éCgpa(s—r)llﬁ""ﬁé(a(r)—a(S))lIollﬁL“v(r>!lodr-
Then, by Schwarz’s inequality we have

[.zxrassc {[{ownD==Ditats—ar—atsnisdr |

Sp(r)IIEL"v(s—Br)H%dr}ds .

Let 0<0<0,<(T'—1)/2. Since veY 1[0, T), 2) and
(4.16) s—or<T provided that 0<s<t, —2<r=<-—1 and 6<(T—1)/2,

we have that Sp(r)llle‘lv(s—Br)}lﬁdrg]vlL_l_o‘[.,,T, (cf. (No. 2.a)). Hence we

have
[.15rds<C vl osnco.nro0)dr [ 155 DiCats—or)— a(splids

Since acYX-1Y([0, T), 2), D¥-*Diac L¥(0, T)x2). Noting (4.16), by the Rie-
mann-Lebesgue theorem, we have
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lim S:nb‘ff-lm(a(s—ar)—a(s))ugdsp(r):o for all r<R.

And also, we have
[{1D%-*D1(ats ~or)X— ao)lidsor)s4o(r)] 1D%*Dia(s)lds S L'R)
Hence, by Lebesgue’s dominated convergence theorem, we have
lim Sp(r)drS:nEK—ID‘;(a(s—ar>—a(s))]]%ds:o .
As a result, we have obtained
4.17.2) lim S: i(s)tds=0 for all t=[0, T).
Applying (Ap. 1) with a=K—|8|—[, B=I—|a—B]| and r=I, we‘have also
()= Cgpa(s—r)]lﬁK“D_;(a(r)—a(s))llollﬁL“v(r)llodr.

Employing the same arguments, we have
(4.17.b) lim S:1§<s>2ds:0 for all t<[0, T).

Now, we consider the term where |B8|+/(=0, i.e., the term: Jy;=(aw);—aws
where w=0%09L"%. Note that we L=([0, T), L¥R)). We can write 9; =]+ /:
where

L—-—Sar{pa(s—r)(a(s, x)—a(r, )N w(r, x)—w(s, x))dr;

J={osts—r¥atr, x)=its, w)ulr, x)dr(@ls, H=dals, x)).

Put Iis)=|/illo and Iis)=|Jll. Let 0=s<i<T, 0<8<(T—1)/2 and s—re
[—28, —0]. In view of Corollary Ap. 7, a(s, x)< 8*([0, T1x2). Hence, by the
mean value theorem we have

18, {ps(s—7)a(s, x)—alr, 2N} £|a|w 1. w.r1{p(s—7)+3" [ s—r || ps(s =)}
where pj(s)=81p’'(67's). By Schwarz’s inequality we have
K <Clal o[ p)dr) [pOws—0n—w(s)lidr

where p(r)=p()+Ir|lp"(*)|. Since we L=([0, T), L*( ) L*(0, TYX ), by the
Riemann-Lebesgue theorem, we have

Sznw(s—5r)—-w(s)||§ds,z>(r)—+0 as 0—0 for all 7R
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As also, we have

[Jots—on—wlidssr=a] o dspre LiR).

t
Hence, by Lebesgue’s dominated convergence theorem we have that So d(s)ds

—0 as 6—0. On the other hand, since [d(s—067)—a(s)]w, o< Cld(s—r)—a(s) k-1
as follows from (No. 13.b), by Schwarz’s inequality we have

13(8)2§Sl!w(s—5r)H%p(r)dr><Slld(s—5r)—d(S)i!%_Ip(r)dr .
Noting (4.16) and the fact that we L=([0, T), L)), we have

[15rds<Clwlonmn| {[ID5 ats—ar—DE-astotr)ar) ds
Since a(s, x)€Y*2([0, T], 2)CL=([0, T], HX-Y(Q)), DE'a(s, x)= L¥(0, T)X 2).
Hence, employing the same arguments mentioned previously, by the Riemann-
Lebesgue theorem and Lebesgue’s domined convergence theorem we have

lim S:dss ID%-1a(s—dr)— DE-a(s)|20(r)dr=0..

From this it follows that S‘ AsPds—0 as 8—0 for all [0, T). Combining

these results, we have

(4.18) lim g:ua, Ji(s)zds=0 for all te[0, T).

From (4.17) and (4.18) we have Lemma 4.1.

§5. An existence theorem of solutions to (N) in X*°([0, T), 2)

In this section, we shall prove

THEOREM 5.1.  Assume that (A.1)-(A.5) are valid. Then, for a given system
(dko, #,, fg, f]‘)EDZ([O, T)) of data, (N) admits a unique solution a< X*°([0, T), 2).

As a main step of our proof of Theorem 5.1, we shall prove

LEMMA 5.2. Let & be any number <(0, T) and put J=[0, T—e]. Assume
that (A.1)~(A.5) are valid. Let (ito, iy, fo, fr) be data in D¥J) such that #,&
H*(2). Then, there exists a unique a(t)=X>°(J, Q) satisfying the equations:

POLat]=Fot) in JXR; QWLat]=Fr{) on JxI,
d(0)=do and atﬂ(O)zﬁ, in -Q .

(6.1)
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REMARK. In our proof of Lemma 5.2 below, we use the existence theorem
of solutions to the problem for P,(f) and Q,(f) defined by (2.5) (cf. Theorem 5.3,
below). To do this, the compatibility condition for the operators P,(t) and Q,(2)
must be satisfied by (i, #, fg, f’p). By using the assumption: #,H*2), we
shall reduce (5.1) to the problem with zero Cauchy data and fp(O)zO on [,
where the compatibility condition for P,(f) and Q,(f) is satisfied for any ¢.

Deferring the proof of Lemma 5.2 and assuming that Lemma 5.2 is valid,
we give a

PROOF OF THEOREM 5.1. The uniqueness of solutions follows from Theorem
2.1. To prove the existence of solutions, it is sufficient to prove that for any
closed interval [0, T—e], (N) admits a unique solution #.€X*°([0, T—el, 2) to
(5.1). For, if we put #(t)=a.(f) for 0<t<T —e, since @.(t)=d. () for 0St<T—e
provided that 0<e'<e<T as follows from the uniqueness of solutions, #(f) is
well-defined, belongs X>°([0, T), @) and satisfies (N). Put J=[0, T—e]. In
view of Lemma 5.2, we shall prove that there exist sequences {iz.} CH*2) (k
=0 and 1) such that

(b.2.a) ldts—dt,),—0 and [@os—d@ole—0 as 6—0;
(5.2.b) v A(0)3 105+ BI(0)8 05+ B°(0)iss=F r(0) on 2.

If we know that (5.2) is valid, since (5.2.b) means that @,, @, f o and f r satisfy
the compatibility condition of order zero (cf. (1.2) with N=0), applying Lemma
5.2 implies that there exists a solution #;(t)eX*°(J, £2) to the equations:

(5.3.2) POlas®1=F o) in JXQ; QWlast)l=Fr@t) on JXI';
(5.3.b) #50)=i, and &,4;0)=#, in 2.

Applying Theorem 1.3 with L=2 to i;—#y implies that
1
| tho— it lz,o,ch(T)kgo Nt eo—ttrs |2z -

Combining that and (5.2.a), we have that {ds} is a Cauchy sequence in X2], Q).
Since [ is a closed interval, by the cmpleteness of X*°(J, ) we see that there
exists a limit #. of {i;} in X*°(J, 2). Applying (Ap. 1)-(Ap. 3) with a=K—1,
B=r=1, we have that IPOL o)~ &) 1o+ (QWOL () — (1) 1)1 < Cl| D*[its()—
@)1, for all t=J. Hence, letting §—0 in (5.3), we see that . satisfies (5.1).

Since H=(f) is dense in H(2), there exists a sequence {i,s} CH*(£) such
that the first part of (5.2.a) is valid. Let @, be solutions to the equations
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(5.4.2) —0,(AY(0)6,i05)+Aws;=0 in Q,

(5.4.b) v AY(0)0,@5+ B¥0);,05,=8; on I,

where g‘,;zfp(O)—uiA”(O)ajdo——Bf(O)ajz?‘,~B°(0)121,;. If 2 is chosen so large that
we can apply Theorem 3.6 with P*/=A(0), Pt=B%0), P{=Pp+=0 (;, =1, -,
n;I=1, -+, n+1), we know that (5.4) admits a solution w;= H¥Q) having the
estimate: ||@slls<C{&;):/. for each & where C is independent of 3. Since f’p(O)
=v; A"(0)0;i0+ B¥(0)0;it0+B°(0)i#, as follows from (1.2) with N=0, g;=
B°(0)(#,—,5). Then, applying (Ap. 3) with a=K—1, B=r=1, we have that
(&sd12=Cllit,—dty5l,. Since the first part of (5.2.a) is valid, we have

(5.5) l@s].—0 as §—0.

If we put des=#,+, then by (5.4.b) and (5.5) we see that the second part of
(6.2.a) and (5.2.b) are valid, which completes the proof of Theorem 5.1.
To prove Lemma 5.2, we shall use

THEOREM 5.3. Let I'=[—7/2, T+7/2]. Assume that (A.1)}, (A.2);. (A.4),
and (A.5); are valid, where (A1)} is the same assumption as in Theorem 2.2.
Assume that there exist positive constants 8, and &, such that (A.3);,5 is wvalid.
Let (ito, @, [, fr) be data in D0, T]) such that foeCX[0, T1, LXRQ)) and
fre CX[O, T1, H'*(I')). Then, there exists a unique i< X**([0, T], Q) satisfy-
ing (N).

Theorem 5.3 was proved by Shibata [9].

PROOF OF LEMMA 5.2. First, we shall reduce (5.1) to the problem with
zero Cauchy data and f,(0)=0on I". Put U(ty=d,+tit,. Then, the assumption :
@, H*Q) implies that U(t)e C=(R, H¥)). This assumption is used here only.
In view of (Ap. 10), we have that P()[TU)]1Y (], 2) and Q)[T(t)]eY - 2(J, I').
If we put Fot)=7o®—POLU®] and Fr=Frt)—QWLI®I by (1.2) with
N=0 we see that F r(0)=0 on I'. If #(#) is a solution to the equations:
POLINI=Fo@®) in Jx2; QWL®I=F () on JXI'; #(0)=8,5(0)=0 in 2, then
a4@)=Ut)+(t) obviously satisfies (6.1). From this point of view, it is sufficient
to prove Lemma 5.2 in the case where #,=#,=0; fg(t)eY"“(j, ) and fp(t)
GY!,I/Z(j’ F); ’

(5.6) fr(0)=0 on I.

The uniqueness of solutions follows from Theorem 2.1. Hence, we shall
only prove the existence of solutions to (5.1). Let P,(t) and Q,(#) be operators
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defined by (2.5). By Lemma 2.3 we know that P,(f) and Q.(t) satisfy all the
conditions of Theorem 5.3. To use Theorem 5.3, we must approximate fg and
f’r by functions smooth in ¢{. Recall that J=[0, T—e]. Put

f(T—e), t>T—e,
=1 fu®, 0<t<T—c¢,
F0(0), t<0,

for U= and I". In view of (5.6), we see easily that Zo(t)eY (R, 2) and
BHHeY (R, I"). Let p(t)eCy([—2T, 3T])) such that 0=p¢=1 and p(®=1 on
[—T,2T]. Put go(O)=pM®Zo(t) and gr)=p®Zr(). Then,

(5.7.a) oY AR, 2) and Zo@)eY ¥R, Iy;
(5.7.b) Goh)=0 for t&[—2T,3T] and Zr@®)=0 for &[0, 3T1;
(5.7.¢) Bo)=Fo®) and Zr®)=Fr@ for te].

Let x()eC([1, 2]) such that £()=0 and Sm(t)dt=1. Put

fva(t)=glca(t——s)g'y(s)ds for U=Q and I'.

where k,()=c¢ k(¢~'t). Since Zr(s)=0 for s<0 and x,(—s)=0 for s>0, we
have

(5.8) Frs(0=0 on I' for any ¢>0.

Obviously, we have
(5.9) Fo.)eCAR; LXQ) and fr.®)eCyR, HI),

where C3(R, X) is the set of all functions in C%(R) having its value in X.
Furthermore, we have

(5.10) |700=Balo.0nt<Fro=Erieinr
+{ 107 20—~ 2 DI+ @l F ro—Er)ONE)dI—0 a5 00,
From (5.7.a) and (5.7.b) it follows immediately that [Zgle.0.2+<&8re, /0.2
+{ (10.2 205 +@Zrt)tm)d1<eo. Thus, from (5.10) we have
61D 1Fesleost (Frodousat| (10,7 0, ME+@F ro@imdt <C

for any o<=(0, 2,) where X, is the same as in Lemma 2.3. In the present proof,
we use the same letter C to denote various constants independent of .
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Now, let @, be solutions in X%°([0, T], 2) to the equations:

(.12.2) PoW)[a,()]1=F0.(t) in [0, TIX2,
(5.12.2) Qi s®1=Fr.(t) on [0, TIXI",
(5.12.¢) #4(0)=0,i ,(0)=0 in 2.

Here, note that we use that #, is defined on [0, '] with respect to ¢ in prov-
ing that the limit of 4, belongs to X*°(J, 2) below. In view of (5.8) and (5.9),
applying Theorem 5.3 implies that (5.12) admits a unique solution d#,&
X*%[0,T], 2) for each ¢=(0, X,). Furthermore, using Theorem 1.3 with L=2
to (5.13) and noting (b) of Lemma 2.3, we have

(5.13) 1D%i, (I3 C;
(5.14) E4(t, 6,4,()<eC{E (0, 0,1 ,(0))+ Ct'/%}
for all t€[0, T], where E, is the energy norm for the operators P,(t) and Q,(1).

The main step of the present proof is summarized as follows:

LEMMA 54. Put J'=[0, T]. Assume that (A.1)-(A.5) are valid. Let ,(t)
be functions in X*°(J', Q) satisfying (5.12). Then, there exists a acsY®(J', )
such that

(5.15) liﬂ‘;l |#e—]1,0.5=0;

(5.16) #(0)=0,2(0)=0 in 2;

(5.17.a) s ()—0(t) weakly in HX(R2) as 6—0 for all te]’;
(5.17.b) 0,1 ,()—3,a(t) weakly in H(Q) as 6—0 for dil t=]';
(5.18) QOLa®)]=8r(t) in the sense of HY* ") for all t<]’.

Furthermore, if we put

(6.19) 0(t)=8 o()+0,(A*(1)3.u(t)+ A*()0;i(2)) ,

then

(5.20) Fo(H)—D(t) weakly in L*2) as a0 for all t=]’;
(5.21) Lu(t)=9(t) for almost all t]';

(5.22) Jim {15()— 7 o) 3+ 8. a I3+ l1a(t)13{=0 .

Deferring the proof of Lemma 5.4, we shall prove that the % in Lemma 5.4

belongs to X*°(J, 2) and satisfies (5.1). From (5.19) and (5.21) we see easily
that
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(5.23) PM®O[a@®)1=g0() in the sense of L*2) for almost all t<[0, T].

If we prove that a=X*°(J, 2), by (5.18), (5.23), (Ap. 14) with L=2 and (5.7.c)
we see that # satisfies (5.1). Hence, we shall prove that a=X>*(J, 2). Todo
this, we use the mollifier with respect to . Let p(t) be the same function as

in Lemma 4.1 and put ﬂa(t)=§p,;(t—s)12(s)ds where pi(s)=0"'p(07's). Since &€&

vee(J, QycL=(J', H¥Q) (J'=[0, T]), @;=C=(J, H¥(£)) provided that 0<d<
(T—¢)/2. Furthermore, noting (5.18) and (5.23) and applying Theorem 1.3 with
L=2 to #;—is, we have

(5.24) Vits—tig |30, 0 < C {1 D*(tho(0)— it (O))I3 45,5 }

where
Iy = [(Eo)&*(é—"a)a« lo,o. J+<(§I‘>6‘(§F)5' Do.1/2. g

+SJ(||ac((§9)a(f)*(§ 2)s INNIEHE0E r)s(t)— (8 r)a (1)N310)dt
4+ Rs#—Ro @ 0,0, 5 +<{Ss0—S5 %0, 1/2. 4
+SJ(I|9:(R512(1‘)—R5'ﬂ(i))”%-i-((ac(saﬂ(t)—sa'ft(f))))f/z)dt .

Here, Rt and Ss;z are the same as in (4.12). Since #€Y?>°(J, 2), d,ac
Yoy J, 2) for [=0, 1, ---, n. Hence, we can apply Lemma 4.1 with L=2. As
a result, noting (5.7.2) and applying Lemma 4.1 with L=2, we see that [; ;—0
as 0, 0'—0. And then, if we prove

(5.25) 1D*@0)~ s (0)o—0 as 8, 9’0,

letting 8, 8'—0 in (5.24), we see that {#s;} is a Cauchy sequence in X*(J, £),
which implies that the limit @ of {#;} exists in X2°(J, 2). However, we
already knew that @#Y2°(J, Q) X*°(J, £). This implies that #;—# in
Xv°(J, ). Hence, we have that a=weX>°(J, 2).

To obtain (5.25), it is sufficient to prove that

(6.26)  lim |30z =0 for I=0, 1 and lim 3#(0)—F2(0)s=0.
By (5.21) we know that a%ﬂg(O)ZSpg(—s)@ﬁﬂ(s)ds:gp(;(—s)i)(s)ds. Hence, by
(5.22) we have

[0t1s0)— F a(@lo= | 0= ) 885)— Faluds—0 a5 650,

where we have used the fact that supp p(—s)C[1, 2] (cf. Lemma 4.1). In the
same way, by (5.22) we can easily prove other assertions of (5.26). Hence, if
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we prove Lemma 5.4, then we can complete the proof of Lemma 5.2.

PROOF OF LEMMA 5.4. First, we shall prove (5.15) and (5.16). Since
(5.27.2) PO ts(O)— o (]=(Po(t)— Por N[dte:(t)] in J'XQ;
(5.27.b) Qo) —asO]=(Qs()— Qo Nt (D] on J'XI';
(5.27.¢c) G6(0)— 140 (0)=0:7,(0)—8:7i,(0)=0 in 2
as follows from (5.12), applying Theorem 2.1 to (5.27) and noting (b) of Lemma
2.3, we have
(5.28) LRI PWEL (T MO O RO
+(Q o (8)—Qu(sHLi o (s)IN312)ds
Applying (A. 1)-(A. 3) with a=K—1 and B8=r=1, and using (5.13), we have
[(Po: ()= Po(s) o+ ($)115+L(Q o+ ()= Qo(N e ()N = CUs, 4+ (s)
where
Us., o/ (8)=[Po(8)— P 5:(8)]eo, k-1 F [ Po(8)—Por ()| Qa(8)— Qor(8)]s. k2.1

(cf. (No. 3 a and b)), Substituting this into (5.28) and using (a) of Lemma 2.3,

we see that {#,} is a Cauchy sequence in X*°(J’, ). By the completeness of

Xto(J', ), we can conclude that there exists a limit a=X"°(J’, Q) satisfying

(5.15). In particular, combining (5.12.c) and (5.15) implies that (5.16) is valid.
Now, we shall prove that (5.17.a) is valid and that

(5.29.a) la@®).<C for all te]’;
(5.30.2) #(t) is continuous on J' in the weak topology of H*(8);
(5.31.a) la@)—a(s)|,<Clt—s| for all ¢, s€]’;

(5.32.2) aeL=(J', H@)nLip(J', H(2)).

By Pettis’ theorem, we know that (5.30.a2) implies that #(¢) is measurable in the
strong sense of H*(Q). Hence, (5.29.a) and (5.31.a) implies (5.32.a). (5.17.a)

implies that

la®l.= lirg(i)nf sl
Combining this and (5.13) implies (5.29.a). Since i#,()=X*°(J’, ), by the mean
value theorem we have that ||i,(f)—#.(s)],=| t—slS:Ha,ﬂg(s—i—ﬁ(t—s))ll,dﬂ. Com-

bining this and (5.13) implies that [l@.(0)—i.(s)[,=Clt—s|. Hence, (5.31.2)
follows from (5.15) immediately. Now, we shall prove (5.17.a). Let a be any
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multi-index such that |a|<2, @weL*R2) and & be any positive number. Since
C=(Q) is dense in L¥£), there exists a 2&C5(2) such that [|&—2[,<x. Hence,
we have
1 @% o () — 0%, (1), )| < |(0%8,(), W—2)|+ 1032 (D), W—2)]
+ (@) — o (1), (—02)°2)]
L Cr+lao(O)—da Ololl(—02)Z0,

where we have used Schwarz’s inequality and (5.13). Letting ¢, ¢’—0 and us-
ing (5.15) and the arbitrariness of the choice of , we see that {0%#,} is Cauchy
sequence in the weak topology of L*&). Since ¢ is any multi-index such that
la| <2, we can conclude that {i#,} is a Cauchy sequence in the topology of
H*(£), which implies that #,(t) converges to some W' (HeHYQ) weakly as 0—0
for all t=J’. On the other hand, (5.15) implies obviously that i.(t) converges
to i(t) weakly as ¢—0 for all t=j’. Thus, a)=a'()e HYD) for all t€]’ and
(5.17.a) is valid.

Now, we prove (5.30.a). Note that (5.29.2) is now valid, because (5.17.a)
has been proved. Let @, x, @ and Z be the same as above. For ¢t and s€]’,
we have

|@2a()—8%i(s), )| < |@%2a(t), H—2)| +1@2a(s), ®—2)| + | (@) —a(s), (—02)°2)]
< Cr+lla®)—a(s)ol(—02)"Zllo,

where we have used Schwarz’s inequality and (5.29.a). Since #(HEX Lo, ),
letting t—s and noting that £ is chosen arbitrarily, we have (5.30.a).

By employing the same arguments, we can prove that (5.17.b) and the fol-
lowing four assertions are valid:

(5.29.b) 9. &M, =C for all t=]’;
(5.30.b) 9,4(f) is continuous on J' in the weak topology of HY(D);
(5.31.b) 10, (t)—8,ii(s)] < Clt—s| for all t, s€]’;

(5.32.1) d.atye L>(J', H(@)NLip (J’', L*(2)).

In particular, combining (5.32.a) and (5.32.b) implies that asY?°(J’, Q).

Now, we prove (5.18) and (5.20). First, note the following facts: If we
define the operators A()[@o, W, )=0,(A"(t)iw,+ A¥()d,iw,) and BO[#o, w,]=
Vi AU i60+ Bi(#)0;@0+ B0, | r, then A(f) and B(¢) are bounded linear operator
from H¥@Q)XHYQ) into L¥2) and H'*I"), respectively. Then facts follows
immediately from (Ap. 1)-(Ap. 3) with a=K-1 and B=r=1. By (5.17) and
these facts we see easily that A()[i4(t), 8:.(t)]—>ABOL(), 0:4(1)] and Bt (@),
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0.4, (t)]—B®[a(), 0,4(t)] weakly in L¥) and HY([I") as ¢—0 for all t=]’.
On the other hand, since

(5.33) éﬂ} 18:((AZ ) — A% @)1t s (D) o +{(Qo(t) = QN[0 (D) ])1/2 = CUo(t)

as follows from (Ap. 1)-(Ap. 3) with a==K—1 and B=r=1 and (5.13), where
U,(¥) is the same as in (2.9.b), using (a) of Lemma 2.3, we have that the left-
hand side of (5.33) tends to zero as ¢—0. Combining these two results, we
have

(5.34.2) é (AL (D)0, ,(1) — é_(]) 0:(A"(1)0,u(t)) weakly in L¥Q);

(5.34D)  Q O[Z,(MI-QWI4®] weakly in HYA(I")

as 0—0 for all t€]’. Combining (5.34.b), (5.12.b) and (5.10) implies (5.18). And
also, combining (5.34.a), (5.12.a2) and (5.10) and noting (5.19), we have (5.20).
Now, we shall prove that

(5.30.¢) () is continuous on J’ in the weak topology of L*f).

In the same manner as above, (5.30.a and b) implies that A(s)[@(?), 0,a(t)]—
A(s)[a(s), 0,4(s)] weakly in L) as t—s. On the other hand, applying (Ap.1)
with a=K—1 and f=y=1 implies that

I(A®—A(NLa®), .a®]o= C{ULL, s)+Us(t, $)}(0. a4 a@)].)

where Ux(t, s) and Us(t, s) are the same as in (3.88). By (3.89) and (5.29.a and
b), we see that (AW)—A(s)[a(0), 3,(t)]—0 strongly in L%) as t—s. Combin-
ing these two facts and noting (5.19) and the fact that ZoH)EY (R, O)C
C'(R, L)), we have (5.30.c).

Now, we prove (5.21). Since #(t)eL>(J’, L¥Q)), the Bochner integral

S:ﬂ(s)ds exists and belong to L*(2) for each t<J’. Furthermore, we have
t t
(5.35) (Soﬁ(s)ds, u”;)zgo(z‘z(s), w)ds for any we LY Q).

Since (@, (f), w):S:(am,@), #)ds as follows from (5.12.c) and the fact that ,(f)
eX>(J', ), letting ¢—0 and using (5.17.b) and (5.20), we have
(5.36) @), w):gz(ms), @)ds for any we LYQ).

Combining (5.35) and (5.36) implies that ata(z‘)zszé(s)ds for all t=J’, where the

equality holds as functions in ¢</’ having their values in L*Q). Since L)
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is reflexive, by Lebesgue’s theorem we have (5.21).
Finally, we shall prove (5.22). To do this, we only prove that

(5.37) lim [0 13+ 10 WIE =11 7 2O

In fact, since LA(Q2)xHYQ) is a Hilbert space equipped with the norm: |-|>-+
Ml-11%,0 (cf. (No. 17)), (5.37) and (No. 17) implies that

(5.38) lim 5()— 7 o(O) I3+ 18,03 =0.

On the other hand, applying Corollary 3.7 with L=2 and noting (5.18) and
(5.19), we have

(5.39) la®li= Cllla@)—g oMII§+19(A* (D0 a()IE+Z r(D)i e+ 12D}

Applying (Ap. 1) with a=K—1 and f=r=1, we have that [|0,(A"®)0,a@)|;<
Cl3.a(t)|3. Hence, noting that [6(t)—g o®)lle<N3(t)—F 2(O)llo+11Z o(t)—F 2(O)llo, by
(5.7.2), (5.7.c), (5.6), the fact that acX'°(J, 2), (5.16), (5.38) and (5.39), we
have that [|@(?)|,—0 as t—0-+. Combining this and (5.38) implies (5.22).

Our idea of proving (5.37) is due to Majda [5, p. 44] essentially. First, we
shall prove that

(5.40) 17 2Ol =lim inf (JBOIE+10. 2D, o) -

Note that the norms of |-}, and [|-|l,,, are equivalent (cf. (No. 17)) and that
#(0)=g o(0)=7 0(0) and 8,4(0)=0 (cf. (5.19), (5.16) and (5.7.c)). By (5.30.b and c),
we have (5.40).

In view of (5.40), to obtain (5.37) it is sufficient to prove that

(5.41) lim sup (#1150 2D, 0) = 17 201
By (5.13) and (2.9.a), we see that |E(, 0.i.()—E,({, 0.4,@)| <CU,{). And

also, by (No. 23) we see that |E(t, 0:4,()—E(0, 0,4,(t))|<Ct. Noting that
EQ, 0,3 ,(t)=0%0sO)3+N0: 2,30 (cf. (No. 21)), from (5.14) we have

(5.42) 1022 ()15 +110:72 6 (DI, 0 £ E(O, 8et 4 (0)+C{Uo(1)+ Uo(0)} + R(2)

where R()=¢® 12+ Ct. By (5.12.a and ¢) we know that E(0, 8,4 ,(0))=0:%,(0)||3
=llng(O)I[§. Letting ¢—0 in (5.42) and using (a) of Lemma 2.3, (5.7.c) and (5.10),
we have

(5.43) lim sup (1832, O3+t (BN < e F 23+ RC) -

With the help of (5.17.b) and (5.20), from (5.43) we have
(5.44) 13410, AL, o < e[| f 2(0)[3+R(E) .
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Since ¢“*—1 and R(1)—0 as t—0-+, (5.41) follows from (5.44), which completes
the proof of Lemma 5.4.

§6. Further regularities of solutions

Let L be an integer <[3, K]. In this section, we prove that for a given
data (i, its, f o, fr)EDH(J), (N) admits a solution #cX™°(J, ), where J=
[0, T—e] and ¢ is any number (0, 7). If a@)eX>°(J, Q) satisfies (N), by
(Ap. 14) we know that P@)[a()]eXt-2°J, 2) and QO)[a@®)le XL (], I).
And then, differentiating (N) L—2 times in ¢ and putting o¥a(t)=9,() OZM=Z
L—2) and V()=(@@2), -+, D1_5(t)), we have

(6.1.2) P)[62-o(t)]— Ro(®)[V(1)]=02F o(t) in JXQ,
(6.1.b) QWB-t) ]+ R r(OLV(®OI=:Fr() on JXI",
(6.1.0) Op-20)=dp s, 01 o(0)=0r., in 2,

where é;., and #;_, are functions defined in (1.1);

Ro@TVI= 5 (5 2 )oud0t A 00 ro s A B0,

Rr@0V1= S (15 2 ) oA 00 01-es B BAOD s B D).
Furthermore, for 0<M<L—3, differentiating (N) M-times in ¢, we have
(6.2.2)y Daraa(D)— Py(B)[0o(1), -+, Daa()]+Aud u(t)

=017 o)+ 2u(u+ | Bunls)ds) in JxQ,

(6.2.b)x QuIBu(L), ++ , Daras(t)]=0¥F (1) on JXI',

where ¥, ,(£)=0:9.5(f); Py(t) and Quy(f) are the same as in (3.59); Ay
(0<M<L—3) are constants given in Theorem 3.8 with M=L—3 and N,=L;
iy OSMZL—3) are functions defined in (1.1). From this point of view, we
shall split our proof into two stages. First, we consider the equations (6.1) and
(6.2) for unknowns ¥, (0SM<L—2). And then, we shall prove that there
exist iz ,(HEX>°(J, 2) and 5 XL L-2-1(], @) (0EM< L—3) satisfying (6.1)
and (6.2). Secondly, we shall prove that 0,5 4(1)=9y.:(). Then, if we put #,(f)
=(t), we see easily that #()e X °J, 2) and satisfies (N).

1st step. We shall solve (6.1) and (6.2) by the method of successive appro-
ximations. Before defining the iteration scheme, we prepare the function space
and some estimations. Let Z be the space of all functions V(#)=(B,(t), ¥._s(2))



Neumann problem 341

such that
(6.3.2) Iue XL ¥ (], 2) 0SMZL--3); 6,..0)eX> (], 2);
(6.3.b) Tu(0)=ity OSMZLL-2) and 0,9.-(0)=1dir,,

By (1.2) we see easily that

(6.4) v, AY90)8;1t o+ BH(0)8;1t o+ B(0)ir, =852 f r(0)— R r(O)V(0)] on I’
for any V(t)eZ. Furthermore, for any V(¢) and V'(f)=Z, we have

6.5  RoOIV(HIEY Y], 2); RrOVOIEY VY], I);

6.6)  IRe(IIV(-)]=Ra(IV'()o.0. s HSRr(OIV()I=Rr(OIV' () Dorre.r

+SJ(llath(t)[V(t)]—a,Rg(t)[V’(t)]|!§

H@R LV O1-0R OV Dt Cf (VO-V'0)zdt
where C=C(MA(K), Ms(K));
(VON="3 3 108u O f-n-1+ 1D O

In fact, applying (Ap. 7)-(Ap. 9) with M,=K—k—1, M,=Fk and N=1 for 1<k
<L—2 and noting that :AY¥()sY X-4-Y(], Q); #iB @)Y Xk~ [');
Dp-1-:)EXTH(J, ); 06,0 :()e X *(J, ) in the definitions of Ry and Rr,
we have (6.5). Furthermore, by (Ap. 7.b)-(Ap. 9.b) we have

(6.7 10:R oLV () llo+40: R r(OLV () Dise < C(MaK), Ms(EN(V()2

for almost all t=J. Since V(0)=V'(0) as follows form (6.3.b) we have that
Ry(O)[V(O0)]1=Ry(0)[V'(0)] for U=8 and I'. Noting this, we see that

Rg(t)[V(t)]-—RU(t)[V’(t)]:S:iis{RU(s)[V(s)-—V'(s)]}ds for U= and I',
where we have used the fact that Ry(-) is linear in V. Hence, applying (6.7)
implies (6.6).

Now, let us define the iteration scheme. In view of (Ap. 18), there exists a
w)e X (R, ) such that @(0)=d,., and 0,@(0)=4#,_,. Let us define V°(¢) by:
Vot)y=(tto, -, Gir_s, w(t)). Obviously, V°(t)eZ. For k=1 and V:i(H)=Z, let
us define 9, _(t)e X2 J, 2) by a solution to the equations:

(6.8.2) P()[#%o(0)]=0F"2F o)+ R o[V '(1)] in JX R,
(6.8.b) QU _o(t)]=0F2F r()—RrOLV* (] on JxT,
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(6.8.C) ﬁi,z(o):ﬁl‘_z, aﬂ}]i_z(o):ﬁ[‘_l in Q

In view of (6.4) and (6.5), by Theorem 5.1 we know the existence of #%_,(H)e
X®(J, £2). Let us define #%()sXL- %3], 2) (0SM<L-3) by solutions to
the equations:

(6.9.2) Dy 42()— PuOLOAQD), -+, 342(0) ]+ Audae(2)
=0¥F o)+ An(a+{ Fti(9)ds) in JxQ,
(6.9.b) QuOLak(E), -+ , Py (t)]=02F r(t) on JxT,

for 0<M<L—3, where #_,(t)=0,#%_,(¢). Since ¥:_,=X>°(J, Q)CX"(], 2);
S X, Q); O Foe XL M0 ], QYT XM E MY J, Q); ¥ freXi-eman(] )

CXLL-M-(] [ aM+S:ﬁ§;il(s)dseX"L‘M‘3( 7, @) (cf. Lemma 1.1), by Theo-

rem 3.8 with N,=L—3 and N,=L, we see that #%(!) exist in XvL~¥-Y(J, Q)
for 0XM<L—3. Hence, if we put V*@)=@@%(¢), ---, #%_,(f)), then we see that
V*t)eZ and we can define an iteration scheme.

Now, we shall prove that the present sequence {V*(#)} is a Cauchy sequence
in the product space X*L73(J, @)X --- X X %], @)x X2°(J, 2). Applying Thor-
rem 1.3 with L=2 and using (6.6), we have

(6.10) [Vha— V50,0, 0= CSJ((V"‘1(5)—Vk"2(3)))ids .
Applying (3.61), we have also

L-3
P ELe [ e =N

L-3
+ 3 {20 O~ ROt 1951~ o1 n o}

M=0 J

Since #%},(0)=9%%(0)=1it), we have
1
|ﬁ'§Ii1—5’ﬁ?fl|3.L_M_a,J§Zl§ SJIIGEﬁﬁffix(f)—aiﬁﬁifx(t)lli-M—sdt .

Combining these two estimates and using (6.10), we have
(6.11) WW*=V*)i JéCSJ((Vk"(i)—V”'z(f)))idi

where (V))1,;=sup{(V(®)).lt<J}. Recall that J=[0, T—e]. Repeated use of
(6.11) implies that

(V* =V SLCT =)}/ (k=D IV = VL.
From this we see that {V*} is a Cauchy sequence in X427 J, @)X --- X X (], )
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XX*(J, ). As a result, there exists a limit V()=(®@,@), -, 1_5(t)) of the
sequence {V*(®)}. In particular, d,E)SX L M-Y(] 2) OXMLL—3), i,.()E
X®%(J, 2), and by (6.3.b) we have

6.12) D)=ty OSMZL—-2); 0,3, ,(0)=itr_,.
Letting k—oo in (6.8) and (6.9) and using (Ap. 1)-(Ap. 3), we see easily that
Do(t), =+, Dr_s(t) and d,_,(f) satisfy (6.2) and (6.1).

2nd step. Now, we shall prove that 8,8,(1)=dy4,(t) for 0SM<L—3. Ap-

plying (Ap. 7)-(Ap. 9) with M,=K—k—2, M,=L—M—2+4% and N=1 (0<Ek<M),
we have that Pu()[9.(), -, Iusa()]€X (], @) and Qu()[8s(1), -+, Dyn(D)]E
X 3], I'y for 0SM<L—3. Differentiating (6.2) once in ¢, we have
(6.13.a)r  0uBusa(t)—Pu(t)[0:8o(t), -+ , 0D s4:(t)]+ 200D u(2)

=0+ f o)+ Aubu )+ Pr(B[5s(D), =, oD in JX2,
6.13.0)  Qut0.84(1), =+, 0B as:(t)]

=3+ 7 o(t)— Qu(OLout), ++, Fas(t)] on JxI"
for 0SM<L—3, where Pj(t) and Q}(t) are the same as in (3.92). When M=
L—Z)_

L3, noting that 9,5,.,(f)=06%,_,(¢) and using the using the identity: ( b

(*7)=(523), trom 6.1) and (6.13)s.., we have

(6.14.a); — P ([ @0o(t), ++ , Wr-o(t), 0]+ 215 5()=0 in JXQ,
(6-14'b)L-3 QL~3(t)[w0<t)) ty wL—ZB(t): 0]=0 on .IXI-':

where we have put @y()=00u(t)—by+,(¢) O0XM<L—3). When 0SM<L—4,
in the same way, from (6.13), and (6.2), we have

(6.14.2)y W ar+2()— PyOL o), ++ , War4:()] A (2)
:XM+IS:wM+1(S)dS ih ]XQ;
(6.14.b)y Quwo(D), -+, Wy4:(H)]=0 on JxI,

where @, _,()=0,81_,()—b._,(t)=0. Applying (3.60) with N,=L—3 and N,=L—1
to (6.14) and noting that @;_,()=i,_,(t)=0, we have

-3 L-s(t
(6.15) > [Wulo.z-m-1.00.03=C ZS N0+ (S) 2-2-sd s
M=0 M=0J)0

t L-3
§CS 23 | Warlo, L-sr-1.10,53dS
0M=0
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for any t<J. Applying Gronwall’s inequality to (6.15) implies that
L-3
EJWMN,L—M—LU).;J:O for any t=].

From this it follows immediately that 8,0,(f)=0y., () for all =] and 0=ZM=
L—3. Put @)=d,t). Then, d¥a()=i,OX"L¥(], ) 0=M<LL-3) and
L 2at)=,_,()EeX>(J, ). Accordingly, a()eX (], 2). Substituting 9,a(t)
=#,(t) for [=0, 1 and 2 into (6.2),, we see that P(t)[z’t(t)]:fg(t) in Jx£ and
QWLa)]=Fr@ on JXI'. From (6.12) it follows that #(0)=u,(0)=1, and 9,#(0)
=#,(0)=4#, in £. Noting that & is chosen arbitrarily, we have Theorem 1.2
when 3<L<K. This completes the proof of Theorem 1.2.

Appendix. Estimates of a product of functions and trace theorem.

First of all, we state the Sobolev’s imbedding theorem. To do this, we
prepare some notations. For 1<p<oc, we put

I (WES CENRCHE OOV OIR I

Hy(R={usS' (R")|llullzn.r.p<o0},

where F(u) is the Fourier transform of » and &' is its inversion formula. Let
G=R? or 2. Put

Hi(G)={u | w(x)=U(x) in G for some U Hy(R")};

lullg.r, p=Inf{|Ullgn.+.» | u(x)=U(x) in G}.
As is well-known, if » is an integer=0 and 1< p< oo, then ||u|2..., is equivalent
to the usual norm:

5 Sala‘;u(x)lpdx for G=R", R* and Q.

la|=T

In fact, if G=R", this is well-known (cf. [1, Theorem 7]). If G=R} or Q,
we can extend functions defined on G to whole R™ (it is well-known that under
the more general assumption on the boundary of the domain we can extend
functions, cf. [1]). Thus, the equivalence of two norms follows immediately
(cf. [1, Theorem 12]).

Sobelev’s imbedding theorem. Let G=R", R» or . (I) Let 1<p<g<co
and put A=n(/p—1/q). Then, HiX(G) is continuously imbedded into LYG) and
lulle.o0.e<C(D, g, 1, G)ulle. 2.5 for any usH}(G).

() Let &, and e, be numbers such that 0<&,<e,<l. Put A=n/p+e,. Then,
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every function u in HXG) coincides almost everywhere with a Holder continuous
function v with exponent €,. Furthermore,

Iv(X+h)—v(X)| §C(p: €y, €2, G)”“”G,X.pl”““-
In the same way as in the proof of Theorem 7.1 of Mizohata [7], by using

Sobolev’s imbedding theorem we have

THEOREM Ap. 1. Let 1<p=Zoo. Let ry, -, 7s (k=2), M be non-negative
numbers and L a non-negtive integer such that M>n/p and Mzr,+ - +r+L.
Then, for u;sHY-"i(G), =1, -, k, a product TLu,EHEG). Furthermore,

13
1T wslo.2.o=Cn, G, M, B, T ltslo. v,

From now on, we consider L? spaces only. For the notational simplicity,
we write [|-ll¢.r.e=|"lle.» and HY(G)=H"(G). Next theorems are concerned with
the trace operator.

THEOREM Ap. 2 (cf. Mizohata [7, Proposition 3.6]). Let ucH'(R?). Then,
the following are true.

@ -, 0)|]Rg_-l.1/z§c||u”nn.x .

(2) For any arbitrary €0, there exists a constant C(n, €) satisfying
lu(-, Ollgn-1,0=elullry. 1 +Cn, e)lullrp.o.
THEOREM Ap. 3. Let L be a non-negative integer. For any us HX*/®(R*™1),

there exists a USH Y (R?) such that U(x’, 0)=u(x’) for almost all x'=(x,, -+,
Lo-)ER and ”U”R}}.M+1§C(L)”u”Rn—l.MJr(lIZ) for any integer M<[0, L].

ProoF. In view of Theorem Ap. 2, since C(R™™Y) is dense in HL+/D(R™-1),
it suffices to prove the theorem for usC5(R*™"). Put

Ue=(ge) |, ex00ix’ & —xun TFETIS@ENE

(=+—1 and &'=(&, -, &,.1)). Then, we see that U(x’, O)=u(x’). Let a=
(o', an)=(a;, ***, An_1, @) be any multi-index such that |a|<L+1. Since

aiU(x)=(%)n—lSRn_leXp(ix"f'“xn\/1+ [ET(—VIFTET) (&)™ F(u)E)dE,

by Parseval’s formula we have
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10:0lAg.0={ | ..., €XP (=t TFTETIL+ 18 1521817 | F ()" *dE dx

éSm-JH &2y 1= F(u)E) " dE" < Nullrn-1,1a1-are -

From this we have the theorem.

Using the partition of unity near the boundary, from Theorems Ap. 2 and
Ap. 3 we have the following two corollaries.

COROLLARY Ap. 4. Let ucHY ). Then, the following are true. (1) {u)ys
<Cluli. (2) For any arbitrary €>0, there exists a constant C(n, ¢, I') satisfy-
ing (uho=Zelul,+C(n, &, I|ul,,

COROLLARY Ap. 5. Let L be a non-negative integer and usHLH/E[™),
Then, there exists a UsH ') such that w(x)=U(x) for almost all xI" and
Ul =Cudmscies for any integer M<[0, L].

Now, we shall investigate the Holder continuity of functions in Y ¥-%1,

THEOREM Ap. 6. Let J be a closed interval and usY " J, R*). Then,
for any <0, [n/2]4+1—(n/2)), ucB(JXR™. Furthermore, |u|w,e sxpn<
Clul;_[n/z],,],nn where C=C(7l, E).

Proor. For the notational simplicity, we write |- |gz »=|-ll-. Let us de-
note the Fourier transform of u(¢, x) with respect of x by @, £). Let r>0
and e<(0, 1) and put 7'=(7—e[n/2])/(1—e). By Hoélder’s inequality we have

[1a¢, o—a(s, &170+18177ae
={t1a¢, o—as, 1ra+1gmm1a, 9—acs, O17a+1817 1 -+dg
=(f1ac, a6, o 17a+1g19mmag) ((1a¢, O—ats, O12+18177de) ™

By the definitions of the norms of H"/2J(R™) and Y*t*/*(J, R"), we have

Slﬁ(l‘, &—als, OI'A+ 181" MdES u®)—uls) It = | ulf tnres, s relt—5 %

On the other hand,

Slﬁ(l‘, —als, O1* A+ 16N A< Ju@—ulIF <(u@®lly +luls)ly)? .
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Combining these estimates, we have
lu)—u(;= 1 i cnres g, val t=s (@l +lu(ll )
Choose 7 and & so that r>n/2, 0<e<l and y'<[n/2]+1. If e<(0, [n/2]+
1—(n/2)), then such a 7 exists. Thus, by Sobolev’s imbedding theorem we have
lut, x)—uls, D) SClu@®—u(; =<2 | uli tnrer, v, mnlt—=5]".

On the other hand, by the Fourier inversion formula we have

Juts, = uts, »)l=|{e=t—evuts, 01de| .

Note that |ei*f—e®v¢|<21¢|x—y|*|&[% In fact, |e**f—e™*|<[x—y|lE].
Noting that |e!=*|=|e¢'¥*!|=1, we have that |e***—¢"v¥|<|x—y|°|§]2""
Hence, we have

Juts, D)—uls, =2 x—y1{ €1l ats, Ol dé

so-ei -y ((a+1grmae) "(Jarierac, orrdg)”

=Clx—y*lu(s)lrse,
where C=C(n, ¢,7) provided that 7>n/2 and 7y+e<[n/2]4+1. Since e€

0, [n/2]4+1~(n/2)), we can choose such a 7. Combining these two estimates, we
see easily that

lult, x)—uls, I ult, x)—uls, )|+ uls, x)—uls, )
SC@)|ulynes g re(|t=st+1x—y 1)L C() Ul 1. tarer s re |, x)—(s, D)5,

which implies the theorem.

COROLLARY Ap. 7. Let e=(0, [n/2]1+1—(n/2)). If veYX 1], Q), then
uc B (JxQ2). Furthermore, |vlw 1160 <C(n, )0 k-1,1.0-

ProoF. Since K=[u/2]+2, K=3. Then, YX2(J, Q)CY %%, &
yrieey( g, @), Namely, dpeY (], 2) for 1=0,1, -, n (3,=0,). By using
well-known Lions’ method of extending functions defined on £ to whole R",
we see that there exists a u(f, x)&Y*t™21(J, R™) such that u(f, x)=0,v(t, x) for
x€ and te], and |ul1cn1.0. e <C|0wl1tnse.s. Applying Theorem Ap. 6
implies that d,0(t, x)€ 8%(Jx2). Furthermore, we have that |0v]w,es=|t]w e s
St e, axrn<Clulytne s e Cl0w] 1 trs21, s = C V] k1,15, Which completes the
proof.

Combining Corollaries Ap. 5 and Ap. 7, we have
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COROLLARY Ap. 8. Let e=(0, [n/2]+1~—(n/2). If veYE-112(] Q) then
vE BW(IXI).  Furthermore, (e, ise.s <C(n, XV k-1 110,4-

Now, we shall summarize the results on products of two functions in
Sobolev spaces used in the text. Let G=R”, R or Q.

(Ap. 1) | A Ble.;=CllAll.olBlle.s for any ASH*(G) and Be H¥G)

provided that «, 8, 7 are integers such that a, §=7r=0 and a+B—r>n/2.
Let G'=R? or £. For the notational simplicity, we write

I-lloe y-crms=Mlrn-1.7-crey O §*Dy-csar; 0G'=R** or I".
(Ap. 2) A Blser.r-a>=ClAle.allBllor.s for any A=HG') and BEHA(G)
provided that a, B, 7 are integers such that @, B=7=1 and a+B—r>n/2.
(Ap. 3) 1A-Blse.r-am=CllAllse . a-cml Bllor, s

for any AcH*-/»(@G’) and B H*(G’) provided that a, B, r are integers such
that @, B=zy=1 and a+pB—y>n/2. In fact, (Ap. 1) follows immediately from
Theorem Ap. 1 with k=2, L=y, M=a+p+r, r»=8—7 and r,=a—y. By
Corollary Ap. 4-(1), we know that |A-Bllagr.r-cis=C|A- Bl .,- Hence, (Ap. 2)
follows from (Ap. 1). By Corollary Ap. 5, we know that there exists an A’
H"(G’) such that A’=A almost everywhere on dG’ and 1A le.; = CllAllser . 1-c1r0-
Since [[A- Bliag'.r-cies=IA"" Bllag'.y-cir», (Ap. 3) follows from (Ap. 2).

Now, when A=A() and B=B(f) depend on t continuously, we give the
results corresponding to (Ap. 1)-(Ap. 3). Below, J always refers to a time
interval.

(Ap. 4.2) AM)-B(eC(J, H(G));
(Ap. 4.b) IA®)- BO)le., < CIlA®e. ol Bt)e. 5

for any A@)eC%(/J, HY(G)) and B()eC(J, H¥G)) provided that a, B, v are
integers such that a, 8=y=0 and a+B—7>n/2.

(Ap. 5.2) A@)- B C(J, H-»(@G"));
(Ap. 5.b) IA@) - BDlaer.r-am < CIAD 6. ol BOller. 5

for any A()eC(J, HY(G")) and B®)eC*J, H¥G")) provided that «, 8, r are
integers such that a, $=y=1 and a+B—r>n/2.

(Ap. 6.2) A@t)- BHEC(J, H-4®@G"));
(Ap. 6.b) IA®)- BBllaer.r-aimSCIAD a6, a-cim | B s, 5
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for any A@)eCY(J, H*-/»@G")) and B#)=C(J, H¥(G)) provided that a, B, 7
are integers such that @, f=7y=1 and a+S8—y>n/2. In fact, by (Ap. 1) we
see that

1A®)- BO)—A(s)- B(s)le.r=
CHADO—AG 6.« BOle. s+ 1A 6. | BO)—B($)lle. g} -

From this, (Ap. 4) follows immediately. Employing the same arguments, we
see that (Ap. 5) and (Ap. 6) follow from (Ap. 2) and (Ap. 3), respectively,

Now, we give the results on differentiability in ¢. Let M,, M, and N be
integers such that M,, M,=N and M,+M,+1—-N>n/2. Let ZL¥=XL¥ or
YZ.#_ Then,

(Ap. 7.a)  A@)-B(HeZ™Y(], 2);
(Ap. 7.2)  [0(AW®- BOw=C( 2 10D wyo1-1)( 2 10BOlger)

for any A)eZ*¥1(J, 2) and B@)eZ (], Q).
(Ap. 8.a) A@®-ByezZ-N-w»(], I');

(Ap. 8b)  (@(AWD- BOWy-am=C( Z 08O )( 2 1EBO i)

for any A()eZ**i(J, 2) and BHeZ *(], ).
(Ap. 9.2)  AW)-BM)eZ»V-»(], I');

(Ap. 9b) (AW BUMw-am < C( 2 GADn,scimss) 2 1EBOtyir-s)
for any A@)eZ"¥1-A®(J I') and Bt)eZ"¥x(], ). In fact, since

1A B()—A(s)- B(s) |y = (A — A(s))- BOll v+ A(s)- (BO)— B(s)l

applying (Ap. 1) with a=M,, f=M,+1 and y=N to the first term of the right-
hand side and with @=M,+1, 8=M, and y=N to the second term of the right-
hand side, we have

I A®)- B(t)— A(s)- B(s)| w S C{IA®)— A e, | B e 4
A, 411 B —B(8) ], }-

From this it follows that A®)B(t)<Lip(J, HY(@@)NX°(J, H¥(2)). Since 8,(A®)
- Bt))=0.A(t)- B()+ A(t)-0,B(t), by employing the same arguments, we have

10:(A®)- B v = C {110, AW st | BO g+ I A@ sy 1l BO e}
Applying (Ap. 1) with a=M,+1, f=M,+1 and y=N+1, we have also
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IA®D - BO| xs: SCUAD N s,41 1 B argr},

which implites that A®)B@)eL=(J, H¥*'(2). Therefore, we have proved A(#)-
B®eY:¥(J, £2). Furtheremore, we have

ICACt+h)- B(t+h)—A(t)- BE)A*—0.(A®)- B(t)] v

=10, AQ@)-(B(t+h)— B v +I{(AG+R)— A 3. At)} B(t+h) v
HIAGA(B(t+h)— Bi)h ™ —0. BO)}H w

SCl10. AN s, | Bi+h)— Bl syer + I(AE+h)— AR =0, A® e, | BE+ I st 41
HIAD a1 [(BlE+A)— Bt)A ™' =8 B(t)l ,} -

From this we see easily that A®¥)-B()eX"¥(J, £). Hence, we have (Ap. 7).
With the help of Corollaries Ap. 4-(1) and (Ap. 5), we have also (Ap. 8) and
(Ap. 9) by the same arguments.

In the text, we need the following facts:

(Ap. 10.2) PMLa)]eC (], LXD) and 3¢ *(POLa®Lip(/, LX(Q);
(Ap. 10.b) QWLan]eCH2(J, H'*I")) and o7 (QMLa®])<Lip(/J, H*I")

provided that #(f)eC=(J, H'*2)) and 2< L<K, where JCI. (Ap. 10) follows
immediately from the following facts:

(Ap. 1)  A@®)-BO)eCH*(J, H'(?) and 0 *(A®)-B@®)<Lip((J, H(Q);
(Ap. 12)  A@®)-BMeCH *(J, H'XI") and 0r~*(AQ)-BM)€Lip(J, HVXI")
provided that A(eY*-+(J, 2) and BHeC=(J, H:-Y(Q)).

(Ap. 13)  A@-BOeCH*(J, H'*I")) and 0F*(A(t)-B()<Lip([J, H'*I")

provided that A@eY¥-1*(J, I') and B(t)eC=(J, H:-}(£)). By induction on
Lel2, K] and using (Ap. 1) and (Ap. 4) we see easily (Ap. 11). With the help
of Corollary Ap. 4-(1), (Ap. 12) follows from (Ap. 11). With the help of Corol-
lary Ap. 5, (Ap. 13) follows also from (Ap. 11).

In the text, we also need the following facts:

(Ap, 14) POLa®Ie X (], 2) and QWa)]eX (], I

provided that #()eXZ*%(J, 2) for 2< L<K, where JCI. (Ap. 14) follows im-
mediately from the following facts:

(Ap. 15) A®)-BHeX Y], D);
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(Ap. 16) AQ)-B)ye Xty I')
provided that A®)eX¥-2(J, 2) and B()e X (], .
(Ap. 17) AW)-ByeX (], T)

provided that A(t)e XX-21%(J, I') and B)=X* 2}/, 2). By induction on Le
[2, K] and using (Ap. 4), we have (Ap. 15) easily. With the help of Corollaries
Ap. 4-(1) and Ap. 5, (Ap. 16) and (Ap. 17) follows from (Ap. 15) immediately.

Finally, we shall prove that for any w,=H*Q) and w, e HY(Q) (scalar-
valued functions now being considered), there exists a w(t, x)€ X*°(R, R™) such
that

(Ap. 18) w(0, x)=wo(x) and 8,w(0, x)=w,(x) in Q.

By well-known Lions’ method of extending functions defined on £ to whole R",
we know that there exist Wi(x)eH?* *(R™) for k=0 and 1 such that wr(x)=
Wi(x) for x=Q. Then, let us define w(f, x)eX?%R, R™) by a solution to the
Cauchy problem of the wave operator:

fw(t, x)— 'anaﬁw(t, x)=0 in RXR"; w(0, x)=W(x)
F=
and d,w(0, x)=W(x) in R".

Obviously, the w(t, x) has the desired properties.
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