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Introduction.

Let Q be a domain in an n-dimensional Euclidean space Rn, its boundary F

being a C°°and compact hypersurface. Throughout the present paper, we assume

that n^2(1). Let x={xu ･･■, xn) denote points of Rn and t a time variable.

For differentiationswe use the symbols: <5£=d0=d/diand dj^d/dxj (/=1, ･･･,n).

In this paper, we consider the following mixed problem:

P(t)im)']-=dU(t)-di(Ai＼t)dtu(t)+AiKt)dju(t))=fdt) in (0, T)xQ,

Q(t)[m)']^viAiHt)diu(t)+BHt)dju(t)+B＼t)dtu(t)=fr(t) on (0, T)x/＼

m(O)=mo, dtu(O)=u1 in Q

where T is a positive constant and u=^＼uu ･･-, um) (=the row vector of length

m and lM means the transposed vector (resp. matrix) of the vector (resp. matrix)

M). Here and hereafter, the summation convention is understood such as the

sub and superscripts *,i',j, j' (resp. p, q) take all values 1 to n (resp. 1 to

n ―1). For any vector valued function u=l(uu ･･･, um), we put d{daxu=l(d{d%Ui

did%um). The Vi―Vi{x) are real-valued functions in C (Rn) such that the

vector v(x)=(vi(x), ■■･,vn(x)) represents the unit outer normal to F at xef,

In the present paper, functions are assumed to be real-valued, unless ortherwise

specified. Below, / will always refer to the closed interval containing [0, T]

strictly, say, /=[―?, T+r] (r>0). And also, K will always refer to the fixed

integer ^>[n/2]+2, which represents the order of regularitiy of solutions and

coefficients of the operators Pit) and Q(t). The Ail(t)=Ail(t, x) and B＼t)=

BHt, x) (1=0. 1, ･■■, n; i=l. ■■･, n) are mXm matrices of functions satisfying the

(1) When n=l, excepting the notations, we can treat the same problem without essential

change. However, for the notational simplicity, we shall only treat the case where

n^2, below.
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following five assumptions,

(A.I), The Ail are decomposed as follows: Ail=Ati+Aisl where Ai*e&K(IxQ)

and Aisl^YK-1-KI, Q); the B1zeYk~1-xi＼I,F).

Here, we should explain the notations for some function spaces used in

the present paper. Let £BK{G) be the set of all v^CK(G) such that v and all

derivatives of v up to K are everywhere bounded in G. For any time interval

/ and Hilbert space X, C＼J, X), L°°(J,X) and Lip(/, X) denote the sets of all

Z-valued functions which are /-timescontinuously differentiablein /, measurable

and bounded everywhere in / and Lipschitz continuous in /, in the sense of the

strong topology of X, respectively. Since X is a Hilbert space, if w(0eLip(/, X),

then the strong derivative of u{t) exists almost everywhere. Usually, L°°-func-

tions mean the measurable and almost everywhere bounded ones. However, to

make may proofs as short as possible the functions are assumed to be bounded

everywhere in the definitionof L°°-functions.Let Hr(G) denote the usual Sobolev

space over G of order r^R defined exactly in the section of Notations below.

Xl-r(J, G)= f＼Ck{J, Hl+r-k(G));Y°-r(J, G)=
k―O

L°°(J,Hr(G));

Yl+1-r(J, G)={u<=Xl-r(G)＼diu(t) EL~(J, Hl+l+r-KG))r＼Llp(J, Hl+r~KG))

for 0^/^/}.

For any function space 5, we denote a product space Sx ･･･XS by also S.

The second and third assumptions are the following.

(A.2)7 tAi0=At0 and lA^=A^ on IxQ;

'£°=50 and ≪5*+5i=0 on /xF (i,j=l, ■■■, n).

(A.3)7,5 There exist positive constants di and 82 such that

(AHt)djv, djv)+<BJ(t)djv, i)>^ai||i;||f-51,||i;||g

for any ?e/ and v<=H＼Q).

Here and hereafter, we use the followinff notations:

(u, v)=＼ u(x)-v(x)dx; <w, v}=
＼u{x)-v{x)dr-,＼＼u＼＼l=

23 (3 %u, daxu)

where "･" denotes the usualinnerproduct of Rm and dF is the surface element

of r.

The fourth and finalassumptions are the following.
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(A.4), Vi{x)B＼t,x)=0 for all(t, x) =IxF,

(A.5), (-Vi(x)Ai0(t, x)+2B＼t, x))t)-rj^ for all (t, x)<=IxT and r)^Rm.

It is essential that all the assumptions are valid on whole I containing

[0, T] strictly. Because, in proving our main results, we use the results ob-

tained by Shibata [9]. In that proof,it was used essentiallythat the coefficients

are defined on some closed interval / containing [0, T] strictlyand the assump-

tions (A.2)-(A.5) are valid on whole / with respect to t. Below, if no sub-

scripts occur on the numbers of assumptions, (A.3) and (A.N) are understood to

be (A.3)7,3 and (A.N)/ (N=l, 2, 4 and 5),respectively. In fact, excepting Theo-

rems 2.1, 2.2 and 5.3 and Lemma 2.3, we always state that (A.1)-(A.5) are

valid.

The reason why we must consider (N) under the assumptions (A.1)-(A.5),

especially (A.I), is the following: When we solve the Neumann problem for

the nonlinear hyperbolic system of 2nd order, as the linearized problem, we

meet the present problem. And, the key of solving the nonlinear problem lies

in proving the unique existence theorem of solutions to (N) and sharp energy

inequalities stated in Theorems 1.2 and 1.3 of §1 below. Of course, such linear

systems have their own interests. And also, in proving main results, we need

some new technique which can be applied to treating many other problems, for

example, Schrodinger equations, heat equations and so on.

T. Kato [4] treated the same linear problem in his abstract frame work

and applied his linear theory to solving the Neumann problem for nonlinear

hyperbolic systems of 2nd order, which was firstdone by Shibata [8] and Shi-

bata and Nakamura [10]. Especially, the result due to Kato [4] attained some

improvements of that due to [8] and [10] regarding the minimum order of the

Sobolev space in the solutionsto the nonlinear problem exist. But, Kato [4,§14]

treated only the case where nonlinear functions do not contain t and dtu. But

using the results on the linear theory in the present paper, Shibata and Kikuchi

[11] got the same improvements as in Kato [4] in the case where nonlinear

functions do contain t and dtu. Our proof is elementary and completely different

from Kato's one. The advantage of our approach is that the assumptions:

af-^flCOeLip ([0, T), H~＼Q)) and df-^HOeLipCCO, T), H^XD) are not needed,

while it seems that these assumptions are essentialin the Kato's approach (cf.

Theorem 1.2 below and [4, Theorem 12.4]); that some hyperbolic-parabolic

coupled systems of 2nd order containing the thermoelastodynamic as an im-

portant physical example can be treated in the same manner as in the present

paper.
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In solving the nonlinear problem, if we know the unique existence theorem

to (N) under the assumption (A.I), especially,the coefficientsare Lipschits con-

tinuous (not in C1) in t,it is very easy to show the regularity of solutions to

the nonlinear problem. One can find this approach since Kato's Cortona Lec-

ture [3].

Our idea of proving the existence of a solution kgI2'0 to (N) is as follows.

First, approximating the coefficientsof the operators P(t) and Q(t) by smooth

functions and using the existence theorem in the case of the operators with

smooth coefficients,which was obtained by Shibata [9], we can prove the ex-

istence of a solution u in Y2-°. Our main task is to prove that ≪gP'°, i.e.,

the continuity of second derivatives of u in t. To prove this, we use the idea

due to Ikawa [2] (originally goes back to Mizohata's work on the Dirichlet

problem in 1966). Namely, we mollify u with respect to t by Friedrichs' method

and prove that the sequence of mollified functions converges to u uniformly in

t. The key of proving the convergence liesin obtaining the right continuity of

the second derivatives of u at t=0. By employing the arguments due to Majda

[5, pp. 44], we can get this right continuity.

Our idea of proving the further regularities of solutions in Z2>0 to (N) is

the following. Differentiate (N) / times (Q^l^K―2) in t formally and consider

the resulting equations as the K―l systems: d＼{P(t)＼_u(t)}=d＼f q{1) with boundary

conditions: 3i{<?(*)[≪(*)]}=3i/r(0 (/=0, 1, ― , K―2) for unknowns u,dtu,---,

df~2u. The system: 3f-8{^(0[≪(0]}=3f"*/fl(0 with boundary condition:

d?~z{Q(t)[.u(t)']}=d?~2fr(t)can be regarded as a hyperbolic system for unknown

df~2u(t),and other equations can be regarded as an ellipticsystem for unknowns

u, ･･■,df~su. These systems forms a "hyperbolic-elliptic"system. With the

help of the existence theorems obtained in §§2.3 and 5, we can solve this system

by the method of successive approximations. And then, we can prove that

u^XK-°. It is firstfor Shibata [8] and Shibata-Nakamura [10] to treat such a

"hyperbolic-elliptic"system. Kato also treated this system in his abstract frame

work.

Notations.

Now, we shall explain our basic notations. To denote differentiations of

higher order, we use the symbols:

DLD*u=(d{daxu ; j+＼a＼^L+M, j^L); DLDxu=DLu ; D°D^u=D^u .

For any r^R, we put
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where v is the Fourier transform of v. For any domain GaRn, we put

Hr(G)={u＼u(x)=U(x) in G for some U^Hr(Rn)} ;

||M||G.r=inf{||C7||iIn.r|M= r7on G).

As is well-known, if r is a non-negativeinteger and G―Rn, R+ or Q, then

IIvile?r is equivalentto the usualnorm:

＼a＼SrJ

＼daMx)＼2dx

G

where Rl-{x={xu ･･･, xn)＼xn>0}. For the notational simplicity, we use the

abbreviation: N|r = IMIfl.r. For any integer 1^0 and oe=(0,l), put $l+a(G)=

{v^$＼G)＼ ＼v＼co,i+a,G<}, where

＼v＼oo.i.G = 23 sup|dM*)l

|v|≫iI+a.o=|vU.i.G+ 2 sup{|dM*)-3M:y)l I*-?!""!*, yeG, x^y}.
＼a＼=l

Especially, we write ||-|U,J+(7=| ･ Ui+,.fl and |･|≪.i+≪r./=l･U.i+ff./xfl (0^<r<l).

Since f is a C°°and compact hypersurface, we may assume that there exist

finite number of open sets Ot in Rn, o)i in R"-1, p^C^i^i) and integers rf(/)e

[1, n] (1=1, ･･･, No) such that Oir＼r={xdW=pi{x') for x'e<yj and Ott^Q―

{x<i<.n>pi(x') for x'ewj where %'=(#i, ･･･, Xdcn-u ^dco+i, ･" , ^≫). Let us de-

fine 0lk(x), k=l, ― , n, /=1, ■-･,iVo as follows: On(x)=xk for l^ife^d(/)―1;

^aU)=Xj+i for d(l)^k£n―l; 0m(x)=xda^ ―pi(xf). Then, we may assume

that 0l(x)=(0ll(x), ― , ^t≪U)) are C°°-diffeomorphisms of d onto (?Oj)=b=

(^x, -, yn)^Rn＼＼y'＼ = ＼{yu - , Vi)l<^, I^KffJ such that 0l(Olr＼Q)=

Q+(ffi)={y^Q(<Ji)＼yn>0} and ^I(OInr)={3>eg(<rt)l3'≫=0}. There will be no

confusion as to whether (?(･) denotes the boundary operator or the set defined

just now, because this will always be clear from the context. Note that the

Jacobian of the change of variables: y=0t(x) is equal to 1, i.e., dx―dy. Let

Wi be the inverse map of the 0t. Let 0k and <f>'k{k=0, 1, ･･･, iVo) be functions

in C°Z(Rn) having the following properties:

(No. 1) supp 0oCsupp 6'oCLQ ; supp^zCsupp^[COj for 1=1, ■･･, NO;

Put

#0 ^0
^6k(xY = l and S^(x)=l on Q
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ivYr= S ＼＼Vk＼＼ln-i,rwhere vk =v(＼k(y', O)tyk(W>(y't 0))
k =1

Note that there exists a constant C>0 such that

C-＼{v))l^r＼v{x)＼Hr^C{{v))l,

and that each Hr(F) is a Hilbert space equipped with norm: <(-))r.For any

functions v(x) and wit, x) defined on F and IxF, we put

(V))<≫,l
+ a

=

No

where vk=v{Wk(y', 0))#(y≫(/, 0)) and wk=w(t, ＼k(y',0))#(?"≫(/, 0))

Now, let us define the norms of XL-r{J, G) and YL-T(J, G). Put

＼v＼o,r,J,G=SUp＼＼v(t)＼＼G,r;

＼v＼L.r,J.G―＼v＼o.L+r.J,G +

i-1

s

4 = 0

sup

t'seJ
£?S

＼＼dktv(]t)-&tv(s)＼＼a.L+r-i-k

＼ts＼
for I2>1.

Let us use ＼-＼L.r.j.Gas the norms of both XL-r{J, G) and YL-r(J, G). If v<e

YL-T{J, G), from the definition of the derivatives, we have

(No. 2.a) ＼＼dktv(t)＼＼G.L+r-k^＼v＼L.r,j,6for almost all t<=J and i^k^L.

If vgXl-t{J, G), obviously we have

(No. 2.b) ＼v＼l.t.j.q=
s

*=0

SUp||9?v(0llc.L+r-*.

Put ＼v＼L.r.j=＼v＼L,r,j,Qand <y>i.r,j=＼v＼L,r,j,r-Let us use the same notations

to denote various norms of vector or matrix valued functions.

For the operators P(t) and Q(t) we use the following notations:

(No. 3.a) [P(0]-.L=il 2
h＼＼%A*!(t)＼＼-.L-k;

1=0i=l 4=0

(No. 3.b) LP(jt)＼Q(jt)-]8.L.M=tS {SII^^COIU+jr^+^fi'WK+jf-.-ci/t}.
1=0 4=0 i=l

Let MX(K) and MS(K) be constants such that

(No. 3.c) S I^U.^^McoW;

(No. 3.d) S { S |>lS'k-i.i./+<fi'>if-i.i/*.7}^Ms(A').
i=0 i=l

We use the same letter C to denote different constants depending on the same

set of arguments. C = C(---) denotes a constant depending essentiallyon the
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Now, let us prepare some notations to define the firstenergy norm of (N).

dj =d/dyjf d>i(y)=fa(Wi(y)),YMyttdOu/dxjWiW),

/i(y)={sn(y,o)≪}1'1

Note that

(No. 4) dr=My')dy'; wU)=-Kf1(yi0)/;l(/)

for x=Wl(yf, 0)eE#£nr. Since

(No. 5) BKt, ViW, OWfry', 0)=0

as follows from (A.4) and (No. 4), we can write

<B＼t)dju, v>

sf B'n{<FKy)BKt ViW, O))Yfcy', O)d'pu(＼l(y)yv(Wl(y))}Jl(y')dy

If we put

(No. 6) Qf(t, y')=BKt, Wl{y', Q))YUy', O)Ji(y'), p=l, - , n-1

#o r
(No. 7) 4(t, u, v)= S ＼ <I>Ky){Qf(t, y')d'nu{Wi{y))-ci'Pv(Wi(y))

n

QKt, y')d'u(Wi(y))-d'nv(Wi(y))}dy

^o r
(No. 8) C(t,u, v)= E＼Ud'p($(y)Qf<t, y'))}d'nu{Wl{y))-v(Wl{y))

{d'n<pKy)}Qf(t,y')d'pu{Vi{y)>MWMftdy,

then by integration by parts with respect to yp {p=l, ･･･,n―l), we have

(No. 9) iBj{t)djU, vs?=B{t, u, v)+C(t, u, v) for any u^eH＼Q) and v^H＼Q).

By the assumption: tBi+Bi=0 on IxF, we see that

(No. 10) &(t, it, v)=m(t, v, u).

Furthermore, we have

(No. 11) ＼m, u, v)＼<CMs(K)＼＼u＼＼i＼＼vh',

(No. 12) ＼C(t,u, v)＼^CMs(K)＼＼u＼＼i＼＼v＼U

for all t^L In fact, since (n―l)/2<K―(3/2) and the dimension of F is n ―l

we have

(No. 13.a) ((A)U0^C((A))K-≪m for any A^HK-^2＼D.
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By (No. 13.a) and (A.I) we see that ≪fl>(0≫≪.
i
^ CM5(/Q for ;=1, ･･･, n and

fe/. Noting this and applying Schwarz's inequality to (No. 7) and (No. 8), we

have (No. 11) and (No. 12). For the further references, we give the following

inequality:

(No. 13.b) ＼＼A＼＼co.0^C＼＼AU-ifor any A(=HK-＼Q);

This follows from the assumption: iC^[n/2]+2 and Sobolev's imbedding Theo-

rem, too. Put

(No. 14) Bx[t, u, v~＼={Aij(t)djU,dtv)+B{t, u, v)+C(f, u, v)+k(u, v).

In view of (No. 11), (No. 12) and (No. 13.b), we have

(No. 15) ＼Bx[t, u, v^＼^tC{M^K)+Ms{K)}+＼Xn＼＼uU＼vL,

which implies that Bx is a continuous bilinear form on H＼Q)xH＼Q). Since

H＼Q) is dense in H＼Q), by (No. 9) and (A.3) we have

(No. 16) Bx[t, u, ≪]^^11 fi||f provided that X^82.

Furthermore, since ＼C(t,u, u)＼£(dl/2)＼＼u＼＼l+{(CMs(K))2/28l}＼＼u＼＼laiSfollows from

(No. 12), by (No. 15) and (No. 16) we have

(No. 17) (a^llMllf^HlMlllf.t^dllMlIf for any u<=H＼Q) and ml,

where Cl=C(Moo{K), MS(K), dt);

(No. 18) ＼＼＼&＼＼＼lt=B8o[t,u, u＼-OS, u, u);

(No. 19) 8Q=d2+(CMs(K))2/281.

In view of (A.2), (No. 10) and (No. 17), H＼Q) is a Hilbert space equipped with

norm: HHIIi.tand the norms ||-||iand HHILt are equivalent for any t^I. Since

((BKt)-BKs))Uo^C{(B^t)-BKs)}K^/2^CMs(K)＼t-s＼;

WAy^-Ay^Uo^cwAy^-Ay^wK^^cM^ioit-si

as follows from (No. 3) and (No. 13), and since

＼＼Ai>(t)-A≫(s)＼U,£CMJLK)＼t-s＼

as follows from the mean value theorem, we have

(No. 20) |p|||f.(-|W?,s|^C{MM(^)+M5(A:)}U-s|||M||?

for any u<=H'＼Q) and t, sg/.

Now, let us define the energy norm E(t, u(s)) for the operators P(t) and

Q{t) by
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(No. 21) E(t, u(s))=＼＼dtu(s)＼＼t+＼＼＼u(s)＼＼＼itfor any ml, u{s)<=Xl>＼J, Q).

By (No. 17) we see that there exists a c2―C(du 52, Moo{K), MS(K)) such that

(No. 22) c?E{t, u(s))^＼＼Dlu{s)＼＼l^czE(t,u{s))

for any m(s)gIm(/, Q) and t^I. In view of (No. 20), we have

(No. 23) ＼E(t,u{r))-E{s, A(r))＼<C{MJ<K)+MAK))＼t-s＼＼＼iHrWx

for any t, sg/ and u(r)<=XuXJ, Q).
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§1. Compatibility condition and statements of main results.

First, we shall define the compatibility condition for (N). To do this, we

define uM=uM(x) (2<LM£L£K) successively by the following formula:

(1.1)

1=0 ＼ I /

If meIl'°([O, T), Q) is a solution to (N), noting (Ap. 14), we see that df m(0)

=#*. Here and hereafter, (Ap. N), Theorem Ap. N' and Corollary Ap. N" (N

1-18; N'=l, 2, 4 and 6; N*=4, 5, 7 and 8) can be found in Appendix below.

We begin with
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Lemma 1.1. Assume that(A.I) is valid. Let L be an integer ^[2, K~＼.If

H^HHQ), u^HL-＼Q) and DL-zh(0)^L＼Q), then uM<=HL-M(Q) for O^M^L.

Proof. By inductionon M we prove thelemma,

for O^k^M-L Let 0£l£M-2. Applying (Ap.

L―M+/+1 and r=L―M+l, we have

Assume thatuk^HL~k(Q)

1) with a=K-l-l, B=

＼＼di{d＼Aii{mM-x-i)＼＼L-M+＼＼Ud＼AiimJUM-,-i)＼＼L-M

^ C{ S ||aii4S?(0)||jr.1_i||flJf.1.I||L_cjr.,-1,

+ S l|3i^(0)||x-i-,||fljf-,-i||zcif-i-.)}

Since d＼Aii(S))^HK-x-＼Q) for 0£l£K-2 as follows from (A.I), we see easily

that uM<=HL-M(Q), which completes the proof.

If &(t)(=XL-Xl0, T); Q) (2£L£K) is a solution to (N), in view of (Ap. 14),

we have that 3f {Q(t)[u(t)']}L=0=3f/r(0) on F for 0£N^L-2. Keeping this

in mind, let us define the compatibility condition of order L―2 to (N) as fol-

lows: We say that the data uo^HL(Q), u^H'L-＼Q), /fleZL-*-°([0,T), Q) and

/reXL-2-1/2([0, T), F) satisfy the compatibility condition of order L―2 if the

eoualities:

(1.2) %(^){vidlAiXO)djuN-l+d＼B%Q)djuN-l+dlBXO)uN+l-l}=d?fr(O)

1=0＼i /

hold on F for all iv~e[0,L― 2]. For the sake of simplicity, by DL(J) let us

denote the set of all systems (u0, uu fa, fr) of data for (N) satisfying the con-

ditions:

(1.3.a) uqzeH＼Q); u^Hl-＼Q); fq^X^XJ, Q); fr^XL-^＼J, T);

(1.3.b) 3f-2/fiEELip(/, L＼Q)); d^fr^UpU, H"＼D);

(1.3.c) u0, Mi, fa and fr satisfythe compatibility condition of order L―2 to (N)

where / is a time interval containing 0 and contained in /.

Our main purpose of this paper is to prove the following two theorems.

Theorem 1.2. Assume that (A.1)-(A.5) are valid. Let L be an integer

e[2, K~＼.Then, for a given system (u0, iiu fa, /r)eZ)L([0, T)) of data for (N),

(N) admits a unique solution u^XL-＼[0, T), Q).

Theorem 1.3. Assume that (A.1HA.5) are valid. Let L be an integer
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e[2, if] and u^XL-＼[Q, T), Q). Put f'Q{t)=P{t)＼_u(t)~]and /r(O=Q(OC≪(O].

Assume that

(1.4) af-2/fieLip([0?T), L2(i2)) and 3f-2/reLip([0, T), tf1'2^)).

T/ien, ^/zereexistsa constant C(T)=C(T, 8U 8Z> L, T, F, MJ^K), MS(K)) such that

the following two inequalitiesare valid for any £e[0, T):

(a) ||I>LM(OII?^C(T){||DLM(0)||§+|/fl|i-s.o.Co.t:+</r>i-8.i/2.co.t]

+＼＼＼＼df'lh(s)＼＼l+{d^1fr(sWllz)ds};

(b) E(t, d^-lu(t))^ec^[E(O, df-lu(O))+C(T){＼＼DLu(O)＼＼2o+＼h＼L2,o,zo,n

-≫ (*£ - -> 1 1/2f
_

+</r>!-2.1/2,co,t]+Jo(!iasL-7i3(s)IIH<(5sL-1/r(s)))f/2} |f(||D£fi(0)||5

+ l/i2l!-2,o,co,n+</r>!-2.1/2,co.t])+Jo(liaf'-7fi(s)ll?4-((5|-1/r(s))}f/2)rfs} J

Remark. (1) By (Ap. 14) we know that P(OCfi(O]eJ?L-*'°([0,T); Q) and

<?(f)[M(O]<=**-･･1/8([0,T)',T) provided that u(t)^XL-＼[_0, T); Q). Hence, in

Theorem 1.3 we see that fQ^XL-2-＼{Q, T), Q) and /reZL-8-1/8([0, T), T).

(2) Since L＼Q) and Hll＼F) are Hilbert spaces, (1.4) implies that df"7'Q{t)

and df^frit) exist in the strong derivative sense of L＼Q) and Hl'＼F) for

almost all ?e[0, T), respectively. Furthermore, by (No. 2.a) we know that

＼＼di~lfa(t)＼Uand ≪af-1/r(0))i/2are bounded for almost all fe[0, T). Hence,

dt'Vait) and df^frit) are L2 functions in /e(0, T) having their values in

LHQ) and ^1/2(D, respectively.

§2. The first energy inequality.

The goal of this section is to prove

Theorem 2.1. Assume that(A.I),, (A.2),, (A.3),,5, (A.4)7 and (A.5)7 are

valid. Let kgIm([0, T), Q) and put

F(t, u(t))=＼＼＼＼P(s)lu(smi+((Q(s)lu(t)3bz)ds

Then, there exists a constant C(T)=C(T, du 82,F, MJ^K), MS(K)) such that the

following two estimates are valid for fe[O, T):

(2.1) E(t, uttV^e^iEiO, u(O))+C(T)F(t, u(t)));
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(2.2) E(t, u(t))^ec^lE(0, iKQ))+C<T){＼＼DlW)＼＼l+F(t,WW'*F(t, fi(f))1"].

If the coefficientsof the operators P(t) and Q(t) belong to jS＼ then (2.1)

and (2.2) were already obtained by Shibata [9]. Namely,

Theorem 2.2. Let /'=[-■r/2, T+(r/2)]. Instead of (A.l)7, we assume that

(A.I);. Au(t,x)^$XI'XQ) and B＼t, x)^m＼I'xr)

for 1=0, 1, ･･･,n cni /=1, ･･･, n.

In addition,(A.2)/-, (A.4)r and (A.5)7< arg ya/Zrf. Furthermore, we assume that

there exist positive constant 8[ and 8'2such that(A.3)/-,5'is valid. Let ft be a

small number^(0, [n/21 + 1―(n/2)) and A be a constant such that

(2.3) s{aii4"u,+,,./'+<fl%.1+/../.]-^.
1=0 U=i p J

Then, there existsa constant C{T)=C{T, d{,d'2>A, F, p) such that (2.1) and (2.2)

are valid for any mgP'o([0( T), Q) and fe[O, T) with this constant C(T).

Remark. The estimate (2.1) of Theorem 2.2 was firstproved by Miyatake

[6] in the scalar operators case (i.e., m=l). But, Miyatake assumed that the

coefficientsof the operators are sufficientlysmooth and did not show how the

constant C(T) in (2.1) of Theorem 2.2 depends on the coefficientsof the opera-

tors. It is firstfor Shibata [9] to prove that the constant CiT) depends essen-

tiallyonly on A, which implies that the constant C(T) in Theorem 2.1 depends

on Moo(K) and MS{K). This fact is quite important to solve the corresponding

nonlinear problem. The results due to [9] did not follow from [6] directly.

Because, to prove that C(T)―C(T, A, ･･･),to the auther it seems that one needs

more ideas, in particular, sharp estimates for L2-boundedness of pseudo-differ-

ential operators developed recently.

To prove Theorem 2.1 by using Theorem 2.2, we use the following lemma

concerned with the approximations of the coefficientsof the operators P(t) and

Q(t).

Lemma 2.3. Assume that(A.I)/,(A.2),,(A.3)/,5,(A.4)7 and (A.5)7 are valid.

Then, there exist a number 2I0>0 and sequences of matrices: {^4"<j}CI.S°°(/'Xi2);

{AW<zC-{I', H-(Q)); {Bla}(zC~V', H°°(D)(/' = [-r/2f T+(r/2)] anrf(re(O, Jo))

having the following properties: (a)-(f).

(a.l) limM^-^Ltf-! ,,=0: limM^-^j/U-^.r =0
<r-*0 (7-0



(a.2)

(b.l)

(b.2)

Neumann problem

＼＼m<Bl,-Bl>K_a.1/t.r=O

S
tl＼AU.＼..K.r£CMJLK);

1=0 i=l

^<BlayK.um,r£CMs(K),

J=0

n n

S SI4iU-i,u^CM^);

7=0 i=l
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for any ae(O, Zo).

(c) There exists a sequence {/c(<r)}of positive numbers which tends to zero as

o―*0 and has the following property: If we put

MXt, x)=Aioa(t, x)+A%W, x)-K(a)vt(x)Im

where Im is the mXm unit matrix, then AIXt, x) and B°(t,x) satisfy(A.5)/- for

any tre(O, 2"0).

(d) // we put

AIM, x)=Am, x)+Aya(t, x)

then there exist constants d[ and d'2depending only on 8U d2, MJ^K) and MS(K)

and independent of a such that Alj(t,x) and B}a(t,x) satisfy (A.3)/',a-for any

*e(0, So).

(e) Vi(x)Bi(t,x)―0 for any (t, x)G/'xf and <re(O, 20), I e.,(A.4)r is valid.

(f) Ail and B＼ satisfy the (A.2)r for any <re(O, ^0) and i=l, ･･･, n; 1=0,

1, ･･･.n.

Deferring the proof of Lemma 2.3, we shall firstgive a

Proof of Theorem 2.1. Let A&, A%lo,Bla,Io and k{o) (i=l, ■■,n; 1=0,

1, ･■･,n) be the same as in Lemma 2.3. Let ft be a small positive number

e(0, [n/2]+l-(n/2)) and a =(0,^0). Since l+pt<2<K, by (b) of Lemma 2.3

we have

(2.4a) ＼AU,U1+/t.J-+ ＼AZ-K(a)vtIm＼co.1+/t.J.^C{MoJiK)+l}.

By Corollaries Ap. 7 and Ap. 8 and (b) of Lemma 2.3, we have also that

(2.4.b) ＼AislaU,l+!l,I.^C＼Aisla＼K-1,UI.<CMs{K);

(2.4.C) <#>,. l+/i,v < C(BlayK-um, r ^ CMS(K).

From these points of view, let us put A=C{Mco(K)+Ms(K)-＼-l}. Then, Lemma

2.3 implies that for each (7<e(0,2o), Ail and B＼ satisfy all the assumptions of

Theorem 2.2. Note that A and constants d[ and d'2depend on MJ^K), MS{K),

8t and d2, but independent of a. Put
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Paitxuim^diu^-dumdtuio+Amdjud));

QoWmt^ViAmdAfi+BiWdjuiO+BXttftuit)

If we denote the energy corresponding to Pa{t)and Qa(t) by Ea, then by Theo-

rem 2.2, we see that there exists a constant C(T)=C(T, du dz>F, MolK), MS{K))

independent of a such that

(2.6) EM, M(0)^2ec<r>{{£CT(0,u(0))+C(T)Fa(t, H(t))＼',

(2.7) EM, m))^ecmt{Ea(0, am+CiTXWmU+FM, u(t))1/2FM, *(0)1/8)},

where FM, u(t))=＼＼＼＼Po(s)lu(s)Wo+((Qa(s)lu(s)']))b2)ds.
Jo

Now, we shall prove that

(2.8) EM, u{t))-+ E{t, u(t));FM, u(t))-> F{t, u(t))as a^O for all te [0, T).

Noting the definition of energy (cf. (No. 21)) and using the definitions(No. 7)

and (No. 18), we have

(2.9.a) ＼EM, u{t))-E{t, u(t))＼£C＼
£

≪fl&)-fl>(0≫≫.o

+ s (＼＼Aim-Am)＼＼~,oH＼A%m-Am＼＼~.o＼＼m)mcuM)＼＼m＼＼i

where

(2.9.b) UM)=tPM)-Pm~,K-1+iPa(t)-P(t)＼QM)-Q(ms,K-.2,1 (cf.(No. 3)).

Here, we have used (No. 13). Thus, by (a) of Lemma 2.3 we have the first

part of (2.8). Applying (Ap. l)-(Ap. 3) with a=K― 1 and fl=r=l, we have

＼F9{t,a(t))-F(t,iim£c[
t£7.(s)||Z)1a(s)||!ds

(C = C(M≪(/D, Afa(/O)).

0

Since u^X2-°([O, T); Q), by (a) of Lemma 2.3 we have the second part of (2.8).

Hence, letting a->0 in (2.6) and (2.7) and using (2.8), we have Theorem 2.1.

To complete the proof of Theorem 2.1, we give a

Proof of Lemma 2.3. First, we shall discuss about the approximations of

Bl (1=0, 1, ･･･,n). Let 6k be functions satisfying (No. 1). Put

Blk{t,y')=

＼ fflPuW, O))B＼t, Wk{y', 0)) for ＼y'＼^ak,

0

for k

(2.10)

=1, ･･･, No and /=0, 1, ･･･,

for ＼y'＼>ak

n. By (No. 1) we have

B＼t, x)=js 0Kx)fl'(f,x)=^'<pi{Wk{y', O))J3U ?,(/, 0))

where the summation I' is taken over all k such that x=＼k(y', 0)^0 kr＼P.
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Since supp fikCLOk, without loss of generality,we may assume that supp <j>k(Wk(y)}

dQ(a'k) with some <7£e(0,ak). As a result, since B'e7x-M'U H, BlktE

yk-i,i/2(I}Rn-ij and supp5≪(f)c{|y|<(Ti} for all feJ. Furthermore, we may

assume that F?^^', 0)^=0 on {＼y'＼^ak) for some /, say i=n. By (No. 5) we

have

(2.11) mt, y')=-YU (y!o)-fs%^')^J(y)o)}
I p=i i

Let p(t,y') be a function in C^RxR71-1) such that supppd{＼t＼2+＼y'|2<1}?

p^O and
＼＼p(t,

y')dtdy'=l. Put po(t,y')=a-np(ta-＼ y'a-1) and

IBIW, y')=＼＼po(.t-s,y'-z')Bl(s, z')dsdz' for /=0, 1, -, n-l

(i.e.,we mollify each component of B[ by means of the usual Friedrichs*

method). In view of (2.11),we put

(2.12) [ifcWf, y')=-YUy', O)"1

Since 0<e'k<<?k, there exists a .TjX) such that [.B*]</(*>y') are well-defined for

a /jG/'XiJ'-1 and supp[i*iL(f, /)C{|/|<<;*} for any feJ' and <;e(0, Jx).

Furthermore, [fill^eC^/', H^R"-1)). From the second part of (A.2) it follows

that

(2.13) 'tmut, y')=tmut, /); '[$].(*,y')+mut, y)=o

for all (t, y')<=rxRn-% and <?e(0, 2J. Put

Blka(t,*)=[£*]*(*, 0*00) for xELOkr＼F and =0 otherwise.

Since [Bi]ff(f,j')=0 for |y|^<r* and ?e/', Biff(f,x) are not only well-defined

but also in C~(/',H^D). Put

Bla{t,x)= S B Ut, x)

Then, by (2.12) and (2.13) we see easily that 'BXt, x)-Bl{t, x) and 'B^t, x)+

Bla(t,x)=0 (i=l, ･･･, n); vtBiit,x)=0 for any (t, x)G/'xf. Namely, the third

and fourth parts of (A.2)7< and (A.4)7< are valid for any <re(0, 2＼). Obviously,

we have that <BlkayK^, 1/2,v ^C<$lBl>K-u 1/2,r^CMs(K) and <Blka-$iBl>K-2,ll2,v

-+0 as <y->0 for /=0, 1, ･･･,n-1. With the help of (2.11) and (2.12), we see

also that <Bl}K^m,r^CMs(K) and <££,-#£≫>*..,.i/g>r->0as o-+0. Noting

(2.10), by these results we see easilythat (a.2)and (b.2) of Lemma 2.3 are valid.

Now, we consider the approximations of Ail. In view of (A,l) and (A.2),

without loss of generality we may assume that
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(2.14) tAlu°=Alv° and tAi/=A{f for £7=00 and S and /, j=l, - , n .

By well-known Lions' method of extending functions defined on Q to whole

Rn, we have that there exist [All]&gK(IxRn) and IA%1]^YK~1'＼I, Rn) such

that ALl = lAiJ'} and A%l=[A%ll on IxQ, and

(2.15) |[^]|^,/^C|iit,SJ;

i[^y]k-i.i./.*≪^ciiiyiJr-lil./ (c=c(K,n).

Furthermore, in view of (2.14), we may assume that

(2.16) t[^°]=UI/>] and ≪[i4#]=[>!#] for U=oo and S and /, j=l, ■■■,n.

By using Friedrichs' method mentioned previously we mollify [AW] and [As1]

with respect to (t, x). Then, noting (2.15), we see that there exist a small

constant J, and sequences {^*f}c^-(/'Xfi); {^y}cC°°(/', H°°(J2))(ae(0, 21,))

such that

(2.17) l^-^U^^.r^O and |^-^yU_2,1>r->0 as <y-0;

(2.18) S 2 I^U.^.r^CM.W and S
f]

|4&|ir-i.i./'^CMa(J0
J=0 i=l i=0 i=l

for <;e(0, J2).

In view of (2.16), obviously we have

(2.19) 'Ah^Afo and tA^,=A^a for £7= 00 and S and i, /=1, - , n .

In particular, (2.7) and (2.18) mean that (a.l) and (b.l) of Lemma 2.3 are valid.

Hence, we have proved (a), (b), (e) and (f) of Lemma 2.3 if we choose 2Q so

that .To^min (H1, 2"2).

Now, we shall prove (c) of Lemma 2.3. Noting (A.I) and (A.5), we have

{-vt(xXA£(t, x)+A%{t, x))+2B°a(t, x)}rj-V

U-Vi(x)Ai0(t, x)+2B%t, X))7]-V-K(<T)＼7]＼2^-K(a)＼7]＼*

where

K(a)=((vt)U o(I AL°a-AL° Icc,0,/- +1 As°a-As° ＼,..0,v)+2<B°a-B0)^
0,r

.

Obviously, by (No. 13) and (a) of Lemma 2.3 we know that k(<x)->0 as <y―≫0.

Since the v{x) is the unit outer normal of F at x^F, ＼v{x)＼z=l fox lef.

Hence, if we put Ala＼t, x)=AL°a(t, x)+Ais°a(t, x)―ic{a)vi(x)Im, then we see that

(c)is valid for any <7<e(0, 22). Furthermore, putting AlJ{t, x)=AHa(t, x)+Aisj0(t, x),

from (2.19) it follows that the first and second parts of (A.2)7< are valid for

<re(0, I2).

Our final task is to prove (d) of Lemma 2.3. Let Ba{t, u, v) and Ca(t, u, v)

be bilinear forms defined by replacing Bj by B£ in (No. 7) and (No. 8), respec-
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tively. In the same way as in (2.9), we have

(2.20) ＼&a(t,u, v)-m, u, v)＼^CUa{t)＼＼u＼＼x＼＼vh

for any £<=/',<7G(0, 2＼) and u, v^HHQ). Noting (No. 8), we have

(2.21) ＼ca{t,u, v＼^c^iBiyoo,UI.＼＼uU＼v＼u

for any t<=F, <re(0,lx) and ii, v^H＼Q). Furthermore, we have

(2.22) <Bi(t)djU,v>= J£a(t,u, v)+Ca{t,u, v)

for uzeH2(Q) and v<=HKQ) (cf.(No. 9))

299

By (A.3)7, (No. 9) and (2.22), we have

(2.23) (A'Mdju, diu)+<B&t)djii, a>^1||fi||!-&||≪l|§-/i-/2 for u<=H＼Q),

where A = |((Ay(t)-Aij(t))djU 'diu)＼+ ＼&a{t, u, u)-B(t,u,u)＼ and I2=＼Ca(t,u, v)

―C(t, u, v)＼. Noting (2.20), (2.21) and (No. 12) and using (No. 13) and (b.2) of

Lemma 2.3, we have that I,£C£7,(011≪II!and /8^CMS(AT)||&]|a||mHo. In view of

(a) of Lemma 2.3, there exists a I3 such that /i^(3i/4)||m||! for <re(0, 2s).

Since It^(d1/i)＼＼ii＼＼l+{{CMs(K))t/d1}＼＼ii＼＼lcombining these facts and (2.23) im-

plies that (A.3)7',5- is valid for any <?e(0, Ss), where 5{=di/2 and d'2=82+

{{CMs(K))2/d1}. Note that a( and d'zare independent of a. If we take So=

min (I,, So, I*), the we have completed the proof of Lemma 2.3.

§3. On some fundamental results on ellipticboundary value problems.

In this section, we shall prove some results on ellipticsystems, which will

be used in later sections. In the paragraphes 3.1 and 3.2, we shall discuss the

fundamental principles from which the differentiabilityof weak solutions in the

interior of Q and near the boundary follows readily. These two paragraphes

are independent of other sections, but to prove results stated in the rest of §3,

the theorems in §§3.1and 3.2 play an essentialrole. In the paragraph 3.3, we

shall investigate a unique existence theorem of solutions to some ellipticboundary

value problems in Q. In the final paragraph, we shall prove the unique exist-

ence theorem and time-dependence of solutions to some ellipticboundary value

problem with parameter f as a time mentioned in the final part of Introduction.

3.1 Differentiabilityin the interior of Q. Let aij(x) be mXm matrices of

functions satisfying the following properties:

(a.1.1) Each of aij(x)is decomposed as follows: aii(x)=alj(x)+ay(x), where
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Here and hereafter, /T(n)=max([w/2]+2, K-l).

(a.1.2) There exist constants dt and dz>0 such that

(aVdjV^tvfedJlvWl-dtWvWl for any v^Hlw{Q).

Here and hereafter, we put

H%){Q)={v<=HL{Rn) | dist (suppy, T)^s for some £>0}.

First, we consider the differentiabilityof u^Hx{Q) satisfying the variational

eauation:

(3.1)
(aijdju, diV)=(f, v) for all vEEH＼Rn)

In this and next paragraphes, we use the notations: [iJ]i=(z;(;c+/i<2*)― v(x))h~l;

v＼kh= v(x + hek) where ek=(0, ･･･, 0, 1, ･･･, 0) are the &-th coordinate vectors

Theorem 1.3. Assume that(a.1.1)and (a.1.2)are valid. Let L be an integer

e[2, K＼ Let u^HL~＼Q) satisfy(3.1) and

(3.2) dist(supp u, F)~^e for some s>0 .

If f(EHL-2(Q). then u^HHQ) and

(3.3) ＼＼u＼＼i<C(dud2, Tco.k-1, Ys.kw, ^){||/L-2+I|mL-i}

Here, y<*>.K-＼and Ys.Ktn) are constants such that

(3.4)

t
Il

ii
＼＼aiJ＼UK-i^7'-.K-i;

^JayilKin^Ts.Kw.

Proof. Let d=(8u ･･･,8n) be any multi-index such that ＼d＼=L―2. Then

dlu satisfiesthe variational equation:

(3.5)

where

(aijdj(dsxu),diV)=(F8, v) for any v^H＼Rn)

a><8 ＼ 0) f

(ft)=(o>i,･･･,(On) are also multi-index and cd<8 means that o>i^8i for all i=lt

･■･,n and |<w|<|tf|). In fact, if v^HL-＼Rn), from (3.1) we have that

(ai}djU, di(―dx)5v)=(f, (―dx)sv). Noting (3.2), by integration by parts we see

(3.5) immediately. As will be seen soon, F^L＼Q). Hence, since HL~＼Q) is

dense in HHQ). (3.5) follows immediately.
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Now, we shallprove that F8(=LXQ) and

(3.6)

Recall that
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＼＼Fd＼＼Q^＼＼f＼＼L-2+C(L){U.K-l+ rS.K^}＼＼uh-l.

|3|=L-2. Let a)<d. Applying (Ap. 1) with a=K(n)―＼5-a>＼

j8=L-2-|c| and r=l, we have that ＼＼di(d3x-'0aisjdjd'Su)＼＼o^C＼＼aisj＼＼K^Au＼＼L-1.

From this, (3.6) follows immediately.

Now, we shall prove that dsxu^H＼Q) and

(3.7) ||d£a||,^C||/||L-8+ll≪lli-i} where C = C(du dt, L, u.k-u Ys.km).

Since d is any multi-index such that ＼d＼=Lr-2, the theorem follows from (3.7)

immediately. For the notational simplicity, we write w=dsxu. Let h be any

number satisfying the condition: 0<＼h＼<8/2. Since (aijdjW, di[t)]iA)=

(^3, [v~]-k) as follows from (3.5), by the change of variables: x + hek->x, we

have that (a%[w]|, 5it;)=-([fl^]Wiu;, 9^|ift)―(F5, [y]ift). Note that ||3^||0

MuWl-^, l|3ii>l*ftll*≫.o^ll≪IU≫.i;IICi>]*≫llii≫.o^l|i>L≫.i.Since |[V']£I ^ll^lk^

Ci^co.x-i+^.iircn)} as follows from (No. 13.b), by Schwarz's inequality and (3.6)

we have

(3.8) ＼{ai^imLdiv)＼^C{ff＼＼L.2M＼u＼＼L-r}＼＼v＼＼Rn,l

where C=C{yo,,K-i, Ts.kw, L). Since dist (supp ＼w~＼＼,T)>£/2 provided that

0<|/i|<£/2, by (a.1.2) we have

(3.9) IIMllli^CdirMKfl'^M^SiMDH-d.HWillS}.

Since ||[tt/]l||0^||#||z.-i,combining (3.8) with v=[w~]＼,and (3.9), we have that

IIMllli^C{||7lU-8+l|0lk-i} where C=C(dlf d2, L, Tco.K.1}Ts.km). From this

it follows that iv=dlu<=H2(Q) and (3.7)is valid, which completes the oroof.

As an easy corollaryof Theorem 3.1,we shallgive a theorem on further

differentiabilityof u satisfyingthe equation:

(3.10) -di{ai＼x)dju^))=J^) in &

Corollary 3.2. Assume that (a.1.1) and

integer <=&, K＼ u^HL~＼Q) and J^HL~＼Q).

then u&HHQ) and (3.3)is valid.

(a.1.2) are valid. Let L be an

If u satisfies(3.2) and (3.10),

Proof. Multiplying (3.10) by v, integrating over Rn and noting (3.2),by

integration by parts we have that u satisfies(3.1). Hence, Theorem 3.1 implies

immediately Corollary 3.2.
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3.2 Differentiability in i??. In this paragraph, first we consider the differentia-

bility of a solution to the variational equation:

(3.11) B[u, 0XA, *)'+</≪, ≫(-,0)>'+(/l did)' for any v<=H＼RX).

Here, /i, /2 and /| are given functions; B is a bilinear form of the form:

B[_u, v]=(aijdju, divy+(bpdnu, dpv)r-{bvdpu, dnv)'.

Here and hereafter, for the notational simplicity, we use the following abbre-

viations :

(*, v)'

Jfi≪

u(x)-v(x)dx; (Ja,vY = W-i
U(x')-V(x')dx' (X'=(XU ･･･, Xn-i))

II ＼＼/IIII
.
//＼＼/II 11/II-III II･IIR≫ , i'))r―lrll≪n-l.r･

Let aij and bp ii,j=＼, ■■･,n; p=l, ･･･,n ―1) be mXra matrices of functions

satisfying the following assumptions:

(a.2.1) The aij are decomposed as follows: aij=a%+ay where aU^^K~＼R+)

and a)i^HK<n＼Rn+).

(a.2.2) bpsEHK {Rl).

(a.2.3) taii=aii.

(a.2.4) Let a be a positive constant. There exist positive constants d3 and dA

which may depend on a such that

Blv, v^dMvWiT-dlWvWtf for any t>e=i/JtR?).

Here and hereafter, we set

H^RX)={v^HL(RX) | suppi;C(?(£)}(Q(s)={x^Rn | |%'|<e, |jcb|<s>).

As a corresponding theorem to Theorem 3.1, we shall prove

Theorem 3.3. Assume that(a.2.1)-(a.2.4)are valid. Let L be an integer

e=[2, K]. Assume that fx^HL~＼RX), fz^HL~^＼Rn-1) and f＼<=HL-＼Rn+) (i=

1, -

and

(3.12)

n). If u^HL-＼R%) for some se(O, a) and satisfies(3.11),then u&HL(Rl)

llfl||UC{||/1||£.,+≪/,^.<,,≫+|3ll/illi-i+llfl|li-i}

where C = C(d3, d4, L, 7L,k-u 7s,K<.n-i)> Here, tUk-i and 7 s.km are constants

such that

2 ＼alJ＼^K-l,Rn^K,K 53 II^IIU)+sVll*cn>^.*cn>.
p=l
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Proof. Let k be any integer e[l, n―1] and a'=(au ･■･,an-i) be any

multi-index such that ＼a'＼=L―2. First, we shall prove that d kd%'-u=d$"* ･･-

d°lTl&^H＼RX) that

(3.13) ＼＼dkd?.u＼＼i<CA.

In the present proof, for the notational simplicity we use the same letter C to

denote various constants depending at most on L, ds, d4, yL,k-i and y's,K<.n->and

put J=il/1||£-2+((/2))i-c3m+.illl/illi-1+l|M||i_1.To prove (3.13), we shall use

the fact that dl'.u satisfiesthe variational equations:

(3.14) B[w, v]=(Fi, v)'+<P2> ≫(-,0)Y+(Fi, div)1 for any v*eH＼R%)

where F^te'.h; F2=d%',fz; w=d%u;

≪'</9'＼8 /

pn―fia'fn_ yi
(a ＼lfja'

~P' nnjfi 3j8; ^j_ 3≪' -P'hPd d?' u ＼
" 3―Ux'J 3 ^J I ar l＼ux u uJux' ** uX' u VpVx'Uj.

P'<a' ＼p '

= 1, -, n-1)

In fact, if v<bHl 1(R+), replacing v by {―dx>)a'v in (3.11) and applying inte-

gration by parts, we have (3.14). As willbe seen below, F＼<=Hl{Rl). Further-

more, F2^H1'＼Rn-1) and F^L＼Rl). Since HL~＼RX) is dense in H＼Rl), (3.41)

is also valid for any v^H＼R%).

Applying (Ap. 1) with o=K(n)-＼a'-p'＼, p=L-2-＼fi'＼ and y=l for

$'<a', we have

for i―1, ･■■,n and p=l, ･･･,n―1. From this it follows immediately that

(3.15) II^IIS+I^K/.+ Sllftll^CJ.

Now, we prove (3.13). Let h satisfy the condition: o<＼h＼<a―e. By the

change of variables: x + hek-^x, from (3.14) we have

(3.16) BUwJk, t;]= -(Cfl^]*hSiu;,d,z;|ifty-(|>p]*ft3BM;,dpv＼ih)'

+(C&p]*ft9Pw5,Snvl^y-CFi, C≫]*fc)'

-<f,, c*(-,o)]*≫y+([Fj]i,3it>y.

By Schwarz's inequality and Theorem Ap. 2-(l), we have

(3.17) ＼<Ft, [*>(-, 0)]*ft>'|^≪F2K/2≪[y(-, O)]ift≫L1/2

^≪i72≫1//2≪2?(-, 0)≫1'/2^C≪F2≫i/2||2>||
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Hence, applying Schwarz's inequality to other terms of the right-hand side of

(3.16) and using (3.15) and (3.17), we have

(3.18) IflCM, v]＼^CJ＼＼v＼＼[.

Here, we have also used the facts that ||3j≪5||0^||m||£_i;

|[a°]^l^|fl<Jl≪.i.i≫≫^|fl^U.i.il≫+C||flS'||U);＼Lbp2^＼^C＼＼bnfKlni

<cf.(No. 13.b)). Since [w~＼khvanishes for |x|^(T as follows from the assump-

tions: &^Hi~＼RX), by (a.2.4) we have

(3.19) (IICi5]lllf)1^(d,)-1{5CCi0]l,MM+^CIIMItf)2}.

Substituting the inequality: (||Wllli)2^||fi||i-il|[w]ll|5into (3.19), putting v=

＼w~＼＼in (3.18) and combining the two resulting inequalities, we have that

ll[≪?]!l|f^CJ. From thisit follows immediately that dkw―dkd%u^Hl{Rl) and

(3.13) is valid.

Now, by induction on N we shall prove that d%'.d%u^L2(Q) and

(3.20) ＼＼d$d≫u＼＼'0^CJ

for any integer iVe[0, L~＼and multi-index a'=(alt ･･-,≪n_i) such that ＼a'＼=

L―N. As was already proved, (3.20) is valid for A^=0 and 1. Thus, assume

that 2^N^L and that the assertion is valid for smaller values of N. First,

we prove that ann(x) is a nonsingular matrix for all x(EQ+(a) (Q+(a)=Q(a)r＼R+)

and

(3.21) ＼ann(xY1＼^C for all x^Qja).

To prove this, we need

Lemma 3.4. Let G be a domain in Rn and Ptj(x) be mXm maritces of

functions in C°(G). Assume that tpii=pii and that there exist positive constants

c3 and cA such that Re I Pii(x)djv(x)'div(x)dx^c3＼＼v＼＼h.i―c4||y||e.ofor any jiG

C"(G) which may be complex-valued. Then, Pi){x)^i^j'^ci＼^＼zIm.for any x^G

and £=(&, -,$n)<=R＼

This lemma is well-known and for its proof, see Shibata [91. Since

(3.22) <bpdpu, v>
JRn

dn(bpdvu' v)dx = -(bpdJJu, dnd)+(bpdn&, dPv)'

+(@Pbp)dnu, vy-((dnbp)dPu, v)'

as follows from the integration by parts with respect to xp (p=l, ･･･,n―1),
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we see that for any i>eCo(Q+(ff))

Bid, v^ia^djv^.vy-ddpbndnv, v)f+((dnbp)dPv, v)'

^ia^djv, divY + Cr's.K^WvWiWvW'o ･

Combining this and (a.2.4)implies that

for any w e C (Q+(o)) which may be complex-valued where d^di+iCy's. kcn-)Y/2d3.

Applying Lemma 2.4 and noting that ai} is continuous on Q+{o) (cf. Sobolev's

imbedding theorem), we have that aij(x)$i$j^(d3/2)＼$＼2Imfor any x(=Q+(o) and

f=(fn ･･･,%n)^Rn. In particular,if we put £=(Q, ･･･,0, 1),we have that ann(x)

^(ds/2)Im for any x(=Q+(a), which means that ann(x) is non-singular for all

x<=Q+(a) and that ail eigenvalues of ann are bounded by dz/2 from below.

Since

ann(xY1 = {det(ann(x))}-1 cofactor matrix of ann(x),

we have (3.21).

Let y£C^(Q+((r)) and replace v by (-dx)sv in (3.11) where 8=(a', N-2).

Then, by integration by parts we have

(3.23)

where

(anndldsxu, v)'=<$, v)

G=-(dnann)dndsxu-dn(anndndsxu)-dv(a^dMu)-d11(bpdnd8xu)

-dnib'd&H)- 23(8){Bt(&rmat>dft&)dp{d*r''b≫dZ&)}
a)<5＼(l)/

Note that ＼d＼=L―2, because ＼a'＼=L―N. Applying (Ap. 1) with a―K(n)

―＼d―(o＼,P=L―2― ＼<i)＼and y=l for a)<8, we have

Hence, by the inductive assumption we have that 5eL2(i2?) and ||S||o^CJ.

Accordingly, since (3.23) is valid for any y<=C~(Q+O)) and suppMCQ(ff),

＼＼anndldsxu＼＼'*^CA.Thus, (3.21) implies that didsxu^L＼Rl) and that ||d£d£fl||5

^CJ. Since dffixu=d%d%u, we have proved (3.20), which completes the proof

of the theorem.

As an application of Theorem 3.3, we shall prove further differentiability

of a solution u to the boundary value problem:
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(3.24.a)

(3.24.b)
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di{aiKx)dju{x))=f{x) in Rl,

~an＼x', Q)dju(xf, O)+cp(x')dpu(x', O)=g(xf) on Rn

Here, aiJ(x) and cp(xr) are mXm matrices of functions satisfying the following

assumptions:

(a.2.5) (a.2.1) and (a.2.3) are valid;

(a.2.6) cpGHKw^1/2KRn~1);

(a.2.7) there exist positive constants d5 and d6 such that

WdjO, diV)'+(c*dvv(', 0),v{-,Q)y^dh{＼＼v＼＼'iT-dl＼＼v＼＼oT

for any t>ei/*(JR?).

Note that the unit outer normal of the boundary of El is (0, ･･･,0, ―1). The

following theorem can be deduced form Theorem 3.3, which is corresponding

to Corollary 3.2. It is independent of the text, but for the further references

we state and prove it

Theorem 3.4. Assume that (a.2.5)-(a.2.7)are valid. Let L be an integer

[3, K＼ u^Hi-＼RX) for some sg(0, a), J^HL~＼Rl) and ge:HL-<">＼Rn-1). If

u satisfies(3.24), then u^HL{Rf) and

(3.25) l|fi||UC{||/||i-1+^£-c./≫+ llft|l£-i},

where C = C(d5, de, L, yL.K-i, Ys,km)- Here, yL.K-i is the same as in Theorem

3.3 and r%.ic(n->is a constant such that

.23 ＼＼ay＼＼'Kln>+
n3iicnyKcn>-CU≫£rt.KCn>.

Proof. We shall reduce (3.24) to (3.11). Let bp(x) be mXm matrices of

functions such that bv(x', 0)=cp(x') for almost all x'^R71'1 and

(2.26) ＼＼bp＼＼'KM^C(r)((cpyKW.CU2y£CrlKiiO.

The existence of such bp is assured by Theorem Ap. 3. Since <Ccpdpu(',0),

v{', Q)>'―(hpdpu(-, 0), v{-,0)>',by employing the same argument as in (3.22)

■sure*Vtoirck

(3.27)
<cpdpu(-, 0),v{-,0)y=(bpdn&, dpv)'-{b*dvu, dn, v)!

+((dpbp)dnu, vY-((dnbp)dPu, v)

Multiplying (3.24.a) by v and integrating over R%, by integration by part and

(3.27) wp have



(3.28)

where

Neumann problem

B＼u,≫]=(/, v)f+<f2, v(-,0)>'+(h diV)r for any v<eH＼RD

Bin, v^={aijdjU, div)+(bpdnu, dpv)'-(bpdpu, dnv)'

To apply Theorem 3.3, we must

Applying (Ap. 1) with a=K(n)―l,

have
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prove that/xGi/^-'CiZ?) and (a.2.4)is valid.

]8=L―2 and r=L-2 and using (3.26), we

Kdib'tfjuh-t^CllbnKtoAML-i^CrlKMWh-i

for i, j=l, ■■■,n, from which we have immediately that fi^HL~2(R1l) and

ll/illU^C{||/||i._a+j'g.ircB)l|M||L-1}.Since HKRl) is dense in H&Rl), to prove

that (a.2.4)is valid in the present case, it is sufficientto show that there exists

a d'6>0 depending only on d5, d6 and y's,K<.n->such that

(3.29) B[v, v-]^{dh/2)(＼＼v＼＼[?-d's{＼＼v＼＼*Tfor any vs=H%fiX) >

In the same way as in (3.22)' (or (3.27)), we have that for any v^Hza{RX),

B[v, 0]=(a'^A divy+icvdvvi-, 0),v{-,0)Y-((dpbp)dnv, v)'+((dnbp)dpv,v'＼ Since

＼-((dPbp)dnv,vy+((dnbp)dpv,vy＼^CrfiKcnM＼i＼＼v＼＼oas follows from Schwarz's

inequality, (No. 13.b) and (3.26), by (a.2.7) we have (3.29) with d't=de+

(Cf£,Kin)f/2dB. Thus, the present bilinear form B satisfiesall the assumptions

of Theorem 3.3, and fu f2, fl and u do, too. Theorem 3.3 implies Theorem

3.4 immediately.

3.3 Unique existence theorem of solutions to some ellipticboundary value

problem.

In this paragraph, we consider the following boundary value problem of elliptic

system of 2nd order in Q:

(3.30.a) -di(Pij(x)dju(x))-＼-Pii(x)dju(x)+P^+1(x)u(x)-＼-Xu(x)=gQ(x) in Q,

(3.30.b) vi(x)PiKx)dju(x)+PRx)dju(x)+Pf>+1(x)u(x)=gr(x) on /＼

Here, Pij{x), Pq(x) and P/(x) (/,;=1, ･･･, n; 1=1, ･･･, n+1) are mXm matrices

of functions having the following properties (a.3.1)-(a.3.5):

(a.3.1) Pij and Ph are decomposed as follows: PiJ=PiJ+py and Pq=Pq.^+Pq.s

where PU^SK-＼Q); Ph^^^K~＼Q); P%j^HK^n＼Q); Pis^HK'w(Q)

Cff(n)=max([n/2]+2, K-l) and iiC/(n)=max(Cn/2]+l, K-2)).

(a.3.2) Pf^HK -v*l＼r) (/=1, ･･･,n); Pf-+1^HK^'2＼D.

(a.3.3) tpa=pj＼
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(a.3.4) There exist positive constants d7 and d8 such that

(Pijdju, diU)+<P/dju, u>>d7＼＼&＼＼i-d,＼＼u＼＼lfor any u^H＼Q).

(a.3.5) Vi{x)P＼x)^Q for xe/＼

Since the operators P(t) and Q(t) of the original problem (N) are homogeneous,

it sufficesto consider the case where/1 ^=Pp+1=0. But, to the auther it seems

that there are no iitratures of treating with (3.30) exactly even in the case where

Py=PLs=0 and Pr^BK~＼Q) (namely, the smooth coefficientscase). Thus, we

dare to treat with the general operators for the further references. Let j-oo.x-iC^)

and Ys.k(G) be constants such that

a ii^ii-.iC.i+a1iii'iJ.-ikic-.^r-.*-i(^);

■j
,=i ;=

1

.Sx 11^11*00 + SVi.slk'C≫)+ S W≫JfC≪>-a/2) +W+1≫Jf-<3/8)^r5.Jf(^)

The purpose of this paragraph is to prove

Theorem 3.6. Let L be an integer e[2, K~＼.Assume that (a.3.1)-(a.3.5)

are valid. Then, there exists a >?o>O depending only on d7, d8, Joo,k-i(@) and

Ts.k{Q) such that for any X>X0, gQ^HL~＼Q)and gr<=HL-W(r), (3.41) admits

a unique solution u^HL(Q) having the estimate:

(3.31) ＼＼uh£C{gQ＼＼L-z+((gr))L-≪i≫}

where C = C(d1} d8, F, L, y~.k-M, 7s.k{@)＼

The following is an easy corollary of Theorem 3.6 and will be used to

derive the "a priori estimate" of derivatives with respect to x in the original

problem (N).

Corollary 3.7. Assume that (A.1)-(A.4) are valid. Let L be an integer

e[2, K~＼and u(t)(EL°°(J;HL(Q)) where J is a time interval C/. Then,

(3.32) ＼＼W)＼＼l<C{WBiWWjamL-*

+iviAiKt)dJm+BKt)dJm)))L-im-> + ＼＼m＼＼L-i}

for any t Ej, where C = C(dr> d2, MJ^K), MS(K)＼

Proof of Corollary 3.7. If we put Pij=Aij(t); Pf=Bj(t); P&=0; P?+1=0

(i,;=1, ･･･,n＼l=, ･･･, n+1), the assumptions: (A.1)-(A.4) implies that (a.3.1)-

(a.3.5) are valid for each fe/. Furthermore, put go=―di{Aij{t)djU{t))+Xii{t);

gr^iA'WjuiO+B^dMt)', T".k-i(Q)=M^K); rs.x.1(Q)=Ms(K). Note that
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the present constants y*,,k-i(@) and Ys,k-i(@) are independent of t. Hence,

Corollary 3.7 follows from Theorem 3.6 immediately.

Proof of Theorem 3.6. For the notational simplicity, we use the same

letter C to denote various constants depending on dn, d8, F, L, Tco,k-i(Q) and

Ts.k(Q)- First, we shall prove the existence of a unique weak solution in

H1(Q). To do this,let us define the bilinearform corresponding to (3.30). Us-

ing the notations defined in the section of Notations, noting (a.3.5) and employ-

ing the same arguments as in (No. 5)-(No. 9), we have

(3.33) <Pfdju, v>=&(u, v)+Q{u, v)

for ae=H＼Q) and v^H＼Q), where

R^y)=PRWk(y', 0))YUyr, 0)Jk(y'), p=l, - , n-l;

#0 f

ft=lJon

Q(u, v) s
)Rn

4>l(y){R%(yf)d'nu(Wk(y)yd'pv(Wk(y))

-Rl(y')d'Pu{Wk{y))-d'nv{Wk{(y))}dy,

UKmy)R^y'W'nu{Wk{y))<wk{y))

-{d'nfk(y)＼Rpk{y')d'pu{Wk{y))-v(Wk{y))-＼dy.

By Schwarz's inequality and (No. 13.a) we see that

(3.34) ＼3W,9)＼<C＼＼*Uni',

(3.35) ＼Q{u,v)＼^C＼＼uU＼v＼U.

In particular,£Pand Q are continuous bilinearforms on H＼Q)y,H＼Q) and Hl(Q)

XL2(Q), respectively. Keeping (3.33) in mind, let us define the bilinear form

Px corresponding to (3.30) as follows:

Pxlu, 0]=(PiJdj&, diV)+(P$ju+P%+1u, v)+X{u, v)

+&(u, v)+Q(u, v)+<Pr+1u, v>.

Obviously, by Schwarz's inequality, (3.34),(3.35), (No. 13) and Corollary Ap.

4-(l).

(3.36) ＼Px＼_u,v~＼＼<{C+＼X＼}＼＼aU＼v＼＼ifor u, ve=H＼Q),

from which it follows that Px is a continuous bilinear form on H＼Q)xH＼Q).

Let us prove the coercivity of the Px. Namely,

(3.37) Pxlu, *]^(d7/2)||M||f for any u^H＼Q) provided that X^X*

with some ^0 which is a constant depending only on rf7,ds, y≪,,k-i(@)and
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Ys.k(Q). Since H＼Q) is dense in H＼Q), it sufficesto show that (3.37) is valid

for any v^H2(Q). Since

＼<P?+1u, u~)＼^C{u))t^z＼＼u＼＼＼+C(n,e)＼＼u＼＼lfor any s>0

as follows from (No. 13.a) and Corollary Ap. 4-(2), noting (3.33) and (3.35), we

have

Px[a, u^(PijdjU, diU)+<P/djU, u>+Z＼＼u＼＼t

-C＼＼uU＼uh-zU＼＼l-C{n, z)＼＼u＼＼l

for any u^H＼Q). Since C||a||1||M||o^(rf7/4)||M||f+(C2/rf7)||M||?,taking e = d7/4,

from (a.3.4) we have (3.37). In view of (3.36) and (3.37), the Px is a coercive

bilinear form on H＼Q)xH＼Q). By well-known Lax and Milgram theorem we

know that there exists a unique solution u^H＼Q) of the variational equation:

(3.38) Pilu, v-]=(gQ, v)+<gr, v> for any v^H＼Q).

Especially, putting v = u in (3.38) and using (3.37), we have

(3.39) ＼＼*＼＼x£C{＼＼g0＼＼o+(grhi*}£CJ

where J=|l£fllU-s+≪£r≫i-<s/2).

Now, by induction on A/e[l, L] we shall prove that u<=HN{Q) and

(3.40) UWn^CA.

As has been seen, when N=l, the assertion is valid. Assume that 2^N%L,

u^HN~＼Q) and

(3.41) ||≪IU-i^CJ.

We shall use Theorems 3.1 and 3.3. Let <pk,k=0, 1, ･･･,N0) be the functions

satisfying (No. 1). First, we shall prove that uo=^oU^HN(Q) and

(3.42) W&tWn^C A,

by using Theorem 3.1. To do this, we shall prove that

(3.43) (Pijdju0, diw)=(f0, id) for any w^H＼Rn);

(3.44) ||/olU_2^CJ,

where fo=-di(Pij(dJ4>o)u)-Pijdjud4o+^ga-Mp6dju+Ph+1u+Xu). First, we

note that

(3.45) sip, w)+Qip, w)=0 for any v^H＼Q) and w^H^Q)

where Hfa(Q) is the same as in §3.1. In fact, since (PjdjV, w}=0 for any z)e

H＼Q) and w<=H＼0>(Q), (3.45) follows from (3.33) when v<=H＼Q). Since H＼Q)
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is dense in Hl(Q) and $ and Q are continuous, (3.45) is also valid for any ye

H＼Q) and w<^H＼n(Q). Let w^H＼Rn). Since

(3.46) (Pijdjuo,diw)=(Pijdju, di(faw))-(di(Pl'0j$o)ii),u})-(PiJdjildtfa,w),

noting that ^0^el/1(0)(i2),(gQ, <j>ow)+<gr, <f>ow)=($og, w) and (Pf+1u, $0w}=0,

by (3.38),(3.45) and (3.46), we have (3.43).

Applying (Ap. 1) with a―K{n) and p=f=N―l, we have

(3.47.a) ＼＼di(Py(djto)&)U-*^C＼＼Py＼＼K＼＼*U-i.

Applying (Ap. 1) with a=K(n) and fi=y=N―2, we have

o.47.b) wpydjadifan-^cwPVWKtnMx-i-

Applying (Ap. 1) with a=K'(n) and fi=y=N―2, we have

(3.47.C) ＼＼PLsdJu+Ptfk*U-2^Cn£jP&.8＼＼K>inA*＼＼N-i.

(3.44) follows immediately from (3.47) and (3.41).

To use Theorem 3.1, we must check the conditions (a.1.1)and (a.1.2). How-

ever, in this case, (a.1.1) follows from (a.3.1) obviously. If v^H＼^{Q), then

from (a.3.4)it follows that

(3.48) (PijdA diV^dMlt-dMll,

because (P'djV, y>=0. Since H2m{Q) is dense in H＼0-,(Q),(3.48) is valid for any

yei/1(O)(i2).Hence, in the present case,(a.1.2)is also valid. Applying Theorem

3.1 to (3.43) and using (3.44) and (3.41),we see easily that u^HN{Q) and (3.42)

is valid.

Now, we consider Uk(y)=^k(^k(y))u(Wk(y)) {k=＼, ■■■,No). By Theorem

3.3, we shall prove that uk(EHN(Rl) and that

(3.49) W&kW's^CA.

Here and hereafter, for the notational simplicity, we use the same abbreviation:

H-llras in §3.2. Likewise for ≪･≫;,(-, ･)',<･, ･>'･ For given v{x) and W(y),

we write V{y)―v(Wk{y)) and w(x)―W(0k(x)). For the notational simplicity,

put HftR$)={?eHL(R?D＼s＼ippV(zQ(o)} and H^Q)={vGHL(Q)＼suppV(ZQ(<i)}.

Since supp uk(Z.Q(ak), we may assume that supp ukdQ(ark) for some <7*g(0, ak).

Let pk(y)<=C (Q(ak)) such that pk(y)=l on Q(o'k)for some a'i^{a'k,ak). Recall

that the Jacobian of the transformation: y=z@k(x) is equal to 1, i.e., dx―dy.

Noting (3.33) and (a.3.5),for any v<=H2a≫(Q)and w(eH＼Q) we have
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(3.49) (P^dji),diw)+&(v, w)+Q(v, w)=(PijdjV, diuft+KPfdjv, w>

=(aijd'jV, dWY+^dfii-, 0),W{-, 0)>'

where d'j= d/dyj; aiKy) = pk(y)nk(y)Yirk(y)Pi^'(Wk(y)); y' = (yu - , y,.,);

cp{y')~Pk{y', 0)P£(Wk(y',0))Yfk(y',0)/*(/, 0). In view of Theorem Ap. 3 and

(a.3.2),there exist bv{y)^HK(-n＼RX) such that bv{y', 0)=cp(/) for almost all

y'(ERn~l and

(3.50) W＼＼'KW<CicV))'KW-,m^C7s,K{Q).

And also, we have

(3.51) ＼aidU.K-i.Rn^Cr-.K-x(Q)＼ ＼＼aWKW^Crs,K(,Q)

where aiu＼y)=pk{y)Y＼,k{y)Yirk{y)Pj;'>{1Fk{y))for U= and S. Put

BLV, W]=(a^d'jV, d'iWy+(bpd'nV, d'pW)'-(bpd'pV, d'nW)'･

From (3.49) we have

(3.52) B[V, W]=(PijdjV, diw)+£(v, w)+Q(v, w)

-({d'Pb*)d'nV,WY+QLd'nb')d'p?, W)'

for any V^H^Rl) and W^H＼RX). In fact, if ? =//%(#?) and W^H＼Rl),

employing the some arguments as in (3.27), from (3.49) we have (3.52). Since

Hl'k(Rl) is dense in H^Rf) (0<<r'k<a'kf<(Tk) (3.52) is also valid for any Fe

Hl0'k{Rf) and W^H＼Rl).

Employing the same arguments as above, from (3.49) and (a.3.4),we have

also

BIV, V^P^djV, di0)+<PfBfi, v>-({dpb*}d'nV, V)'+{{d'nb*)d'p9, V)'

^dMW-dMW-Crs.KWW'AVW'o for any V^m≫k(R%).

where we have used (No. 13.b) and (3.50). Since H＼Rir＼Q{ak)) and H＼{Q)r＼Ok)

are homeomorphic by the transformation: y=&k(x), i.e., there exists a constant

cB>0 such that

and since H2a'{R%) is dense in Hl-(R$) (cf. o'k<o'{),we have

(3.53) BIV, V^d9(＼＼V＼＼iy-dlo(＼＼V＼＼'o)2for any VezH^Rl)

with some positive constants d9 and d10 which depend only on d7, d8, ?≪>.k-i{G),

Ys.k(O) and r. Combining (3.50), (3.51), (3.53) and (a.3.3),we see that the

present bilinear form B satisfies(a.2.1)-(a.2.4)of §3.2.
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(3.54)

(3.55)

(3.56)

(3.57)

where

/
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Bluk, ?]=(/,, ?)'+<h V{-,0)>'+(/j,dffy for any V^H＼En+);

ll/xllir-^CJ;

ll/jllir-i^CJ,

i(y)=^kgQ)(Wk(y))~^k(P^dju+PnB+1u+mWk(y))

-(P^ddktfMW^y))- {d'b≫{y))d'nuk{y)+{d'nh*{y)}d'uk{y);

313

Uy')=WkgrXWk(y', O))+(PM-0*)W*(y, O))-^kP?+1&XWk{y', 0));

h{y)={Pi'Kdj<j>k)u){Wk{y))Y＼.k{y).

To prove (3.54), we use the formula:

(3.58) {P^dji^kV), diw)+$(<j)kv, iv)+Q($kv, w)

=Px[v, ^kw1+{Pij^i<I>k)v, diw)-{PiKd4k)djv, w)

+<PRd4k)v, w>-($k{P£djV+P%+1v+W, &)-<$kP?+1v, w>

for any v and w^H＼Q). Noting the definition of Px and (3.33), for v^H＼Q)

and w^H＼Q) we can check (3.58) easily. Since H＼Q) is dense and since the

both hand sides of (3.58) are continuous bilinear forms on H＼Q)xH＼Q) (note

Corollary Ap. 4-(2) and (No. 13.a)),(3.58) is also valid for any v and w^H＼Q).

Since iik(y)=<j)k(Wk{y))ii{Wk{y))^Wa,(R%), combining (3.52),(3.58) and (3.38) and

making the change of variables: x=Wk(y), we have (3.54).

Now, we check (3.55)-(3.57). Employing the same arguments as in (3.47)

and using (3.50) and (3.41), we have (3.55) easily. Applying (Ap. 2) with a =

K―l and ^―-f=N―l, we have

<(Fr≪))iv-(3/2)^C≪Pf))^.C3/2)||M|U-ifor /=1, ･･･, n + 1.

(3.56) follows immediately from this fact and (3.41). Applying (Ap. 1) with

a=K(n) and p=f=N―l and using (3.41), we have (3.57).

Hence, applying Theorem 3.3 to (3.54) and using (3.55)-(3.57),we can con-

clude that uk^HN{Rl) and that (3.49) is valid. Noting (No. 1) and combining

(3.42) and (3.49), we see easily that u^HN(Q) and (3.40) is valid.

Finally, we shall prove that u satisfies(3.30). First, noting that u^H＼Q)

and taking v^C^(Q) in (3.38),by the divergence theorem we see that ii satisfies

(3.30.a). Then, applying the divergence theorem to(3.38) again and substituting
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(3.30.a)into the resulting equations, we have

(viPijdju+Pjdju+Pf'+lu-gu y>=0 for any v^H＼Q).

In view of Corollary Ap. 5, for any {d^Hl/＼F)y there exists a v^H＼Q) such

that v(x)=iv(x) for almost all x^F. Combining these two facts implies that

ii satisfies(3.30.b). This completes the proof of Theorem 3.6.

3.4 The time dependence of solutions to some ellipticboundary value problem.

In this paragraph, we consider the following problem:

(3.59.a)jf vM+2(t)=PN(t)[v0(t),- ,i>i^+i(O]+^ift)J,(O=/jf(O in JxQ,

(3.59.b)* QM(t)lUt), - , vM+l(t)-]=gM(t)on /x/＼

for O£M^NU where Jd; Nt is an integer e[0, K-3~＼

/V(O[WO, ･･･, WM+i~]=
M /M＼
^X')di{d＼Ai＼t)wM+l^+d＼AiKt)djwM.k)

QM(t)＼_Wo,■･･,wM+x^Jiyk){Vid＼Ai＼t)djWM-k+d＼BKt)djWM-k+dktBKt)idM+i-k}',

Vn1+i(O, vNl+2(t),fM(t) and ^(0 (O^M^JVO are given functions; vo(t),･･･,vNl(t)

are unknown functions. The following theorem will be used in proving the

further regularities of solutions to (N) with respect to x.

Theorem 3.8. Assume that(A.1)-(A.4) are valid. Let N, and N2 be inte-

gers such that Q^Ni^K―3 and Ni+2^N2^K. Then, there exist constants

(OfSM^iV) having the following properties: Let t be any fixed time in ]. If

fM<=HN*-M-＼Q), gM(EHN*-M~W{r) (O^M£N＼), vNl+iGHN*~M-l(Q) (1=1,2)

then (3.59) admits a unique system (v0,･･･,vNl)^HN*(Q)X ･■･XHN^N^{Q)

solutions having the estimate:

(3.60) S||^IU2_^C
f 2 N1 -

1 S l|i'iV1+lll^o-iV1-i+ S (H/l/]|iV2-il/-2
+ ((^J/))iV2-i*f-(3/2))}

U = i J z J if=0 ^ ^

of

where C = C(Z0, - , XNl, 8U da, M<≫{K),MS{K)).

Furthermore, in addition to what we have assumed, assume that Ni-{-3^Nz

£K. If?M(t)s=:Xl-≫*-*-＼J,Q), gM{t)EEXl-≫>-M-w＼J, n (O^M^M), vNl+l{t)

Gju2-*ri-i^ Q) Q=i> 2)f then (3.59) admits a unique system (vo(t),･■■,vNl(t))

gP'^U Q)X ■･･XlU!-"rl(J, Q) of solutionssatisfying the estimates:

(3.61)
Jf=l ^ ft=OI 1=1 J ^ X

+ So(||9?/*(OIU8-if-ft-2 + ≪3^1f(OK8-*-ft-CS/2))
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for any t^J and k=0, 1, where C = C(X0>■■■, XNl, du d≫,MJJC), MS(K)＼

Proof. By induction on A^ we shall prove the firstassertion. When Afi=O,

(3.59) can be written as follows:

(3.62.a) -di(Ai＼t)djVo)+}ioVo=fo-v2+di{Ai＼t)v1) on Q ,

(3.62.b) ViA^djVo+BWdjV^go-BWvt on T.

Since WAXm-.K-^M-iK) and ＼＼Ay(t)＼＼K+(<BKt)))KM-a,≫^M8(K) for any

t<=J (K(n)=mzx ＼_K-1, [n/2]+2]), if the right-hand sides of (3.62.a) and (3.62.b)

belong to HN*-＼Q) and HN^i3'2＼n, respectively, then by Theorem 3.6 we see

that there exists a ^0>0 depending only on du 82> MUK) and MS(K) and inde-

pendent of t<=J such that for any X^Xa, (3.62) admits a unique solution vo<B

HNz(Q) and

(3.63) ||tJolU8^C{||/olU2-4+ ≪^oK2-CS/≫+l|t)2lU8-2

+ ＼＼di(Ai＼t)v1)＼＼N^+{B＼t)v1))N2^^}

where C = C(X0, du d2,MJJC), MS{K)). Since v^HN*-＼Q), applying (Ap. 1) and

(Ap. 3) with a―K, ^=y=N2―l, we have

l|Si(i!Sl(^i)IU,.t^C||i4i0(0ll*l|i>ill*I-i;

≪BWi^,-≪/≫^C≪fi-(OK-(i/≫ll≪ilU1-l.

From this it follows immediately that the right-hand side of (3.62.a) and (3.62.b)

belong to H≫*-＼Q) and HNz-W(D, respectively. And then, noting (3.63), we

see that the firstassertion is valid for N1=0.

Now, let us assume that l^N^K― 3 and that the first assertion is valid

for smaller values of Ni. Then, for any AT such that M1+l^M^iif, /^e

HN-M-＼Q), gMeLHN-M-v'2＼r) (O^M^M-1), vN^HN~N^) and vNl+l^

HN~Nl~＼Q), there exist constants Xo,･･･,XNl-x>0 independent of fM, §m, Vni

and vNl+l such that there exist vM^HM'N(Q) (Ot^Mf^Ni.―1) satisfying the equa-

tions (3.59.a)jifand (3.59.b)^ (0<M^Ni). Furthermore, these solutions are

determined uniquely and satisfy the estimate:

(3.64) 2q ＼＼vm＼＼n-m^C{＼＼vNi＼＼n.Ni+＼＼vNi+1＼＼n_Ni.1

TVj-1 _>

+ S (H/*l|jV-if-2 + ≪^afK-if-≪/2))}

where C = C(?.o, -･■, kNl.u du d2, MJ^K), MS(K)). Let us denote solutions, ob-

tained by putting fM=§M=:0 (Q^M^A^) and vN,+1=0, by RM=RM(vN.). And
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also, let us denote solutions,obtained by putting vNl=Q, by SM=SM(fo, ■･･,f n^u

go, ･■･,§nx-i,vNl+l). Since the equations are linear, the uniqueness of solutions

implies that each RM{vNl) is a linear map from HN~Nl(Q) to HN~M{Q). Further-

more, by (3.64) we have

(3.65)
^s'll^C^IU-if^CII^J^-^;

(3.66)
^1-1

If1-1 -
£C{＼＼vNl+l＼＼N.Ni-1+^(＼＼fM＼＼N-H-2+(gM)}N-M-≪m)}.

Here, C = C(X0,■-･,̂-i, du d2, MJ,K), MS{K)). Note that general solutions vM

can be written as follows: £^=.#^+5^. Substituting vM (0^M^N{―j) into

the equations: (3.59.a)iVland (3.59.b)^i, we have the equations for unknown vN%

(3.67. a)

(3.67.b)

where

-PNl(t)[R0(vNl), ･･･, Rir^iivirJ, vNl, 0~]-{-?.NlvNl=Fn in Q,

0Ar1(O[/?o(i'2O, ■"> Rir^iiviril Vnv 0]=Fr on r,

(3.68.a) FQ=fN1-VN1+z+PN1(t)[S0, ■■■,SNl.u 0, vNl+l"＼;

(3.68.b) FQ=gNl-QNl(t)lS0> - , SNl.u 0, vNl+l-].

Our task is to find a solution vnl^HN^~Nl{Q). As a first step, by the varia-

tional method we prove the existence of a weak solution vNl<^Hl(Q). Keeping

thisin mind, let us consider the following variational equation:

(3.69) Vx[v, ul=(FD, u)+(Fr> u> for any u^H＼Q)

where

(3.70.a) Vx＼v,u~＼= Bx[_t,v, u^-Cl{t, v, u)+C2(t, v, it)

(3,70.b) C&, v, 1X)=Nl{di{dtAi＼t)v),u)+(PN1(t)lRo(v＼ - , Rn^v), 0, 0], u);

(3.70.C) CS, v, u)=Nl<8tB＼t)i), u>+<QNl(t)lRo(v), - , Rn^v), 0, 0], m>;

Bx is the same bilinear form as in (No. 14). Here, note that PnJJ^R^v), ･･■,

RNl-m, v, 0] = dt(AlKt)d0 + N^XW) + PNl(t)lRo(v),- , R^-iiv), 0, 0] and

QirWLRoiv), - , R^-iW, v, 0] == viAiKt)djV+BKt)djV+N1dtB°(t)v + QNl(t)lR0(v)f

■･･,RNl_0), 0, 0]. Let us prove that Vx is coercive for large /!>0. For the

notational simolicitv. we shall use the same letter C to denote various con-
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stants depending on Xo, ･■■,XNl-＼,8X, 82, M≪,{K) and MS{K). To estimate d and

C2, we use the following facts: Let L be an integer e[l, JV2―M]. If ye

H＼Q), then

(3.71.a) WdiidtAtXmWL-i+WPN^lRoiv), - , RNl-i(v), 0, Qih-^C'Wvh;

(3.71.a) ≪atfi0(f)≫))i_a/8)+≪g^1(0[/?o(t)),･- , ^jy^iW, 0, 0]≫1_a/2)^C/||i;|U ･

In fact, since Ni+l^N^L^K, by (3.65) with N=NX+L we know that

(3.72)
"fi

WRMWUi+L-u^C'ML.

Hence, letting l<Lk<*Nlf applying (Ap. l)-(Ap. 3) with a―K―k, fi=L―i+k

and r=L and using (3.72), we have

(3.73.a) ＼＼di{dllAis＼t)RNl+^k(v)}＼＼L.1^C'＼＼v＼＼L;

(3.73.b) ＼＼di{dktA%Kt)djRNl.M}＼＼L-i^C'＼＼vh;

(3.73.C) &&AM)dJRiri-kmL-Ui≫£C'ML;

(3.73.d) ≪3J^(^J?^1_≫(t>≫Jl-a/≪^C/||i>b;

(3.73.e) <(a^°(0i?iVl+1-*(i))}}z-a/2)^C'||y||i,

where we have put RNl(v)=v for the notational simplicity. In particular,by

(3.71) with L=l, (No. 11),(No. 12) and (No. 12.b), we have

(3.74) Wxlv^-Jl^C'WvUuh for any v, u^H＼Q),

Recall (No. 16). Namely, we know that Bx[t, v, v^d^vWf for k>52. On the

other hand, by (No. 12), Schwarz's inequality and (3.73.b) and (3.73.a), we have

for any s>0

(3.75.a) ＼C&, v, v)＼£C'＼＼vUv＼U^＼＼v＼＼i+{(C'y/Ae}＼＼v＼＼l.

And also, noting Corollary Ap. 4-(2), by Schwarz's inequality and (3.73.b) we

have

(3.75.b) ＼Ct(Jt,v, v)＼£C'((v))l£C'{e＼＼v＼＼l+C(e,n)＼＼v＼＼l}.

Combining (No. 16) and (3.75) and taking s>0 so small, we see easily that there

exists a ^(1)>0 depending only on Aa,･■･,XNl> du d2,MJJC) and MS{K) such

that

(3.76) Vx[y, ^3^^/2)11^11? for any $elH＼Q) and A>1 .

Combining (3.74) and (3.76) implies that Vx is a coercive bilinear from on H＼Q)

XHHQ) for ^>^(1).
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Now, we shallprove that

(3.77)

where

Yoshihiro Shibata

＼＼Fa＼＼if2-N1-z-hiP'r}Nz-Nl-(.3/2-)^CfA

2 *1 +

A― S H^iV1 + j||Ar2-iV1-Z+ S (ll/jl/l|iV2-itf-2+ ((^Af)}Ar2-Jlf-C3/2))
£―1 3a~0

Recall the definitionsof PQ and Fr (cf.(3.68)). Applying (Ap. l)-(Ap. 3) witfc

a―K―k, $=N2-Nx-＼+k and y^N^-N,-!, we have for 2^k^Nu

(3.78.a) ＼＼di(dktAisV)SN1+1-k)＼＼Nz-N1-^CMs(K)＼＼SNl+l.kU^Nl.1+k;

(3.78.b) ||ai(aMSf(^SiSr1-ft)llisr2_jRr1_a^CAf5(JK:)I|S^1_Jfc|U2_iv1+*;

(3.78.C) WMyC^iS^.^K.^^c/M^CMsC/iOIISy^^lU,^^*;

(3.78.d) ((Sf^C^Sy^i^^^^c^^CMsC/iDIIS^^jlU,^^*;

(3.78.e) idktB＼t)SNl+1-k))N^Nl^3/2,£CMs(K)＼＼SNl+^k＼＼Nz-N1-,+k-

And also, applying (Ap. 1) and (Ap. 3) with a=K―l, $=y=N2―Nl-l, we

have

(3.79.a) ＼＼di{dtAis＼t)vNl+l)＼＼N^Nl.zSCMs{K)＼＼vNy+l＼＼N^Nl.l;

(3.79.b) ((St^'COiJy^i^g-^^cs/H^CMsC/iDlli/^+xlU,^^!.

Combining (3.78), (3.79) and (3.66) with N=N2> we have (3.77). In particular,

since Nz―Ni―1^2, applying the well-known Lax and Milgram theorem to

(3.69), we see that there exists a unique v satisfying(3.69) provided that ^>^cl>.

Furthermore, combining (3.76), (3.77) and (3.69) with u=v, we see that ||#||i^

C'A.

Now, by induction on Lg[1, N2―N＼'] we shall prove that v^H＼Q) and

that

(3.80) ＼＼v＼＼L^CrA.

As has been seen, we know that the assertion is valid for L=l. Thus, we

assume that 2^L^N2-NU vgHl~＼Q) and ||fl|L_i^CM Let us prove that

v^HL(Q) and (3.80) is valid. Keeping (3.67) and (3.69) in mind, let us con-

sider the boundary value problem:

(3.81.a) -di(Aij(t)d}w)+Xw=GQ in Q ,

(3.81.b) ViAHVdjw+BWdjW^r on T,

where

da=Pa+N1di(dtAi＼t)v)+PNl(t)^o(v), - , R^-xiv), 0, 0];
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dQ=FQ-N1dtB＼t)v-QNl(t)＼:Ro(v)> ･･･,R^Av), 0, 0] .

Since L-2^W8-#i-2 and L-(3/2)^N2-N,-(3/2), by (3.71) and (3.77) we know

that GQ^HL-＼Q) and Gre#L~c3/2)(r). Furthermore, we have

(3.82) ＼＼GQ＼＼L-2+iGr))L-≪m^C'A.

Hence, applying Theorem 3.6 to (3.81),we see that there exist a ic2)>0 depend-

ing only on 8U d2,MJ,K) and MS(K) such that for any X>XW, (3.81) admits a

unique solution w having the estimate:

(3.83) ＼＼w＼＼l^C{L,k, du 8itM^K), MS(K))C'A .

Final task is to prove that w=v for large X>0. Since w^Hx{Q)(ZH&{Q)f

multiplying (3.81) by u, integrating the resulting formula and using (No. 9), we

have

(3.84) Bxliv, ul={GQ, u)+<Gr> u> .

Since {Gq, u)―(Fq, ii)+C1(t, v, u) and (Gr> ic}={Pr, u}+Cz(t, v, u) as follows

from the definitionsof Gq and Gr and (3.70.b and c), combining (3.69),(3.70.a)

and (3.84),we have

(3.85) B&w-v, ft]=0 for any u^H＼Q).

Hence, putting u=iO―v and using (No. 16), we see that w―v provided that

2.>dz. Summing up, we have obtained that v^HL(Q) and (3.80) is valid pro-

vided that ^max(d2, Aw, Xm). Accordingly, if we take XNl=max(Zw, Aw,52),

then we have the firstassertion of the theorem.

Now, we shall prove the second assertion, i.e., the dependence on t of solu-

tions. From the firstassertion it follows that for each fe/ (3.59) admits solu-

tions vM^HNi~M(Q) (O^M^Afj). From now on, we write VM=Vm(t). First,

vM(t)^C＼J, HN*-M{Q)) (Q^M^Nz). Let t and s be any points in / such that

t^s. Putting WM=vM(t)-vM{s) for O^M^M+2, by (3.59) we have

(3.86.a) Wat+2―Pjf(O[iflo,･･■,wm+iI+^mWm

=f M{t)-1 M(s)+{PM{t)-PM(s))＼y0{s),･･･,0j,+1(s)] in Q

(3.86.b) Qif(0[w0, -,wm+i1

=gM(t)-gM(s)-(QM(s)-QM(t))[.Us), - , VmUs)~] on r

for 0£M£Nx. Applying (3.60) to (3.86) implies that
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(3.87)
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SII≫*(0-≫jr(s)lk8-*^c{
2

S H^iVi + lCO ― t≫iV1+i(s)l|jVa-2V1-£

M―0 )

where

R(t, s)= S(il(^(O-^(s))[yo(s), - , vM+i(smirt-2-H

+(((Qu(t)-QM(s))[.Vo(s),-, 0jr+i(s)]K-ir-c8/2>).

Recalling the notations (No. 3. a and b), let us put

(3.88) UJf, s)=[/>(0-JP(s)]≪.iC_1;Us(t, s)=lP(t)-P(s)＼Q(t)-Q(s)ls.K.2,1.

Applying the mean value theorem to £/≪,and noting the definition of Lipschits

continuous functions, by (A.I) we have that

(3.89) Uj(t,s)<MJLK)＼t-s＼; Ua(t, s)^Ms(K)＼t-s＼.

On the other, by (3.60) we know that

(3.90)

where

A

s

M=Q
＼U>m(s)U--m£CA' ,

2 N1 -

2 |#jV1 + J |o. N9-N,-l, J+ S (l/j(f
I
0,2V2-Jf-2,,/

+ <J>.&f/>0,
iVo-^-W/2)-J')

Applying (Ap. l)-(Ap. 3) with a=K-k-l, fi=N2-M-l+k and r=Nz-M-l

(O^k^M^Ni), we have that

(3.91) R(t, s)<C{U*,(t, s)+Us(t, s)} S ＼＼vM(s)UrM£C{UJ(t, s)+Us(t, s)}A'.

Here, we have used (3.90). Combining (3.87), (3.89) and (3.91), we see that

vM(t)£EC＼J,HN*-M{Q)) for O^M^Nl Furthermore, (3.61) follows from (3.60)

when k=0.

Finally, we shall prove that vM(t)^C＼J, HN^N^M(Q)) for O^M^M- If

iM(S)^X1'll*-u-lUi Q), applying (A.7)-(A.9) with M^K-2-k, M2=N2-M-2+k

and N=l and noting that M1+Mz=K+N^-M-A^K-l>n/2 (M+3^^+3

£Na), we see that PM(.t)lW), - , ≫jf+i(0]eX1-°(/,fl)and Q^OL^O, - , *W0]

gIm/2(/, ^)- Thus, differentiating(3.59) once in f and putting dtvM(t)=wM(t)

(O^M^M+2), we have

(3.92.a)jf u>M+*(t)-Pu(t)lu>o(t),- , ≪J^+1(0]

=dtfM(t)+Pll(t)[vo(t),･･･,≫jr+i(O] in /Xi2 ,



(3.92.1))*

where

Neumann problem

<?ar(O[≪?o(O,-, ≪?jf+i(O]=

dtgM(t)+Q'M(t)[vo(t), - , vM+1(t)l on Jxr ,

Pif(t)Lv0,-, ≪*+,]= S(^{^^"(^ir+i-.+^M^Wj,..}

Q'uQXK -, vM+{]=I^Cf){vtdll+1AiKt)dfiM-k
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+d$+1BKt)djvM-k+d^BXt)vM+1-k}.

From this point of view, firstwe shall prove the existence of solutions wM(t)<E

C＼J, H≫*-*~＼Q)(O^M^M) where wNl+l(t)=dtvNl+l(t)<=C°U, HN^N^l-＼Q)) are

given (/=1 and 2); secondly, we shall prove that

(3.93) lim

*1

2 II2jf.jt(0―wjf(0lk8-jf-i=0

where 2Jf.jt(0=(^jf(^+J0-≫if(0X^0"1-i5if(0.

To prove the firstassertion, we use the part already proved of the second

assertion of Theorem 3.8. Applying (Ap. 4)-(Ap. 6) with a=K― 2― k, /3=

N2-M-l+k and r=N2-M-2 and noting that d^A^t^CXJ, HK-*-＼Q));

%+lBl{t)*=C°U, H*-≪n-＼r)); *jf+i-*(O and djVM_k(t)<=C＼J, HN^-l-k(Q)) (i=

1, ･･･,n; 1=0, ･･■,n; O^k^M^N.+l), we see that P'M(t)lvo{t),･･･,^+i(0]e

C＼J,HN>~M-＼Q)) and (?^(OC≪o(O,- , ^+1(0]eC°(/, HN^M-^＼D) for O^M

<iVi. Furthermore, we have

(3.94) S {＼＼Pii(t)lUt), - , $M+i(t)l＼＼irt-M-, + iQM<t), - , VM+x(t)3*rs-M-≪n>)

^C{M≪,(K)+MS(K)}
NI]

II^COIU.-jt.

Hence, there exists a unique system (ivo(t),■■･,wNl(t))<EC°(J,HN^Ni'＼Q)) of

solutions to (3.92) having the estimate:

(3.95)
JjIWjfCOII^-ir-i^CSjSW^i+iCOII^-^!-!-*

+
^(＼＼dkJM(t)＼＼Nz-M-2-k+{dktgM(t)))N2-M-am-k)}

Here, we have used (3.94) and (3.61) with k=0.

Now, we shall prove (3.93). For the notational convenience, we put [/]j£(0

=(/(*+J0-/(0)U0"x-a≪/(0 and ?＼jt(t)=f(t+4t)-f(t). Combining (3.59) and

and (3.92),we have
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(3.96.aV

(3.96.b)jr
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2jf+2.jt(O--P≪f(O[2o.jt(O, ･■･,z*+i.*(O3+**2*.jt(O

=l?xlAt(t)+HQ.M.4t(t) in 0,

<?jf(0[5o.jt(0, - , zM+uAt(t)-＼= ＼_gM}At+Hr.M.At(t) on T

where zNl+i,At(t)=[_vN.+iliAt(t) (1=1, 2)

M /M＼
Hfl.jf.4t(O=So(A)3i{C3Ji4"]ji(^ir+i-*a+JO-SJ+M<o(^Jf+1_*|jl(O

Hr.M,At(t)=

+ [dktAiqM{t)djvM-k{t+At)-dkt+lAiKt)djvM_k＼At{t)}

M /M＼
So(k )lvi{ldktAiqJt(t)djvM^(t+Jt)--dkt+1AiKt)djvM^＼Jt(t)

+ ffiBqJt(t)djvM-k(t+Jt)-d$+1BKt)djVM-k |Jt(t)

+ tdktB^Jt(t)dM+1-k(t+Jt)-d^B%t)vM+i-k＼At(m.

Then, applying (3.60) to (3.96), we have

(3.97)
^

Q
＼＼ZM,Jt{t)＼＼N^M-l^C^＼＼[_VNl+l-]/it(t)U2-N1-l-l

+ S(ll[/jf]jt(0llAr2-af-s+ (Oir]jt(0≫^8-if-≪/2)

+ ＼＼HQ.M.At(t)＼＼Ni-M-S+ iHr.M./lt(t)}Nz-ll£-<.6n))r

SinceyAr1+J(0G^1'iV2-iNri-i-1(/,i3),/^(0eZ1-Ar2-^-3(/>i2)and^eZ1-^-^-c5/2)(/jr)

for 1=1, 2 and O^M^NU the first, second and third terms in the brace of

(3.97) tend to zero as Jf->0. Since SM^OeC'C/, HK'2-＼Q)); d＼Bl{t)^

C＼J, HK-w-＼D); vMM{t) and dfiU-M)<=C＼J; NN^M-1+k{Q)＼ we see that

(3.98) ll[3?^']^(0IU-2-^0; ≪[d?5<]j£(0≫*-c5/2)-*->0;

＼＼VM+l-k＼jt(t)＼＼N2-M-l+ k-*O; ＼＼djVM-k＼jt(t)＼＼N2-M-l+ k->Q

as Jf->0. Applying (Ap. l)-(Ap. 3) with a―K―2―k, fi=Nz-M-l+k and

r=Nz-M-2 and using (3.98) and (3.90), we see that

(3.99) ll#fl.jr.jt(OIU8-*-s->0; ≪^r.ifIjt(0≫^-*-c5/≫->0

as ^->0 for 0£M£Nu Combining (3.97) and (3.99) and letting Jf-+O in the

resulting estimate, we have (3.93). Since (3.93) means that dtv(t) exists every-

where in the strong topology of HN^M-＼Q)anddtvM(t)=wM(t)GC＼J> HN^M-＼Q))f

we see that ^(OgI'-^^'X/, Q) for O^M^^V,. Furthermore, substituting

dtvM{t)=u>M(.t) into (3.95), we have (3.61) with &=1. This completes the proof

of the theorem.
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§4. The energy inequalities of higher order

In this section, we shall prove Theorem 1.3. First, we assume that ≪g

C°°(/,H＼Q)) where /-[0, T―s] and s is any number e(0, T). In view (Ap.

10), we can differentiate(N) L―1 times in t. Thus, we have

(4.1.a)

(4.1.b)

where

/J(0[3f"1M(0]=3f-7a(0+^i2.L-i(0 in JxQ,

QWld^&m^ft-'frW+Pr.L-iif) on /x/＼

Ffl.L-l(O =
sYL~1V

i(3f-1-^O9i+W)+#-1"^<'(Witf(O)
1= 0＼ I '

Fr,L.1(t)=%＼
L~l){vM~1-lAiKt)djdm)+d^1-lBKt)djdiu(t)

1=0 ＼ I '

+df-1-lB＼t)dlt+1u(t)}

Note that the equalitiesin (4.1.a) and (4.1.b) hold for almost all t^J as elements

in L＼Q) and H1/＼F)! respectively. Applying (Ap. l)-(Ap. 3) with a=

K―(L―i―l)} B=L―l―l and r=l, we have for almost all fe/

i3||ai{af-1-l^(f)9*3iM(O}ilo^ci3ll3f"1"I^＼Olk-a-i-i)ll3*3i*(OllL-≪+i);

ft=0 *=0

where dt=d0. From (No. 2.a) it follows that lldf^-'^COIk-ci-i-i),

≪3f>-1-'5*(O≫ir-ci-i-≫-ci/≪>^Afs(K')for almost all / =/ and for any :=1, ･･･, n;

&=0, 1, ･･-,≪; ^=0, 1, ･･･, L―1. Combining these results, we see easily that

(4.2) ||Ffl,L_1(0ll?+((Fr>i-1(0)>?/2^C{Moo(iC)+M5(ir)}2||JD^(0ll§

for almost all t^L Applying Theorem 2.1 to (4.1) and using (4.2), we have

(4.3.a) E(t, af-1M(0)^2ec^£{£(0, d^u(Q))+C(T)^＼＼DLu(s)＼＼tds

+ C(T)＼＼＼＼drih{s)＼＼l+((df-1fJ(smli)ds}
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(4.3.z)
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E(t,dt-iW^eW^EQ, dtim)+C(T)＼＼＼DLm＼＼t

+[(l|3f-

x{i:

/fl(s)||g+<Of-1/r(s)))?/2)rfs+5j|Z)iM(s)||^s}1/2

diaf-1 /sOOIIl+iB}-l?ris)y1,t)ds+^＼＼DLa(s)＼＼ldsyn]

for any fe/. In the present proof, C(T) denotes various constants depending

only on T, 3U 82, L, MJJC) and MS(K).

Now. we shall orove that

(4.3.C) WLu(t)＼＼ l^C(T )＼＼＼DLu(O)＼＼l+ I
Jo 11-2.

o,co. a+ <?r>i-2,1/2. :o, n

+
r(ll^-1/fi(s)||?+((5ri/r(s)))?/2)rfs}

for any te=J.

If follows from (4.3.a) and (No. 22) that

(4.4)
2 ＼＼dim＼＼l-i^C(T)＼＼＼DLu(0)＼＼l+＼t＼＼DLu(s)＼＼2ods

l=L-l I JO

+＼＼＼＼^-1fQ(sWo+((df-1fr(s)yil2)dsj for any t^J

(4.5) ||3iil(OIU-i^C{||Si/fl(Ob.i-i+≪3i/r(Ok-≪/≪-i

+ SI|3i+*il(Oll£-i.*+ ll/?1-1fi(Ollo}

for * =/ and O^/^L-2, where C^CC^, 38,£, M≪(^), M5(A")). Let O^/^L-2.

Differentiating (N) / times in t, we have

(4.6.a) -di{A%t)dj{d＼m)))=d＼fQ{t)-d＼+im+di{Ai＼t)d＼+lu{t))+GQ,l{t) in fl,

(4.6.b) v^^"(0^(3iM(0)+JBJ'(03X3^(0=^/r(0-JB0(0ariM(0-Gr,i(0 on T,

GqM)=

Gr,i(t)=

l

k

)di{dlt-kAi＼t)dkt+1u(t)+dl-kAiKt)djdktu(t)}
for fel,

for 1=0.

k

){vid＼-kA%t)d3d＼m^[-kBKt)d^m)+d＼-kB＼t)d＼+lu{t))

for fel,

for /=0.

Since MeC°°(/,HL(Q) and 0£l£L-2^K-2, it follows from (Ap. 10) that the

equalities of (4.6.a) and (4.6.b) hold in the sense of L＼Q) and i/1/2GT) for all

t<=H, respectively. Applying (Ap. l)-(Ap. 3) with a―K―(l―k), p=L―2―k
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and y=L―l―l, we see easily that

(4.7) 0oAt)h.*-i+0rAt)}L-≫in-i^C{MJiK)+Ms{K)}＼＼DL-1ii(t)＼＼o

for all t^J. On the other hand, we have

(4.8) ||af(^i0(03riM(0)l|£-2-z?≪B0(03i+1w(0))i-2-i

<C{MJiK)+Ms(K)}{＼＼%+1m＼＼L-i-i + ＼＼DL-1u(t)＼U}for all t<=J.

In fact, we can write symbolically
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lldi(i4i°(O3j+1fi(O)IU-.-i^2 ^^^^^^^(Ollo

+C(L) htlil＼＼D!r1-l-irAW)B2%+lA(f)＼＼o
■

By (No. 13.b) we have

l!^^0^-1-i3r1≪(Ollo^il^ls0(OIU.oll^+1^(Olk-i-Z^A^5(i^)l!^+1^(Olk-i-i-

Let 0^N£L-2-L Applying (Ap. 1) with a=K-(L-l-l-N), /3=L-1-

(AH-/-H) and y=l, we have

ll^-i-'-M^o^ariKOII.^CMaC/iDll^-^COIIo.

Combining these facts, we see easily that the firstpart of (4.8) is valid. In

view of Corollary Ap. 5, there exists B°ext(t)GYK-l'＼I,Q) such that B%Jf)=

B＼t) almost everywhere on F and |^xtU_lil,/^C<JS0>x_1,1/2,/^CM5(/r). Since

as follows from Corollary Ap. 4-(l), by employing the same arguments we see

that the second part of (4.8) is valid. Hence, applying Corollary 3.7 to (4.6)

and using (4.7) and (4.8), we have (4.5). Repeated use of (4.5) implies that

(4.9)

L

s

1 = 0

l|3ifi(0lli-I^c{g||3{/fl(0IU-2-I+≪3[/r(0≫i-cs/2)-J

+ s ii^wni-i+ii^-^coiis}

where C = C(L, 8L,dt,MJJC), MS(K)). Since

＼＼DL-1a(t)＼＼l£＼＼Dz-1u(Q)n+2[t＼＼DLu(s)nds

Jo

combining (4.4) and (4.9), we have



326

(4.10) ＼＼DLu(t)＼＼
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l^ !|C(T)＼＼＼DLu(O)＼＼l+1
fa I U.O.

co,n+</r>!-2, m. co.n

To get (4.3.c) from (4.10), we use the well-known

Gronwall's inequality. Let a{i) and b(t)be non-negative functions in L1(a, b).

If bit)is non-decreasing and the inequality: a(t)^c＼ a(s)ds+b(t) holds for any
Ja

t^(a, b) with some constant c independent of t, then a(t)^ec(t~a:>b(t)for any fe

(a, b).

Applying Gronwall's inequality to (4.10),we see easily that (4.3.c)is valid.

Furthermore, substituting (4.3.c)into (4.3.b), we have that the estimate (b) of

Theorem 3.1 is valid for any tej and uelC°°(J,H＼Q)＼

Now, we shall remove the assumption: u<^C°°(J,HL(Q)). To do this, we

use the following lemma.

Lemma 4.1. Let L be an integer e[2, K~＼and ps(t) be a function in

C?([―2, ―11)such that
＼p(t)dt=l.

Put
/oa(O=3-1/t)(5"1O, vd(t,x)=＼jp5(t-s)v(s,x)ds

and Id(t, x)=(av)s(t, x)―a(t, x)vg(t, x). Then, the following four assertions are

valid.

1° // <z =.3*([0, TlxQ) and v(=YL-*-H[O, T), Q), then I/3I1-2 i to n->0 and

[lld^IsisMds^O as 8->0 for any
fe(O,T)

Jo
2° // a Ei3*([0, TlxF) and ysFL-2-1/2([0, T), D, then <Id>L-*＼,2,io,t^Oand

[＼(d^1Id(s)yinds^O
as d->0 for any t<E(O,T).

Jo

3° // flGfK-u(0, T], Q) and i;GKi"l'1([0, T), Q), then ＼h＼i.-i.i.u.tT+Qand

[t＼＼dL-1Id(s)＼＼lds-+Q
as 5->0 for any MO, T).

Jo

4° // a^YK-l-1'＼l0)Tin and vtEY^-^&O, T), A then <I8>L-Z,u2,io,ti->O

and
＼＼(df-1Is(sW1/2ds->Q

as <5->0 for any fe(O, T).
Jo

Defering the proof of Lemma 4.1, we shall complete the proof of Theorem

1.3. Let the notation vs be the same as in Lemma 4.1 and put vs=t((vi)s,･･･,

(vm)d) for v=＼vu ■･･,vm). Let do>O be a number<(T―s)/2. Note that m5g

C°°(/,HL{Q)) for Q<<5<<5o and satisfiesthe equations:

(4.11.a) P(t)lUm=(hMt)-Rdu(t) in JXQ,



(4.11.b)

where

Neumann problem

Q(*)[≪≪(O]=(/r)≪(0+Safi(0 on /x/＼

(4.12.a) Rsu(t)= S diM"(0dIa≪(0-(4"dItf)a(0};
1=0

(4.12.b) Safi(0=v,(i4*^)9^3(0-(i4i^M)a(0)+ S B＼t%M)-(B%#)tf).

Applying (4.3.c)to (4.11)implies that

(4.13) ＼＼DLUt)＼＼l£C(T)＼＼＼DLus(O)＼＼l+1
Cf

q)s IU. o.to,a+<(f r)s>l-2, m, co,a

+
＼＼＼m-＼fQUs)＼＼l+((df-＼fr)s(s)))b2)ds+＼R3u＼U,o,io,ti

Jo

+<5^>i_2.1/2,[o,tD+

r
(l|3f-1i?^(s)||g+≪5f-1S^(s)))f/2)ds}.
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As was stated in Remark after Theorem 1.3,we know that f q^Xl~2-＼[Q, T), Q),

/reZL-2'1/2([0, T), D, and d^f a{t) and di~lJHO are U functions in (0, T)

having their values in L＼Q) and Hll＼F), respectively. Thus, we see easily

that

＼＼DL(u3-u)(r)＼＼2o-+Q;＼(fQ)s-fQ＼L-t.o.zo.n+<(Jr)i-Jr>L-t.m.to.ti-*0;
(4.14)

^m-Kif^s-hXsWo+idsiifr^-frXsm^ds^O

as <5->0for any re[0, T) and *e(0, T). And also,applying Lemma 4.1 to (4.12),

we have easily that

IRdU＼Z._2,0,[0,£]+ '(5gM)i_2,l/2,i;o,£]"~>Oj
(4.15)

^{＼＼di-1R5u{s)＼＼l+id^S5u{s)))＼li)ds^

Jo

as 5^0 for any fe(0, T), because ^mgI^^P, T), i2)crL"2-1([0, T), 0) and

dlu^XL-2-1<2([0, T), r)cFL-2-1/2(C0, T), H for /=0, 1, ･･･,n (the second asser-

tion follows from Corollary Ap. 4-(l)). Letting 8->0 in (4.13), using (4.14) and

(4.15) and noting that e is chosen arbitrarily,we have the estimate (a) of Theo-

rem 1.3. In the same way, we can obtain (b) of Theorem 1.3.

Proof of Lemma 4.1. The assertions 1°and 2° were essentially proved by

Ikawa [2]. Noting Corollary Ap. 5, by 3° we have 4° immediately. Hence,

we will prove 3° only. Noting (Ap. 15) and (No. 2.b), we have

|/5|L-2,i.co.n^S2
h(lh)＼0kMt-kv)d-d1adl-kvs＼o,L-i-i,io,ti*

2=0 k =0＼k '
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Let 0<d<d0<(T-t)/2. Applying (Ap. 1) with a=K~l-k, j8=L-l-(/-fc)

and y―L―l―l, we have

||(a?a9r^)5(s)-a?a(s)ar*z;5(S)||£.1_i

^Csup{||a?a(s-r)-3fa(s)||Jr_1-*|O^s^f, re[-2, -1]} Ml-lo.co.d .

Since dksa(s)^YK-1-k-＼l0, T), ^Cl^-'-^O, T), Q), the uniform continuity of

d＼a{s)on [0, ?+250] (C[0, T)) in the strong topoloty of HK~l-k(Q) implies that

|/≪li-≪.i,co.≪->Oas 5-^0 for any fe[0, T).

Next, we shall prove the second assertion of 3°. Noting (Ap. 15), we have

for any multi-index a such that |al<l,

daxd^Is(s)=
L±2^(L

.

2)

1=0 jSsaX I /
(p{Og9Ja3r^-1"lv)a(s)-Sg3Sa(s)Or/'3.1-I-|i')a(s)}

First, we consider the term where 1^ |/3|+/<:/£―1. Applying (Ap. 7.a) with

M1=K-l-＼fi＼-l, M2=l-＼a-$＼ and AT=O, we have

ll9s{(3^aar^-2-^(s)-a^(a(sxar^sL-2-^)a(s)}iio^/Ks)+/i(s)

where

/Ks)=||O5aj+1fl3r/I3f-t-|v)a(s)-9fi3i+lfl(s)Or/I3.L―Ws)||0;

/J(s)=llOfiaja3r^.L-1-Iv)a(s)-3£9Jfl(sX9S-/'3.1"1-Iv)≪(s)llo.

Applying (Ap. 1) with a=K―＼B＼―l―l, B=l+l-＼a-B＼ and r=l, we have

IM£C＼pfa-r)WK-lDh(a(r)-a(s))U＼Dl-1v(r)＼＼odr

Then, by Schwarz's inequalitywe have

j;/K.w.scn [^(r)||D*-＼DKa(S-5r)-fl(s)≫r]

＼p(r)＼＼DL-lv(s-8r)＼＼ldr}ds
.

Let 0<8<80<(T-t)/2. Since vs=YL-l'＼{$,T), Q) and

(4.16) s-8r<T provided that 0<s<t, -2£r<-l and 8<(T―t)/2,

we have that

have

＼p(r)＼＼DL-1v(s-dr)＼＼ldr^＼v＼L.l.o.zo,Ti
(cf. (No. 2.a)). Hence we

＼t/Xs)tds^C＼v＼L-l.o.a.T>＼p(r)dr＼ J||Z)if-1Z)i(G(s-ar)-fl(s))||^s

o

Since oeF-'-^O, T), Q), DK-1Dixa^L＼(O> T)xQ). Noting (4.16),by the Rie-

mann-Lebesgue theorem, we have



lim

5-.0

Neumann problem

^

a＼＼DK-1Dlx(a(s-8r)-a(s))＼＼ldsp(r)^0

for all r^R

And also,we have

[t＼＼DK-1DKa(s~dr)(~a(s))＼＼ldsp(r)^4p(r)＼T＼＼DK-1Dixa(s)＼＼lds^L＼R)
Jo J0

Hence, by Lebesgue's dominated convergence theorem, we have

lim

5-0

＼p(r)dr＼t＼＼DK-1D1x(a(s-dr)-a(s))＼＼lds=O

Jo

As a result,we have obtained

(4.17.a) lim
[l^sTds^ for allfe=[0,T)

5-*0JO
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Applying (Ap. 1) with a=K―＼B＼―l,B=l―＼a―B＼and r=l, we have also

/l(s)^cJ/o3(s-r)||Z)ii:-1Z)i(fl(r)-a(s))||o||i)z'-1Kr)||o^r

Employing the same arguments, we have

(4.17.b) lim
rj|(s)sds=O

for all f =[0, T).
5-0JO

Now, we consider the term where |j8|+/=0, i.e., the term: J$=(aw)s―aws

where w=d%dfr*v. Note that u/eZ,°°([0,T), L＼Q)). We can write 3s/a=/i+/2

where

L

h ―

＼dr{pd(s―r)(a(s, x)―a(r, x))}(w(r, x)―w(s, x))dr;

＼p8(s―r)(a{r, x)―a(s, x))w(r, x)dr(a(s, x)=dsa(s, x))

Put 7I(s)=||/1||oand I48(s)=＼＼Jz＼＼0.Let O£s£t<T, 0<d<(T-t)/2 and s-re

[-25, -3]. In view of Corollary Ap. 7, a(s, x)^£＼＼$,T^XQ). Hence, by the

mean value theorem we have

＼dr{ps(s-r)(a(s,x)-a(r, x))}＼£ ＼al-.i.co.nl^s-rJ+a-Ms-rl ＼p&s-r)＼}

where p's(s)=8'1p'(d~1s).By Schwarz's inequality we have

IKs)2^C＼a＼luto,Ti(＼p(r)dr)＼p(r)＼＼w(s-8r)-w(sWodr

where p(r)=p(r)+＼r＼＼p＼r)＼.Since u>eL°°([O,T), L＼Q))dL＼(O, T)xQ), by the

Riemann-Lebesgue theorem, we have

t'||u/(s-ar)-u;(s)||§ds/>(r)->0
as 5->0 for all r&R

Jo
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As also,we have
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^＼＼w(s-dr)-w(s)＼＼tdsp(r)^4＼rjw(s)＼＼20dsp(r)(EL＼R)

Hence, by Lebesgue's dominated convergence theorem we have that ＼[il(syds

-*0 as <5->0. On the other hand, since ＼＼d(s-8r)―d(s)＼＼oc,o£C＼＼a(s-8r)-d(s)＼＼K

as follows from (No. 13.b), by Schwarz's inequality we have

/|(s)2^
＼＼＼w(s-8r)＼＼lp(r)drx＼＼＼a(s-dr)-a(s)＼＼*K-lP(r)dr

Noting (4.16) and the fact that u>eZ,°°([0,T), L＼Q)), we have

j/^(s)8rfs^C|u;|o.o.Co.nj[{jl|£>f-1a(s-ar)-Df-1d(s)||§/o(r)dr}rfs

Since d(s, x)eYK-z-X[Q, 7], i2)cL°°([0,7], HK~＼Q)), Df'Ws, x)^L＼(O,T)xQ).

Hence, employing the same arguments mentioned previously, by the Riemann-

Lebesgue theorem and Lebesgue's domined convergence theorem we have

lmi^ds^＼m-1d(s-dr)-D§-1d(sWop(r)dr=O.

From this it follows that
^JKsfds-^O

as 8-^0 for all fe[0, T). Combining

these results, we have

(4.18) lim
＼t＼＼dsMs)＼＼Ws=Q

for all £ge[0, T).

d->0 JO

From (4.17) and (4.18) we have Lemma 4.1.

§5. An existence theorem of solutions to (N) in X2-°([0,T), Q)

In this section, we shall prove

Theorem 5.1. Assume that (A.1)-(A.5) are valid. Then, for a given system

(uo, Ux, Jo, fr)^D＼[0, T)) of data,(N) admits a unique solutiona£lM([0, T), Q).

As a main step of our proof of Theorem 5.1, we shall prove

Lemma 5.2. Let e be any number e(0, T) and put J=[Q, T―e]. Assume

that (A.1)-(A.5) are valid. Let (u0, uu Ja, If) be data in D＼J) such that u^

E＼Q＼ Then, there exists a unique u(t)^X2-＼J, Q) satisfying the equations:

P(t)[W)l=fQ(t) inJxQ; Q(t)[u(t)l=fr(t) on Jxr,

(5.1)

u(0)=un and d,u(Q)=u, in Q.
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Remark. In our proof of Lemma 5.2 below, we use the existence theorem

of solutions to the problem for Pa(t) and Qa(t) defined by (2.5) (cf. Theorem 5.3,

below). To do this, the compatibility condition for the operators Pa(t) and Qa(t)

must be satisfied by (u0, uu fa, //>)･ By using the assumption: ul^Hi{Q), we

shall reduce (5.1) to the problem with zero Cauchy data and /r(0)=0 on F,

where the compatibility condition for Pa(f) and Qa(t) is satisfied for any a.

Deferring the proof of Lemma 5.2 and assuming that Lemma 5.2 is valid,

we give a

Proof of Theorem 5.1. The uniqueness of solutions follows from Theorem

2.1. To prove the existence of solutions, it is sufficient to prove that for any

closed interval [0, T―s], (N) admits a unique solution m£gIm([0, T―≪], Q) to

(5.1). For, if we put u(t)=us(t) for 0£t£T-s, since fi,(0=M0 for O^f^T-e

provided that 0<s'<s<T as follows from the uniqueness of solutions, u(t) is

well-defined, belongs Z2-°([0, T), Q) and satisfies (N). Put /=[0, T-e]. In

view of Lemma 5.2, we shall prove that there exist sequences {uka}cH＼Q) (k

=0 and 1) such that

(5.2.a) ||ul8~≪iIIi->0 and ＼＼u<>8―wo|U->O as d->0;

(5.2.b) ViAij(0)djU0s+Bj(Q)djU08+B0(0)ul8=fr(0) on Q .

If we know that (5.2) is valid, since (5.2.b) means that uQ, uu f q and fp satisfy

the compatibility condition of order zero (cf. (1.2) with N=0), applying Lemma

5.2 implies that there exists a solution u5{i)<=X2-＼J, Q) to the equations:

(5.3.a) P(tXUt)l=f q(0 in JxQ; <?(0[≪≪(0]=/r(0 on /Xf;

(5.3.b) ug(0)=uo and dtu8(0)=u1 in Q.

Applying Theorem 1.3 with L―2 to us― uy implies that

i
＼us―Ud'＼i,o,j^C(T) S ＼＼Ukd―Uk8'h-k ･

Combining that and (5.2.a), we have that {us} is a Cauchy sequence in X2-＼J, Q).

Since / is a closed interval, by the cmpleteness of X2-°{J, Q) we see that there

exists a limit ut of {u8} in X2-＼J, Q). Applying (Ap. l)-(Ap. 3) with a=K― 1,

P=r=l, we have that ＼＼P(t)lUt)-UtmoM(Q(t)lUt)-Ut)3u2^C＼＼D2lus(t)-

≪e(O]llo for all t(Ej. Hence, letting 5-^0 in (5.3), we see that us satisfies (5.1).

Since i/co(i2)is dense in H＼Q), there exists a sequence {Ml5}c//°°(i2) such

that the first part of (5.2.a) is valid. Let ws be solutions to the equations
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(5.4.a) -dt(Aij(0)djW8)+Jlw8=0 in Q ,

(5.4.b) ViA^WdjWs+BXO^dws^gg on 7＼

where #5=/r(0)-Vi^iJ(0)3;M0-5J(0)^Mo"50(0)M10-. If X is chosen so large that

we can apply Theorem 3.6 with Pij=Aij(0), Pf=Bj(0), P£=Pp+1=0 (i, /=l, ...,

n; 1=1, ･■･,n+1), we know that (5.4) admits a solution ws^H＼Q) having the

estimate: ＼＼wd＼＼2^C{g8))i/zfor each d where C is independent of d. Since fr(Q)

=viAij(0)djuo+Bj(0)djUo+B＼0)u1 as follows from (1.2) with N=O, g8=

B0(0)(ui―Ui8). Then, applying (Ap. 3) with a=K―l, fi=Y=l, we have that

((gd}i/2^C＼＼u1―u1d＼＼i.Since the firstpart of (5.2.a)is valid, we have

(5.5) ||w≪||a-*0as 5->0.

If we put Mo5=Mo+w5, then by (5.4.b) and (5.5) we see that the second part of

(5.2.a) and (5.2.b) are valid, which completes the proof of Theorem 5.1.

To Drove Lemma 5.2. we shall use

Theorem 5.3. Let /'=[-r/2, T+r/2]. Assume that(A.I);',(A.2)r. (A.4)r

and (A.5)/< are valid, where (A.I)/' zs f/iesame assumption as in Theorem 2.2.

Assume that there exist positive constants d[ and 8'zsuch that (A.3)/',5'is valid.

Let (m0, &!, fa, fr) be data in D2([0, T]) such that ?q<=C＼[J), T], L＼Q)) and

//-gC^O, T], Hll＼F)). Then, there exists a unique ≪e!M([O, T], i2) satisfy-

in a fi＼n

Theorem 5.3 was proved by Shibata [9].

Proof of Lemma 5.2. First, we shall reduce (5.1) to the problem with

zero Cauchy data and /r(0)=0 on F. Put U{t)―uo+tux. Then, the assumption:

u^H＼Q) implies that U(t)eC°°(R,H＼Q)). This assumption is used here only.

In view of (Ap. 10),we have that P(0[^(0]eri-°(/,^)and (?(0[^(0]e^lil/8(/,O.

If we put FQ(t)=fQ(O-P(t)lU(t)2 and Fr(t)=fr(t)-Q(t)llJ(m by (1.2) with

N=0 we see that Fr(0)=0 on F. If v{t) is a solution to the equations:

P(t)[v(t)l=Fa(t) in JxQ; Q(t)[v(t)]=Pr(t) on JxF; v(0)=dtv(0)=0 in Q, then

u(t)=U(t)+v(t) obviously satisfies(5.1). From thispoint of view, it is sufficient

to prove Lemma 5.2 in the case where uo=Ui=O; f a(t)^Y10(J, Q) and /HO

e r'■*'■(/,n;

(5.6) /r.(0)=0 on F.

The uniqueness of solutions follows from Theorem 2.1. Hence, we shall

only prove the existence of solutions to (5.1). Let PM) and QJt) be operators
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defined by (2.5). By Lemma 2.3 we know that Pa(t)and Qa(t)satisfyallthe

conditionsof Theorem 5.3. To use Theorem 5.3,we must approximate fa and

fr by functionssmooth in t. Recall that /=[0, T―s]. Put

fv(T-e), t>T-e,

fv(t), O£t£T-e

fu(O), t<0,

for U=Q and F. In view of (5.6),we see easilythat g'^jt)^Yl'＼R,Q) and

gm^Y^'XR, D. Let iu(0eC<J([-2T, 3T]) such that 0^/i^l and /i(O=l on

[-T, 2T]. Put ga(t)=fi(]t)gW)and gr(!)=ft(f)gm Then,

<5.7.a) gait^Y'-XR.Q) and ^^t^Y^'XR, T);

(5.7.b) 5fl(0=0 for ^[-2T, 3T1 and 5r(0=0 for ^[0, 3T]:

(5.7.c) gQ(t)=fa(t) and gr(t)=fr(t) for t<=J.

Let *(OeCj([l, 2]) such that jc(*)^Oand [ie(t)dt=l.Put

fUa(t)=[K<T(t~s)Ms)ds for U=Q and F.

where Ka{t)=a-lK{a~H). Since gr(s)=O for s<0 and *,(―s)=0 for s>0, we

have

(5.8)

Obviously,we have

(5.9)

frM =0 on F for any er>0

?aa(jt)^CS(R;L＼Q)) and fra(t)^C^R,Hl/＼D),

where C^iE, X) is the set of all functions in Ct(R) having its value in X,

Furthermore, we have

(5.10) ＼fq<j―ga＼o,o,R-＼-(.fra―gr}o,m,R

+
(

(＼＼dt(fQo-gQXt)＼＼l+((dt(fro-gr)(t)))b2)dt->0 as o->0.

From (5.7.a) and (5.7.b) it follows immediately that ＼gQ＼o,o,R+<gr}o,uz,R

+
＼
(＼＼BtgQ(t)＼＼l+@tgr(.t)))U)dt<oo. Thus, from (5.10) we have

(5.11) i/<2,lo.o≪+(/r*>o.i/2.s+f (＼＼dJOa(s)＼＼l+idJra(t)))l/t)dt^C

for any <ye(0, 2"0)where 2"ois the same as in Lemma 2.3. In the present proof,

we use the same letter C to denote various constants indeoendent of a.
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Now, let ua be solutions in X2-＼[0,T], Q) to the equations:

(5.12.a) Pe(t)iua{t)-]=JQa{t) in [0, T]X0,

(5.12.a) Q,(0[^(0]=/r<r(0 on[0, T]x/＼

(5.12.C) Mff(0)=3tMff(0)=0 in£.

Here, note that we use that ua is defined on [0, T] with respect to t in prov-

ing that the limit of ua belongs to XZ-＼J, Q) below. In view of (5.8) and (5.9),

applying Theorem 5.3 implies that (5.12) admits a unique solution ua&

Z2'°([0,T],Q) for each <ye(0, S0). Furthermore, using Theorem 1.3 with L=2

to (5.13) and noting (b) of Lemma 2.3, we have

(5.13) ＼＼Dzua(t)＼＼2o£C;

(5.14) Ea(t, dtuff(t))£ect{Ea(Q,dtua(0))+Ct^}

for all£e[0, T], where Ea is the energy norm for the operators Pa(t) and Qa{t).

The main step of the present proof is summarized as follows:

Lemma 5.4. Put /'―[0, T]. Assume that(A.1)-(A.5) are valid. Let ua(t)

be functions in XZ-＼J',Q) satisfying (5.12). Then, there exists a ugY2-＼J', Q)

such that

(5.15) lim |ua―u |j o r =0;

(5.16) u(0)=dtu(0)=0 in Q;

(5.17.a) ua{t)^u{t) weakly in H＼Q) as a-+0 for all t^J';

(5.17.b) dtua(t)-*dtu(t)weakly in H＼Q) as a->0 for all t^J';

(5.18) Q(t)Lii(t)l=Sr(t)in the sense of Hl'＼r) for all te=J'.

Furthermore, if we put

(5.19) m^Q^+diiA'X^u^+A^djuit)),

then

(5.20) djuo(t)^v(t) weakly in L＼Q) as a->0 for all t^J';

(5.21) d2tu(t)=v(t) for almost all t&J';

(5.22) lim{||t>(O-/fl(0)||S+l|3≪fi(OII!+l|fi(OII8{=0.

Deferring the proof of Lemma 5.4, we shall prove that the u in Lemma 5.4

belongs to X2-＼J, Q) and satisfies(5.1). From (5.19) and (5.21) we see easily

4-Vio≪-
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(5.23) P{t)＼_u{t)~]=-gQ{t)in the sense of L＼Q) for almost all fe[0, T] .

If we prove that aGlM(/, Q), by (5.18),(5.23),(Ap. 14) with L=2 and (5.7.c>

we see that u satisfies(5.1). Hence, we shall prove that u^X2-°(J, Q). To do

this, we use the mollifier with respect to t. Let p(t) be the same function as

in Lemma 4.1 and put u8(t)=＼p$(t―s)u(s)dswhere p8(s)=8 ^(5 1s). Since ae

Y2-°W, Q)<zLr{J', H＼Q)) (/'=[0, T]), udtEC-(J, H＼Q)) provided that Q<d<

(T―e)/2. Furthermore, noting (5.18) and (5.23) and applying Theorem 1.3 with

L=2 to ug―ug', we have

(5.24) I≪≪-≪≪'Ho.J^C{||D2(≪3(0)-^(0))||g+/3.y}

where

^s's'= I(go)d―(ga)d'Io,o,j+(.(gr)d~(gr)d'>o,1/2,/

+ 5J(l|3t((^fl)a(O-(^fl)≪'(O)ll§+≪3t((^/')3(O-(^r)3'(O)≫f/2)df

+1 R$u ―Rs'U ＼o.o.j-h(S git―Sd'iiy0.1/2.j

+
f
(＼＼dt(R5u(t)-Rs'u(t))＼＼l+{(dt(S8u(t)SS'U(t)Wm)dt.

Here, Rsu and Ssu are the same as in (4.12). Since mgFm(/', Q), dtu<^

Y°-1(J,Q) for 1=0, 1, ･･･,72. Hence, we can apply Lemma 4.1 with L=2. As

a result,noting (5.7.a) and applying Lemma 4.1 with L=2, we see that /5,5'->0

as 5, 5'-≫0. And then, if we prove

(5.25) ||£2(m3(0)-M0))||o->0 as 5, <5'->0,

letting 5, 5'->0 in (5.24), we see that {u8} is a Cauchy sequence in X%(J, Q),

which implies that the limit w of {us} exists in X2-＼J, Q). However, we

already knew that meFm(/, Q)aXx-＼J, Q). This implies that ud->u in

Xl-＼J, Q). Hence, we have that u=id^X2-°(J, Q).

To obtain (5.25),it is sufficientto prove that

(5.26) lim H9|≪ia(0)|U_l=0for /=0, 1 and lim ||3f≪a(O)-/fi(O)||o=O.

By (5.21) we know that d?tf≪(0)=

(5.22) we have

l|3!iia(0)

＼ps(―s)dsu(s)ds = ＼ps(―s)v(s)ds. Hence, by

/fl(O)||o^U-s)||i;(3s)-/fl(O)||ods->O as d^O,

where we have used the fact that

same way, by (5.22) we can easily

suppjo(―s)c[l, 2] (cf. Lemma 4.1). In the

prove other assertions of (5.26). Hence, if
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we prove Lemma 5.4, then we can complete the proof of Lemma 5.2.

Proof of Lemma 5.4. First, we shall prove (5.15) and (5.16). Since

(5.27.a) Pc(t)lAa(t)-AAt)l=(Pa(t)-PAt))l&At))-] in J'xQ;

<5.27.b) Qe(f)£aa(t)-uAt)]=(QM)-QAt))itiAt)'] on /'xf;

(5.27.C) ua(0)-ua'(0)=dtua(Q)-Stua'((})=Q in Q

as follows from (5.12), applying Theorem 2.1 to(5.27) and noting (b) of Lemma

2.3, we have

(5.28) ＼iXo-Ua'＼l,o,j^C^j{＼＼PAs)-Pa{s))luAs)']＼＼l

+{{Qo'{s)-Qa{s))＼_ua.{s)-＼))＼l2)ds

Applying (A. 1)-(A. 3) with a―K― 1 and ^3=^=1, and using (5.13), we have

＼＼(Pa'(s)-Pa(s))lua.(s)WoM((Qo<s)-Qa(s))luAs)m2^CUa.al(s)

where

Ua..>(s)=tPa(s)-PAs)]-.K-i+lP<,(s)-PAs)＼Qa(s)-Qa.(s)]s.K-t.t

(cf. (No. 3 a and b)). Substituting thisinto (5.28) and using (a) of Lemma 2.3,

we see that {ua} is a Cauchy sequence in Z10(/', Q). By the completeness of

Zli0(/',Q), we can conclude that there exists a limit uelX1-＼J', Q) satisfying

(5.15). In particular, combining (5.12.c) and (5.15) implies that (5.16) is valid.

Now, we shall prove that (5.17.a)is valid and that

(5.29.a) I|m(0II*^C for all fe/';

(5.30.a) u(t) is continuous on /' in the weak topology of H2(Q);

(5.31.a) I|m(O-m(s)||1^CU-s| for all t,s£/';

(5.32.a) u(t)^L"(J', H＼Q))nUp (/', H＼Q)).

By Pettis' theorem, we know that (5.30.a)implies that u(t)is measurable in the

strong sense of H＼Q＼ Hence, (5.29.a) and (5.31.a)implies (5.32.a). (5.17.a)

implies that

II≪(OIU l̂iminf ＼＼&,{f)＼＼i.

Combining this and (5.13)implies (5.29.a). Since ua(t)^X2'°(Jf,Q), by the mean

value theorem we have that ＼＼ua(t)―ua(s)＼＼i^＼t―s＼＼'WdtUeis+OU-sWUde. Com-
o

bining this and (5.13) implies that ＼＼ua(.t)―ua(s)＼＼lSC＼t―s＼.Hence, (5.31.a)

follows from (5.15) immediately. Now, we shall prove (5.17.a). Let a be any
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multi-index such that |≪|^2, w^L2(Q) and tcbe any positive number. Since

C (Q) is dense in LZ(Q), there exists a !eC~(i2) such that flic/―2||0<a;.Hence,

we have

＼{d%ua{t)-d%uAt), w)＼^＼(d%ua{t),w-z)＼ + ＼(daxua.(t),w-z)＼

+ ＼(ua(t)-ua.(t),(-dx)az)＼

tZCic+＼＼ua{t)-ua.(t)＼U＼＼(-dxyZ＼＼o,

where we have used Schwarz's inequality and (5.13). Letting a, af~>0and us-

ing (5.15) and the arbitrariness of the choice of k, we see that ＼d%ua)is Cauchy

sequence in the weak topology of L2(Q). Since a is any multi-index such that

＼a＼^2, we can conclude that {ua} is a Cauchy sequence in the topology of

H2(Q), which implies that ua(t) converges to some u'{t)^H＼Q) weakly as <7-≫0

for all fe/'. On the other hand, (5.15) implies obviously that ua(t) converges

to u(t) weakly as <y-*0 for all t^J'. Thus, u(t)=u'(t)<=H＼Q) for all t<=J' and

(5.17.a) is valid.

Now, we prove (5.30.a). Note that (5.29.a)is now valid, because (5.17.a)

has been proved. Let a, ic, w and z be the same as above. For t and se/',

we have

＼(d%u{t)-d %u(s), w)＼£＼(daxu(t),io-z)＼ + ＼(daxu{s),w-z)＼ +1(u(t)-H(s),(-dx)az)|

£Cic+＼＼u(t)-ti(s)＼＼o＼＼(--dxyz＼＼o,

where we have used Schwarz's inequality and (5.29.a). Since u{t)^Xl'°{J',Q),

letting t-*s and noting that k is chosen arbitrarily,we have (5.30.a).

By employing the same arguments, we can prove that (5.17.b) and the fol-

lowing four assertions are valid:

(5.29.b) H3t≪(0lli^C for all *(=/';

(5.30.b) dtu{t)is continuous on /' in the weak topology of H＼Q);

(5.31.b) ＼＼dtu(t)~dtu(s)＼＼oSC＼t-s＼for all?, se/';

(5.32.b) dtu(t)^L~(J', H＼Q))nUp (/', L＼Q)).

In particular,combining (5.32.a) and (5.32.b)implies that mg7m(/', &)･

Now, we prove (5.18) and (5.20). First, note the following facts: If we

define the operators A(t)＼_w<>,Wi~]=di(Ai0{t)wl-＼-Aij(t)diW<i)and 5(O[m5o, Wi]=

viAij{t)^jW(iJrBj{t)djw0+B＼{!i)wl＼r,then A(t) and B(t) are bounded linear operator

from H＼Q)XH＼Q) into L＼Q) and #1/2(r), respectively. Then facts follows

immediately from (Ap. l)-(Ap. 3) with a=K―l and j8=r=l. By (5.17) and

these facts we see easilv that A(t)[uM). d,.uM)l->A(t)[u(t). d,u(t)l and BCWuM).
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dtM)l-*B(t)tii(t), dt&(t)l weakly in L＼Q) and #1/2(.T) as <r->0 for all tc=J

On the other hand, since

(5.33) hllUiAm-A'KtWtuMMo+iiQoW-Q^Xu^tmi^CUoit)

as follows from (Ap. l)-(Ap. 3) with a―K―1 and ^―T=l and (5.13), where

Ua(t) is the same as in (2.9.b), using (a) of Lemma 2.3, we have that the left-

hand side of (5.33) tends to zero as <r->0. Combining these two results, we

(5.34.a)

(5.34.b)

2^(04^(03^(0)^ S diWKtfam) weakly in L＼Q)
1=0 1=0

QAt)[ua(t)l-^Q(t)Lu(t)lweakly in W'XD

as ff^O for all fe/'. Combining (5.34.b),(5.12.b)and (5.10) implies (5.18). And

also, combining (5.34.a),(5.12.a) and (5.10) and noting (5.19), we have (5.20).

Now, we shall prove that

(5.30.c) v(t)is continuous on /' in the weak topology of L＼Q).

In the same manner as above, (5.30.a and b) implies that A{s)[_u{t),dtw(0]-≫-

A(s)[u(s), dt≪(s)]weakly in L2(Q) as t-+s. On the other hand, applying (Ap. 1)

with a=K―l and fi=y=l implies that

＼＼(A(t)-A(s))£u(t),dta<t)lh£C{UJLt, s)+Us(t, s)K＼＼dtu(t)L+＼＼u(t)＼U)

where UJf, s) and Us(t, s) are the same as in (3.88). By (3.89) and (5.29.a and

b), we see that (A(t)―A(s))[u(t),dt&(ty]-*Q strongly in L＼Q) as t-*s. Combin-

ing these two facts and noting (5.19) and the fact that go(t)eYu＼R, Q)d

C＼R, L＼Q)＼ we have (5.30.c).

Now, we prove (5.21). Since v(t)&Loa(J', L＼Q)), the Bochner integral

rt
＼v(s)ds exists and belong to D{Q) for each ?e/'. Furthermore, we have

(5.35) (＼v(s)ds, w}=＼ (v(s),w)ds for any w(=L＼Q).

rt
Since (dtua(t), w)=＼0＼ua{s), w)ds as follows from (5.12.c) and the fact that ua{t)

gIm(/', Q), letting <7-*0 and using (5.17.b) and (5.20), we have

(5.36) (dtu(t),w)=
＼(v(s),

iv)ds for any w^lMQ).
In

rt
Combining (5.35) and (5.36) implies that dtu(t)―＼ v(s)ds for all t^J', where the

Jo

equality holds as functions in fe/' having their values in L2{Q). Since LZ{Q)
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is reflexive, by Lebesgue's theorem we have (5.21).

Finally, we shall prove (5.22). To do this, we only prove that

(5.37) lim||t;(0ll§+ll|3t≪(0lll?.o=ll/fl(0)||§

£-.0+
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In fact, since L＼Q)xH＼Q) is a Hilbert space equipped with the norm: ||-||2+

III･III?o (cf.(No. 17)),(5.37) and (No. 17) implies that

(5.38)

On the other hand,

(5.19), we have

limflfK0-/fl(0)||8+||dtii(0lli=0.

t->0+

applying Corollary 3.7 with L―2 and noting (5.18) and

(5.39) ||fi(OII5^C{||i>(O-^fl(OII2+l|3i(i4M(^tii(O)ll5+^r(O≫f/t+llfi(Ollf}.

Applying (Ap. 1) with a=K-l and j8=r=l, we have that ||diG4*0(0dt≪(0ll<>^

C＼＼dtu(t)＼＼l Hence, noting that ＼＼v(t)-gQ(t)＼＼o^＼＼v(t)-fQ(0)＼U+＼＼ga(t)-fQ(0)＼U, by

(5.7.a), (5.7.c), (5.6), the fact that &elX1-＼J, Q), (5.16), (5.38) and (5.39), we

have that II^COIU―>0 as f->0+. Combining this and (5.38) implies (5.22).

Our idea of proving (5.37) is due to Majda [5, p. 44] essentially. First, we

shall prove that

(5.40) ||/fl(0)||8^1im inf (lltKOIIS+IIMCOIIIJ.o).

£-0+

Note that the norms of ||-||iand HI･Ilk,o are equivalent (cf. (No. 17)) and that

≫(0)=gfl(0)=7fl(0) and 3t#(0)=0 (cf. (5.19), (5.16) and (5.7.c)). By (5.30.b and c),

we have (5.40).

In view of (5.40), to obtain (5.37) it is sufficient to prove that

(5.41) limsup(||iKOII8+ll|5≪fi(Olli;.D)^ll/fl(O)||5
C-0+

By (5.13) and (2.9.a), we see that ＼E{t,dtUa{t))-Ea{t,dtua{t)＼^CUa{t). And

also, by (No. 23) we see that ＼E(t,dtua(t))-E(0, dtua{t))＼£Ct. Noting that

E(0,dtUa(t))=＼＼dlao{t)＼＼l+＼＼＼dtUa(t)＼＼＼U(cf- (No. 21)), from (5.14) we have

(5.42) mMt)＼＼lM＼＼dtiiamio^ectE(0,dtUM)+C{Ua(t)+U,m+R(t)

where R(t)=ectt1/2+Ct. By (5.12.a and c) we know that E(fi, dtua{0))=＼＼dtua(0)＼＼l

= ＼＼fao(Q)＼＼lLetting <r->0 in (5.42) and using (a) of Lemma 2.3, (5.7.c) and (5.10),

we have

(5.43) limsup(||3?

£-0+

ua(t)U+＼＼＼dtua(t)＼＼mect＼＼fa(OWo+R(t).

With the help of (5.17.b) and (5.20), from (5.43) we have

(5.44) Ili>(0ll!+lll5*fi(0lll!.o^≪ctll/fl(0)||5+i?(0.
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Since ect―>land R(t)―>0as ?―K)+, (5.41) follows from (5.44), which completes

the oroof of Lemma 5.4.

§6. Farther regularities of solutions

Let L be an integer e[3, K~＼.In this section, we prove that for a given

data (u0, iii,?q, fr)^DL(J), (N) admits a solution u(eXl-°(J, Q), where /=

[0, T-e] and e is any number e(0, T). If u{t)^XL-＼J, Q) satisfies(N), by

(Ap. 14) we know that P(t)＼u{t)'＼<=XL-t>＼J,Q) and Q(tXu(t)l^XL~-1/2(J, P).

And then, differentiating(N) L―2 times in ifand putting df u{t)~vM{t)(O^M^

1-2) and V(O=(0o(O, ― , vL.t(t)),we have

(6.1.a) P(t)lvL-2(t)-]-RQ(t)LV(m=d^2f Q(t) in /Xi2,

(6.1.b) Q(0Ct?i-2(0]+/?r(0C^(0]=3f-8/r(0 on /xf,

(6.1.c) vi_a(0)=MZ,_2, 3t≫i_2(0)=Mi_1 ini2,

where wz,_2and jii-iare functions defined in (1.1);

/?fl(0[V]=sVL~2)5i{a?^i0(0iJi_1_*+a?yli^)S>i;i-≫-*},

Rr(t)lV] =
L±](L

k

2){vidlAiKt)djvL^k+dktBWjVL-2-k+dktB＼t)vL^k}

Furthermore, for Q^M^L―3, differentiating(N) Af-timesin t,we have

(6.2.aV

(6.2.1))*

vM^{t)-pM{t)＼ut),-, vuum+iuVMit)

=d?fa(t)+Xu(&M+＼t0M+i(s)ds) in JxQ ,

QmUXvoH), ...,f>M+i(t)]=d??r(t) on Jxr,

where vL-i(t)―dtVL-2(t);PM(t) and QM(t) are the same as in (3.59); XM

(O^M^L―3) are constants given in Theorem 3.8 with N＼=L―3 and N2=L;

uM (O^M^L―3) are functions defined in (1.1). From this point of view, we

shall split our proof into two stages. First, we consider the equations (6.1) and

(6.2) for unknowns vM (O^M^L―2). And then, we shall prove that there

exist vL-2(t)^X2-°(J,Q) and vM{t)^XL-L-M~＼J, Q) (0:gM^L-3) satisfying (6.1)

and (6.2). Secondly, we shall prove that dtVM(t)=vM+i(t). Then, if we put vo(t)

=u(t), we see easily that u(t)^XL-＼J, Q) and satisfies(N).

1st step. We shall solve (6.1) and (6.2) by the method of successive appro-

ximations. Before defining the iteration scheme, we prepare the function space

and some estimations. Let Z be the space of all functions V(t)=(do(t),vL-i(t))
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such that

(6.3.a) vM{t)^X>-L-M-＼J, Q) (O^M^L-3); L-t(t)eX*-＼Jt Q);

(6.3.b) vm(O)=um (0^M£L-2) and divL.z(O)=uL.1,

By (1.2) we see easily that

(6.4) J;^^(0)3^L_2+JS^0)a^£_2+JB0(0)^i_1=af-2/r(0)-i?r(0)[F(0)] on T

for any V(t)^Z. Furthermore, for any V(t) and V＼f)<=Z, we have

(6.5) tfflCOCVXOler1^/, Q); Rr{t)[V{t)1^Y^'XJ, D;

(6.6) |^fl(-)CF(-)]-/?fl(-)CVr/(0]lco./+</?/'(OC^(-)]-i?/'(-)CVP/(-)]>o.i/2./

+＼(WBtRQwmm-BtRadKvvmi

+idtRr(t)tV(m-dtRr(t)[VV)~}))h2)dt£
d

iV{t)-V＼t)))ldt
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where C=C(M~(K), MS(K));

mtm= s3 s ＼＼divM(t)＼＼i-M-i+＼＼D2vL-2(t)＼＼z
■

M=0 1=0

In fact, applying (Ap. 7)-(Ap. 9) with M1=K-k-l, M2=k and N=l for lg.k

£L-2 and noting that dktAii{t)^Yl-K-k-＼J,Q); vktBil{t)^Yl-K-k-^l2＼J,D;

vL-l-k(t)<=Xl-kU, Q); BfiL-t-k(t)e:Xl-kU, Q) in the definitions of RQ and Rr,

we have (6.5). Furthermore, by (Ap. 7.b)-(Ap. 9.b) we have

(6.7) WtRa(t)mmo+idtRr{t)mt)3u*£C(MJLK), Ms(K))((V(t)))L

for almost all t^J. Since V(0)=V＼0) as follows form (6.3.b) we have that

/?^(0)[F(0)]=/?iK0)[F/(0)] for U=Q and r. Noting this, we see that

RuitWitft-RuitWVft^dsiRuisKV^-V'isWds for f/=i2 and /＼
Jo

where we have used the fact that Ru(-) is linear in V. Hence, applying (6.7)

implies (6.6).

Now, let us define the iteration scheme. In view of (Ap. 18), there exists a

w{t)^X2-＼R, Q) such that uJ(O)=fiL_≪and 3{m;(0)=*l_1. Let us define V＼t) by:

V＼t)=(u0> ･- , Ul-z, wit)). Obviously, V＼t)^Z. For 6^1 and Vk-＼t)e=Z, let

us define vL-2(t)<^X2-°(J,Q) by a solution to the equations:

(6.8.a) i>(0[≫l-.(0]=3f-2/fl(0+i?fl(0C^*-1(0] in /X0,

(6.8.b) (?(O[≪l-t(O]=3f"1/r(O-i?r(OC^*-1(O] on /xf,



342

(6.8.c)

Yoshihiro Shibata

in Q

In view of (6.4)and (6.5),by Theorem 5.1 we know the existenceof visit)&

X2'＼J,Q). Let us define vkM(t)eX1-L-M-＼J,Q) (O^M^L-3) by solutionsto

the equations:

(6.9.a) VkM+2(t)-PM(t)[_Vk0(t),-,VkM +im+*MVM(t)

=d?h(t)+XJl(&M+＼tv^i(s)ds) in JxQ,

(6.9.b) QM{t)im), - , vkM+im^dffr(t) on Jxr,

for (KM^L-3, where vkL^(t)=dtvkL^(t). Since vkL^^X2-＼J, Q)(zXl-＼J, Q);

vkL.x^Xl-＼J, Q); d?fQ^XL-*-M-＼J, ^cI^'^V, Q); dffr^X^^-^HJ, D

CzXl-L-M-^i:>(J,r); uM+[tvkMUs)ds EX1-L-M-＼J, Q) (cf. Lemma 1.1), by Theo-
Jo

rem 3.8 with N1=L―3 and N2=L, we see that vkM{i)exist in X1-L-M-＼J, Q)

for 0^M£L-3. Hence, if we put Vk(t)=(vk0(t),■･･,vkL-2(t)),then we see that

Vk(t)^Z and we can define an iteration scheme.

Now, we shall prove that the present sequence ＼Vk(t)}is a Cauchy sequence

in the product space Xl-L~＼J,Q)x ■■■Xlu(7. Q)xX2-＼J, Q). Applying Thor-

rem 1.3 with L=2 and using (6.6), we have

(6.10)

Applying (3.61), we have also

(s)-Vk-＼s)))lds

L-Z (
2j !''// ^Af l,I-Jlf-l,J^^1 fi-8 ^Z,-2l2,0,7

+ s'{(5II^WO-^i(OII£-jf-id*+l≪feti--≪tfilo.L-jf-,./}}

Since vkM+i(O)=vk£}l(Q)=uM,we have

IVkM~U-V*ul, I5.L-M-3, J^l Z)[ mkMUt)-d＼vVUt)＼＼l-M-Zdt

Combining these two estimates and using (6.10), we have

(6.11) (((Vk-Vk-lM,j£c＼ iVk-＼t)-Vk-＼t)))ldt
JJ

where {((V]j)L,j=sup{((V(t)))L＼t^J}.Recall that /=[0, T-e]. Repeated use of

(6.11) implies that

(((Vk-Vk-1WL,LU{C(T-s)}k-i/(k-l)＼J((Vl-~Vl3)))lJ.

From this we see that {Vk} is a Cauchy sequence in Xl'L~＼L Q)X ■■･XX^U, Q)
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XX*-XJ,Q). As a result, there exists a limit V(t)=(vo(t),･■■,vL-2(t))of the

sequence {Vk(t)＼. In particular, vM(t)eX1'L-M-1(J, Q) (O^M^L-3), vL-2(t)(E

X2-＼J, Q), and by (6.3.b) we have

(6.12) vM(0)=uM (0£MSL-2); dtvL-M=uL-i-

Letting &->oo in (6.8) and (6.9) and using (Ap. l)-(Ap. 3), we see easily that

vo(t),･･･,vL-t(t)and vL^(t) satisfy(6.2) and (6.1).

2nd step. Now, we shall prove that dtvM{t)―vM+i{i)for 0^M<|Z,―3. Ap-

plying (Ap. 7)-(Ap. 9) with M^K-k-2, M2=L-M-2+k and N=l (0£k£M),

we have that PM(t)[v0(t),■■■,^+1(0]gIm(/, Q) and QM<MW), ■■■,vM+1(t)l^

Xl-ll＼J,F) for 0£M£L-3. Differentiating(6.2) once in t, we have

(6.13.aW dtduM-Pu(t)[?tW), - , dtVM+i(t)l+JlMdtvM(t)

=df+1fa(t)+XMvM+l(t)+P^t)lvo(t), - , dM+i(t)l in JxQ ,

(6.13.bV C?ir(O[3≪tJo(O,- ,dtvK+M]

=B?+l?Q<!)-QW)[.Ut), - , ≪jf+i(O3 on /xr

for 0^M<L-3, where PUt) and Oi#(0 are the same as in (3.92). When M=

L―3, noting that 3t0L-i(O=3?0L-2(O and using the using the identity: ( j―

(
& /

(&―i)'from ^"^ and ^･13^-3>
we have

(6.14.a)L_3 -Pi-s(O[≪Jo(O, - , Wl-zW, 0]+JL_,f5£_8(0=0 in JxQ,

(6.14.b)L_, C?£-≫(OC≪Jo(O,-, ≪Ji_,(0,0]=0 on /X/7,

where we have put wM{t)=dtvM{t)-vM+l{t) (O^M^L-3). When O^M^L-4,

in the same way, from (6.13)^ and (6.2V we have

(6.14.a)M WM+*(t)-PM(t)two(t), ･･･,tOM+i(t)l+XMidM(t)

rt
=^jf+i＼u}M+i(s)ds ih /Xi2,

Jo

(6.14.b)ar <?*(O[wo(O, - , ≪>jf+i(O]=0 on /Xf,

where uJx_a(0=3^L-2(0-i'L-i(0=0. Applying (3.60) with M=L-3 and AT2^L-1

to (6.14) and noting that idL-＼(t)=w£-2(0=0, we have

(6.15)
L-S _^
S I Wit lo,i-3f-l,[O, tl^C

M=0

Z.-4
rt

S ＼＼＼wM+i(s)＼＼z.-M~sds
M=OJO

rt l-3

^C＼ S ＼Wjt＼o.L-M-l.lO.tldS

J0 M=O
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for any t^J. Applying Gronwall's inequality to (6.15) implies that

£-3
S Im>j≪-|o.t-ir-i.co.t]=0for any fe/.

From this it follows immediately that dtVin(t)=VM+i(t)for all t<sj and 0^M<^

L-3. Put u(t)=Ut). Then, d?u(t)=vM(t)&X°-L-M(J, Q) (O^M^L-3) and

dt-2u(t)=vL-z(,t)^X2-＼J,Q). Accordingly, u(t)^XL-°(J, Q). Substituting d＼u{t)

=vt(t) for Z=0, 1 and 2 into (6.2)0,we see that P(0[w(0]=/fi(0 in JxQ and

O(0C≪(0]=/r(0 on /Xf. From (6.12) it follows that u(0)=vo(0)=u<> and dtu(Q)

z=v1(0)=u1 in Q. Noting that s is chosen arbitrarily,we have Theorem 1.2

when 3^L<K. This completes the proof of Theorem 1.2.

Appendix. Estimates of a product of functions and trace theorem.

First of all,we state the Sobolev's imbedding theorem. To do this, we

prepare some notations. For l^p^00, we put

IIW||/sn,r,p ― j＼ lff-|[(l+l-r)r/iS(uX-)](*)|*d*ri>;

H'p(Rn)={u ES'(Rn)＼＼＼u＼＼Rn.r.P<},

where 3(u) is the Fourier transform of u and ff"1isitsinversion formula. Let

G=Rl or Q. Put

Hrp{G)={u | u(x)=U(x) in G for some U<=H£(Rn)};

IMkr.,=inf{||tf|U,.ri, | u(x)=U(x) in G).

As is well-known, if r is an integer2>0 and 1<£<oo, then |M||§,r,pis equivalent

to the usual norm:

S ( |3^(x)|prfx for G=i2n, /2? and i2.

In fact, if G=Rn, this is well-known (cf. [1, Theorem 7]). If G=Rrl or Q,

we can extend functions defined on G to whole Rn (it is well-known that under

the more general assumption on the boundary of the domain we can extend

functions, cf. [1]). Thus, the equivalence of two norms follows immediately

(cf. [1, Theorem 121).

Sobelev's imbedding theorem. Let G=Rn, R% or Q. (I) Let l<p<q<°o

and put X=n(l/p―l/q). Then, Hp(G) is continuously imbedded into Lq(G) and

＼＼u＼＼G.o.q£C(p,q, n, G)||tt||o.;iPfor any u^H^(G).

(II) Let Si and e2 be numbers such that0<e1<s2<l. Put A=n/p + e2- Then,
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every function u in H£(G) coincides almost everywhere with a Holder continuous

function v with exponent su Furthermore,

＼v(x+ h)-v(x)＼£C(p, su e8,G)＼＼u＼＼o.x.P＼h＼'i.

In the same way as in the proof of Theorem 7.1 of Mizohata [7], by using

Sobolev's imbedding theorem we have

Theorem Ap. 1. Let l<p<^oo. Let ru ･･･,rk (k^2), M be non-negative

numbers and L a non-negtiveinteger such thatM>n/p and M^rx+ ■･･+rk + L.

Then, for uj^H^-r^{G)) j―l,･･･,k, a product Jluj^H&G). Furthermore,

＼＼f[uj＼＼G,L,p£C(n,G,M, p, fc)ni|wJo.*-rj.P.

From now on, we consider L2 spaces only. For the notational simplicity,

we write ||･＼＼G,r.2=II･lie,r and H＼{G)―HT{G). Next theorems are concerned with

the trace operator.

Theorem Ap. 2 (cf. Mizohata [7, Proposition 3.6]). Let u^H＼Rf). Then,

the following are true.

(1) ||u(-fO)|U≪-iil/1^C||≪|Un.i.

(2) For any arbitrary s>0, there exists a constant C{n, e) satisfying

＼＼u{-,0)|U≫-il0^e||M|U≫.1+C(n,e)NI*≫.o.

Theorem Ap. 3. Let L be a non-negative integer. For any ue.HL+<-im{Rn~l),

there exists a £/e//I+1(i?+)such that U(x', 0)=u(xr) for almost all x'=(x1} ･･･,

xn^)GRn-1 and ||t/||ji7i.jr+i^C(L)||M|Un-i.jf+a/8>for any integer Mg[0, L].

Proof. In view of Theorem Ap. 2, since C^R71'1) is dense in HL+<l'*＼Rn-1)

it sufficesto prove the theorem for ueCjCi?71"1). Put

U(x)={~)n'1[n_iexp{txf-^-xnVl+＼^＼2)3(uW)d^

(i=V― 1 and £'=(£i,･･･,£B_i)). Then, we see that U(x', O)=u(x'). Let a―

(a', ≪,)=(≪!,･･･,≪,_,,an) be any multi-index such that |a|^L+l. Since

daMx)=(^)n~＼n_iexp(ix''$'-xnVl+＼$'＼z)(-Vl+＼^＼irn($r'3(uW)d$

by Parseval's formula we have
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iexp(-xnvi+＼^na+＼r＼2rn＼^＼Zia>'＼3(u)(e)＼2d^dxn

(i+ifi≪)""-o/≪>iff(Mxf)rdr^iiMiu-i..≪.-o/≪.

From thiswe have the theorem.

Using the partitionof unity near the boundary, from Theorems Ap. 2 and

Ap. 3 we have the following two corollaries.

Corollary Ap. 4. Let u<eH＼Q). Then, the following are true. (1) ((u))m

^C||m||i. (2) For any arbitrary s>0, there exists a constant C{n, e, F) satisfy-

ing ≪M≫o^e||M||,+ C(n, e,r)||M|U,

Corollary Ap. 5. Let L be a non-negativeinteger and u^HL+il'＼F).

Then, thereexistsa U<^HL+1(Q) such that u(x)=U(x) for almost allxef and

l|t/||jf+i^C≪M≫jf+ci/8)for any integer Me[0, I].

Now, we shallinvestigatethe Holder continuityof functionsin YK~y'1.

Theorem Ap. 6. Let J be a closedintervaland MeF!'["2](/, Rn). Then,

for any ee(0,[n/2]+l-(n/2)), u^$s(JxRn). Furthermore, |m|≫i,./xjI≫^

C＼u＼irni23,j,Rnwhere C=C(n, e).

Proof. For the notational simplicity, we write IHUn.r=IHIr. Let us de-

note the Fourier transform of u(t,x) with respect of x by U{t,£). Let 7>0

and s<=(0, 1) and put 7'={7―s[n/2])/(l―s). By Holder's inequality we have

j|^,£)-a(s,£)|2(l+i£l2rrf£

By

On

^(ji*& $)-*<*.i)i2a+iii2)cre/2D^y((!^, 5)-≪(s,flra+151'r^)1"

the definitionsof the norms of H^nti＼Rn) and Yulniz＼J,Rn), we have

Jift(^^-fl(sfcii(i+ifrr/fMe^iiM(o-≪(s)iif≫/≪^iMi;.c./H.7.*≫i*--sr

the other hand,

(lac*, *)-≪(≪, e＼2a+＼$＼)r'd^＼＼u(t)-u(swr^(＼＼u(t)＼＼f+＼＼u(s)＼＼rr



Neumann problem 347

Combining these estimates, we have

||w(0-M(s)||r^U!f,[n/21J.iJrlU-s|£(||M(0llr'+ ||u(s)||r01-£.

Choose r and s so that r>n/2, 0<e<l and r'^[n/2]+l. If ee(0, [n/2]+

1―(n/2)), then such a ?*exists. Thus, by Sobolev's imbedding theorem we have

＼u(t,x)-u(s, x)＼^C＼＼u(t)-u(s)＼＼r£2^＼u＼l,Znm,j.Rn＼t-s＼s.

On the other hand, by the Fourier inversion formula we have

|w(s, x)-u(s, y)＼
f(e**-e-e*w*)0(s,

£)d£

Note that ＼eix*-eiy'i＼S21-*＼x-y＼*＼£＼s.

Noting that ＼eix^＼= ＼eiv'^＼=l, we have

Hence, we have

＼u(s,x)-u(s, y^^-'lx-yl*^

In fact, ＼eix-e-eiv-*＼£＼x-y＼＼£＼

that ＼eix-t-eiy't＼^＼x-yV＼£V2l-s

l£|£(s,£)|rf£

^-^x-y＼^a+＼m-rd^y'＼＼a+＼mr+s＼u(sf$)＼2d$y'2

= CU-yl'll≪(s)llr+.

where C=C(n, s,y) provided that f>n/2 and r+s^[n/2]+l. Since se

(0, [n/2]+l―(n/2)), we can choose such a f. Combining these two estimates, we

see easily that

＼u(t,x)―u(s, y)＼<L＼u(t,x)-u(s, x)＼+ ＼u(s,x)-u(s, y)＼

^C(£)＼u＼1,Znl21,j,Rn(＼t-s＼s+＼x-y＼°)£C(e)＼u＼1,in/2i,j,Rn＼(t,x)-(s,y)＼s,

which implies the theorem.

Corollary Ap. 7. Let ee(0, [n/2]+l-(n/2)). // v^YK~1-＼J, Q), then

u^Bl+%JXQ). Furthermore, ＼v＼≪>.l+,,j<LC(,n,e)＼v＼K-i.i.j.

Proof. Since A^[u/2]+2, K^3. Then, YK-2-＼J, Q)cYl-K-＼J, Q)d

yi.c≫/≪3(/,Q). Namely, Sjvey1-^/, Q) for /=0, 1, ･･･, n (do=dt). By using

well-known Lions' method of extending functions defined on Q to whole Rn,

we see that there exists a u(t, x)<=Y1>znli＼J, Rn) such that u(t, x)=dtv(t, x) for

x^Q and t&J, and |M|i,cn/2],7.≪n^C|9ii;|i.cB/2].j. Applying Theorem Ap. 6

implies that dtv(t, x)^&*(JxQ). Furthermore, we have that |9Ji;|00>e></=|M|oo.e,/

^＼u＼oo,e,jxRn^C＼u＼uZni2i,j,Rn<C＼div＼uLn/2i,j<;C＼v＼K-Li,j, which completes the

proof.

Combining Corollaries Ap. 5 and Ap. 7, we have
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Corollary Ap. 8. Let ee(0, [n/2]+l-(n/2)). If v^YK-1-1'＼J, Q), then

!;G51+5(/Xf). Furthermore, <y>~.i+e.j^C(w, e)<v>jf_iil/a.j.

Now, we shall summarize the results on products of two functions in

Sobolev spaces used in the text. Let G=Rn, R$ or Q.

(Ap. 1) ＼＼A-B＼＼G.r^C＼＼A＼＼a,a＼＼B＼＼Otfifor any Ae=Ha(G) and BgH?(G)

provided that a, /S,y are integers such that a, P^Y^Q and a+p―y>n/2.

Let G'=Ri or Q. For the notational simplicity, we write

l|-||ao'.r-ci/2)=H-|U≫-i.r-ci/≪)or <(･≫;･-≪/≫>^G'=Rn~l or F.

(Ap. 2) ＼＼A'B＼＼da..r.ll/t^C＼＼A＼＼0..a＼＼B＼＼0>.pfor any A<=H"(G') and B<eH?(G')

provided that a, /},y are integers such that a, fi^Y^l and a+/3―y>n/2.

(Ap. 3) l|i4-5|U.r_<1/≫^C||i4|U..a_(1/s,||5||0,^

for any i4ei/a[-{1'2)(SG/) and B^H^(G') provided that a, fi,y are integers such

that a, p^y^l and a+jS―y>n/2. In fact, (Ap. 1) follows immediately from

Theorem Ap. 1 with k=2, L=y, M=a+p+y, rx=fi~Y and rz=a-y. By

Corollary Ap. 4-(l), we know that ||i4-5||aG..r_a/2)^C||i4-5||0..r. Hence, (Ap. 2)

follows from (Ap. 1). By Corollary Ap. 5, we know that there exists an A'<E.

HKG') such that A'―A almost everywhere on dG' and ||^'||c?,r^cll^ll3G'.r-ci/2)-

Since ＼＼A-B＼＼dG>,r^u≫=＼＼A'･B＼＼d&,r-vm, (Ap. 3) follows from (Ap. 2).

Now, when ^4=^4(0 and B=B{t) depend on t continuously, we give the

results corresponding to (Ap. l)-(Ap. 3). Below, / always refers to a time

int-oruol

(Ap. 4.a) A(jt)'B(t)e=C＼J,Hr(G));

(Ap. 4.b) ＼＼A(tyB(t)＼＼a.r^C＼＼A(t)＼＼0.a＼＼B(t)＼＼G.fi

for any A(t)s=C＼J, Ha{G)) and B(t)<=C＼J, H^{G)) provided that a, /3,y are

integers such that a, jS^^^O and a+fi―y>n/2.

(Ap. 5.a) A(t)-B(t)^C＼J, Hr- *＼dG'))＼

(Ap. 5.b) II^CO-^COIIgc'.r-cim^CIIACOIlG'.JIfiCOIIo'./j

for any A{t)^C＼J, Ha{G')) and B(f)(=C＼J, H^G')) provided that a, /3,y are

integers such that a, fi^Y^l and a+jS―y>n/2.

(Ap. 6.a) A(t)-B(t)e=C°(J,Hr~^＼dG'));

(Ap. 6.b) l|i4(0--B(0llw'.r.a/t)^C||i4(0llaO'a-≪/≫l|5(0llo'.i9
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for any A(t)(=C0(J, i/a-<1/2>(5G')) and B(t)(=C＼J, H^G)) provided that a, 0, y

are integers such that a, jS^f^l and a+fi―y>n/2. In fact, by (Ap. 1) we

see that

＼＼A(t)-B(t)-A(s)-B(s)＼＼G,r^

C{＼＼A(t)-A(s)＼＼＼Ua＼＼B(t)＼＼G^+ ＼＼A(s)＼＼G,a＼＼B(t)-B(s)＼＼G^}.

From this, (Ap. 4) follows immediately. Employing the same arguments, we

see that (Ap. 5) and (Ap. 6) follow from (Ap. 2) and (Ap. 3), respectively,

Now, we give the results on differentiability in t. Let Mu M2 and N be

integers such that Mu M2^N and Af1+M2+l-7V>n/2. Let ZL-M=XL-M or

YL'M. Then,

(Ap. 7.a) A{t)-B{t)^Z'-NU,Q);

(Ap. 7.a) ||at(i4(0-5(0)l|^^c(s||SM(0l|jfl+i-i)(2]||SIJB(0llif8+l-i)

for any A(f)^Zl-uKJ, Q) and B(f)s=Zl-"KJ,&).

(Ap. 8.a) ^(O-^OeZ1^-^2^/, T);

(Ap. 8.b) ≪at(i4(0-5(0)^-a/≫^c(s ||9U(0llif1+i-i)(s l|9|5(OII*I+i-i)

for any A(f)<=Zl>"KJ,Q) and B{t)^Zl-MKJ, Q)

(Ap. 9.a) i4(0-5(0eZ1-*-<1't>(/fr);

(Ap. 9.b) R(i4(0-B(0)K-ci/t)^c(s^i4(0Wci/≪)-i)(SI|3f5(0l|jfI+i.i)

for any A{t)GZl-M^o/t＼J, F) and Btfi^Z^KJ, Q)- In fact, since

＼＼A(tyB(t)-A(s)-B(s)＼＼N£＼＼(A(t)-A(s))-B(t)＼＼N+＼＼A(s)-(B(t)-B(s))＼＼N

applying (Ap. 1) with a―Mx, f}=M2+l and y=Nto the first term of the right-

hand side and with a=M1+l,
iS==M2

and y=Nto the second term of the right-

hand side, we have

＼＼A(t)-B(t)-A(s)-B(s)＼＼N^C{＼＼A(t)-A(s)＼＼Ml＼＼B(t)＼＼M2+1

+ ＼＼A(s)＼＼Ml+1＼＼B(t)-B(s)＼＼M2}.

From this it follows that A(t)B(t)t=Up(J, HN{Q))r＼X＼J, HN{Q)). Since dt(A(t)

･B(f))=dtA(t)-B(f)+A(f)-dtB(t), by employing the same arguments, we have

||at(i4(O-B(O)IU^C{|M(Ollir1l|5(OI|jr1+i+l|i4(OI|jf1+il|5(O||Jfl}.

Applying (Ap. 1) with a―Mx+1, B=M2+1 and y=N+1, we have also
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＼＼A(t)-B(t)＼＼ir+i£C{＼＼A(t)＼＼Kl+1＼＼B(t)＼＼ui+i＼,

which implites that A(t)B(t)^L°°(J,HN+＼Q). Therefore, we have proved A(t)-

B(t)^Yl-N{J> Q)- Furthermore, we have

＼＼{A(t+h)-B{t+h)-A{t)-B(t))h-'-dt{A{t)-B{t))＼＼N

MdtA{t)-{B{t+h)-B{t))＼＼N+＼＼{{A{t+h)-A{t))h-l-dtA{t)}B{t+h)＼＼N

+ ＼＼A(t){(B(t+h)-B(t))h-1-dtB(t)}＼＼N

^c{iia≪x(oiuji^a+≪~^(oiijr,+i+iK^(*+A)―^co)/!-1―s^coiijrji-BaH-^)!!*,*!

+ ＼＼A(t)U1+iKB(t+h)-B(t))h-1-dtB(t)＼＼M2}.

From this we see easily that A(t)-B(t)<^Xl-N(J, Q). Hence, we have (Ap. 7).

With the help of Corollaries Ap. 4-(l) and (Ap. 5), we have also (Ap. 8) and

(Ap. 9) by the same arguments.

In the text, we need the following facts:

(Ap. lO.a) P{t)iu{t)~]^CL-＼J,L＼Q)) and df-2(P(0[*(0])eLip(/, L＼Q));

(Ap. lO.b) Q{t)lum^CL~＼J,H"＼r)) and d?-＼Q(t)Lu(t)l)^Up(J, Hl'＼r))

provided that w(0eC°°(/,H1/2(Q)) and 2£L<K, where JcL (Ap. 10) follows

immediately from the following facts:

(Ap. 11) A(t)-B{t)ELCL-＼J,H＼Q)) and df-＼A(t)-B(t))^Up(U, H＼Q));

(Ap. 12) A{tyB(S)sECL-＼J,W＼D) and d^＼A{t)-B{t))^Up{J, H"＼D)

provided that A{t)^YK~u＼J, Q) and B(0eC°°(/,HL~＼Q)).

(Ap. 13) A{t)-B{t)<=CL-＼J,Hl'XF)) and d^＼A(t)'B{t))^Up{J, #'1/2GO)

provided that A{t)^YK-l-"＼J,T) and 5(0eCM(/, HL~＼Q)). By induction on

Le[2, K~＼and using (Ap. 1) and (Ap. 4) we see easily (Ap. 11). With the help

of Corollary Ap. 4-(l),(Ap. 12) follows from (Ap. 11). With the help of Corol-

lary Ap. 5, (Ap. 13) follows also from (Ap. 11).

In the text, we also need the following facts:

(Ap, 14) P(0[jK0]eX£-2-°(/, Q) and Q(t)lu(t)l^XL-2-l'＼J, T)

provided that m(0gIl"m(/. Q) for 2£L^K, where Jd. (Ap. 14) follows im-

mediately from the following facts:

(Ap. 15) A(t)-B(t)(=XL-%'＼I,Q);
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provided that A{t)^XK-*-＼J, Q) and B{t)^XL~z-＼J, Q).

(Ap. 17) A(t)'B(t)zEXL-2-ll2U,r)

provided that A(t)^XK-t-1i＼J, T) and B(t)&XL-z-＼J, Q). By induction on Le

[2, K~＼and using (Ap. 4), we have (Ap. 15) easily. With the help of Corollaries

Ap. 4-(l) and Ap. 5, (Ap. 16) and (Ap. 17) follows from (Ap. 15) immediately.

Finally, we shall prove that for any wo^H2(Q) and Wi<eH＼Q) (scalar-

valued functions now being considered), there exists a w{t, x)gX*-°(R, Rn) such

that

(Ap. 18) u/(0,x)=wo(x) and dtw(0, x)=w1(x) in Q.

By well-known Lions' method of extending functions defined on Q to whole Rnf

we know that there exist Wk{x)^H2~k{Rn) for k=0 and 1 such that wk(x)=

Wk(x) for xeJ2. Then, let us define w(t, x)eiX2-＼R, Rn) by a solution to the

Cauchy problem of the wave operator:

d＼w{t,*)- SdMf, x)=0 in ExRn; w(0,x)=W0(x)

and dtw(O, x)=W,(x) in Rn

Obviously, the w(t, x) has the desired properties.
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