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ON THE CAUCHY PROBLEM FOR THE NONLINEAR
KLEIN-GORDON EQUATION WITH
A CUBIC CONVOLUTION

By

Takahiro MOTAI

Abstract. We study the Cauchy problem for the nonlinear Klein-
Gordon equation with a cubic convolution {V,*(w())*}w(t), where
Vi (x)=|x|7, in (x, )eR"XR. We prove the existence of weak
solutions for 0<<y<<n. We also prove that for 0<<y<Min{4, n} the
weak solution is unique and there exists a regular solution.
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1. Introduction and Results.

We consider the Cauchy problem for the nonlinear Klein-Gordon equation;

{ Pw@)— dwt)+wt)+F(wt)=0
1.1

w0)=¢(x),  dw0)=¢(x)
in (x, )eR"XR. Here w(t) is a real valued function and

(1.2) Fw®)={Vyf(w)}w®),

where f(w)=w?, V,(x)=]|x|7 (0<y<n) and = denotes the spatial convolution.
The study of this equation was begun in Strauss [13] and Menzala and Strauss
[9]. In [9] they proved the existence of a global regular solution of (1.1) for
0<y<3. The main purpose of the present paper is to prove the same result
for 0<y<Min{4, n}. The upper bound Min{4, n} of y has been already appeared
in the case of nonlinear Schrédinger equation with the same nonlinear term.
The case of Schrédinger equation has been studied by Chadam and Glassey [2],
Glassey [61, Ginibre and Velo [4] and Hayashi and Tsutsumi [7]. It seems that
Min{4, n} is a critical value caused by the Sobolev embedding theorem.

In order to state our results, we give the main notations used in this paper.
We denote by |-]|, the norm in L,=L,(R"). Let Hi=H}R") with s€R and
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1= p< oo (especially H*=H*(R") for p=2) be the Sobolev spaces which are the
completion of C3(R"™) with norms

lulls, p=UF A+ E122AEN] 5 .

Here = denotes the Fourier transformation and &-! is its inverse. For any in-
terval /JCR and any Banach space B, we denote by C*(; B) the space of B-
valued C*-functions over I, and by C,(I; B) the space of weakly continuous
functions from [ to B, and by C.(I; B) the space of functions from I to B
that are strongly Lipschitz continuous. We denote by C*(I; 9') the space of
9'-valued functions u(¢) such that <u(?), v> is in C*({J) for any ve 9.

We shall use the operator {(H) for suitable functions Z(-) as follows:

CH)u=g"'(C(&NnE) in &'
where <&)=(1+[£|%)'* and &’ means the tempered distribution.

Now we are ready to state our results.

THEOREM 1. Let 0<y<n (nxl). Assume that (¢, YEH'NLynizn-p X L.
Then there exists a weak solution w(t) of (1.1) which satisfies the following :

(1.3) wtE LR ; HYNC (R; HYINCL(R; LINCHR; '),
(L4 Flwt)ELR; Loncusn) NC(R; ')
(1.5) (w(®), v)=(¢, cos{Ht}v)+(¢, H 'sin{ Ht}v)

~S:(F(w(f)>, H-'sin {H(t—o)}v)de,

2

L 0D, DD, (~A D) HF (D), =0
(1.6)

(w0), V=(, 1), -5 (wO), V=(¢;, v).

Here ve C3(R™) and (,) is Ly-inner product. And we have the energy inequality

1.7 E(w(®), 0,wt)ZE($, ¢) for teR.
where

1 1 1 .
(1.8) E(¢, )= 5 MJHE—F"Z“ o3 .+ T Venepe*f(@)3.

THEOREM 2. Let 0<y<Min{4, n} (n=1) and (¢, ) H'XL,. Let I be an
open interval in R and O0=I. Then there exists at most one w(t) which satisfies
(1.5) and

(1.9) whe Lls(I; H)  for 0<y<3,
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(1.10) wt)e Ll ; HYNLP<(I; L,) for 3<y<4,
wher 1/p'=1/2—(y—1)/2n and 1/r=(y—3)/2.
THEOREM 3. Let 0<y<Min{4, n} (n=1).

(i) Let (¢, ) H'XL,. Then w(t) which is obtained by Theorem 1 is unique
and satisfies the following :

(1.11) wit)eC(R; HYNCYR; L) for 0<r<3,
(1.12) wt)e C(R; HYNCAR; L)NLYR; L) for 3<y<4,
(1.13) E(w(t), d.w(t)=E($, )  for t=R,

where v and p’ are given in Theorem 2.
(i) Let (¢, Q) H*XH*' (k&N (natural number) and k=2). Then (1.1)
has a unique solution w(t) which satisfies

(1.14) w(t)e QC%R; HE-).

COROLLARY. (i) If k>n/242, w(t) is in CAR"XR).
(ii) If k=oo, w(t) s in C(R"XR).

REMARK. (i) If 1<y<Min{4, n}, we have H'GL,, ea-;» by the Sobolev
embedding theorem. So the initial condition ¢= H* ML (n;n-;y becomes g= H* in
Theorem 2 and 3.

(ii) The upper bound Min{4, n} of 7 has been already appeared in the case
of the nonlinear Schriodinger equation. (See [4] and [7].)

Theorem 1 is proved by the compactness method which were used by Segal
in [12]. He used this method for the nonlinear Klein-Gordon equation with the
power nonlinearity. (See also Reed [11] 5.) We can choose a convergent sub-
sequence from solutions of the equation which approximate (1.1) by the double
convolution mollifier due to Ginibre and Velo [3].

In the case 0<y=<3 the same results of Theorem 2 and 3 have been already
proved by [9]. Thus, we shall prove Theorem 2 and 3 in the case 3<y<4.

Theorem 2 is proved by the contraction method.

In order to prove Theorem 3, we show that a weak solution obtained by
Theorem 1 becomes a regular solution. For this purpose we estimate the solu-
tions of the approximating equation used for the proof of Theorem 1. This
method has been already used by Ginibre and Velo [5] and Motai [10] in the
case where F(w) is the power nonlinearity.
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2. Proof of Theorem 1.

First we approximate the nonlinear term by the double convolution mollifier
due to Ginibre and Velo [3]. We choose an even non-negative function he
C%(R™) such that [|hll,=1. For any j&N(natural number) we put

2.1 Fiw)=h{Vxf(hpu)hu},
where hj(x)=j"h(jx). Coresponding to (2.1), we consider the Cauchy problem;
{ fw;(t)—Aw )+ w,;)+Fiw,()=0

(2.2)
w]'(o):hj*¢, atwj(()):hj*gb.

LEMMA 2.1. Let 0<y<n (nzl). Assume that (¢, $)EH'"\Linjczn-p X L,.
Then for all jeN (2.2) has a unique solution w(t) such that
2.3) wit)e QCi(R SH*Y  for any keN.

And wj(t) satisfies the integral equation in H*;

@2.4) wyt=wio— | H*sin {He—)) Fyw,@)dz,
where
(2.5) wlt)=cos{ Ht} hys¢+H " sin { Ht} hysep .

In addition the conservation of energy holds;

(2.6) Ejwit), 0w;t)=Ehxd, hyx¢)  for tER,
where

1 1. 1
(2.7) Ei¢, ¢)= 0 MJH%-FE H¢1H'Z+Z | Venepiox f(Rx@)|5.

ProoOF. Applying Reed [11] Theorem 2 in section 1 to (2.2), we can show
the existence of a unique global solution. Employing the same arguments as in
Ginibre and Velo [3] Proposition 3.3, we can also prove (2.6). O

We obtain the following lemma by the compactness method.

LEMMAZ2.2. Let wit) (jEN) be a solution of (2.2) obtained by Lemma 2.1.
Then {wit)} has a convergent subsequence (again denoted by {w;(t)}) as follows:
For any compact interval ICR and any comsact subset KCR"

2.8) w;(t) — w(t) in C(; Ly(K)) as j—oo.,

Here w(t) satisfies
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(2.9) wit)e L(R; HYNC o(BR; HYNC(R; L,).

Proor. Noting (2.6), the Ascoli-Arzela theorem yields (2.8) and (2.9). For
details please refer to Segal [12] and Reed [11] 5. O

The following lemma is the well-known Sobolev’s inequality.

LEMMA 2.3. Let 1<g<p<co and 0<y<n (n=1). Then we havz

(2.10) §Vyeul < Clull,

provided that

2.11) olyry
b g n

PRrROOF. See Hormander [8] Theorem 4.5.3 for a proof. [
LEMMA 2.4. Let 0<y<n (nzl). We have

@12 |[Versaxounds | S C1 Vet )l ulonran-p
=C| V(n+r)/z*f(w)H2”u”zllvﬂzn/(n—n

for suitable functions u, v and w.

ProoOF. Using the Plancherel theorem and the Schwartz inequality we have

(2.13) SVr*f(w)(X)u(X)v(x)dx=(2n)“"g |81 f{w)(@)| €] TP ul§)dé
S Vasp et fW)llell Vinar re(uv) 2«

It follows from Lemma 2.3 and the Holder inequality that

(2.14) [ Vesprax(uv)lo < Clluvllonscn-p = Cllllellvlznrcn-y -

(2.13) and (2.14) show that (2.12) holds. O

LEMMA 2.5. Let 0<y<n (n=zl). Let wyt) be a solution of (2.2) obtained
by Lemma 2.1. Then the following estimates holds:

(2.15) IVensp e f(Rpw )= C(, ¢),
(2.16) IV f (hprw ()l ensy = C($, @),
(2.17) IFiwi ) lznicarn = C(@, ¢)

for jEN and t€R, where C(§, ¢) is a positive constant which is dependent on
(@, ¢) but independent of t and j.
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Proor. Noting (2.6), we have (2.15) by Lemma 2.3.
From Lemma 2.4 it follows that

(2.18) l Vi f(hpw (w(x)d x| S CIlV apiox f(Rpw ) el 2nr cn-p>
i

for v C¥(R"). Therefore we obtain (2.16) by (2.15), the density and the du-
ality. Noting ||w;@)|.<C(¢, ¢), (2.17) follows from (2.16) and the Holder in-
equality. OO

LEMMA 2.6. Let I be any compact interval in R. Let {w,(t)} be a convergent
subsequence obtained by Lemma 2.2. Then it has the following properties:

(2.19) Vaneprarf(hpew (1) —> Vinap o f(w(t))
weakly in L, and uniformly on I and

(2.20) Fiwy(£)) —> F(w(®)

weakly in Lonjcnspy for t€1 as j—oo.

In order to prove this lemma, we prepare two lemmas.

LEMMA 2.7. For any compact interval ICR and any compact subset KCR"

we have

(2.21) hxw,(t) —> w(t) in C(I; Ly(K)) as j—oo,

Proor. Noting (2.8), we can prove (2.21) easily. So we may omit the
proof. O

LEMMA 2.8. Let 0<y<n. For any compact interval ICR we have
(2.22) Vixf(hpwt) —> Vi f(w®)  in 9

uniformly on I as j—oo.

PrROOF. Let veC%3(R") and supp vC{x; |x|<R}. By the Fubini theorem
we have

223 (Vs fhyraws)— FaoO) ) d = f s 0)— F®)} Vo) dx

S\$J§R+m SIx\zRHn

:[1+[2.

Here m is a cuitable number which will be chosen later. If |x|=R-+m, we
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have |x—y|=m for |y|<R. Noting this, we obtain
@.20) | L 2ot FChyau )= F0) dx {10030 d

=m T (hpw Ol + 1 w@ D]l -

Next we estimate I,. We have

Lyl

@2 1=l fseoi— o] | a1 Tl dyfds.
It follows from n—1—y>—1 that
(2.26) Slylgklx—yl"lv(y)ldyéC(2R+m)""llva-

This implies that

2.27) [ LIZCRR+Am)™ (w)]o+ w® vl hxw ) —wB)lz,cizisrem -
Choosing m sufficiently large, we have (2.22) by (2.6), (2.9), (2.24), (2.27) and
Lemma 2.7. O

We are ready to prove Lemma 2.6.

PROOF OF LEMMA 2.6. As 0<(n+y)/2<n, we have (2.19) by (2.15) and

Lemma 2.8.
By (2.17) we obtain (2.20) if we can show that

(2.28) Fiw;(@t)) — F(w®)) in @' for tel
as j—oo. For veCH(R") we have
(2.29) (Fwi(t)—F(w®), v)=(Vxf(hpwt)hxwit), hjxv—v)

+(F (hpw())—F (w(®)), v)
:Il_*—lz .

Lemma 2.4, (2.15) and (2.6) imply that

(2.30) | 1| £ Cl| Venaprorf (hprw @)l el w Dl Apv—vll2nscn-p>
=C(g, Pl hv—2l2nscn-p>-
We put
(2.31) L=(Vxf(hpw ) {hpxwt)—wd)}, v)
H(Ver{ f(hpw0)— f(wE)w(®), v)
=In+1,.

Again by Lemma 2.4 and (2.15) we have
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(2.32) [ Loy | =C(@, Pllihyxw()—wBllzycsuppw|Vliznscn-p -

We can rewrite I,, as follows:

(2.33) Ly=(Vx{ f(hpw)— f(wt)}, wbv).
On the other hand it follows from (2.16) and Lemma 2.8 that
(2.34) Vi f(hpxwy(@) — Vox f(w(t))

weakly in L,,, and uniformly on I as j—co. By the Holder inequality and
(2.6) we have w(twE Lopjen-p- Noting this, (2.34) implies that I,,—0 as j—oo.
So (2.30), (2.32) and Lemma 2.7 show that (2.28) holds. [

Now we are in a position to prove Theorem 1.

Proor oF THEOREM 1. Let {w,()} be a convergent subsquence obtained by
Lemma 2.2. We multiply v&C%(R™) by (2.4) and integrate on R". Then we
have

(2.35) (wit), v)=(hx¢, cos{ Ht}v)+(hx¢p, H *sin{Ht}v)

—g:<Fj(wj(r)), H-'sin { Hit—7)}v)dr .
Using the Hausdroff-Young inequality, we can show that H~'sin{H({—7)lveE
Lonicn-p. Thus it follows from (2.20) that
(2.36) (Fw()), Hsin {H(t—1)}v) — (F(w(r)), H'sin {H{{—1)}v)
as j—oo. By the Hélder inequality, (2.17) and the Hausdroff-Young inequality
we have
(2.37) (Fiw;®t)), H*sin { Ht—2)}0) S| F{w(@)llenscnsn | H ™ sin {HE—=T)}vl2n/cn-p

~_<——_c(¢: sb)}iﬁ“zn/(n-t-r) .

(2.36) and (2.37) mean that we can use the Lebesgue dominated convergence
theorem. Thus letting j—co in (2.35), we obtain (1.5).

Noting ¢= Linsn-p, (2.6) and (2.19) imply (1.7).
Next we show that

(2.38) (w(t), v)ECYR)  for any veCHR™).
From (1.5) it follows that (w(), vy C'(R) and

(2.39) %(w(t), v)=—(¢, H 'sin {Ht}v+(¢, cos{Ht}v)

—SZ(F(w(T)), cos{ H(i—2)}v)dr.
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If we show that
(2.40) (F(w(t), e C(R).
(2.38) can be proved. Let teR and be fixed. Put
(2.41) JOp)=(F (w(t+n)—F(w(t)), v)
=(Vr{ f(wt+m)— F(w®)}w(t), v)
+ (Ve f(wit+n){w+n)—wd}, v)
=L+ JL).
By (2.12) we obtain

(2.42) | oD L C| Venaprar fwt+n) ol wt+n)—wBllelvlisnc-p -

From (1.7) and (2.9) it follows that | /,(%)|—0 as »—0. By (2.3) and (2.16) we
can show that

(2.43) Vo f(hppw ()€ C (R Lansy) .
(2.34) and (2.43) imply that
(2.44) Vi f(wt)ECw(R; Lansy)-

Noting w(tWE Lonsan-p, by (2.44) we have | Jup)]—0 as p—0. Then (2.40) is
proved. Noting (2.9), (2.17) and (2.20), (1.3) and (1.4) have already been proved.
(1.5) implies (1.6). Thus the proof of Theorem 1 is completed.

3. Proof of Theosem 2.
We begin with the well known estimates for the elementary solution of the
linear Klein-Gordon equation.
PROPOSITION 3.1. Lht 1<p=<2 and 1/p+1/p’=1. Put &(p")=1/2—1/p".
(i) Let p’, s’ and s satisfy
3.1 (n+1d(p")=1+s—s".
Then we have for g CH(R")
3.2) | H sin{Ht} glly,pr S C ][ 1F57 700 gl .
(i) Put 1/r=s"+ndé(p")—1. Let p’,r and s’ satisfy

1 1 <y D 5o
3.3) 0=—<5 and §'S1—===0p".

Then we have for g C3(R™)
(3.4) |H 'sin{Ht}gliL, & ay>=Clgll.
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Proor. (i) See Brenner [1] Appendix 2 for a proof.
(ii) See Ginibre and Velo [5] Lemma 3.1 for a proof. [0

The following lemma is useful to estimate the nonlinear term.

LEMMA 3.2. Let p, a, b and g satisfy

(3.5) S S SR SUY S R S AP S T
p a b g n na b

Then we have

(3.6) IF(w)—F®ll, < C(lu—vlallutvlolulg+vialvisle—viy)

for suitable functions u and v.

ProoF. By the Holder inequality and Lemma 2.3 we have (3.6). (2.11)
yields (3.5). O

PrOOF OF THEOREM 2. As mentioned in the introduction, we will prove in
the case 3<y<4 (n=4). Let I be an open interval and J be any finite interval
such that 0= JcI. Let I, be an interval such that 0=/,CJ. Put

X(Io)y=LuIy; HYNL (Is; Lp).
The norm of X([,) is given by
lull xcrp=Max{ltll Locros B> lullz,cre Lp.)} .
From Lemma 2.4, Lemma 2.3 and the embedding H'>Lsn/n-py it follows that
3.7 ‘SF(w(t))v(x)dﬂ_S_Hw(z‘)lli.z\[vllx,z
Slwlxwslvi,e.

This means that F(w())e H! for t=J. Thus by (1.4) we have
(3.8) w(t):w"(t)—gz H-*sin { H(t—1)} F(w(z))de

in L, for t&].
Let w,(f) and w,(t) be two solutions which satisfy the assumptioms of

Theorem 2. From (3.8) we obtain
3.9) wy(t)— wz(i)I—SZH”‘ sin { Ht—1)} [F(w,(2)— F (wy(r)1dz .
By Proposition 3.1 (i) we have

B10) @ wily SC| [ 1=t TIF (i) —F(wie)ls vz | -
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Lemma 3.2 and the Sobolev embedding theorem yield that
B P i) —F o).
S CUlw ), e Two D, XN wi( D pr N walD) ) wi(m) — w1, 2
+ Clwi( D)1, o+ wa(D 1 ) i (2) = oDl -

By (3.10) we have

(3.12) wi(t)—w )]l < Clwr—wsll x crplwill x>+ well xers)
|| =l i@ w0 de]|
+C(”w1||X(10)+Hw2||X(10))2

x| [V lt—el =)l de|

As 3—y>—1, from the Young inequality we obtain

(3.13) Ilwl(t)“wz(t)||LT(10; Lp,)§C ] [o14_7(”waX(J)"‘szHX(J)YH Wi— W) XU -

Employing the same arguments as we obtain (3.11), we have

G.14)  F(wi(m)—F(wor)l.

< CUlwi @, e Hlwe() 1, XN wi() o A w20 ) 102(T)— oD -

Hence it follows that
(3.15) Jwi—wa)l1.»

SC(lwillx e+ lwellxe)

Noting »>2, from the Holder inequality we obtain
(3.16) lwi () —woB)ll1, . = CL L | 27 (| will x oyt llwell x ()l wi— wel xcrgr -
(3.13) and (3.16) show that

(3.17) "wl—wzl|X(10>§ ClL* " (Jwilix e+ Hwz”X(J))z”w1“wz”X(10)~

363

[Lw@lp+ el —wi@l de|

Taking |I,| sufficiently small in (3.17), we obtain a inequality which implies
that w;=w, on [,. Iterating this process, we can show that w,=w, on J. As

J arbitrary, Theorem 2 is proved.

4. Proof of Theorem 3.

In this section we restrict our attention to 3<y<4 (n=4), too. In order to

investigate the regularity of a weak solution, we estimate the solutions of the

approximating equation.
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LEMMA 4.1. Let 3<y<4 (n24). Let (¢, $)=H' XL, and wit) GEN) be a
solution of (2.2) obtained by Lemma 2.1. Let p’ and r be given in Theorem 2.
Then for any compact interval ICR there exists a positive constant C(g, ¢, I)
which is dependent on (¢, ) and I but independent of j such that

(4.1) lwillz, s Lp,)§c(¢, ¢, I for jEN.

Proor. It is sufficient to prove (4.1) in the case I=[0, @]. In the same
way as we obtain (3.12) we have

(4.2) IOl s+ C@, P, =71 T ws@lr de

Here we have used (2.6). By Propositon 3.1 (ii) and the Young inequality we
have

4.3)  Nwillz,as 1, =CU¢lh 2+ [Pll)+C(g, eb)llg: lt—z " Tws@)lpdrl, a

SCU 1.+l +C(d, Pt Twille, caszps-
We can verify the condition (3.3) easily. Choosing « to satisfy C(¢, ¢)a'7<1/2,
we have
4.4 lwillz, s 2,0 =C(g, ¢, I)  for jEN.

Next we show that (4.1) holds for any number a<[0, ). Let M be the
supremum of the number a<[0, «) so that (4.1) holds with /=[0, @]. We have
already showed that M>0. If M=oo, the lemma is proved. We assume that
M< o, Let a<M and I,=[0, «]. From the definition of M it follows that

4.5) ”wj”LTu,; Lp,>§c(¢, ¢, I) for jEN.
Let a<fB and I,=[«, 8]. Employing the same arguments as we obtain (4.3),
we have
(4.6) lwille,ay Lp,uéc(\l¢ll1,z+ll¢ﬂz)
t
+c@, | 11—zl rw@lpde|
+c@, )|, =l @ pde|
:]1+]2+]3-

From the same arguments of a proof of the Young inequality we obtain
4.7 L=C(, PXB—a) Twille, cry 2,0,

(4.8) J:2C(9, ¢>ﬁ4_erjHL,(11;Lp,)-
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Choosing 8 near a to satisfy C(@, ¢}(B—a)*"7<1/2, by (4.5)~(4.8) we have
4.9) ij||LT<co,,a:;Lp,>§C(¢, ¢, B) for jEN.

Since the distence between « and S depends on C(¢, ¢) only, we can choose a
near M to satisfy M—a<S—a. Hence (4.9) contradicts the definition of M. [

LEMMA 4.2. Let 3<y<4 (n=24). Let (¢, p)=H*XH' and w;{t) (jN) be a
solution of (2.2) obtained by Lemma 2.1. Let 1/q¢'=1/2—1/2n. Then for any
compact interval ICR there exists a positive constant C(¢, ¢, I) which is dependent
on (@, ¢) and I but independent of j such that

(4.10) lwill Lwers w2 H=C(@, ¢, 1) for jEN.

Proor. Let I=[0, a]. From (2.4) and Proposition 3.1 (i) it follows that
(4.11) Ile(l)Hl,q'éIIwS’-(l‘)lll.qv+S;||Fj<wj(f))ll1,qdr-
We can verify (3.1) easily. Applying Lemma 3.2 to [Fw,(z))|:,, we have

(4.12) IFwi Nl o= Clws Ol lwim)ly

where p’ is given by Lemma 4.1. As the embedding H*C,. H} holds, from (4.11)
and (4.12) we obtain

@13 Oy SCUG g+ Clwsliacr: mpy|. @l dr.
From the Holder inequality and Lemma 4.1 it follows that

414)  wilzeas 5= CUGle ot 1)+ C(@, ¢, Da ™2 willrwcrs 2> -
Here choosing « sufficiently small, we have

(4.15) lwill Loocrs Hé')§c(¢, ¢, ).

Employing the same arguments of the proof of Lemma 4.1, we can show that
(4.10) holds for any a<[0, «). So we may omit its proof. O

LEMMA 4.3. Under the same assumptions of Lemma 4.2. we have
(4.16) 1Willzwcr; ny=C(@, ¢, I)  for jEN

for any compact interval ICR. Here C(¢, ¢, I) is a positive constant which is
dependent on (@, ¢) and I but independent of j.

Proor. From (2.4) it follows that

(4.17) 100155 CUla a1+ IF el ode.
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Applying Lemma 3.2 to |Fw(7))}..., we obtain
(4.18) [Esw ()1, .= Cllw (i g lwiDlle.2,

where ¢’ is given by Lemma 4.2. To note Lemma 4.2, we have

(4.19) [wi@®lle, e < CUI B2 e+ 10110+ C(D, &, I)S: lwi()llz.odt.

The Gronwall inequality implies (4.16). O
Now we give the estimates of the weak solution.

LEMMA 4.4. Let w(t) be a weak solution of (1.1) obtained by Theorem 1.
Let 3<y<4 (n=4) and I be any compact interval n R.

(i) Let (¢, $)=H'X L, Then we have
(4.20) lwle, s ,=C(@, ¢, 1),

where C(@, ¢, I) is a positive constant which is dependent on (¢, ¢) and I, pro-
vided that

1 _1_r=1 1_7r=3
(4.21) ) o and S=5
(i) Let (¢, )= H*XH'. Then we have
4.22) Ml Lecrs me>=C(P, ¢, 1),

where C(@, ¢, I) is a positive constant which is dependent on (¢, ¢) and I.
PrOOF. By (4.1), (4.16) and Lemma 2.2 we can choose a covergent sub-

sequence (again denoted by wj(t)) so that

(4.23) wit) —> w(t) weakly in L.(I; Ly),

(4.24) w(t) —> w(t) weakly in H? and uniformly on [

as j—oo. Thus we have (4.20) and (4.22). O
We prepare three lemmas on the regularity of the integral equation.

LEMMA 4.5. Assume that for i=0 or 1

(4.25) Fwi)e LY«(R; HY).

Then we have

(4.26) S:H“sin {H(t—1)} Fw(e)dee C(R; H*HNC(R; HY).

PROOF. See Motai [9] Lemma 4.2 for a proof. O
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LEMMA 4.6. Assume that for k€N
4.27) wit)e f\OCi(R; HE).
Then we have

(4.28) Fluw(t)e Qci(R;H’H’) for 0<y<Min{2k, n}.

Proor. If we use Lemma 3.2 and the Sobolev embedding theorem, we can
prove (4.28) easily. So we may omit a proof. O

LEMMA 4.7. Assume that for keN
(4.29) Flu()e (\CR; H').
Then we have

(4.30) |\ v sin (-} FQu(@)dee [) CR; B0,

ProoF. This result is well-known. So we may omit the proof. O
We are in a positon to prove Theorem 3.

PROOF OF THEOREM 3. (i) Let w(f) be a weak solution obtained by
Theorem 1. Since w(t)=L.(R; H'), from the same argument as we obtain (3.8)
it follows that

(4.31) w(t):wO(z)—S:H-* sin {Hi—o)} F(w(t)dr  in L.
for teR. By (¢, )= H'XL, we have
(4.32) W= CR: HYNCYR: Ly).

Noting (3.14), from (1.7) we obtain

(4.33) [F(w(t)l.= Cl, Pllwdl 3 .
As r>2, Lemma 4.4 (i) and (4.32) imply (4.25). Hence by Lemma 4.5 we have
(1.12).

The uniqueness of w(t) follows from (1.12) and Theorem 2.
If we resolve (1.1) at initial time t,& R with a initial data (w(t,), 0,w(t,)), by
Theorem 1 we obtain

(4.34) Ew(®), 0,wt) < E(w(ty), 0,w(ty)) for t=R.
The uniqueness, (1.7) and (4.34) imply (1.13).
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(4.35)

Takahiro MOTAI
i) We first note that for (¢, Q)= H*XH*™' (k=2) we have

wo(t)E Qc%R; H*5.

In the case k=2 we have

(4.36)

Fw)=Cllw®Il3..

by Lemma 3.2 and the Sobolev embedding theorem. From Lemma 4.4 (ii) and
Lemma 4.5 it follows that

(4.37)
This
(4.38)

wt)eC(R; HHNCYR; HY).
implies that

Flwt)eCR; HYNCY(R; L,).

By Lemma 4.7 we have

(4.39)

wit)e ifj\o C{R; H> Y.

In the case £>2 we can first obtain (4.39). Lemma 4.6 shows that

(4.40)
And

(4.41)

Flw)e écm; He-1).
Lemma 4.7 implies that

wit)e i(_\ CH(R; H*).

Iterating this process, we can prove (1.14).
Corollary follows from the Sobolev lemma.
The proof Theorem 3 is completed.

[1]
R

(3]
(4]
[5]
[6]
L7]

References

Brenner, P., On scattering and everywhere defined scattering operator for nonlinear
Klein-Gordon equations, J. Differential equations, 56 (1985), 310-344.

Chadam, J.M. and Glassey, R. T., Global existence of solutions to the Cauchy pro-
blem for time-dependent Hartree equations, J. Math. Phys., 16 (1975), 1122-
1130.

Ginibre, J. and Velo, G., On a class of nonlinear Schrédinger equation I, J. Funct.
Analysis, 32 (1979), 1-32.

, On a class of nonlinear Schriodinger equations with non local interaction,

Math. Z., 170 (1980), 109-136.

, The global Cauchy problem for the non linear Klein-Gordon equation,
Math. Z., 189 (1985), 87-121.

Glassey, R.T., Asymptotic behavior of solutions to a certain nonlinear Schrédinger-
Hartree equation, Comm. Math. Phys., 53 (1977), 9-18.

Hayashi, N. and Tsutsumi, Y., Scattering theory for Hartree type equations, Ann.




(8]
£9]
(10]
(11}
[12]
[13]

On the Cauchy Problem for the Nonlinear 369

Henri Poincare, Phys. Theor., 46 (1987), 187-213.

Hormander, L., The analysis of linear partial differential operators I, Berlin-
Heidelberg-New York, Springer 1983.

Menzala, C.P. and Strauss, W.A., On a wave equation with a cubic convolution,
]. Differential equations, 43 (1982), 93-105.

Motai, T., Existence of global strong solution for nonlinear Klein-Gordon equation,
to appear in Funkcialoj Ekvacioj.

Reed, M., Abstract nonlinear wave equation, Lecture notes in mathematics, 507
(1976), Berlin-Heidelberg-New York, Springer.

Segal, I.E., The global Cauchy problem for a relativistic scalar field with power
interaction, Bull. Soc. Math. Fr., 91 (1963), 129-135.

Strauss, W.A., Nonlinear scattering theory at low energy: sequel, J. Funct.
Analysis, 43 (1981), 281-293.

Japanese Language School
The Tokyo University

of Foreign Studies

5-10-1, Sumiyoshi-cho,
Fuchu-shi, Tokyo, 183 Japan



