ON THE CAUCHY PROBLEM FOR THE NONLINEAR KLEIN-GORDON EQUATION WITH A CUBIC CONVOLUTION

By

Takahiro Motar

Abstract

We study the Cauchy problem for the nonlinear KleinGordon equation with a cubic convolution $\left\{V_{r^{*}}(w(t))^{2}\right\} w(t)$, where $V_{\gamma}(x)=|x|^{-\gamma}$, in $(x, t) \in \boldsymbol{R}^{n} \times \boldsymbol{R}$. We prove the existence of weak solutions for $0<\gamma<n$. We also prove that for $0<\gamma<\operatorname{Min}\{4, n\}$ the weak solution is unique and there exists a regular solution.

Key Words. nonlinear Klein-Gordon equation, cubic convolution, Cauchy problem, global solution, uniqueness.

1. Introduction and Results.

We consider the Cauchy problem for the nonlinear Klein-Gordon equation;

$$
\left\{\begin{array}{l}
\partial_{t}^{2} w(t)-\Delta w(t)+w(t)+F(w(t))=0 \tag{1.1}\\
w(0)=\phi(x), \quad \partial_{t} w(0)=\phi(x)
\end{array}\right.
$$

in $(x, t) \in \boldsymbol{R}^{n} \times \boldsymbol{R}$. Here $w(t)$ is a real valued function and

$$
\begin{equation*}
F(w(t))=\left\{V_{\gamma} * f(w(t))\right\} w(t) \tag{1.2}
\end{equation*}
$$

where $f(w)=w^{2}, V_{\gamma}(x)=|x|^{-r}(0<\gamma<n)$ and $*$ denotes the spatial convolution. The study of this equation was begun in Strauss [13] and Menzala and Strauss [9]. In [9] they proved the existence of a global regular solution of (1.1) for $0<\gamma \leqq 3$. The main purpose of the present paper is to prove the same result for $0<\gamma<\operatorname{Min}\{4, n\}$. The upper bound $\operatorname{Min}\{4, n\}$ of γ has been already appeared in the case of nonlinear Schrödinger equation with the same nonlinear term. The case of Schrödinger equation has been studied by Chadam and Glassey [2], Glassey [6], Ginibre and Velo [4] and Hayashi and Tsutsumi [7]. It seems that $\operatorname{Min}\{4, n\}$ is a critical value caused by the Sobolev embedding theorem.

In order to state our results, we give the main notations used in this paper. We denote by $\|\cdot\|_{p}$ the norm in $L_{p}=L_{p}\left(\boldsymbol{R}^{n}\right)$. Let $H_{p}^{s}=H_{p}^{s}\left(\boldsymbol{R}^{n}\right)$ with $s \in \boldsymbol{R}$ and
$1 \leqq p<\infty$ (especially $H^{s}=H^{s}\left(\boldsymbol{R}^{n}\right)$ for $p=2$) be the Sobolev spaces which are the completion of $C_{0}^{\infty}\left(\boldsymbol{R}^{n}\right)$ with norms

$$
\|u\|_{s, p}=\left\|\mathcal{F}^{-1}\left(\left(1+|\xi|^{2}\right)^{s / 2} \hat{u}(\xi)\right)\right\|_{p}
$$

Here ${ }^{\wedge}$ denotes the Fourier transformation and \mathscr{F}^{-1} is its inverse. For any interval $I \subset \boldsymbol{R}$ and any Banach space B, we denote by $C^{k}(I ; B)$ the space of B valued C^{k}-functions over I, and by $C_{w}(I ; B)$ the space of weakly continuous functions from I to B, and by $C_{L}(I ; B)$ the space of functions from I to B that are strongly Lipschitz continuous. We denote by $C^{k}\left(I ; \mathscr{D}^{\prime}\right)$ the space of \mathscr{D}^{\prime}-valued functions $u(t)$ such that $\langle u(t), v\rangle$ is in $C^{k}(I)$ for any $v \in \mathscr{D}$.

We shall use the operator $\zeta(H)$ for suitable functions $\zeta(\cdot)$ as follows:

$$
\zeta(H) u=\mathscr{F}^{-1}(\zeta(\langle\xi\rangle) \hat{u}(\xi)) \quad \text { in } \mathcal{S}^{\prime}
$$

where $\langle\xi\rangle=\left(1+|\xi|^{2}\right)^{1 / 2}$ and \mathcal{S}^{\prime} means the tempered distribution.
Now we are ready to state our results.
THEOREM 1. Let $0<\gamma<n(n \geqq 1)$. Assume that $(\phi, \phi) \in H^{1} \cap L_{4 n /(2 n-\gamma)} \times L_{2}$. Then there exists a weak solution $w(t)$ of (1.1) which satisfies the following:

$$
\begin{align*}
& w(t) \in L_{\infty}\left(\boldsymbol{R} ; H^{1}\right) \cap C_{w}\left(\boldsymbol{R} ; H^{1}\right) \cap C_{L}\left(\boldsymbol{R} ; L_{2}\right) \cap C^{2}\left(\boldsymbol{R} ; \mathscr{D}^{\prime}\right) \tag{1.3}\\
& F(w(t)) \in L_{\infty}\left(\boldsymbol{R} ; L_{2 n /(n+\gamma)}\right) \cap C\left(\boldsymbol{R} ; \mathscr{D}^{\prime}\right) \tag{1.4}\\
& (w(t), v)=(\phi, \cos \{H t\} v)+\left(\psi, H^{-1} \sin \{H t\} v\right) \tag{1.5}\\
& -\quad \int_{0}^{t}\left(F(w(\tau)), H^{-1} \sin \{H(t-\tau)\} v\right) d \tau \\
& \left\{\begin{array}{l}
\frac{d^{2}}{d t^{2}}(w(t), v)+(w(t),(-\Delta+1) v)+(F(w(t), v)=0 \\
(w(0), v)=(\phi, v), \frac{d}{d t}(w(0), v)=(\phi, v)
\end{array}\right.
\end{align*}
$$

Here $v \in C_{0}^{\infty}\left(\boldsymbol{R}^{n}\right)$ and (,) is L_{2}-inner product. And we have the energy inequality

$$
\begin{equation*}
E\left(w(t), \partial_{t} w(t)\right) \leqq E(\phi, \phi) \quad \text { for } \quad t \in \boldsymbol{R} \tag{1.7}
\end{equation*}
$$

where

$$
\begin{equation*}
E(\phi, \phi)=\frac{1}{2}\|\phi\|_{2}^{2}+\frac{1}{2}\|\phi\|_{1,2}^{2}+\frac{1}{4} V_{(n+\gamma) / 2} * f(\phi) \|_{2}^{2} \tag{1.8}
\end{equation*}
$$

Theorem 2. Let $0<\gamma<\operatorname{Min}\{4, n\}(n \geqq 1)$ and $(\phi, \phi) \in H^{1} \times L_{2}$. Let I be an open interval in \boldsymbol{R} and $0 \in I$. Then there exists at most one $w(t)$ which satisfies (1.5) and

$$
\begin{equation*}
w(t) \in L_{\infty}^{\text {loc }}\left(I ; H^{1}\right) \quad \text { for } \quad 0<\gamma \leqq 3 \tag{1.9}
\end{equation*}
$$

$$
\begin{equation*}
w(t) \in L_{\infty}^{10 c}\left(I ; H^{1}\right) \cap L_{r}^{100}\left(I ; L_{p^{\prime}}\right) \quad \text { for } \quad 3<\gamma<4, \tag{1.10}
\end{equation*}
$$

wher $1 / p^{\prime}=1 / 2-(\gamma-1) / 2 n$ and $1 / r=(\gamma-3) / 2$.
Theorem 3. Let $0<\gamma<\operatorname{Min}\{4, n\}(n \geq 1)$.
(i) Let $(\phi, \phi) \in H^{1} \times L_{2}$. Then $w(t)$ which is obtained by Theorem 1 is unique and satisfies the following:

$$
\begin{align*}
& w(t) \in C\left(\boldsymbol{R} ; H^{1}\right) \cap C^{1}\left(\boldsymbol{R} ; L_{2}\right) \quad \text { for } \quad 0<\gamma \leqq 3, \tag{1.11}\\
& w(t) \in C\left(\boldsymbol{R} ; H^{1}\right) \cap C^{1}\left(\boldsymbol{R} ; L_{2}\right) \cap L_{r}^{1 o c}\left(\boldsymbol{R} ; L_{p^{\prime}}\right) \quad \text { for } \quad 3<\gamma<4, \tag{1.12}\\
& E\left(w(t), \partial_{t} w(t)\right)=E(\phi, \psi) \quad \text { for } \quad t \in \boldsymbol{R}, \tag{1.13}
\end{align*}
$$

where r and p^{\prime} are given in Theorem 2.
(ii) Let $(\phi, \phi) \in H^{k} \times H^{k-1}(k \in \boldsymbol{N}$ (natural number) and $k \geqq 2)$. Then (1.1) has a unique solution $w(t)$ which satisfies

$$
\begin{equation*}
w(t) \in \bigcap_{i=0}^{k} C^{i}\left(\boldsymbol{R} ; H^{k-i}\right) \tag{1.14}
\end{equation*}
$$

Corollary. (i) If $k>n / 2+2, w(t)$ is in $C^{2}\left(\boldsymbol{R}^{n} \times \boldsymbol{R}\right)$.
(ii) If $k=\infty, w(t)$ is in $C^{\infty}\left(\boldsymbol{R}^{n} \times \boldsymbol{R}\right)$.

Remark. (i) If $1<\gamma<\operatorname{Min}\{4, n\}$, we have $H^{1} \hookrightarrow L_{4 n /(2 n-\gamma)}$ by the Sobolev embedding theorem. So the initial condition $\phi \in H^{1} \cap L_{4 n /(2 n-\gamma)}$ becomes $\phi \in H^{1}$ in Theorem 2 and 3.
(ii) The upper bound $\operatorname{Min}\{4, n\}$ of γ has been already appeared in the case of the nonlinear Schrödinger equation. (See [4] and [7].)

Theorem 1 is proved by the compactness method which were used by Segal in [12]. He used this method for the nonlinear Klein-Gordon equation with the power nonlinearity. (See also Reed [11] 5.) We can choose a convergent subsequence from solutions of the equation which approximate (1.1) by the double convolution mollifier due to Ginibre and Velo [3].

In the case $0<\gamma \leqq 3$ the same results of Theorem 2 and 3 have been already proved by [9]. Thus, we shall prove Theorem 2 and 3 in the case $3<\gamma<4$.

Theorem 2 is proved by the contraction method.
In order to prove Theorem 3, we show that a weak solution obtained by Theorem 1 becomes a regular solution. For this purpose we estimate the solutions of the approximating equation used for the proof of Theorem 1. This method has been already used by Ginibre and Velo [5] and Motai [10] in the case where $F(w)$ is the power nonlinearity.

2. Proof of Theorem 1.

First we approximate the nonlinear term by the double convolution mollifier due to Ginibre and Velo [3]. We choose an even non-negative function $h \in$ $C_{0}^{\infty}\left(\boldsymbol{R}^{n}\right)$ such that $\|h\|_{1}=1$. For any $j \in N$ (natural number) we put

$$
\begin{equation*}
F_{j}(u)=h_{j} *\left\{V_{\gamma} * f\left(h_{j} * u\right) h_{j} * u\right\}, \tag{2.1}
\end{equation*}
$$

where $h_{j}(x)=j^{n} h(j x)$. Coresponding to (2.1), we consider the Cauchy problem;

$$
\left\{\begin{array}{l}
\partial_{i}^{2} w_{j}(t)-\Delta w_{j}(t)+w_{j}(t)+F_{j}\left(w_{j}(t)\right)=0 \tag{2.2}\\
w_{j}(0)=h_{j} * \phi, \quad \partial_{t} w_{j}(0)=h_{j} * \psi .
\end{array}\right.
$$

Lemma 2.1. Let $0<\gamma<n(n \geqq 1)$. Assume that $(\phi, \phi) \in H^{1} \cap L_{4 n /(2 n-\gamma)} \times L_{2}$. Then for all $j \in N(2.2)$ has a unique solution $w_{j}(t)$ such that

$$
\begin{equation*}
w_{j}(t) \in \bigcap_{i=0}^{k} C^{i}\left(\boldsymbol{R} ; H^{k-i}\right) \quad \text { for any } \quad k \in \boldsymbol{N} . \tag{2.3}
\end{equation*}
$$

And $w_{j}(t)$ satisfies the integral equation in H^{k};

$$
\begin{equation*}
w_{j}(t)=w_{j}^{0}(t)-\int_{0}^{t} H^{-1} \sin \{H(t-\tau)\} F_{j}\left(w_{j}(\tau)\right) d \tau, \tag{2.4}
\end{equation*}
$$

where

$$
\begin{equation*}
w_{j}^{0}(t)=\cos \{H t\} h_{j} * \phi+H^{-1} \sin \{H t\} h_{j} * \psi . \tag{2.5}
\end{equation*}
$$

In addition the conservation of energy holds;

$$
\begin{equation*}
E_{j}\left(w_{j}(t), \partial_{t} w_{j}(t)\right)=E_{j}\left(h_{j} * \phi, h_{j} * \psi\right) \quad \text { for } \quad t \in \boldsymbol{R}, \tag{2.6}
\end{equation*}
$$

where

$$
\begin{equation*}
E_{j}(\phi, \psi)=\frac{1}{2}\|\psi\|_{2}^{2}+\frac{1}{2}\|\phi\|_{1,2}^{2}+\frac{1}{4}\left\|V_{(n+\gamma) / 2} * f\left(h_{j} * \phi\right)\right\|_{2}^{2} . \tag{2.7}
\end{equation*}
$$

Proof. Applying Reed [11] Theorem 2 in section 1 to (2.2), we can show the existence of a unique global solution. Employing the same arguments as in Ginibre and Velo [3] Proposition 3.3, we can also prove (2.6).

We obtain the following lemma by the compactness method.
Lemma2.2. Let $w_{j}(t)(j \in \boldsymbol{N})$ be a solution of (2.2) obtained by Lemma 2.1. Then $\left\{w_{j}(t)\right\}$ has a convergent subsequence (again denoted by $\left.\left\{w_{j}(t)\right\}\right)$ as follows: For any compact interval $I \subset \boldsymbol{R}$ and any comsact subset $K \subset \boldsymbol{R}^{n}$

$$
\begin{equation*}
w_{j}(t) \longrightarrow w(t) \quad \text { in } \quad C\left(I ; L_{2}(K)\right) \quad \text { as } j \rightarrow \infty . \tag{2.8}
\end{equation*}
$$

Here $w(t)$ satisfies

$$
\begin{equation*}
w(t) \in L_{\infty}\left(\boldsymbol{R} ; H^{1}\right) \cap C_{w}\left(\boldsymbol{R} ; H^{1}\right) \cap C_{L}\left(\boldsymbol{R} ; L_{2}\right) . \tag{2.9}
\end{equation*}
$$

Proof. Noting (2.6), the Ascoli-Arzela theorem yields (2.8) and (2.9). For details please refer to Segal [12] and Reed [11] 5.

The following lemma is the well-known Sobolev's inequality.
Lemma 2.3. Let $1<q<p<\infty$ and $0<\gamma<n$ ($n \geqq 1$). Then we havz

$$
\begin{equation*}
\left\|V_{r} * u\right\|_{p} \leqq C\|u\|_{q} \tag{2.10}
\end{equation*}
$$

provided that

$$
\begin{equation*}
\frac{1}{p}=\frac{1}{q}+\frac{r}{n}-1 \tag{2.11}
\end{equation*}
$$

Proof. See Hörmander [8] Theorem 4.5.3 for a proof.
Lemma 2.4. Let $0<\gamma<n(n \geqq 1)$. We have

$$
\begin{align*}
\left|\int V_{\gamma} * f(w)(x) u(x) v(x) d x\right| & \leqq C\left\|V_{(n+r) / 2^{*}} * f(w)\right\|_{2}\|u v\|_{2 n /(2 n-r)} \tag{2.12}\\
& \leqq C\left\|V_{(n+\gamma) / 2} * f(w)\right\|_{2}\|u\|_{2}\|v\|_{2 n /(n-r)}
\end{align*}
$$

for suitable functions u, v and w.
Proof. Using the Plancherel theorem and the Schwartz inequality we have

$$
\begin{align*}
\int V_{r^{*}} f(w)(x) u(x) v(x) d x & =(2 n)^{-n} \int|\xi|^{(\gamma-n) / 2} \hat{f(w)}(\xi)|\xi|(\gamma-n) / 2 \tag{2.13}\\
& \leqq \| V_{(n+\gamma) / 2} * f(w) d \xi \\
& (w)\left\|V_{(n+\gamma) / 2} *(u v)\right\|_{2} .
\end{align*}
$$

It follows from Lemma 2.3 and the Hölder inequality that

$$
\begin{equation*}
\left\|V_{(n+\gamma) / 2} *(u v)\right\|_{2} \leqq C\|u v\|_{2 n /(2 n-\gamma)} \leqq C\|u\|_{2}\|v\|_{2 n /(n-\gamma)} \tag{2.14}
\end{equation*}
$$

(2.13) and (2.14) show that (2.12) holds.

Lemma 2.5. Let $0<\gamma<n(n \geqq 1)$. Let $w_{j}(t)$ be a solution of (2.2) obtained by Lemma 2.1. Then the following estimates holds:

$$
\begin{align*}
& \left\|V_{(n+\gamma) / 2} * f\left(h_{j} * w_{j}(t)\right)\right\|_{2} \leqq C(\phi, \psi), \tag{2.15}\\
& \left\|V_{\gamma} * f\left(h_{j} * w_{j}(t)\right)\right\|_{2 n / r} \leqq C(\phi, \phi), \tag{2.16}\\
& \left\|F_{j}\left(w_{j}(t)\right)\right\|_{2 n /(n+\gamma)} \leqq C(\phi, \phi) \tag{2.17}
\end{align*}
$$

for $j \in \boldsymbol{N}$ and $t \in \boldsymbol{R}$, where $C(\phi, \phi)$ is a positive constant which is dependent on (ϕ, ψ) but independent of t and j.

Proof. Noting (2.6), we have (2.15) by Lemma 2.3.
From Lemma 2.4 it follows that

$$
\begin{equation*}
\left|\int V_{r^{*}} f\left(h_{j} * w_{j}(t)\right) v(x) d x\right| \leqq C\left\|V_{(n+\gamma) / 2} * f\left(h_{j} * w_{j}(t)\right)\right\|_{2}\|v\|_{2 n /(2 n-\gamma)} \tag{2.18}
\end{equation*}
$$

for $v \in C_{0}^{\infty}\left(\boldsymbol{R}^{n}\right)$. Therefore we obtain (2.16) by (2.15), the density and the duality. Noting $\left\|w_{j}(t)\right\|_{2} \leqq C(\phi, \phi)$, (2.17) follows from (2.16) and the Hölder inequality.

Lemma 2.6. Let I be any compact interval in \boldsymbol{R}. Let $\left\{w_{j}(t)\right\}$ be a convergent subsequence obtained by Lemma 2.2. Then it has the following properties:

$$
\begin{equation*}
V_{(n+\gamma) / 2} * f\left(h_{j} * w_{j}(t)\right) \longrightarrow V_{(n+\gamma) / 2} * f(w(t)) \tag{2.19}
\end{equation*}
$$

weakly in L_{2} and uniformly on I and

$$
\begin{equation*}
F_{j}\left(w_{j}(t)\right) \longrightarrow F(w(t)) \tag{2.20}
\end{equation*}
$$

weakly in $L_{2 n /(n+\gamma)}$ for $t \in I$ as $j \rightarrow \infty$.
In order to prove this lemma, we prepare two lemmas.
Lemma 2.7. For any compact interval $I \subset \boldsymbol{R}$ and any compact subset $K \subset \boldsymbol{R}^{n}$ we have

$$
\begin{equation*}
h_{j} * w_{j}(t) \longrightarrow w(t) \quad \text { in } C\left(I ; L_{2}(K)\right) \quad \text { as } j \rightarrow \infty . \tag{2.21}
\end{equation*}
$$

Proof. Noting (2.8), we can prove (2.21) easily. So we may omit the proof.

Lemma 2.8. Let $0<\gamma<n$. For any compact interval $I \subset \boldsymbol{R}$ we have

$$
\begin{equation*}
V_{\gamma} * f\left(h_{j} * w_{j}(t)\right) \longrightarrow V_{r^{*}} * f(w(t)) \quad \text { in } \mathscr{D}^{\prime} \tag{2.22}
\end{equation*}
$$

uniformly on I as $j \rightarrow \infty$.
Proof. Let $v \in C_{0}^{\infty}\left(\boldsymbol{R}^{n}\right)$ and supp $v \subset\{x ;|x| \leqq R\}$. By the Fubini theorem we have
(2.23) $\int V_{r} *\left\{f\left(h_{j} * w_{j}(t)\right)-f(w(t))\right\} v(x) d x=\int\left\{f\left(h_{j} * w_{j}(t)\right)-f(w(t))\right\} V_{r} * v(x) d x$

$$
\begin{aligned}
& =\int_{|x| \leqq R+m}+\int_{|x| \leqq R+m} \\
& =I_{1}+I_{2} .
\end{aligned}
$$

Here m is a suitable number which will be chosen later. If $|x| \geqq R+m$, we
have $|x-y| \geqq m$ for $|y| \leqq R$. Noting this, we obtain

$$
\begin{align*}
\left|I_{2}\right| & \leqq m^{-r} \int\left|f\left(h_{j} * w_{j}(t)\right)-f(w(t))\right| d x \int|v(y)| d y \tag{2.24}\\
& \leqq m^{-r}\left(\left\|h_{j} * w_{j}(t)\right\|_{2}^{2}+\|w(t)\|_{2}^{2}\right)\|v\|_{1}
\end{align*}
$$

Next we estimate I_{1}. We have

$$
\begin{equation*}
\left|I_{1}\right| \leqq \int_{|x| \leqq R+m}\left\{\left|f\left(h_{j} * w_{j}(t)\right)-f(w(t))\right| \int_{|y| \leqq R}|x-y|^{-r}|v(y)| d y\right\} d x \tag{2.25}
\end{equation*}
$$

It follows from $n-1-\gamma>-1$ that

$$
\begin{equation*}
\int_{|y| \leqq R}|x-y|^{-\gamma}|v(y)| d y \leqq C(2 R+m)^{n-\gamma}\|v\|_{\infty} \tag{2.26}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
\left|I_{1}\right| \leqq C(2 R+m)^{n-r}\left(\left\|w_{j}(t)\right\|_{2}+\|w(t)\|_{2}\right)\|v\|_{\infty}\left\|h_{j} * w_{j}(t)-w(t)\right\|_{L_{2}(|x| \leqq R+m)} \tag{2.27}
\end{equation*}
$$

Choosing m sufficiently large, we have (2.22) by (2.6), (2.9), (2.24), (2.27) and Lemma 2.7.

We are ready to prove Lemma 2.6.
Proof of Lemma 2.6. As $0<(n+\gamma) / 2<n$, we have (2.19) by (2.15) and Lemma 2.8.

By (2.17) we obtain (2.20) if we can show that

$$
\begin{equation*}
F_{j}\left(w_{j}(t)\right) \longrightarrow F(w(t)) \quad \text { in } \mathscr{D}^{\prime} \text { for } t \in I \tag{2.28}
\end{equation*}
$$

as $j \rightarrow \infty$. For $v \in C_{0}^{\infty}\left(\boldsymbol{R}^{n}\right)$ we have

$$
\begin{align*}
\left(F_{j}\left(w_{j}(t)\right)-F(w(t)), v\right)= & \left(V_{r} * f\left(h_{j} * w_{j}(t)\right) h_{j} * w_{j}(t), h_{j} * v-v\right) \tag{2.29}\\
& +\left(F\left(h_{j} * w_{j}(t)\right)-F(w(t)), v\right) \\
= & I_{1}+I_{2}
\end{align*}
$$

Lemma 2.4, (2.15) and (2.6) imply that

$$
\begin{align*}
\left|I_{1}\right| & \leqq C\left\|V_{(n+\gamma) / 2} * f\left(h_{j} * w_{j}(t)\right)\right\|_{2}\left\|w_{j}(t)\right\|_{2}\left\|h_{j} * v-v\right\|_{2 n /(n-\gamma)} \tag{2.30}\\
& \leqq C(\phi, \phi)\left\|h_{j} * v-v\right\|_{2 n /(n-\gamma)}
\end{align*}
$$

We put

$$
\begin{align*}
I_{2}= & \left(V_{\gamma} * f\left(h_{j} * w_{j}(t)\right)\left\{h_{j} * w_{j}(t)-w(t)\right\}, v\right) \tag{2.31}\\
& +\left(V_{r} *\left\{f\left(h_{j} * w_{j}(t)\right)-f(w(t))\right\} w(t), v\right) \\
= & I_{21}+I_{22}
\end{align*}
$$

Again by Lemma 2.4 and (2.15) we have

$$
\begin{equation*}
\left|I_{21}\right| \leqq C(\phi, \psi)\left\|h_{j} * w_{j}(t)-w(t)\right\|_{L_{2}(\text { supp } v)}\|v\|_{2 n /(n-\gamma)} . \tag{2.32}
\end{equation*}
$$

We can rewrite I_{22} as follows:

$$
\begin{equation*}
I_{22}=\left(V_{r} *\left\{f\left(h_{j} * w_{j}(t)\right)-f(w(t))\right\}, w(t) v\right) . \tag{2.33}
\end{equation*}
$$

On the other hand it follows from (2.16) and Lemma 2.8 that

$$
\begin{equation*}
V_{r} * f\left(h_{j} * w_{j}(t)\right) \longrightarrow V_{r} * f(w(t)) \tag{2.34}
\end{equation*}
$$

weakly in $L_{2 n / \gamma}$ and uniformly on I as $j \rightarrow \infty$. By the Hölder inequality and (2.6) we have $w(t) v \in L_{2 n /(2 n-\gamma)}$. Noting this, (2.34) implies that $I_{22} \rightarrow 0$ as $j \rightarrow \infty$. So (2.30), (2.32) and Lemma 2.7 show that (2.28) holds.

Now we are in a position to prove Theorem 1.
Proof of Theorem 1. Let $\left\{w_{j}(t)\right\}$ be a convergent subsquence obtained by Lemma 2.2. We multiply $v \in C_{0}^{\infty}\left(\boldsymbol{R}^{n}\right)$ by (2.4) and integrate on \boldsymbol{R}^{n}. Then we have

$$
\begin{align*}
\left(w_{j}(t), v\right)= & \left(h_{j} * \phi, \cos \{H t\} v\right)+\left(h_{j} * \psi, H^{-1} \sin \{H t\} v\right) \tag{2.35}\\
& -\int_{0}^{t}\left(F_{j}\left(w_{j}(\tau)\right), H^{-1} \sin \{H(t-\tau)\} v\right) d \tau .
\end{align*}
$$

Using the Hausdroff-Young inequality, we can show that $H^{-1} \sin \{H(t-\tau)\} v \in$ $L_{2 n /(n-\gamma)}$. Thus it follows from (2.20) that

$$
\begin{equation*}
\left(F_{j}\left(w_{j}(\tau)\right), H^{-1} \sin \{H(t-\tau)\} v\right) \longrightarrow\left(F(w(\tau)), H^{-1} \sin \{H(t-\tau)\} v\right) \tag{2.36}
\end{equation*}
$$

as $j \rightarrow \infty$. By the Hölder inequality, (2.17) and the Hausdroff-Young inequality we have

$$
\text { (2.37) } \begin{aligned}
\left(F_{j}\left(w_{j}(t)\right), H^{-1} \sin \{H(t-\tau)\} v\right) & \leqq\left\|F_{j}\left(w_{j}(\tau)\right)\right\|_{2 n /(n+\gamma)}\left\|H^{-1} \sin \{H(t-\tau)\} v\right\|_{2 n /(n-\gamma)} \\
& \leqq C(\phi, \psi)\|\hat{v}\|_{2 n /(n+\gamma)} .
\end{aligned}
$$

(2.36) and (2.37) mean that we can use the Lebesgue dominated convergence theorem. Thus letting $j \rightarrow \infty$ in (2.35), we obtain (1.5).

Noting $\phi \in L_{4 n /(2 n-\gamma)}$, (2.6) and (2.19) imply (1.7).
Next we show that

$$
\begin{equation*}
(w(t), v) \in C^{2}(\boldsymbol{R}) \quad \text { for any } \quad v \in C_{0}^{\infty}\left(\boldsymbol{R}^{n}\right) \tag{2.38}
\end{equation*}
$$

From (1.5) it follows that $(w(t), v) \in C^{1}(\boldsymbol{R})$ and

$$
\begin{align*}
\frac{d}{d t}(w(t), v)= & -\left(\phi, H^{-1} \sin \{H t\} v+(\psi, \cos \{H t\} v)\right. \tag{2.39}\\
& -\int_{0}^{t}(F(w(\tau)), \cos \{H(t-\tau)\} v) d \tau .
\end{align*}
$$

If we show that

$$
\begin{equation*}
(F(w(t)), v) \in C(\boldsymbol{R}) \tag{2.40}
\end{equation*}
$$

(2.38) can be proved. Let $t \in \boldsymbol{R}$ and be fixed. Put

$$
\begin{align*}
J(\eta)= & (F(w(t+\eta))-F(w(t)), v) \tag{2.41}\\
= & \left(V_{\gamma^{*}}\{f(w(t+\eta))-f(w(t))\} w(t), v\right) \\
& +\left(V_{\gamma} * f(w(t+\eta))\{w(t+\eta)-w(t)\}, v\right) \\
= & J_{1}(\eta)+J_{2}(\eta)
\end{align*}
$$

By (2.12) we obtain

$$
\begin{equation*}
\left|J_{2}(\eta)\right| \leqq C\left\|V_{(n+\gamma) / 2} * f(w(t+\eta))\right\|_{2}\|w(t+\eta)-w(t)\|_{2}\|v\|_{2 n /(n-\gamma)} \tag{2.42}
\end{equation*}
$$

From (1.7) and (2.9) it follows that $\left|J_{2}(\eta)\right| \rightarrow 0$ as $\eta \rightarrow 0$. By (2.3) and (2.16) we can show that

$$
\begin{equation*}
V_{\gamma} * f\left(h_{j} * w_{j}(t)\right) \in C_{w}\left(\boldsymbol{R} ; L_{2 n / \gamma}\right) \tag{2.43}
\end{equation*}
$$

(2.34) and (2.43) imply that

$$
\begin{equation*}
V_{\gamma} * f(w(t)) \in C_{w}\left(\boldsymbol{R} ; L_{2 n / \gamma}\right) \tag{2.44}
\end{equation*}
$$

Noting $w(t) v \in L_{2 n /(2 n-\gamma)}$, by (2.44) we have $\left|J_{1}(\eta)\right| \rightarrow 0$ as $\eta \rightarrow 0$. Then (2.40) is proved. Noting (2.9), (2.17) and (2.20), (1.3) and (1.4) have already been proved. (1.5) implies (1.6). Thus the proof of Theorem 1 is completed.

3. Proof of Theosem 2.

We begin with the well known estimates for the elementary solution of the linear Klein-Gordon equation.

Proposition 3.1. Lht $1<p \leqq 2$ and $1 / p+1 / p^{\prime}=1$. Put $\delta\left(p^{\prime}\right)=1 / 2-1 / p^{\prime}$.
(i) Let p^{\prime}, s^{\prime} and s satisfy

$$
\begin{equation*}
(n+1) \delta\left(p^{\prime}\right) \leqq 1+s-s^{\prime} \tag{3.1}
\end{equation*}
$$

Then we have for $g \in C_{0}^{\infty}\left(\boldsymbol{R}^{n}\right)$

$$
\begin{equation*}
\left\|H^{-1} \sin \{H t\} g\right\|_{s^{\prime}, p^{\prime}} \leqq C|t|^{1+s-s^{\prime}-2 n \delta\left(p^{\prime}\right)}\|g\|_{s, p} \tag{3.2}
\end{equation*}
$$

(ii) Put $1 / r=s^{\prime}+n \delta\left(p^{\prime}\right)-1$. Let p^{\prime}, r and s^{\prime} satisfy

$$
\begin{equation*}
0 \leqq \frac{1}{r}<\frac{1}{2} \quad \text { and } \quad s^{\prime} \leqq 1-\frac{(n+1)}{2} \delta\left(p^{\prime}\right) \tag{3.3}
\end{equation*}
$$

Then we have for $g \in C_{0}^{\infty}\left(\boldsymbol{R}^{n}\right)$

$$
\begin{equation*}
\left\|H^{-1} \sin \{H t\} g\right\|_{L_{r}\left(R ; H_{p^{\prime}}\right)}^{s^{\prime}} \leqq C\|g\|_{2} \tag{3.4}
\end{equation*}
$$

Proof. (i) See Brenner [1] Appendix 2 for a proof.
(ii) See Ginibre and Velo [5] Lemma 3.1 for a proof.

The following lemma is useful to estimate the nonlinear term.
Lemma 3.2. Let p, a, b and q satisfy

$$
\begin{equation*}
\frac{1}{p}=\frac{1}{a}+\frac{1}{b}+\frac{1}{q}+\frac{\gamma}{n}-1 \quad \text { and } \quad 1-\frac{\gamma}{n}<\frac{1}{a}+\frac{1}{b}<1 \tag{3.5}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\|F(u)-F(v)\|_{p} \leqq C\left(\|u-v\|_{a}\|u+v\|_{b}\|u\|_{q}+\|v\|_{a}\|v\|_{b}\|u-v\|_{q}\right) \tag{3.6}
\end{equation*}
$$

for suitable functions u and v.
Proof. By the Hölder inequality and Lemma 2.3 we have (3.6). (2.11) yields (3.5).

Proof of Theorem 2. As mentioned in the introduction, we will prove in the case $3<\gamma<4(n \geqq 4)$. Let I be an open interval and J be any finite interval such that $0 \in J \subset I$. Let I_{0} be an interval such that $0 \in I_{0} \subset J$. Put

$$
X\left(I_{0}\right)=L_{\infty}\left(I_{0} ; H^{1}\right) \cap L_{r}\left(I_{0} ; L_{p^{\prime}}\right) .
$$

The norm of $X\left(I_{0}\right)$ is given by

$$
\|u\|_{X\left(I_{0}\right)}=\operatorname{Max}\left\{\|u\|_{L_{\infty}\left(I_{0} ; H_{1}\right)},\|u\|_{L_{r}\left(I_{0} ; L_{p^{\prime}}\right)}\right\} .
$$

From Lemma 2.4, Lemma 2.3 and the embedding $H^{1} \subseteq L_{4 n /(2 n-\gamma)}$ it follows that

$$
\begin{align*}
\left|\int F(w(t)) v(x) d x\right| & \leqq\|w(t)\|_{1,2}^{3}\|v\|_{1,2} \tag{3.7}\\
& \leqq\|w\|_{\frac{3}{3}(J)}\|v\|_{1,2} .
\end{align*}
$$

This means that $F(w(t)) \in H^{-1}$ for $t \in J$. Thus by (1.4) we have

$$
\begin{equation*}
w(t)=w^{0}(t)-\int_{0}^{t} H^{-1} \sin \{H(t-\tau)\} F(w(\tau)) d \tau \tag{3.8}
\end{equation*}
$$

in L_{2} for $t \in J$.
Let $w_{1}(t)$ and $w_{2}(t)$ be two solutions which satisfy the assumptioms of Theorem 2. From (3.8) we obtain

$$
\begin{equation*}
w_{1}(t)-w_{2}(t)=-\int_{0}^{t} H^{-1} \sin \{H(t-\boldsymbol{\tau})\}\left[F\left(w_{1}(\tau)\right)-F\left(w_{2}(\tau)\right)\right] d \tau . \tag{3.9}
\end{equation*}
$$

By Proposition 3.1 (i) we have

$$
\begin{equation*}
\left\|w_{1}(t)-w_{2}(t)\right\|_{p^{\prime}} \leqq C\left|\int_{0}^{t}\right| t-\left.\tau\right|^{3-\gamma} \| F\left(w_{1}(\tau)\right)-F\left(w_{2}(\tau) \|_{1, p} d \tau \mid .\right. \tag{3.10}
\end{equation*}
$$

Lemma 3.2 and the Sobolev embedding theorem yield that
(3.11) $\quad\left\|F\left(w_{1}(\tau)\right)-F\left(w_{2}(\tau)\right)\right\|_{1, p}$

$$
\begin{aligned}
\leqq & C\left(\left\|w_{1}(\tau)\right\|_{1,2}+\left\|w_{2}(\tau)\right\|_{1,2}\right)\left(\left\|w_{1}(\tau)\right\|_{p^{\prime}}+\left\|w_{2}(\tau)\right\|_{p^{\prime}}\right)\left\|w_{1}(\tau)-w_{2}(\tau)\right\|_{1,2} \\
& +C\left(\left\|w_{1}(\tau)\right\|_{1,2}+\left\|w_{2}(\tau)\right\|_{1,2}\right)^{2}\left\|w_{1}(\tau)-w_{2}(\tau)\right\|_{p^{\prime}}
\end{aligned}
$$

By (3.10) we have

$$
\begin{align*}
\left\|w_{1}(t)-w_{2}(t)\right\|_{p^{\prime}} \leqq & C\left\|w_{1}-w_{2}\right\|_{X\left(I_{0}\right)}\left(\left\|w_{1}\right\|_{X(J)}+\left\|w_{2}\right\|_{X(J)}\right) \tag{3.12}\\
& \times\left|\int_{0}^{t}\right| t-\left.\tau\right|^{3-\gamma}\left(\left\|w_{1}(\tau)\right\|_{p^{\prime}}+\left\|w_{2}(\tau)\right\|_{p^{\prime}}\right) d \tau \mid \\
& +C\left(\left\|w_{1}\right\|_{X\left(I_{0}\right)}+\left\|w_{2}\right\|_{\left.X\left(I_{0}\right)\right)^{2}}\right. \\
& \times\left|\int_{0}^{t}\right| t-\left.\tau\right|^{3-\tau}\left\|w_{1}(\tau)-w_{2}(\tau)\right\|_{p^{\prime}} d \tau \mid
\end{align*}
$$

As $3-\gamma>-1$, from the Young inequality we obtain
(3.13) $\quad\left\|w_{1}(t)-w_{2}(t)\right\|_{L_{r}\left(I_{0} ; L_{p^{\prime}}\right)} \leqq C\left|I_{0}\right|^{4-\gamma}\left(\left\|w_{1}\right\|_{X(J)}+\left\|w_{2}\right\|_{X(J)}\right)^{2}\left\|w_{1}-w_{2}\right\|_{X\left(I_{0}\right)}$.

Employing the same arguments as we obtain (3.11), we have

$$
\begin{align*}
& \left\|F\left(w_{1}(\tau)\right)-F\left(w_{2}(\tau)\right)\right\|_{2} \tag{3.14}\\
& \quad \leqq C\left(\left\|w_{1}(\tau)\right\|_{1,2}+\left\|w_{2}(\tau)\right\|_{1,2}\right)\left(\left\|w_{1}(\tau)\right\|_{p^{\prime}}+\left\|w_{2}(\tau)\right\|_{p^{\prime}}\right)\left\|w_{1}(\tau)-w_{2}(\tau)\right\|_{p^{\prime}} .
\end{align*}
$$

Hence it follows that

$$
\begin{align*}
& \left\|w_{1}(t)-w_{2}(t)\right\|_{1,2} \tag{3.15}\\
& \quad \leqq C\left(\left\|w_{1}\right\|_{X(J)}+\left\|w_{2}\right\|_{X(J)}\right)\left|\int_{0}^{t}\left(\left\|w_{1}(\tau)\right\|_{p^{\prime}}+\left\|w_{2}(\tau)\right\|_{p^{\prime}}\right)\left\|w_{1}(\tau)-w_{2}(\tau)\right\|_{p^{\prime}} d \tau\right| .
\end{align*}
$$

Noting $r>2$, from the Hölder inequality we obtain

$$
\begin{equation*}
\left\|w_{1}(t)-w_{2}(t)\right\|_{1,2} \leqq C\left|I_{0}\right|^{(r-2) \mid r}\left(\left\|w_{1}\right\|_{X(J)}+\left\|w_{2}\right\|_{X(J)}\right)^{2}\left\|w_{1}-w_{2}\right\|_{X\left(I_{0}\right)} \tag{3.16}
\end{equation*}
$$

(3.13) and (3.16) show that

$$
\begin{equation*}
\left\|w_{1}-w_{2}\right\|_{X\left(I_{0}\right)} \leqq C\left|I_{0}\right|^{4-r}\left(\left\|w_{1}\right\|_{X(J)}+\left\|w_{2}\right\|_{X(J)}\right)^{2}\left\|w_{1}-w_{2}\right\|_{X\left(I_{0}\right)} \tag{3.17}
\end{equation*}
$$

Taking $\left|I_{0}\right|$ sufficiently small in (3.17), we obtain a inequality which implies that $w_{1}=w_{2}$ on I_{0}. Iterating this process, we can show that $w_{1}=w_{2}$ on J. As J arbitrary, Theorem 2 is proved.

4. Proof of Theorem 3.

In this section we restrict our attention to $3<\gamma<4(n \geqq 4)$, too. In order to investigate the regularity of a weak solution, we estimate the solutions of the approximating equation.

Lemma 4.1. Let $3<\gamma<4(n \geqq 4)$. Let $(\phi, \psi) \in H^{1} \times L_{2}$ and $w_{j}(t)(j \in N)$ be a solution of (2.2) obtained by Lemma 2.1. Let p^{\prime} and r be given in Theorem 2. Then for any compact interval $I \subset \boldsymbol{R}$ there exists a positive constant $C(\phi, \psi, I)$ which is dependent on (ϕ, ψ) and I but independent of j such that

$$
\begin{equation*}
\left\|w_{j}\right\|_{L_{r}\left(I ; x_{p^{\prime}}\right)} \leqq C(\phi, \psi, I) \quad \text { for } \quad j \in N \tag{4.1}
\end{equation*}
$$

Proof. It is sufficient to prove (4.1) in the case $I=[0, \alpha]$. In the same way as we obtain (3.12) we have

$$
\begin{equation*}
\left\|w_{j}(t)\right\|_{p^{\prime}} \leqq\left\|w_{j}^{0}(t)\right\|_{p^{\prime}}+C(\phi, \psi) \int_{0}^{t}|t-\tau|^{3-\gamma_{i}}\left\|w_{j}(\tau)\right\|_{p^{\prime}} d \tau \tag{4.2}
\end{equation*}
$$

Here we have used (2.6). By Propositon 3.1 (ii) and the Young inequality we have

$$
\begin{align*}
&\left\|w_{j}\right\|_{L_{r}\left(I ; L_{p^{\prime}}\right)} \leqq C\left(\|\phi\|_{1,2}+\|\phi\|_{2}\right)+C(\phi, \phi)\left\|\int_{0}^{t}|t-\tau|^{3-\gamma}\right\| w_{j}(\tau)\left\|_{p^{\prime}} d \tau\right\|_{L_{r}(I)} \tag{4.3}\\
& \leqq C\left(\|\boldsymbol{\phi}\|_{1,2}+\|\phi\|_{2}\right)+C(\phi, \phi) \alpha^{4-\gamma}\left\|w_{j}\right\|_{L_{r}\left(I ; L_{p^{\prime}}\right)}
\end{align*}
$$

We can verify the condition (3.3) easily. Choosing α to satisfy $C(\phi, \psi) \alpha^{4-r} \leqq 1 / 2$, we have

$$
\begin{equation*}
\left\|w_{j}\right\|_{L_{r}\left(I ; L_{p^{\prime}}\right)} \leqq C(\phi, \phi, I) \quad \text { for } \quad j \in N \tag{4.4}
\end{equation*}
$$

Next we show that (4.1) holds for any number $\alpha \in[0, \infty$). Let M be the supremum of the number $\alpha \in[0, \infty)$ so that (4.1) holds with $I=[0, \alpha]$. We have already showed that $M>0$. If $M=\infty$, the lemma is proved. We assume that $M<\infty$. Let $\alpha<M$ and $I_{1}=[0, \alpha]$. From the definition of M it follows that

$$
\begin{equation*}
\left\|w_{j}\right\|_{L_{r}\left(I_{1} ; L_{p^{\prime}}\right)} \leqq C\left(\phi, \phi, I_{1}\right) \quad \text { for } \quad j \in N \tag{4.5}
\end{equation*}
$$

Let $\alpha<\beta$ and $I_{2}=[\alpha, \beta]$. Employing the same arguments as we obtain (4.3), we have

$$
\begin{align*}
\left\|w_{j}\right\|_{L_{r}\left(I_{2} ; L_{p^{\prime}}\right)} \leqq & C\left(\|\phi\|_{1,2}+\|\phi\|_{2}\right) \tag{4.6}\\
& +C(\phi, \phi)\left\|\int_{\alpha}^{t}|t-\tau|^{3-\gamma}\right\| w_{j}(\tau)\left\|_{p^{\prime}} d \tau\right\|_{L_{\tau}\left(I_{2}\right)} \\
& +C(\phi, \phi)\left\|\int_{0}^{\alpha}|t-\tau|^{3-\gamma}\right\| w_{j}(\tau)\left\|_{p^{\prime}} d \tau\right\|_{L_{r}\left(I_{2}\right)} \\
= & J_{1}+J_{2}+J_{3} .
\end{align*}
$$

From the same arguments of a proof of the Young inequality we obtain

$$
\begin{align*}
& J_{2} \leqq C(\phi, \psi)(\beta-\alpha)^{4-\gamma}\left\|w_{j}\right\|_{L_{r}\left(I_{2} ; L_{p^{\prime}}\right)}, \tag{4.7}\\
& J_{3} \leqq C(\phi, \psi) \beta^{4-\gamma}\left\|w_{j}\right\|_{L_{r}\left(I_{1} ; L_{p^{\prime}}\right)} \tag{4.8}
\end{align*}
$$

Choosing β near α to satisfy $C(\phi, \phi)(\beta-\alpha)^{4-\gamma} \leqq 1 / 2$, by (4.5)~(4.8) we have

$$
\begin{equation*}
\left\|w_{j}\right\|_{L_{r}\left([0, \beta] ; L_{p^{\prime}}\right)} \leqq C(\phi, \phi, \beta) \quad \text { for } \quad j \in N \tag{4.9}
\end{equation*}
$$

Since the distence between α and β depends on $C(\phi, \phi)$ only, we can choose α near M to satisfy $M-\alpha<\beta-\alpha$. Hence (4.9) contradicts the definition of M.

LEMMA 4.2. Let $3<\gamma<4(n \geqq 4)$. Let $(\phi, \phi) \in H^{2} \times H^{1}$ and $w_{j}(t)(j \in \boldsymbol{N})$ be a solution of (2.2) obtained by Lemma 2.1. Let $1 / q^{\prime}=1 / 2-1 / 2 n$. Then for any compact interval $I \subset \boldsymbol{R}$ there exists a positive constant $C(\phi, \phi, I)$ which is dependent on (ϕ, ϕ) and I but independent of j such that

$$
\begin{equation*}
\left\|w_{j}\right\|_{L_{\infty}\left(I ; H_{q}\right)} \leqq C(\phi, \psi, I) \quad \text { for } \quad j \in N \tag{4.10}
\end{equation*}
$$

Proof. Let $I=[0, \alpha]$. From (2.4) and Proposition 3.1 (i) it follows that

$$
\begin{equation*}
\left\|w_{j}(t)\right\|_{1, q^{\prime}} \leqq\left\|w_{j}^{0}(t)\right\|_{1, q^{\prime}}+\int_{0}^{t}\left\|F_{j}\left(w_{j}(\tau)\right)\right\|_{1, q} d \tau \tag{4.11}
\end{equation*}
$$

We can verify (3.1) easily. Applying Lemma 3.2 to $\left\|F_{j}\left(w_{j}(\tau)\right)\right\|_{1, q}$, we have

$$
\begin{equation*}
\left\|F_{j}\left(w_{j}(\tau)\right)\right\|_{1, q} \leqq C\left\|w_{j}(\tau)\right\|_{p^{\prime}}^{2}\left\|w_{j}(\tau)\right\|_{1, q^{\prime}}, \tag{4.12}
\end{equation*}
$$

where p^{\prime} is given by Lemma 4.1. As the embedding $H^{2} \hookrightarrow H_{q^{\prime}}^{1}$ holds, from (4.11) and (4.12) we obtain

$$
\begin{equation*}
\left\|w_{j}(t)\right\|_{1, q^{\prime}} \leqq C\left(\|\phi\|_{2,2}+\|\boldsymbol{\psi}\|_{1,2}\right)+C\left\|w_{j}\right\|_{L_{\infty}\left(I ; H_{q^{\prime}}^{\prime}\right.} \int_{0}^{t}\left\|w_{j}(\tau)\right\|_{p^{\prime}}^{2} d \tau \tag{4.13}
\end{equation*}
$$

From the Hölder inequality and Lemma 4.1 it follows that

$$
\begin{equation*}
\left\|w_{j}\right\|_{L_{\infty}\left(I ; H_{q}^{1}\right)} \leqq C\left(\|\phi\|_{2,2}+\|\phi\|_{1,2}\right)+C(\phi, \phi, I) \alpha^{(r-2) / r}\left\|w_{j}\right\|_{L_{\infty}\left(I ; H_{q}^{1,}\right)} \tag{4.14}
\end{equation*}
$$

Here choosing α sufficiently small, we have

$$
\begin{equation*}
\left\|w_{j}\right\|_{L_{\infty}\left(I ; H_{q}^{1^{\prime}}\right)} \leqq C(\phi, \phi, I) \tag{4.15}
\end{equation*}
$$

Employing the same arguments of the proof of Lemma 4.1, we can show that (4.10) holds for any $\alpha \in[0, \infty)$. So we may omit its proof.

Lemma 4.3. Under the same assumptions of Lemma 4.2. we have

$$
\begin{equation*}
\left\|w_{j}\right\|_{L_{\infty}\left(I ; H^{2}\right)} \leqq C(\phi, \phi, I) \quad \text { for } \quad j \in N \tag{4.16}
\end{equation*}
$$

for any compact interval $I \subset \boldsymbol{R}$. Here $C(\phi, \phi, I)$ is a positive constant which is dependent on (ϕ, ϕ) and I but independent of j.

Proof. From (2.4) it follows that

$$
\begin{equation*}
\left\|w_{j}(t)\right\|_{2,2} \leqq C\left(\|\phi\|_{2,2}+\|\phi\|_{1,2}\right)+\int_{0}^{t}\left\|F_{j}\left(w_{j}(\tau)\right)\right\|_{1,2} d \tau \tag{4.17}
\end{equation*}
$$

Applying Lemma 3.2 to $\left\|F_{j}\left(w_{j}(\tau)\right)\right\|_{1,2}$, we obtain

$$
\begin{equation*}
\left\|F_{j}\left(w_{j}(\tau)\right)\right\|_{1,2} \leqq C\left\|w_{j}(\tau)\right\|_{1, q^{\prime}}^{2}\left\|w_{j}(\boldsymbol{\tau})\right\|_{2,2}, \tag{4.18}
\end{equation*}
$$

where q^{\prime} is given by Lemma 4.2. To note Lemma 4.2, we have

$$
\begin{equation*}
\left\|w_{j}(t)\right\|_{2,2} \leqq C\left(\|\boldsymbol{\phi}\|_{2,2}+\|\boldsymbol{\phi}\|_{1,2}\right)+C(\boldsymbol{\phi}, \boldsymbol{\psi}, I) \int_{0}^{t}\left\|w_{j}(\tau)\right\|_{2,2} d \tau \tag{4.19}
\end{equation*}
$$

The Gronwall inequality implies (4.16).
Now we give the estimates of the weak solution.
Lemma 4.4. Let $w(t)$ be a weak solution of (1.1) obtained by Theorem 1. Let $3<\gamma<4(n \geqq 4)$ and I be any compact interval in \boldsymbol{R}.
(i) Let $(\phi, \psi) \in H^{1} \times L_{2}$. Then we have

$$
\begin{equation*}
\|w\|_{L_{r}\left(I ; L_{p^{\prime}}\right)} \leqq C(\phi, \psi, I) \tag{4.20}
\end{equation*}
$$

where $C(\phi, \psi, I)$ is a positive constant which is dependent on (ϕ, ψ) and I, provided that

$$
\begin{equation*}
\frac{1}{p^{\prime}}=\frac{1}{2}-\frac{\gamma-1}{2 n} \quad \text { and } \quad \frac{1}{r}=\frac{\gamma-3}{2} . \tag{4.21}
\end{equation*}
$$

(ii) Let $(\phi, \psi) \in H^{2} \times H^{1}$. Then we have

$$
\begin{equation*}
\|w\|_{L \infty\left(I ; H^{2}\right)} \leqq C(\phi, \psi, I), \tag{4.22}
\end{equation*}
$$

where $C(\phi, \psi, I)$ is a positive constant which is dependent on (ϕ, ψ) and I.
Proof. By (4.1), (4.16) and Lemma 2.2 we can choose a covergent subsequence (again denoted by $w_{j}(t)$) so that

$$
\begin{array}{ll}
w_{j}(t) \longrightarrow w(t) & \text { weakly in } L_{r}\left(I ; L_{p^{\prime}}\right) \\
w_{j}(t) \longrightarrow w(t) & \text { weakly in } H^{2} \text { and uniformly on } I \tag{4.24}
\end{array}
$$

as $j \rightarrow \infty$. Thus we have (4.20) and (4.22).
We prepare three lemmas on the regularity of the integral equation.
Lemma 4.5. Assume that for $i=0$ or 1

$$
\begin{equation*}
F(w(t)) \in L_{1}^{\mathrm{loc}}\left(\boldsymbol{R} ; H^{i}\right) . \tag{4.25}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\int_{0}^{t} H^{-1} \sin \{H(t-\tau)\} F(w(\tau)) d \tau \in C\left(\boldsymbol{R} ; H^{1+i}\right) \cap C^{1}\left(\boldsymbol{R} ; H^{i}\right) . \tag{4.26}
\end{equation*}
$$

Proof. See Motai [9] Lemma 4.2 for a proof.

Lemma 4.6. Assume that for $k \in \boldsymbol{N}$

$$
\begin{equation*}
w(t) \in \bigcap_{i=0}^{k} C^{i}\left(\boldsymbol{R} ; H^{k-i}\right) \tag{4.27}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
F(w(t)) \in \bigcap_{i=0}^{k} C^{i}\left(\boldsymbol{R} ; H^{k-i}\right) \quad \text { for } \quad 0<\gamma<\operatorname{Min}\{2 k, n\} . \tag{4.28}
\end{equation*}
$$

Proof. If we use Lemma 3.2 and the Sobolev embedding theorem, we can prove (4.28) easily. So we may omit a proof.

Lemma 4.7. Assume that for $k \in N$

$$
\begin{equation*}
F(w(t)) \in \bigcap_{i=0}^{k} C^{i}\left(\boldsymbol{R} ; H^{k-i}\right) . \tag{4.29}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\int_{0}^{t} H^{-1} \sin \{H(t-\tau)\} F(w(\tau)) d \boldsymbol{\tau} \in \bigcap_{i=0}^{k+1} C^{i}\left(\boldsymbol{R} ; H^{k+1-i}\right) . \tag{4.30}
\end{equation*}
$$

Proof. This result is well-known. So we may omit the proof.
We are in a positon to prove Theorem 3.
Proof of Theorem 3. (i) Let $w(t)$ be a weak solution obtained by Theorem 1. Since $w(t) \in L_{\infty}\left(\boldsymbol{R} ; H^{1}\right)$, from the same argument as we obtain (3.8) it follows that

$$
\begin{equation*}
w(t)=w^{0}(t)-\int_{0}^{t} H^{-1} \sin \{H(t-\tau)\} F(w(\tau)) d \tau \quad \text { in } L_{2} \tag{4.31}
\end{equation*}
$$

for $t \in \boldsymbol{R}$. By $(\phi, \phi) \in H^{1} \times L_{2}$ we have

$$
\begin{equation*}
w^{0}(t) \in C\left(\boldsymbol{R} ; H^{1}\right) \cap C^{1}\left(\boldsymbol{R} ; L_{2}\right) . \tag{4.32}
\end{equation*}
$$

Noting (3.14), from (1.7) we obtain

$$
\begin{equation*}
\|F(w(t))\|_{2} \leqq C(\phi, \phi)\|w(t)\|_{p^{\prime}}^{2} . \tag{4.33}
\end{equation*}
$$

As $r>2$, Lemma 4.4 (i) and (4.32) imply (4.25). Hence by Lemma 4.5 we have (1.12).

The uniqueness of $w(t)$ follows from (1.12) and Theorem 2.
If we resolve (1.1) at initial time $t_{0} \in \boldsymbol{R}$ with a initial data ($w\left(t_{0}\right), \partial_{t} w\left(t_{0}\right)$), by Theorem 1 we obtain

$$
\begin{equation*}
E\left(w(t), \partial_{t} w(t)\right) \leqq E\left(w\left(t_{0}\right), \partial_{t} w\left(t_{0}\right)\right) \quad \text { for } \quad t \in \boldsymbol{R} . \tag{4.34}
\end{equation*}
$$

The uniqueness, (1.7) and (4.34) imply (1.13).
(ii) We first note that for $(\phi, \psi) \in H^{k} \times H^{k-1}(k \geqq 2)$ we have

$$
\begin{equation*}
w_{0}(t) \in \bigcap_{i=0}^{k} C^{i}\left(\boldsymbol{R} ; H^{k-i}\right) \tag{4.35}
\end{equation*}
$$

In the case $k=2$ we have

$$
\begin{equation*}
F(w(t)) \leqq C\|w(t)\|_{2,2}^{3} \tag{4.36}
\end{equation*}
$$

by Lemma 3.2 and the Sobolev embedding theorem. From Lemma 4.4 (ii) and Lemma 4.5 it follows that

$$
\begin{equation*}
w(t) \in C\left(\boldsymbol{R} ; H^{2}\right) \cap C^{1}\left(\boldsymbol{R} ; H^{1}\right) . \tag{4.37}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
F(w(t)) \in C\left(\boldsymbol{R} ; H^{1}\right) \cap C^{1}\left(\boldsymbol{R} ; L_{2}\right) \tag{4.38}
\end{equation*}
$$

By Lemma 4.7 we have

$$
\begin{equation*}
w(t) \in \bigcap_{i=0}^{2} C^{i}\left(\boldsymbol{R} ; H^{2-i}\right) \tag{4.39}
\end{equation*}
$$

In the case $k>2$ we can first obtain (4.39). Lemma 4.6 shows that

$$
\begin{equation*}
F(w(t)) \in \bigcap_{i=0}^{2} C^{i}\left(\boldsymbol{R} ; H^{2-i}\right) . \tag{4.40}
\end{equation*}
$$

And Lemma 4.7 implies that

$$
\begin{equation*}
w(t) \in \bigcap_{i=0}^{3} C^{i}\left(\boldsymbol{R} ; H^{3-i}\right) \tag{4.41}
\end{equation*}
$$

Iterating this process, we can prove (1.14).
Corollary follows from the Sobolev lemma.
The proof Theorem 3 is completed.

References

[1] Brenner, P., On scattering and everywhere defined scattering operator for nonlinear Klein-Gordon equations, J. Differential equations, 56 (1985), 310-344.
[2] Chadam, J.M. and Glassey, R.T., Global existence of solutions to the Cauchy problem for time-dependent Hartree equations, J. Math. Phys., 16 (1975), 11221130.
[3] Ginibre, J. and Velo, G., On a class of nonlinear Schrödinger equation I, J. Funct. Analysis, 32 (1979), 1-32.
[4] - On a class of nonlinear Schrödinger equations with non local interaction, Math. Z., 170 (1980), 109-136.
[5] ——. The global Cauchy problem for the non linear Klein-Gordon equation, Math. Z., 189 (1985), 87-121.
[6] Glassey, R.T., Asymptotic behavior of solutions to a certain nonlinear SchrödingerHartree equation, Comm. Math. Phys., 53 (1977), 9-18.
[7] Hayashi, N. and Tsutsumi, Y., Scattering theory for Hartree type equations, Ann.

Henri Poincare, Phys. Theor., 46 (1987), 187-213.
[8] Hörmander, L., The analysis of linear partial differential operators I, Berlin-Heidelberg-New York, Springer 1983.
[9] Menzala, C.P. and Strauss, W.A., On a wave equation with a cubic convolution, J. Differential equations, 43 (1982), 93-105.
[10] Motai, T., Existence of global strong solution for nonlinear Klein-Gordon equation, to appear in Funkcialoj Ekvacioj.
[11] Reed, M., Abstract nonlinear wave equation, Lecture notes in mathematics, 507 (1976), Berlin-Heidelberg-New York, Springer.
[12] Segal, I.E., The global Cauchy problem for a relativistic scalar field with power interaction, Bull. Soc. Math. Fr., 91 (1963), 129-135.
[13] Strauss, W.A., Nonlinear scattering theory at low energy: sequel, J. Funct. Analysis, 43 (1981), 281-293.

Japanese Language School
The Tokyo University
of Foreign Studies
5-10-1, Sumiyoshi-cho,
Fuchu-shi, Tokyo, 183 Japan

