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ON THE CAUCHY PROBLEM FOR THE NONLINEAR

KLEIN-GORDON EQUATION WITH

A CUBIC CONVOLUTION

By

Takahiro Motai

Abstract. We study the Cauchy problem for the nonlinear Klein-

Gordon equation with a cubic convolution{Vr*(w(t))2}w(t),where

Vr(x)= |x|~r,in (x, t)^RnXR. We prove the existence of weak

solutionsfor 0<y<n. We also prove thatfor 0<7"<Min{4, n) the

weak solutionis unique and there existsa regular solution.

Key Words, nonlinear Klein-Gordon equation, cubic convolution,

Cauchy problem, global solution, uniqueness.

1. Introduction and Results.

We consider the Cauchy problem for the nonlinear Klein-Gordon equation;

{ d*tw(t)-Jw(t)+w(t)+F(w(t))=O

(1.1)
I w{0)=$(x), dtw(O)=(p(x)

in (x, t)^RnXR. Here w(t)is a real valued function and

(1.2) F(w(t))={Vr*f(w(t))}w(t),

where f(w)=w2, Vr(x)= ＼x＼~r(0<y<n) and * denotes the spatial convolution.

The study of this equation was begun in Strauss [13] and Menzala and Strauss

[9]. In [9] they proved the existence of a global regular solution of (1.1) for

0<7'^3. The main purpose of the present paper is to prove the same result

for 0<f<Min{4, n}. The upper bound Min{4, n) of y has been already appeared

in the case of nonlinear Schrodinger equation with the same nonlinear term.

The case of Schrodinger equation has been studied by Chadam and Glassey [2],

Glassey [6], Ginibre and Velo [4] and Hayashi and Tsutsumi [7]. It seems that

Min{4, n} is a criticalvalue caused by the Sobolev embedding theorem.

In order to state our results, we give the main notations used in thispaper.

We denote by ||-|L the norm in Lp = Lp(Rn). Let H°= H°(Rn) with s(=R and

Received May 29, 1987.



354 Takahiro Motai

l<:/><oo (especially Hs=Hs(Rn) for p=2) be the Sobolev spaces which are the

completion of C (Rn) with norms

||u||,.p=||ff-1((H-|||8)'/8fi($))||p.

Here " denotes the Fourier transformation and ff"1is its inverse. For any in-

terval IdR and any Banach space B, we denote by C*(/; B) the space of B-

valued C*-functions over /, and by CW(I; B) the space of weakly continuous

functions from / to B, and by CL(I; B) the space of functions from I to B

that are strongly Lipschitz continuous. We denote by C*(/; S)') the space of

3)'^-valuedfunctions u(t) such that <u(0, v} is in Ck{I) for any v(=£>.

We shall use the operator £(//)for suitable functions ^(-) as follows:

where <£>=(1+ |^|2)1/2and S' means the tempered distribution.

Now we are readv to state our results.

Theorem 1. Let 0<y<n (n^l). Assume that (0, 0)e//1nL4n/(2n-r)xL2

Then there exists a weak solution w(t) of (1.1) which satisfiesthe following:

(1.3) w(f)<=LJiR; H^nC^R; Hl)r＼CL{R', L2)nC＼R; 3)'),

(1.4) F{w{t))^L^R; L2B/u+r,)nC(/J; 0')

(1.5) (w{t), y)=(0, cos{/#}v)+(0, i/^sinfi/^y)

-[＼f(w(t)),H-1sm{H(t-r)}v)dr
JO

-j^(w{t), v)+(w(t), (-A+l)v)+(F(w(t), v)=0

(1.6)

(m<0), v)={&, v)
dt
(w(0), v)=(<p, v)

Here v^C (Rn) and (,) is L2-inner product. And we have the energy inequality

(1.7)

where

(1-8)

E(w(t), dtw(t))<E(0, 0) for te=R.

E{6, d>)=
2
iWis+yWi; 2

+

l

_

4
Vin+rila*f(6)＼＼l

Theorem 2. Let 0<?-<Min{4, n} (n>l) and (0, <p)EiHlxL2. Let I be an

open interval in R and Oe/. Then there existsat most one w{t) which satisfies

(1.5) and

(1.9) u;(0gLLoc(/';H1) for 0<r^3,
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(1.10) w(t)EEL]SV; H^rMlrV; Lp.) for 3<f<4,

wher l/p' = l/2-(r-l)/2n and l/r=(r~3)/2.

Theorem 3. Let 0<^<Min{4, n} (n^l).

(i) Let {(j),(p)^HlxL2. Then w(t) which is obtained by Theorem 1 is unique

and satisfiesthe following:

(1.11) w(t)(EC(R; H^nCKR; L2) for 0<r£3,

(1.12) w{t)^C(R; Hl)r＼C＼R; L2)nLloc(R; Lp.) for 3<r<4,

(1.13) E{w{t), dtw(t))=E($, (p) for t(=R,

where r and p' are given in Theorem 2.

(ii) Let (</>)<p)(^HkxHk~1 (keiN (natural number) and k^2). Then (1.1)

has a unique solution w(t) which satisfies

(1.14) w(t)<= (＼CKR; Hk-1)

1=0

Corollary, (i) // k>n/2+2, w{t)isin C＼RnxR).

(ii)If k = oo, W(t)is in C°°(RnXR).

Remark, (i) If l<^<Min{4, n}, we have Hlc^LinK2n-^ by the Sobolev

embedding theorem. So the initialcondition ^ei/1nL4n/(2n-r) becomes 0e//xm

Theorem 2 and 3.

(ii) The upper bound Min{4, n} of y has been already appeared in the case

of the nonlinear Schrodinger equation. (See [4] and [71.)

Theorem 1 is proved by the compactness method which were used by Segal

in [12]. He used this method for the nonlinear Klein-Gordon equation with the

power nonlinearity. (See also Reed [11] 5.) We can choose a convergent sub-

sequence from solutions of the equation which approximate (1.1) by the double

convolution mollifierdue to Ginibre and Velo [3].

In the case 0<^^3 the same results of Theorem 2 and 3 have been already

proved by [9]. Thus, we shall prove Theorem 2 and 3 in the case 3<y<4.

Theorem 2 is proved by the contraction method.

In order to prove Theorem 3, we show that a weak solution obtained by

Theorem 1 becomes a regular solution. For this purpose we estimate the solu-

tions of the approximating equation used for the proof of Theorem 1. This

method has been already used by Ginibre and Velo [5] and Motai [10] in the

case where F{w) is the power nonlinearity.
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2. Proof of Theorem 1.

First we approximate the nonlinear term by the double convolution mollifier

due to Ginibre and Velo [3]. We choose an even non-negative function /ie

C (Rn) such that ||/z||i=l. For any /eiV(natural number) we put

(2.1) Fj(u)=hj*{Vr*f(hj*u)hj*u},

where hj(x)=jnh(jx). Coresponding to (2.1), we consider the Cauchy problem;

f d?u/,(0-Au//0+u'/0+F/u//0)=0

(2.2)
1 Wj(0)=hj*$, dtWj(0)=h j*d>.

Lemma 2.1. Let 0<y<n (n^l). Assume that (<f>,(p)<=HlnLin/an-r-)XL2.

Then for all j^N (2.2) has a unique solution w/t) such that

(2.3)
w0)Ei r＼C%R; Hk^) for any k^N
i=0

And Wj(t) satisfiesthe integral equation in Hk

(2.4)

where

(2.5)

wlt)= w5(0-j
'H'1
sin{H(t-T)}Fj(Wj(T))dr

0

w^O^cosimhj^+H-'smiHtjh^.

In addition the conservation of energy holds

(2.6)

where

(2.7)

Ej(wj(t),dtWj(t))=Ej(hj^, hj*<p) for t^R,

£/0, 0)=y H0IIS+ _
1

_

2
mi 2 +

1

_

4
＼＼Vcn+r≫2*f(hj*$)＼＼l

Proof. Applying Reed [11] Theorem 2 in section 1 to (2.2), we can show

the existence of a unique global solution. Employing the same arguments as in

Ginibre and Velo [3] Proposition 3.3, we can also prove (2.6). □

We obtain the following lemma by the compactness method.

LEMMA2.2. Let Wj{t)(/eiV) be a solution of (2.2) obtained by Lemma 2.1.

Then {wj(t)} has a convergent subsequence (again denoted by {wj(t)}) as follows:

For any compact interval IdR and any comsact subset K(ZRn

(2.8) wj(t)―>w(t) in C(I;L2(K)) as j->oo.

Here w(t) satisfies
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w(t)<aLJiR; Hl)C＼Cw(R: Hl)r^CL(R) Ls).
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Proof. Noting (2.6), the Ascoli-Arzela theorem yields (2.8) and (2.9). For

detailsplease refer to Segal [12] and Reed [11] 5. □

The following lemma is the well-known Sobolev's inequality.

Lemma 2.3. Let l<g<p<oo and 0<r<n (n^l). Then we havz

(2.10)

provided that

(2.11)

ll^uH^CIlMlli

l

_

p

1

_

Q

+r_i
n

Proof. See Hormander [8] Theorem 4.5.3 for a proof. □

Lemma 2.4. Let 0<y<n (n^l). We have

(2.12)
I f
^Vr*f(w)(x)u(x)v(x)dx <LC＼＼VCn+ry2*f(w)＼＼2＼＼uv＼＼znKzn-r)

^C||Fu+r)/2*/(>)||2||u||2||y||27l/Cn_r)

for suitablefunctions u, v and w.

Proof. Using the Plancherel theorem and the Schwartz inequality we have

(2.13) ^Vr*f{w){x)u{x)v{x)dx={2n)-n^＼≪-n"izf＼w)m^r-n'lzuvX&d%

<＼＼VCn+r)/2*f(w)＼＼4V(n+r),2*(uv)＼＼2.

It follows from Lemma 2.3 and the Holder inequality that

(2.14) ||VCn+ry2*(uv)＼＼2<C＼＼uv＼＼2nU2n-r^C＼＼u＼＼z＼＼v＼＼2nKn-r).

(2.13) and (2.14) show that (2.12) holds. D

Lemma 2.5. Let 0<y<n (n^l). Let Wj(t) be a solution of (2.2) obtained

by Lemma 2.1. Then the following estimates holds:

(2.15) I|1W/**/(Mm>/O)II2^C(0, <}>),

(2.16) ＼＼Vr*f(hj*Wj(t))＼＼2n/r^C(<P,<P),

(2.17) ＼＼Fj(Wj(t))UnKn+r^C(<f>,4>)

for j^N and t^R, where C{<j>,(p) is a positive constant which is dependent on

(0, <p) but independent of t and j.
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Proof. Noting (2.6), we have (2.15) by Lemma 2.3.

From Lemma 2.4 it follows that

(2.18) ＼Vr*f(.hj*Wj(t))v(x)dx̂ C||7Cn+r)/2*/(^*u;/O)ll2l|f||2n/≪B-r>

for v^C°S(Rn). Therefore we obtain (2.16) by (2.15), the density and the du-

ality. Noting ＼＼Wj{t)＼＼^C{<}>,(p), (2.17) follows from (2.16) and the Holder in-

equality. □

Lemma 2.6. Let I be any compact interval in R. Let {wj(t)＼be a convergent

subsequence obtained by Lemma 2.2. Then it has the following properties:

(2.19) Vcn+rv^f(h^wj(t)) ―> V<n+rm*f(w(t))

weakly in L2 and uniformly on I and

(2.20) Fj(wj(t))―> F(w(t))

weakly in L2n/cn+;o for t^I as /―>°°.

In order to prove this lemma, we prepare two lemmas.

Lemma 2.7. For any compact interval IdR and any compact subset KdRn

we have

(2.21) hj*wj(t)―>w(t) in C(I;L2(K)) as/^co.

Proof. Noting (2.8), we can prove (2.21) easily. So we may omit the

proof. □

Lemma 2.8. Let 0<y<n. For any compact interval IdR we have

(2.22) Vr*f(hj*wj(f))―> Vr*f(w{t)) in 3)'

uniformly on I as j-*°°.

Proof. Let v(EC (Rn) and supp vd{x; ＼x＼^R}. By the Fubini theorem

we have

(2.23)
＼vr*{f(hj*Wj(t))-f(w(.t))Mx)dx ^{f(ht*w,(f))-f(w(t))}Vr*v(x)dx

J Ix]iR+m Jix＼iR+m

=/l+/2.

Here m is a suitable number which will be chosen later. If ＼x＼^R+m, we
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ve ＼x―y＼^m for ＼y＼^R. Noting this,we obtain

24) |h I<m-^ |f(hj*wj(t))-f(w(t))|dxj

Next we estimate7i. We have

(2.25) lAl^j

＼v{y)＼dy

I x＼iR+m

＼＼f(hj*wj(t))-f(w(t))＼＼ ＼x-y＼-r＼v(y)＼dy＼dx

It follows from n ―1―r> ―1 that

(2.26)

This implies that

Jiyisfl x-y ＼'r＼v(y)＼dy^CVR+mY-TMU
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(2.27) |/1|^C(2i?+m)"^(||^(0l|2+N(0!l2)!|y|U!IMu;/0-^)IL2(,x,s≪+m).

Choosing m sufficiently large, we have (2.22) by (2.6), (2.9), (2.24), (2.27) and

Lemma 2.7. □

We are ready to prove Lemma 2.6.

Proof of Lemma 2.6. As 0<(n+r)/2<n, we have (2.19) by (2.15) and

Lemma 2.8.

By (2.17) we obtain (2.20) if we can show that

(2.28) Fj(Wj(t))―>F(w(t)) in S)' for t(=I

as /->oo. For v^C {Rn) we have

(2.29) (Fj(Wj(t))-F(w(t)), v)=(Vr*f(hJ*wJ(t))hJ*wJ(t), hj*v-v)

+(F(hj*wj(t))-F(w(t))> v)

=/i+/a.

Lemma 2.4, (2.15) and (2.6) imply that

(2.30) ＼Ii＼^C＼＼Vin+rm*f(hj*wJ(t))Uwj(t)＼＼2＼＼hj*v-v＼＼2nKn-ri

^C(0, <p)＼＼hj*V― v＼＼tnKn-r^.

We put

(2.31) h=(Vr*f(hj*wj(t)){hj*wj(t)-w(t)},v)

+(Vr*{f(hj*Wj(t))-f(w(t))}w(t),v)

―/2I+ /22･

Again by Lemma 2.4 and (2.15)we have
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hl＼^C(0, 4>)＼＼hj*Wj(t)―w(t)＼＼L(.9upl>V)＼＼v＼＼tn/ln-r)

We can rewrite /22as follows:

(2.33) h2=(Vr*{f(hj*Wj(t))-ttw(t))},w(t)v).

On the other hand it follows from (2.16)and Lemma 2.8 that

(2.34) VMihjtwtf)) -^ Fr*/(u/(0)

weakly in L2n/r and uniformly on / as j-+oo. By the Holder inequality and

(2.6) we have w(t)vGL2n/c2n-r> Noting this,(2.34) implies that /22-*0 as /-≫oo.

So (2.30),(2.32) and Lemma 2.7 show that (2.28) holds. □

Now we are in a position to prove Theorem 1.

Proof of Theorem 1. Let {wj(t)＼be a convergent subsquence obtained by

Lemma 2.2. We multiply veC~CRn) by (2.4) and integrate on Rn. Then we

have

(2.35) (Wj{t),v)=(hj*$, cos{Ht}v)+(hj*(p, H'1 sin{Ht)v)

-fV/w/r)), H-l$m{H{t-T)}v)dt
Jo

Using the Hausdroff-Young inequality, we can show that H'1 sin{H(t―r))v£

LtnKn-p. Thus it follows from (2.20) that

(2.36) (Fj(wj(t)),H-'sin {H(t-r)}v) ―> (F(w(z)), H^sin {H{t-z))v)

as /->oo. By the Holder inequality, (2.17) and the Hausdroff-Young inequality

we have

(2.37) (Fj(wj(t)),H-1 sin{Hit-t^v^llFjiwjit^UnUnnAH-1 sin{H(t-r)}v＼＼2nKn.r,

^C(0, (p)＼＼v＼＼inKn+^■

(2.36) and (2.37) mean that we can use the Lebesgue dominated convergence

theorem. Thus letting /->oo in (2.35), we obtain (1.5).

Noting 0eL4n/C2n_r), (2.6) and (2.19) imply (1.7).

Next we show that

(2.38) (w{t), v)^C＼R) for any v^C

From (1.5) it follows that (w(t), v)^C＼R) and

(2.39)

o(/n

-―(wit),v)=-(0, H-'slnimv+ty, cos{Ht}v)

-fV(w(r)), cos{H(t-r)}v)dz
JO
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If we show that

(2.40) (F(u/(0),v)eC(J2).

(2.38) can be proved. Let t^R and be fixed. Put

(2.41) J(V)=(F(w(t+r]))-F(w(t)), v)

=(Vr*{f(w(t+V))-f(w(t))}w(t), v)

+(Vr*f(w(t+y])){iv(t+7})-w(t)}, v)

=My)+My).

By (2.12) we obtain

(2.42) lU^l^CllV.n^^nwit+^Uwit+^-WmzllvhnKn-r^

From (1.7) and (2.9) it follows that ＼Jt(y)＼^Oas rj-^O. By (2.3) and (2.16) we

can show that

(2.43) VT*f(h}*wj(.t))<=Cw(R; Ltnly).

(2.34) and (2.43) imply that

(2.44) F,*/(u;(O)eCw(i2;L8n/r).

Noting w(t)v<=LlnKin-r-i,by (2.44) we have |/i()?)H0 as ^0. Then (2.40) is

proved. Noting (2.9),(2.17) and (2.20),(1.3) and (1.4) have already been proved.

(1.5)implies (1.6). Thus the proof of Theorem 1 is completed.

3. Proof of Theosem 2.

We begin with the well known estimates for the elementary solution of the

linear Klein-Gordon equation.

Proposition 3.1. Lht Kp<2 and l/p+l/p'=l. Put d(p')=l/2-l/p'.

(i) Let p', sf and s satisfy

(3.1) (n + l)d(/>')^l+ s-s'.

Then we have for g^C"{Rn)

(3.2) ＼＼H-i$in{Ht}g＼＼s.,p.£C＼t＼1+s-s'->nd^>＼＼g＼＼s,p.

(ii) Put l/r=s' + nd(p')―l. Let p'',r and sf satisfy

(3.3) °=7<T and s'<l-^~^d(pr).

Then we have for g<=C {Rn)

(3.4) ＼＼H-"sm{Ht}g＼＼LrR;H>>^C＼＼gh.
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Proof, (i) See Brenner [1] Appendix 2 for a proof.

(ii) See Ginibre and Velo [5] Lemma 3.1 for a proof. □

The following lemma is useful to estimate the nonlinear term.

Lemma 3.2. Let p, a, b and q satisfy

p a b q

r
r 1 1

+ -£--1 am/ !--*-< ―+ -f<l
n n

Then we have

(3.6) ||F(M)-F(i;)||p^C(||M-v||a||M+v|U||M|L+||v|U||i;||6||M-i;||,)

for suitablefunctions u and v

Proof.

yields (3.5).

By the Holder inequality and Lemma 2.3 we have (3.6). (2.11)

□

Proof of Theorem 2. As mentioned in the introduction, we willprove in

the case 3<^<4 (n^4). Let / be an open interval and / be any finiteinterval

such that Oe/c/. Let Io be an interval such that Oe/oC/. Put

X(I0)=LMo;H1)rMr(I0;Lp,).

The norm of X(h) is given by

l|w|U(/0)=MaX{||M|Uoo(/o;flrl),|M|Lr</0;Lp,t＼■

From Lemma 2.4, Lemma 2.3 and the embedding Hlf^Li7,/(on-^ it follows that

(3.7)
＼

i
F(w(t))v(x)dx＼^＼＼w(tW1,2＼＼vh,2

^IMIirG/>IMIi,2.

This means that ^(^(O)^//-1 for t(Ej. Thus by (1.4)we have

(3.8) w(t)=w＼t)-＼ 1H~lsm{H{t-T)}F{w(T))dr
0

in L2 for t^J.

Let Wi(t) and w2(t) be two solutions which satisfy the assumptions of

Theorem 2. From (3.8) we obtain

(3.9) w1(t)-w2(t)=-[tH-lsm{H(t-t)}lF(w1(T))-F(w2(TmdT
Jo

By Proposition3.1(i) we have

(3.10) Ww^-wMIp'^C
r
＼t-t＼i-r＼＼F(w1(.T))-F(w,(r)＼＼1,pdT
Jo
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Lemma 3.2 and the Sobolev embedding theorem yield that

(3.11) WFiwfrV-Fbu&Mup

+ C(N1(r)||1,2+|k2(r)||1,2)2|iu;1(r)-u;2(r)||p-.

By (3.10) we have

(3.12) ＼＼wl(t)-w2{t)＼＼v^C＼＼wl-wAxuMwA＼xu^+＼＼wi＼＼xu,)

X^y-Tl^dlw^Wp. + WWziTn^dT

+ C(||u;1!|xc/0)+N2llx(70))2

X
[
{t-zl^WwM-WtiTnp-dT
Jo 1

As 3―y> ― 1, from the Young inequality we obtain

(3.13) ＼＼w1(t)-wmLruo-,Lp,^C＼Io＼i-r(＼＼iVi＼＼xu) + ＼＼w2＼＼xu))2＼＼wi--w2＼＼XUo,.

Employing the same arguments as we obtain (3.11), we have

(3.14) ＼＼F(Wi(t))-F(wz(t))＼＼2

^C(||u;1(r)[|1,2+||u;2(T)||1,2)(||u;1(r)||p. + ||u'i!(r)||P0N1(T)-u;2(r)||p..

Hence it follows that

(3.15) ＼＼w,{t)-wS)h,2
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^C(＼＼Wl＼＼XiJ,+ ＼＼w2＼＼xu>)
ft(||u;1(r)||p-

+ ||u;2(r)||P0l|u,'1(r)-M;2(T)||p.dr

Noting r>2, from the Holder inequality we obtain

(3.16) ＼＼w,{t)-wm＼u2<C＼hVT^lr(＼＼wl＼＼xu,+＼＼w,＼＼xu,nw1-w2＼＼XiI(i,.

(3.13) and (3.16) show that

(3.17) ＼＼wl―w2＼＼xu^C＼h＼^r{＼＼w1lxu^+＼＼w2＼＼xuyi2＼＼wi―w2＼＼xu0-)-

Taking |/0| sufficientlysmall in (3.17), we obtain a inequality which implies

that w1=w2 on Io. Iterating this process, we can show that Wi = w2 on /. As

/ arbitrary, Theorem 2 is proved.

4. Proof of Theorem 3.

In this section we restrict our attention to 3<f<4 (n^4), too. In order to

investigate the regularity of a weak solution, we estimate the solutions of the

approximating equation.
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Lemma 4.1. Let 3<?-<4 (n^4). Let (<}>,(p)^WxL2 and wtf) (/eiV) be a

solution of (2.2) obtained by Lemma 2.1. Let p' and r be given in Theorem 2.

Then for any compact interval IdR there existsa positiveconstant C($, <p,I)

which is dependent on (0, <p) and I but independent of j such that

(4.1) ＼＼ivjhru;Lp,^C(<f>,<p,I) for j^N.

Proof. It is sufficientto prove (4.1)in the case /=[0, a＼. In the same

way as we obtain (3.12) we have

(4.2) ＼＼wj(t)＼＼p'^＼＼w%t)＼＼p.+ C(<f>, 0)J U-T|8-J'i|u;/r)||p.dT

0

Here we have used (2.6). By Propositon 3.1 (ii) and the Young inequality we

have

(4.3) ||u;J||Lra!V)^C(||^||1.,+ ||0||,)+C(^^)||jjf-r|8-''||^(T)||,.dr|Urc7,

^C(||0||1>2+IW|2)+C(0, <j>)ai-qwj＼＼LrUiLp,>.

We can verify the condition (3.3) easily. Choosing a to satisfy C(0, (p)ai~rf^l/2,

we have

(4.4) II^IUrc/;V)^C(^,^/) for /eiV.

Next we show that (4.1) holds for any number ae[0, oo). Let M be the

supremum of the number ≪g[0, oo) so that (4.1) holds with /=[o, ≪]･ We have

already showed that M>0. If M=co} the lemma is proved. We assume that

M<oo. Let a<M and 7i = [0, a]. From the definition of M it follows that

(4.5) WwihrasLp^Cfafrli) for j^N.

Let a<j8 and /2=[≪, jS]. Employing the same arguments as we obtain (4.3),

we have

(4.6) l!^||Lr(/2;V)^C(||^||ll2+||^||2)

+ C(0,0)
[
＼t-T＼'-r＼＼wj(T)＼＼pldT

JO LrClq}

= /l+/2+/8.

From the same arguments of a proof of the Young inequalitywe obtain

(4.7) Jx^Cty, *≫(j8-a)4-1luollLr</,;v>'

(4.8) /3^C(^, ^)j84-Hlw>llz.r<71;iD,)･
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Choosing 0 near a to satisfy C{<f>,<p)(p―ay-r£l/2, by (4.5)~(4.8) we have

(4.9) ＼＼wj＼＼Lr≪o,i3i;Lp,,£C(<p,4>,ft) for jtEN.

Since the distence between a and /5 depends on C(<f>,<f>)only, we can choose a

near M to satisfy M― a<fi―a. Hence (4.9) contradicts the definition of M. □

Lemma 4.2. Le£ 3<t-<4 (n^4). Let {<j>,̂e/fxi/1 and u//f) (/eiV) fre a

solution of (2.2) obtained by Lemma 2.1. Le£ l/^/=l/2― l/2n. TTzen for any

compact interval IczR there exists a positive constant C{<f),<p,I) which is dependent

on (0, <p) and I but independent of j such that

(4.10) WwiW^u-.H^Ci^^I) for jeN.

Proof. Let /=[0, a]. From (2.4) and Proposition 3.1 (i) it follows that

(4.11) ＼＼wj(t)＼＼1,q^＼＼w%t)＼＼1,qr+^＼＼Fj(wj(T))＼＼Uqdr.

We can verify (3.1) easily. Applying Lemma 3.2 to ＼＼Fj(Wj(T))＼＼Uq>we have

(4.12) l|F/u;>(r))||1.a^C||M;J(T)|||.||u;/r)||1.fl.,

where p' is given by Lemma 4.1. As the embedding H2c^Hq> holds, from (4.11)

and (4.12) we obtain

(4.13) ||^(0lli.a'^C(||^||2.2+||^||1>2)+C||^||iooa;^)Jjl^(T)||^dr.

From the Holder inequality and Lemma 4.1 it follows that

(4.14) ＼＼wj＼＼w.*$'3^C(||0||a.,+ ||0||1.,)+C(0, <P,Da^nwiW^a; *$'>.

Here choosing a sufficiently small, we have

(4.15) II^IUoc(/;^')^C(0,^/).

Employing the same arguments of the proof of Lemma 4.1, we can show that

(4.10) holds for any a£[0, oo). So we may omit its proof. □

Lemma 4.3. Under the same assumptions of Lemma 4.2. we have

(4.16) l|M>Ji=oC/;*2>^C(0,0, I) for j<=N

for any compact interval IdR. Here C(<f>,<p,I) is a positive constant which is

dependent on {<j>,<p) and I but independent of j.

Proof. From (2.4) it follows that

(4.17) IN/OI|2.2^C(||5&||a.2+||^||1>2) +
j V,(u>,-(r))||ll8dr

0



366 Takahiro Motai

Applying Lemma 3.2 to ||F/u;/r))||i,2, we obtain

(4.18) l|F/M;/r))||1.2^C||u;Xr)||f.9.||M'/T)|U.a,

where q' is given by Lemma 4.2. To note Lemma 4.2, we have

(4.19) l|u//Olka^C(||0|k2+||0||ll2)+C(0, <p, /)Jj|≪//r)|k2dr.

The Gronwall inequality implies (4.16). □

Now we give the estimates of the weak solution.

Lemma 4.4. Let w(t) be a weak solution of (1.1) obtained by Theorem 1.

Let 3<f<4 (n^4) and I be any compact interval in R.

(i) Let (<f>,(j})^HxxLz. Then we have

(4.20) IMUr(/;V)^C(0,i&,I),

where C{<p, <p,I) is a positive constant which is dependent on (0, <p) and I, pro-

vided that

(4.21)
p'

l

_
~2
In

and 1-nl
r 2 "

(ii) Let {(j),4))(bH2XH＼ Then we have

(4.22) IMIw/;*2>^C(0,0,/),

where C(0, <p,I) is a positive constant which is dependent on {<j),(p) and I.

Proof. By (4.1),(4.16) and Lemma 2.2 we can choose a covergent sub

sequence (again denoted by Wj(t))so that

(4.23)

(4.24)

Wj(t) > W{t)

wit) ―> w(t)

weakly in Lr(I; Lv-),

weakly in H2 and uniformly on /

as /->oo. Thus we have (4.20) and (4.22). □

We prepare three lemmas on the regularity of the integral equation.

Lemma 4.5. Assume that for z=0 or 1

(4.25)

Then we have

(4.26)

F(w(t))^L＼oc(R; W)

[H-1
sin{H(t-T)}F(w(j))dTt=C(R; H1+i)r＼C＼R; Hl).

Jo

Proof. See Motai [9] Lemma 4.2 for a proof. □
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Lemma 4.6. Assume that for k<BN

(4.27)

Then we have

(4.28)

t = 0

F(w(t))^r＼C＼R;Hk-i) for 0<y<Mm{2k, n}
i=0

367

PROOF. If we use Lemma 3.2 and the Sobolev embedding theorem, we can

prove (4.28)easily. So we may omit a proof. □

Lemma 4.7. Assume thatfor k^N

(4.29)

Then we have

(4.30)

F(w(t))<=
i=0

f*H-1
sin{H(t-T)}F(w(T))dT E Pi C'(R; H^1^)

Jo i=0

Proof. This result is well-known. So we may omit the proof. □

We are in a positon to prove Theorem 3.

Proof of Theorem 3. (i) Let wit) be a weak solution obtained by

Theorem 1. Since wifi^LJiR; H1), from the same argument as we obtain (3.8)

it follows that

(4.31) w(t)=w＼t)-[lH-1 sin{H{t-r)}F{w{r))dv in L2
Jo

for t^R. By {<p, <p)&HxxLz we have

(4.32) w＼t)(BC(R; H^nCXR; L2).

Noting (3.14), from (1.7) we obtain

(4.33) ＼＼F{w{t))＼＼2^C{4>,<l>)＼＼w(t)＼＼l-.

As r>2, Lemma 4.4 (i) and (4.32) imply (4.25). Hence by Lemma 4.5 we have

(1.12).

The uniqueness of wit) follows from (1.12) and Theorem 2.

If we resolve (1.1) at initial time to^R with a initial data (w(t0), dtw(t0)), by

Theorem 1 we obtain

(4.34) E(w(t), dMt))^E(w(U), dtw(U)) for t<=R.

The uniqueness, (1.7) and (4.34) imply (1.13).
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(ii) We firstnote that for (6, d>)eHkxHk-i (k^2) we have

(4.35)

In the case k

M/o(Oe
hcHR;

Hk-1)

t=0

=2 we have

(4.36) F(w(t))£C＼＼w(t)＼＼l2

by Lemma 3.2 and the Sobolev embedding theorem. From Lemma 4.4(ii)and

Lemma 4.5it follows that

(4.37) w(t)(=C(R; H2)nC＼R; H1).

Thisimpliesthat

(4.38)

By Lemma 4.7we have

(4.39)

F(w(t))<=C(R; Hl)r＼C＼R＼ L2)

i=0

In the case k>2 we can firstobtain (4.39). Lemma 4.6 shows that

(4.40)

1 = 0

And Lemma 4.7implies that

(4.41) w(t)<= C＼CKR; H3-*)
f=0

Iterating this process, we can prove (1.14).

Corollary follows from the Sobolev lemma.

The proof Theorem 3 is completed.
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