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§1. Introduction

A linearly ordered topological space (abbreviated LOTS) is a triple

(X, A,<) ,where(X,<)is a linearly ordered set and Ais the usual interval topology

defined by <.Throughout thispaper, A, A(<)or Xxdenote the usual interval topology

on a linearly ordered set(X,<).

A generalized ordered space (abbreviated GO-space) is a triple (X, T,<),

where (X,<)is a linearly ordered set and T is a topology on X such thatAct

and T has a base of open setseach of which is order-convex, where a subset A of

X is called order-convex if x e A for every x lying between two points of A.

For a GO-space (X, T,<) and Y <z X, t＼Y denotes the subspace topology

{U C＼Y:U ex] on Y and < | Y denotes the restricted ordering of < on Y. If it will

cause no confusion, we shall omit A (or T) and <, and say simply "X is a

LOTS (GO-space)". A topological space (X, r), where T is a topology on a set

X, is said to be orderable if (X,t,<) is a LOTS for some linear ordering < on X.

Similarly, we say simply "X is an orderable space" ifit will cause no confusion.

A LOTS Z = (Z,A,<Z) is said to be a linearly ordered extension of a GO-space

X = (X,T,<X) if XaZ, r = X＼X and <X=<Z＼X. Furthermore, ifX is closed

(resp., dense) in the space (Z,X), then Z is said to be a linearly ordered c-

extension (resp., d-extension) of X. Similarly, an orderable space Z = (Z,Tz)is

said to be an orderable c- (resp.,d- ^extension of a GO-space X - (X,rx <> if X

is a closed (resp.,dense) subset of Z and xx = rz IX . Note that every GO-space

has a compact linearly ordered d-extension ([5,(2.9)]).

Throughout this paper, we use the following notation: Let (Y,A,<> be a

LOTS. For a GO-space (X,r,<) with the same underlying set Y and the same

order < ,wewrite X = GOY(R, E, I,L) ,where / = {x e X: {x} e r - A}, R = {x e X:

[x, ->) g t - A} - /,L = {jce X: (<-,x] g t - A} - / and E = X - (I u R u L).

The following problem naturally arises.
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Problem 1.1. Let P be a topologicaiproperty.Does a GO-space with P

have an orderableextension with PI

Concerning this problem, metrizability and (hereditary) paracompactness

have affirmative answers (see [5]). But perfectness is unknown, where a

topological space is perfect if each closed subset is a G^-set. The following

problem was posed in [3, Question 1].

Problem 1.2. Does every perfect GO-space have aperfect orderable

extension?

In connection with this,the following is known from [5, (5.9) and (7.2)]: The

Sorgenfrey line 5"is a perfect GO-space, but it does not have a perfect orderable

c-extension.

However, S does not answer Problem 1.2 negatively, since the LOTS

S x {0,1} with the lexicographic ordering is a perfect linearly ordered d-extension

of S.

The following problem which is a strong version of Problem 1.2 was posed in

[2, "Posed problems" No. 8] or [6, Question (V)].

Problem 1.3. Does every perfect GO-space have a perfect orderable d-

extension?

In connection with this,a partial negative answer was given in [8]; that is,

there exists a perfect GO-space which does not have any perfect linearly ordered

d-extension.

In this paper, we investigate some conditions in which we have affirmative

answers of Problems 1.2 and 1.3. Throughout thispaper, we use the letter (0 to

stand for the set of allnatural numbers or the countable cardinality.For undefined

terminology, we refer the reader to [4].

§2. Some conditions In which problems 1.2 and 1.3 have

affirmative answers

In this section, for a GO-spaceX,we define LOTS's H(X),L(X), M(X)and

N(X), and investigate some conditions in which Problems 1.2 and 1.3 have

affirmative answers.

Definition 2.1. Let X = GOY(R,E,I,L) be a GO-space on a LOTS Y. Let

I+ ={x e I: there is a y g X such that y < x and (y,x) = 0}, /_ = {x e / : there is a

yeX such that x<y and (x,y)-(j)} and /0 =/-(/+u/_). We define subsets

#m, L(X), M(X) and N(X) of Xxf-1,1] as follows:
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(2)
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H(X) = (Xx{O})u(i?u/_)x(-1,0))u((Lu/+)x(0,1))u(/, x(-1,1)).

L(X) = (Xx{O})u((/?u/_)/?u/_)x{-l})u((Lu/Jx{l})u(/nx(-l,l})

(3) M(X) = (Ix{O})u(/?x(-1,0))u(Lx(0,1))u(/_ x{-1})u

u(/+x{l})u(/ox{-l,l}).

(4) #(X) = (Xx{0})u(/fx{-l})u(Lx{l})u(/_x(-l,0))u

(/+x(O,l))u(/ox(-l,l)).

Throughout this paper, H(X), L(X), M(X) and N(X) will be ordered

lexicographically and will carry the usual interval topology of the ordering. Then

it is easy to see that eH : X -> H(X), eL:X^> L(X), eM:X^ M(X) and

eN : X -> N(X) defined by e*(x) = {x,0) are order-preserving homeomorphisms

from X onto the subspace Zx{0}. Note that L(X) is the same space as the

LOTS X defined in [8], and L(X) is the minimal d-extension of X ([8,(2.1)]).

3

Now we obtain the following theorem which is an affirmativeanswer for

Problem 1.2 in a restrictedsituation.A " d -discreteset" means the union of

countablymany discreteclosed sets.

THEOREM 2.2 Let X = GOY(R,E,I,L) be a perfectGO-space. Then H(X) is

perfectifand onlyif R^J L isa (J-discreteset of X.

PROOF. "Only if" part: Let H(X) be perfect and let U = Rx(-1,0), then

U is an open set in H(X). Put U = Kj{Fn:neco}, where Fn is closed in H(X).

Let Kn = {x e R: (x,y)e Fn for some ye(-1,0)}. Then R = u{Kn :n e 0)}.Suppose

that Kn has a cluster point p in X. Since p is not an isolated point, we may

suppose that pe E''u /?u L, where E' = E ―{x : x is an isolated point of X}. We

prove that (/?,0) is a cluster point of Fn in H(X). Let V be a neighborhood of

<p,0) in H(X).

Case 1: Let pe.E'. There exist points a, 6 of X such that a< p <b and

W = ((a,0),(&,0≫ is contained in V, where ≪a,0), <^,0≫ is an intervalin H(X).

Since an interval (a,b) in X is a neighborhood of p in X, it follows that

(a,b)n(Kn -{p}) *<j>.Hence Wn/; ^0 . Therefore, Vn^,9t0.

Case 2: Let peL. There exists a point aeX such that a < p and

W = ((a,0),(p,0)] a V. Since (a,p] is a neighborhood of p in X,

(a,p]n(Kn ~{p})*(j).Hence W^Fn*(j), so VnFn*(j).

Case 3: Let pE R. The proof is similar to Case 2.
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Since (p,0) £Fn, thiscontradicts the closedness of Fn. Thus Kn does not have

a cluster point in X, that is, Kn is discrete, closed and R = ＼j{Kn-.new} is G-

discretein X. Similarly, L is G-discrete in X.Thus Ru L is G-discrete in X.

"If" part: Let i?uL be G-discrete in a perfect GO-space X. Let U be

open in H(X). First, we show that Un(Ix(-l,l)) is Fffin H(X). Since / is

open in X, /is FCTin X i.e.,I= Kj{Fn:new}, where Fnis closed in J.It is clear

thatUn(Ix(-1,1)) = u{Un(Fn x(-1,1)): n e m].Letx e Fn .Since Un ({x}x(-1,1))

is homeomorphic to an open subset of (-1,1), we can express as

U n({x}x (-1,1)) = v{F(x,n,k):keo)}, where F(x,n,k) is closed in H(X). Set

G(n,£) = u{F(jc,n,&):jteFJ. Then G(n,k) is closed in #(X). In fact, let

(x, t)£G(n,k) .If xeX- Fn and t = 0, then there is a neighborhood V of x in X

such that VnFn =</>.Then W = (Vx(-l,l))n//(X) is a neighborhood of <jc,O>in

//(X) such that WnG(/!,i) = 0. If xelvRvL and (x,t) e H(X)-G(n,k) with

f ^0, then it is easy to see that there is a neighborhood of (x,t) in //(X) that

does not meet G(n,k). If x e Fn and <x,0)e H{X)-G{n,k), then we can find a

neighborhood of (jc,O) in H(X) that does not meet G(n,k) since x e /0 u /+u/_ .

Hence ^/n(i;;ix (-1,1)) is Fff in H(X). Therefore f/n(/x(-l,l)) is FCT in

//(X). Next, since /?is(T-discrete in X, we can write R = v{Rn :neco}, where

each Rn is discrete, closed in X. It follows from the above argument that

Un(Rn x(-l,0]) is an FCT-setof H(X) using the discreteness of Rn. Hence

Un(Rx(-＼,0]) is Fa in H{X). Similarly, Ur＼{Lx[0,1)) is an Fff-setof H(X).

Finally, we show that Ex{0} is covered by countably many closed sets of H(X)

that are contained in U. To see this,itis enough to notice that Un(Ex{0})c:U

n(Xx{0})c(/ and Un(Xx{0}) is an FCT-setof H(X), because Xx{0} is a

perfect, closed subspace of H(X). Therefore, U is an FCT-setof H(X) and H(X)

is perfect.

Remark 2.3. In this theorem, we may take a LOTS X* (see [5,(2.5)])

instead of H(X) since X* can be embedded in H(X). For a GO-space

X = (X,r,<), X" was defined in [5, (2.5)] as follows: Let X = A(<) be the usual

order topology on X. Define a subset X* of XxZ (where Z is the set of all

integers) by X* = (Xx {0})u {(x,n): [*,-≫)e T- A and n < 0}u≪x,m>: (≪―,jc]

er-A and m<0}.

The following theorem is an affirmative answer for Problem 1.3 in a

restricted situation. We use an abbreviation "ccc" to stand for the "countable

chain condition" (i.e.,every disjointcollection of open setsis countable).
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THEOREM 2.4. Let Y be a LOTS satisfying the ccc, and X = GOY(R,E,I,L)

be a GO-space. Then L(X) is perfect if and only if ＼I＼<CO,where I/I denotes

the cardinality of I.

Proof. "If" part: We shall show that L(X) satisfiesthe ccc. Then L(X)

is perfect by [5, (2.10)] and [4, 3.8.A. (b)]. Let {Ua:aeA} be a family of

disjointopen sets of L(X). Then we show that A is countable. Let (x,t)eUa

with x g RkjLvjE. Then Uar＼X contains a nonvoid open set of Y. Hence such

Ua's are countable, because Y satisfiesthe ccc. Since / is countable, A is

countable. Therefore, L(X) satisfiesthe ccc.

"Only if" part: Let L(X) be perfect. Since /x{0} is open in L(X), we can

express as I x {0} = u{Fn : n e a)}, where Fn is closed in L(X). Let

xe (/_ u/0)n/^. Since (x,-l)e L(X)-Fn, there exists a neighborhood V of

(x,―l) in L(X) such that Vr＼Fn =(j).Hence there is an a^eX such that ax <x

and (aK,x)x r＼Fn=(/), where (ax,x)x denotes an interval in X. If xeI+nFn,

then a is taken as the predecessor of x. Similarly, there is a bfeX such that

x <b v and (x,bt)x r＼Fn=0. So, for each xeFn, there exists a neighborhood

(ax,bx) of x in Y such that (ax,bx)nFn = {x}. Let x * y for x,ye Fn, say x< y .

If (ax,bx)n(ay,hy)*<p, then the set (ax,bx)n(ay,bv) does not meet Fn. In this

case, we choose the intervals (ax,by) and (bx,by) as the disjoint neighborhoods of

x and y in F, respectively. Since Y satisfiesthe ccc, Fn is countable. Hence /

is countable.

Remark 2.5. If a GO-space satisfiesthe ccc, the answer of Problem 1.3is

"yes",as was announced in [2,"Posed problems" No. 8].

Theorem 2.6. Let Y be a LOTS satisfyingthe ccc, and X = GOY(R,E,1,L)

be a GO-space. Then M(X) is perfectifand onlyif ＼RkjL＼jI＼<w.

Proof. "If" part: Suppose that li?uLu/l<c and Y satisfiesthe ccc.

Then itis enough to show that M(X) satisfiesthe ccc. Then M(X)is perfect by

[5, (2.10)] and [4, 3.8.A.(b)]. Let {Ua :aeA}be a family of disjointopen sets of

M(X). Since / is countable, A, = {a e A :(/x{-l,0, l}n Ua * 0} is countable.

Since R is countable and (-1,0] satisfiesthe ccc, AR - {a e A :(Rx (-1,0])nUa

?t0}is countable. Similarly, AL - {a e A :(Lx[0,1))nf/a ^ </>}is countable. Set

AE = {a e A:(Ex{0})r＼Ua ^(j)}and take an element a e AE. Since Ua contains a

non-void open set, AE is countable. Hence A = A, u AR u AL u AE is countable.

Therefore, M(X) satisfiesthe ccc.
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"Only if' part: Let M(X) be perfect. Since /x{0} is open in M(X), we

can express as ^J{Fn:nG(o}, where Fn is closed in M(X). Note that each Fn is

not necessarily closed in Y. However, the proof of "Only if" part of Theorem 2.4

shows that / is countable. Next, the proof of "Only if" part of Theorem 2.2

shows that R and L is O -discrete in X. Set R = u{/?,,: n e co}, where Rn is

discrete closed in X.For each x e Rn, we can take a neighborhood [x,bx) of x

in X such that [x,bx)r＼Rn - {x}. Itis easy to see that a collection {(x,bx): xe Rn}

of open intervals in Y is pairwise disjoint and each member (x,bx) is not empty.

Hence Rn is countable because Y satisfiesthe ccc, ＼R＼<co.Similarly, ＼L＼<co.

Therefore, it follows that IR u L u /1< co .

We closethissectionwith the followingtheorem.

Theorem 2.7. Let Y be a LOTS satisfyingthe ccc, and X = GOY(R,E,I,L)

be a GO-space. Then N(X) is perfect if and only if /satisfiesthe following

condition:

(C)Iis a countable union of itssubsets Hn{nE.(o), and for each weft) and

iGi?uLu£, thereare points a,b e X such that a < x <b and (a,b)r＼H = (b.

PROOF. "If" part: Suppose that I = u{Hn :neft)| satisfiesthe condition (C).

Let U be an open subset of N(X). Then we shall show that U is Fa in N(X) by

the following three steps.

Step (1): Let U be an open subset of I(N) = (/x(-l,l))n W(X). Note that

I(N) is open in N(X). Set H'n=Hnnn(U), where ff:Xx(-l,l)->X is the

projection. For each xeH't, we set ({x}x(-l,＼))nU = u{F(x,n,k):keco},

where F(x,n,k) is closed in N(X). Then G(n,k) = u{F(x,n,k):xeH'n] is closed

in N(X). We prove thisas follows:

Case 1. Let <y,t>eN(X) with yel-H;,. Then ({y}x(-l,l))nN(X) is a

neighborhood of (y,t) in 7V(X) and does not meet G(n,k).

Case 2. Let (y,t) e N(X) with yeRKjLuE. Then, by the condition (C),

there exist a,beX such that a<y<b and (a,b)nHn =<j>. If aeH't and

(a,y)*(j), there is an a'e X such that a<a'<y.Then ({a'}x(O,l))n£/ = 0 since

(a,y)c＼H'n =0. If aeH't and (a,j) = 0, we set a' = a. Then a'e I_ and

({a'}x(O,l))n(/ = 0 since ({a'}x(0,!))nN(X) = (j).If a ≪//,',we set a' = a. In

all cases we considered, ({a'}x(O,l))nG(n,i) = f Hence ≪fl',0),<y,r)]nG(n,/:)

= 0. Similarly, there is a fc'eX such that y<b'<b and [<>>,?},(&',()≫n

G(n,k) = (j).Therefore, ((a',0),(b',0))is a neighborhood of (y,t) in 7V(X) and
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does not meet G(n,k).

Case 3. Let (y,t) e N(X)- G(n,k) with ye//;. Since F(x,n,k) is closed in

(Wx(-l,l))nAf(X) for each xeH't, there exists a neighborhood of (y,t) in

N(X) which does not meet G{n,k).

Since U = u{G(n,k):neo),k god} , U is Fa in N{X).

Step (2): Let U be a convex open subset of N(X). Then U can be

considered as an interval of N(X) or N(X)+, where N(X)+ is the Dedekind

compactification of N(X). We consider the following two cases: (i) U is of the

form (a,b),[a,b),(a,b],(a,->), etc., where a,be N(X); (ii) £/is of the form

[a＼b+]nN(X),[a+,-^]nN(X), etc., where a+,b+ are gaps of N(X) and

[a+,fr+] denotes an interval in N(X)+; (iii) £/is of the form [a+,b)nN(X) or

(a,b+)r^N(X).

Case (i): It is sufficientto consider the case U = (a,b), because other cases

are similar to and simpler than that case.

First, we prove that N(X) is first countable. Let (x,t) e N(X). Since Y

satisfiesthe ccc, Y is perfect. Hence Y is firstcountable ([1, 2.1]). If x has the

immediate predecessor x', we set ak = x' for all keco. Otherwise, there exists

an increasing sequence {ak :keco} which converges to x. Similarly, if x has the

immediate successor*", we set bk =x" for all keco. Otherwise, there exists a

decreasing sequence {bk :k e co} which converges to x. Then {(ak,bk): k e co}is a

neighborhood base at jce Y.

Case 1. Let (x,t) g(Lx{0})u(/?x{-1}). Then {({ak,0),(x,t)]:ke<Q} is a

neighborhood base at (x,t) in N(X).

Case 2. Let (x,t) e (Lx{l})u(i?x{0}). Then {[<*,?),<^.,Q≫:itg ≪} is a

neighborhood base at (x, t).

Case 3. Let xeE (hence f = Q). Then {((ak,0),(bk,0)):k eco} is a

neighborhood base at (x,0).

Case 4. If x e I, then itis clear that N(X) is firstcountable at (x,t).

As we have shown that N(X) is first countable, there exist decreasing

sequence {an} converging to a and an increasing sequence {bn} converging to b.

Therefore U - u{[an,bn]: n e co] is an Fa-set of N(X).

Case (ii): It is sufficientto consider the case U = [a+ ,b+]nN(X), and a+,b+

are gaps of N(X), because other cases are similar to this case. Since

U = N(X)-((^,a+)v(b+,^))nN(X), U is closed in N(X).

(iii) This is done by mixing proofs of Cases (i) and (ii).

Step (3): Express U as the union of the collection {Ua :a e A} of all

convex components of U in N(X). Set B = {a e A:Ua a I(N)}, A = {a e A : Ua is

not contained in I(N)} and V = Kj{Ua :a e B]. Then U = Vu(u|{/. : a e A}),
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where V is open in I(N) and Ua is a convex open subset of N(X) for each

a&A. Each Ua(aeA) contains a point (x,t) which belongs to

(Ex {0})u (L x (0,1})u(Rx {-1,0}). It follows that,for each a e A,Ua n(X x {0})

contains a nonvoid open set of Y. Since Y satisfiesthe ccc, it follows that

＼A＼<0).V and Ua are Fa in N(X) as shown in Steps (1) and (2). Hence U is

Fa in N(X). Thus 7V(X) is perfect.

"Only if" part: If N(X) is perfect, I(N) = (I x (-1,1)) nN(X) is an Z^-set

of N(X). Let I(N) = <j{Fn:neo)}, where each Fn is closed in A^(X). Then

I = u{Hn:neo)}, where Hn = {x e X:<x,0>6 /;,}. We shall show that

/ = uf//,,ined)} satisfiesthe condition (C) as follows:

Case 1. Let x e L .Since (jc,O)<£Fn and Fn is closed in N(X), there exists a

neighborhood V of (x,0) in N(X) such that Vr＼Fn =0. Hence there exists ae X

such that a<x and ((fl,0),(i,0)]cV. Therefore, (a,x]nHn = <j). Since

{x,!)<£Fn, there exists a neighborhood W of (jc,1) in N(X) such that l^n/;, = 0 .

Hence there exists fceX such that x<b and [(jc,l>,(i?,0))cW. Hence

[x,b)nHn =0. Therefore, (a,b)nHn =0.

Case 2. Let x e R. The proof is similar to Case 1.

Case 3. Let xgE. Since (x,0) £Fn, there exists a neighborhood V of (x,0)

in yV(X) such that Vr＼Fn =0. Hence there exist a,beX such that a<x<b and

≪a,0>,<6,0≫ a V. Therefore, (a,b)n Hn =</>.

This completes the proof of Theorem 2.7.

§3. Examples

In thissection, we present several examples

Example 3.1. The following two examples show that the condition "ccc" is

needed in Theorems 2.4 and 2.6.

(1) Let Y = co],X = GOY{(j),F,</>,</>)= Y, where ft),is the set of all ordinals

less than ft),.Then L(X) = M(X) = X is not perfect, but I / 1=1 R u L u /1=1 (j)＼<ft).

Notice that Y does not satisfy the ccc.

(2) Let y = ft>,x[0,l) be a LOTS with the lexicographic order. Then Y is

the long line (see [4]). Each point may be thought of as a + x, where aefi), and

jce[0,l). Let X = GOY(&m(Ol,Y-col,Q)l-(£imQ)i),(l>), where Urn ft), denotes the

set of all limit ordinals less than ft),. Then it is easy to see that

M(X) = (Xx{O})u((≪mft),)x(-l,Q))u((ft), -(^m ft),))x {-1,1}) and M(X) is a

pairwise disjoint union of clopen metrizable spaces. Thus M(X) is metrizable

(hence, perfect). But I / 1=1 ft),-{Urn ft),)1= ft),> ft) and I R 1=1 iim ft),l> ft). Notice

that Y does not satisfy the ccc.
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Example 3.2. Let Y = co]x[0,1) be the same space as Example 3.1 (2). Let

X = GOY((Ol,Y-co],(/>,(/>).Since coi is the set of all ordinals less than a),,it

follows that X is a pairwise disjoint union of clopen metrizable spaces

{z:(X<z<cx + l,ae(O]}, thus X is metrizable (hence, perfect). Since

N(X) = (Xx{0})kj((O1 xf-l})contains a subspace co{x{-l},N(X) is not perfect.

Since /(= 0) satisfiesthe condition (C), the ccc is needed in Theorem 2.7.

Example 3.3. Let K = [0,1]-u{(an,bn):ne co} be the Cantor set,

A = {an :n e 0)},B = {bn :n e co} and F = [0,l] be the usual unit interval. Let

X = GOY(A,Y-K,K-{AvB),B). Then X is a metrizable (hence, perfect)

space, because (33(/,n):i,n e co}u{{x}: x e K-(Au B)} is a 0-discrete base

forX,where (S3(/,n):n g (t)}be a 6 -discrete base for [a,.,£>,].But N(X) = (Xx

{0})u(Ax{-l})u(Bx{l})up-(i4uB))x(-l,l)) is not perfect. On the

contrary, suppose that N(X) is perfect. Then an open set

Ix(-l,l) = (K-(AuB))x(-l,l) of N(X) is Fa. Let 7x(-l,l) = u{Fn :n g c},

where each /^ is closed in N(X). Let fffl={jcef :<a:,O>g/;i). Then

/f = (u{W/l:nGfi)})u(u{{fln,fcJ:nGffl}) is a countable union of subsets of K.

For a while, we consider the usual topology on K. Since

K = (u{C＼KHn :n e 0)})u(u{ {≪,,&,}:nGQ)} is a countable union of closed subsets

of K, by the Baire Category Theorem, there is an ned) such that C＼KHn

contains a non-void open set U of K. We may assume that U = U' nK, where

U' is an open intervalin R. We shall show that there exists a point ai e A n U'.

Since U' nK jtQ, there is an x e U' n K .If x e B, then there is an ai e A such

that x < a,,and a,,e V since 17' is an open interval containing x and K is the

Cantor set.Similarly, if x g K-(Au B), then there is an ai e A such that ai < x

and fl(-G(/'.Hence there exists an af e Ar＼Uf. Since ai gU czClKHn. a( is a

cluster point of Hn in AT, and hence (a^-l) e N(X) is a cluster point of Fn in

7V(X). This contradicts the closedness of Fn. Therefore, N(X) is not perfect.

It follows from Theorem 2.7 that / does not satisfy the condition (C).

On the other hand, I-K ―{A＼jB) is a closed set of X. Therefore this

example shows that,in Theorem 2.7, the statement " / satisfiesthe condition (C)"

can not be weakened by " / is F in X".

Example 3.4. Let R and Q be the set of all real numbers and all rational

numbers, respectively. Let K be the Cantor set and T -kj{K+ q :q eQ] where

K + q = {x + q : x e K}. Let X = GOR (R - T, 0, T, 0). Since T satisfies the condition

(C), N{X) is perfect by Theorem 2.7. However, L(X) is not perfect by Theorem

2.4. We do not know whether this example has a perfect orderable d-extension.
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(This example was announced in [7].)
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