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1. Introduction.

In the study of hyperbolic partial differentialoperators, it is important to in-

vestigate properties of the characteristicroots. Bronshtein [2] proved the Lipschitz

continuity of the characteristicroots of hyperbolic operators with variable coeffi-

cients,and he studied the hyperbolic Cauchy problem in Gevrey classes (see [3]).

Ohya and Tarama [7] extended the results in [2] and, also,studied the Cauchy

problem.

In this paper we shall give an alternative proof of Bronshtein's results, which

seems to be simpler. Also, we shall prove the inner semi-continuity of the cones

denned for the localizationpolynomials of hyperbolic operators (see Theorem 3

below). In studying singularities of solutions the inner semi-continuity of the

cones plays a key role (see [8],[9],[10]). We note that our method can be appli-

cable to the mixed problem.

Let p{t,x, y)―tm+Yl%i aj{x,y)tm-j be a polynomial in t, where the aj(x,y) are

defined for x = (xlt■■･,xn)zX and yzY, X is an open convex subset of Rn and Y is

a compact Hausdorff topological space. We assume that

(A-l) p(t,x, y)i=0 if Im t^O and (x, y)zXx Y,

(A-2) daxdjix,y)i＼a＼^k,l^j^m) are continuous and there are C>0 and 8 with

0<<5^1 such that

＼daxajix,y)-daxajix',y)＼^C＼x-x'＼*

if ＼a＼=k,x,x'eX and ysY, where k is a nonnegative integer and d%=

(dldxi)a*---(dldx≪)"≪.

Theorem 1. Assume that (A-l) and (A-2) are satisfied. Then, for any open

subset U of X with U^X there is C―C(U)>0 such that

＼^j{x,y)-2.j{x',y)＼^C＼x―xr＼T for l^j^m, x,x'zU and yzY,

where p(t, x, y)-―l＼?=i(t―lj(x, y)), Xi{x, y)^kh{x, y)^ ･･ ･ ^k^m(x, y), and r=min (1,(k+S)
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＼m).Here UmX means that U is a compact subsetof X.

Remark. Under the assumptions(A-l) and (A-2)' below Bronshtein[2]proved

the above theorem. Theorem 1 was announced by Ohya and Tarama [7] who

proved it by the same argument as in [21

Theorem 2. Assume that

(A-l)' p{t,x, y)^0 if Im t<0 and (x, y)eXx Y

and (A-2) are satisfied. Then, for any open subset U of X with U<mX there is

C=C(Z7)>0 such that

(1.1) ＼d＼d%p{t,x, y)＼l＼p(t,x,iO|^C|Imf|->-'""V

if O^j^m-1, ＼a＼^k,-l^lmt<0 and (x, y)zXxY, where rj= mm(l,(k+d)l(m-j)).

Moreover, if 8=1 and d%aj{x,y)(＼a＼=k+l) are continuous, then (1.1) holds for ＼a＼

Remark. The above theorem was announced by Ohya and Tarama [7] under

the assumptions (A-l) and (A-2).

Let us assume that (A-l)' is valid and that

(A-2)' dxaj(x,y)(＼a＼^m) are continuous.

Define the localizationpolynomial pct.x^iz,£)of p at (t,x,y)£ExXxY as

p(t+ST,x+s$,y) = s"(pct,x;y)(r,£)+o(l)) as s-*0,

where At,*;io(*"≫£)^0in (r,f)ei2 +1. Then Pa,x-y^,i) is a homogeneous polynomial

of degree y.. Moreover, it follows from Rouche's theorem and Lemma 2.4 below

that

Pct,xiVi(T,£)=£0 if Im r^O and $GRn

(see, e.g., Hormander [5]). We denote by r(pv,x-y),$) the connected component

of the set {(T,$)QRn+1 ;pct,x-y^T,^0} which contains 4=(l,0)el2w+1. For some

properties of hyperbolic polynomials and r(pit,x;y $̂) we refer to Atiyah, Bott and

Gar ding [1].

Theorem 3. Assume that (A-l)' and (A-2)' are sartisfied,and let (to,xo,yo)£

RxXxY. Then, for any compact subset M of r{p(tQ,xo-ya-),$)there is a neighbor-

hood HJ of (to,xo,yo)in RxXxY such that Mc.r(pCt,x^,&) for (t,x,y^HJ-

Remark. In [9] we proved the above theorem when the aj(x,y) are suffi-

ciently smooth.

In the rest of this paper we shall prove the above theorems.
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2. Preliminaries.

Let p(t)=tm+'Ef=lajtm-j be a polynomial in t, where a^C.

Lemma 2.1. Let q{t)= Ti7^bjtm-j, and write p(t)+q(t)=Uf=i (t-a&bu ･･･,6≫)),

where the aj(bu ･■■,bm) are continuous functions of (bu ･ ･･, bm)£Cm. Then there is

a positive constant C(m), depending only on m, such that

(2.1) ＼aj(bu-■'fbm)-aoj＼^C(m)max1£kU＼h＼i/k + ＼bk＼ina°j＼1-k/m),l^j^m,

where fy°.-= n/Q. ･ ･･ OV

Proof. There is an integer k0 with l^ko^m such that (Xj${z C;(k0―1)A^

＼z―al＼<koA}for 2^j^m, where A>0 is determined latter. Therefore, we have

＼P(z)＼-＼q(z)mAI2)m-ZUl>Mm-J if ＼z-a＼＼Hh-2-')A .

It is easy to see that there is C'(m)>0, depending only on m, such that

(AI2)m>m＼bj＼(＼al＼+(ko-2-l)A)m-J

if l^j^m, A^C'{m)(＼bj＼ui+＼bj＼um＼a＼＼i-:l/m)and bj^O. Thus, Rouche's theorem

shows that (2.1) with C(m)=(m-2-1)C'(m) holds for j=l. Q.E.D.

In the proofs of theorems, we shall use Nuij's approximations (see [6]) and

nfP'A thf*fniinwincr

Lemma 2.2. Let p(f)=Y＼f-i(t―a$),where a＼^a＼S･･･^a°m. Then one can write

(l+s{<dldt))m-1p(t)=X[%lt-aj(s))for seE, where a,(s)^a2(s)^ ･･･^am(s)anda/O)=aj.

Moreover, there are positive constants Ci(m) and Cz(m) such that

(2.2) aj(s)-aj-i(s)^Ci(m)＼s＼ for ssR and 2^/^m,

(2.3) 0<±(a}-aj(s))^C2(m)＼s＼ for ±s>0 and l^j^m.

Proof. The firstpart of the lemma is obvious. Consider the case where

s>0. Similarly, one can prove the lemma in the case where s<0. Assume that

for a fixed / with l^l^m―1 there is Ci(/)>0 such that

(2.4) aXs)-a}_1(s)^c1(/)s for s>0 and 2^/^/,

wh^re (l+s(d/dt))l-1p(t)=[] =i(t-afts)) and a[(s)^al2(s) ･̂･･^alm(s)- Put

/(/,s)=a+s(didt)yp(t)ia+s(didt)y-ip(t)

(=l+sE7^(t-^(s))~1)-

If s>0, l^h^m and aJU(s)<*<<&($), then

l+wsft-afCs^-^/CAsXl+sft-aiCs))-1 ^Aew A=l.
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l + im-h + lWt-atts^+sbt-ak-My^f&s)

<A+s(^-ai(5))-1+s(^-ai_1(s))"1 when 2^h^m,

where al0(s)=-oo and Ah = l if A=2 and A7l= l + (A-2)s(ai_1(s)-≪L2(s))~1if 3^/?^

m. Therefore, we have

(2.5)

ak-i(s)<oi+1(s)<oi(s),

al(s)―ms<,a＼+1(s)<al(s)―swhen h―1,

a{(s)~2-1(Xh+ (m-h+2)s-[(Xh-(m-h+2)sf+AsXh]1/2)

<ai+1(s)<alh(s)-F(Xh,2slAh)l2 when 2^h^m,

where Xh=c&(s)-alh-l(s) and F(u, v)=u+v-(u2+v2)l/2t if s>0 and alh^(s)<alh(s).It

is obvious that ≪i+1(s)^ai(s)^≪i+I(s)^･･･^aL+1(s)^aL(s) for s^O. Since (Xh~(m-

h+2)s)2+4sXh = (Xh-(m-h)s)2+A(m-h+l)s2^(X!l-(m-h)s)2, (2.5) gives

(2.6) O^alh(s)-a{+l(s)^(m-h+l)s for s^Q and l^h^m.

Moreover, it follows from (2.4) and (2.5) that

(2.7)

s (A=l),

sFicM), 2cl(l)l(h-2+c1(l)))l2 (2^h^l),

since F(uuVi)^F(u2,v2) for u^u^O and v^v^O. (2.7) shows that(2.4)is valid,

replacing / with /+1, where ci(/+l)= rain{l,F(d(/), 2ci(/)/(/-2+ d(/)))/2}(>0).

This proves (2.2). With c2(m)=m(m-l) (2.3) follows from (2.6). Q.E.D.

Lemma 2.3. If p(t)^O for ImKO, then

(l+s(dldt))p(t)^O for Imt<0 and Ims^O.

Proof. Let p{t)=＼＼J^{t-ocj), where Im.o/^0. Then we have

a+s(dldt))p(t)=p(t)(l+sZ7^ (t-aj)-1).

It is obvious that ImCf-a^-'X) and Ims-'^O if lmt<0, s^O and Ims^O. This

proves the lemma (see [6]). Q. E. D.

Lemma 2.4. Let (to,xo,yo) RxXxY, and assume that (A-l)' and (A-2) are

satisfied. If d?p(t0,x°,yo)=Q for Q^h<l and dltp(t0,x°,yo)^O, then

d{d%p(t0,x°,y0)=0 when j<l and ＼a＼<(l―j)rf,

where r' = min (1,(k+8)ll).

Proof. The lemma is well-known if (A-2)7 is satisfied (see, e.g., [5]). And

we can prove the lemma similarly. Assume that there are j0 and a0 such that

jo<l, ＼a°＼<(l-joY and di°daxp(to,xo,yo)^Q. Then we have r"=min{＼a＼Kl-j);
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djtdaxp{to,x°,yo)^0, ;</ and ＼a＼^k}<r' (^1). Write r" = b＼a, where a and b are

positive integers and mutually prime. Note that l^b<a. It is easy to see that

p(t0+sr"T,x°+ss,y0)=q(T,t)slr"+o(sir") as sjO, where q(T,£)= CTl+ Z0<jil/aCjRTl-a＼

c=dltp(to,xo,yo)lll^O and cXf) = i:iai=w^-a^^o,^0, yo)･?"/((/-≪/)!*!). By assump-

tion there is f°i?resuch that all cj($°)do not vanish. So there is ro C＼{O} such that

0(ro,e°)=O. Then we have g(r, ±f°)=0 if ra=(±l)6r?. On the other hand, (A-l)'

implies that q(z, ±f°)^0 if Imr<0. This gives a=b ―l, which contradicts a>＼.

Q. E. D.

Lemma 2.5. Let M be an arcwise connected subset of Rn>, U a Hausdorff to-

pological space and S={sgC;＼s＼^s0 and ims^O}. Let f(s,w,u) be a continuous

function on Sx Mx U which satisfiesthe following conditions; (i) f(s,w, u) is ana-

lyticin s if Ims<0, (ii)there is a dense subset U' of U such that f(s,w,u)^O for

sgSC＼R, wgM and usU', (iii)f(s,w,u)^O if ＼s＼=s0,and (iv) there is w° M such

that f(s,w°,u)^O iflms<0. Then

f(s,w,u)^O ifIms<0.

Proof. Assume that there are (sl,w＼ul)e.SxMxU such that ImsKO and

f(Si,w＼ui)= 0. Since f(s,w＼ui)£0 in s, applying Rouche's theorem (or a variant

of the Weierstrass preparation theorem), we may assume that UiGU'. Let

{w{0))0ieilbe a continuous curve in M satisfying ^(O)^^^1 and w(l)=w°. Then it

follows from the conditions (i)-(iii)that there is a continuous function s(d) defined

on [0,1] such that s(0)=s1 and f(s(6),w(d),u1)=0 for 0e[0,1]. Observe that lm s(fi)

<0 and |s(0)|<so for 0e[0,1]. Therefore we have /(s(1),m;0,≪1)=0,which contra-

dicts the condition (iv). This proves the lemma. Q. E. D.

The following lemma is elementary (see, e.g.,[10]).

Lemma 2.6. Let Vi be the vector space of all homogeneous polynomials with

real coefficientsin f of degree I. Then there are pi($),･■･,/>,(?)Vi such that

{t>t(£)K･ ―.fi..(£)1)is a basis of Vi. wherp, v = dim Vi.

3. Proof of Theorem 1.

Put

pit,x,y, z)= (1+zrdt)m~1p(t,x, y) for ze C with Im z^Q,

where lr = l. By Lemma 2.2 the equation p(t,x,y,z)=0 has only real roots for

(x,y)eXxY, if 2^0 or z&R and r=l. Moreover, if z^Q or zgR and r=l, then
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h(x> V, z) ―lj-l{x1 y,z)^ci{m)＼z＼r,

Mx, v)-h(x, V, z)＼^c2(m)＼z＼r,

for (x, y)sXx Y, where p(t, x, y, z)=U?-i (f―Xj(x, y, z)) and h{x, y, z)^h{x, y, z)^ ･･･

^Xm(x,y,z). If 2^0 and r<l, then Lemma 2.3 gives

(3.3) p(t+zr,x,y,z)^0 when lmt< ＼z＼rsin m .

Write

<Zj(x+z£, y) = E＼.＼skz^fdiafa, y)lal + aj(x, £,y, z),

where zqR, ZzRn,xzX, x+z$eX and ysY. Then the condition (A-2) implies that

there is A>0 such that

(3.4) ＼&j(x,^y,z)＼^A＼zr＼^r

if zsR, %sRn, xzX, x+z^bX and ycY. Let U be an open subset of X such that

U^X, and put

Pit, x, e, y, z)=a+zrdtr-Ktm+Ej^ tm-jzlal£kz^d^ix, y)ia＼).

From Lemma 2.1 and (3.1) it follows that there are 80>0 and 5i>0 such that

P(t,x,g,y,z)=0 has only simple roots for (x)$,y)eQ(U;8l) if Q<z^30 or z [―<50,5o]

＼{0}and r=l, where /2(C7;3,) = {(a?,^2/)eC/Xi2BxF; Ifl^SJ. Since the aj(x,$,y,z)

are real-valued, P(/, x, f, ?/,z)=0 has only real roots for (x, f, y)sQ(U;di) if 0^z^do

or ―5o^2^5o and r=l. Therefore, we can write

P(t+zr, x, $, y, z)= njL, (f-/ly(a?,|, y, 2))

for (a?,f, y)eQ(U; 30 and O^z^<So, where /l^a;,f,2/,z)^^2(a?, $,y,z)^--- ^Am(x, $, y, z).

It follows from Lemma 2.1 that there is c>0 such that

(3.5) ＼Aj(x,£,y, z)-lj{x+z£, y, z)＼^czr

ii (x,$,y)£Q(U; 5x) and 0^z^50. Moreover, by Lemma 2.1, (3.3) and (3.4) we

have P(t+zr, x, £,y, z)^0 for (x,£,y)eQ(U;di), lmt<0 and z£{―80,80],if necessary,

modifying 80 and 8t. Let ^g/2, 2 (0,<50/2] and (a?,f, y)zQ(U;8i), and write

P(*+(z+sOr+zr-1sr, *, I, y, z+sQ=sfl(Pu,z.,x,s,y)(z,Q+o(l)) as s|0,

where Pu,z;x,t,y)(j>Q^R in (r, Q. Then Pu^x.s.vfc,^) is a homogeneous polynomial

in (r, C) of degree n and satisfies

(3.6) iW-MofoO^O i/Imr<0 ≪wJ CeiS.

In fact, P(zr-1t+zr,x,$,y,z) is analytic in (£,I) and microhyperbolic with respect

to (-1,0)gJ?2 near (i,z)=(zl~rt,z). This verifies (3.6) (see, e.g., Lemma 8.7.2 in

[5]), which easily follows from Lemma 2.4 and Rouche's theorem. Note that
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Pu.z;x,?.v)(Tr,Qcan be defined and satisfies(3.6) when r―1 and 2=0. Put f(s,C,

(t,x, T,£,y,z))=^P(t+(z+sQr+zr~lsz,x, £,y,z+sQ for szC with ImsiO and |s|^

So,re[1/2,2], C [0,l], teC with Imf^O, {x,%,y)sQ(U;5{) and ze(O,s], where so^5o/2

and £^50/2. If r<l, then it is easy to see that (i) / is analytic in 5 for Ims<0,

(ii)f(s,C,(t,x,T,$,y,z))i=Q when Im*<0 and sgR, (iii)for any T>0 there is e>0

such that f(s,Z,(t,x,T,£,y,z))^Q when |s|=s0, I^I^Tand ≪e(0,e],and (iv) f(s,O,

(t,x,r,$,y,z))^0 when Im5<0. In fact,the assertions (i),(ii)and (iv)are obvious.

Since ＼＼mm^t~mP{t,x,!;,y,z)= l, the assertion (iii)is also obvious. Therefore, it

follows from Lemma 2.5 that

(3.7) P{t+(z+sQr+z^sr, x, £,y, z+sQ^O

if r<l, Ims<0, ＼s＼^so,re[l/2,2], Ce[O,l], Imf^O, ＼t＼^T,(a;,f,?/) i3(f/;51) and ze

(0, e]. Next let us consider the case where r=l. From (3.6), for any (t0,x0,g0,yo)

eRxUxRnxY with |?0|^,/2 there is c>0 such that

iW.^0>CU)^0 i/C [O,c].

Therefore, there are so>O, e>0 and a neighborhood K of y0 in F such that

(3.8) P(t + (z+sQ+sr, x, f, ?/,z+sQ^O

if |s|=s0, re[l-e,H-e], C [0,c], |*-*0|<e, (x, f, y)GXxRnX V, ＼x-x°＼<e, |f-f°|<£

and 2 [0,e]. For we can write

P(*+Cz+sC)+sr, a;,£,y, z+sQ = ZT-o sJPj(t,x, $, y, z, v,O+o(s"°)

as s->0,

where P^h, x°,$°,y0,0, r, O^o.o^o.^r, Q. Since P/^o, a;0,f°,j/0,0,r, Q=0 for j<

Ho, we have (3.8). Similarly, it follows from Lemma 2.5 that (3.7) is valid if r=l

and Ims<0, ＼s＼^so,re[l-e,l+e], C [O,c], Im^O, |/-ro!<e, (x,£,y)£XxRnx V,

＼x―x°＼<e,|f-f°|<s and ze[0,e]. Since f7 and F are compact, for any T>0 there

are positive constant c, s0, e and 5i such that (3.7) holds if r^l, Ims<0, |5|^so,

re[l-e, 1+e], C [O,c], Im^O, ＼t＼^T,(x,$,y)eQ(U;80 and e (0,e]. This implies

that P≪.,.*.f.w(l,C)=£0if ^ei2, KKT, 2G(0,£), {x^,y)£Q{U;d,) and Ce[O,c]. In fact,

if there are heR, zo£(Q,e),(a?0,f°,y0)^(C/';51) and Co [O,c] such that |/0|<Tand

･P≪o.≪o;^.≪o.vo)(l≫W=0, then Rouche's theorem gives a contradiction to the fact that

(3.7) is valid when r^l, Ims<0, ＼s＼^so,re[l-e,l+e], C [0, c], Im^O, ＼t＼^T,

(x,(;,y)£.Q(U;5i) and z (0, s]. This proves the assertion.

Now we can prove Theorem 1. It is obvious that

Q=P(Aj(x, £,2/,2+sC)+(^+sC)r, a?,£,?/,2+sQ

=s"(PWj.(;c,f,3/,z),z.;c,f,t,)(21-rs-1(/IX^sf,y, z+sQ

-AAx,e,v,z)),Q+o(l)) as 510,
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where p. depends on (x, f, y, z) and j, if (x,$,y)eQ(U;81), C6[0, c] and ze(0, e).

Therefore, we have

(3.9) dsAj(x,$, y, z+sQ＼s=,<zr-x

when Os,£,?/)£(£/;dO, Ce[O,c] and ≪ (0fe). It follows from (3.2), (3.5) and (3.9)

that there is C>0 such that

(3.10) *j(x + z£,v)-X](x, y)S.Czr if (x, $, y) Q(U;o1) and ze[0, e].

Replacing x+z$ and x with x and x + z$ in (3.10), respectively, we have, with some

constant C>0,

＼Xj{x＼y)-lj{x＼y)＼^C'＼x1-xT if x＼x2eU and ysY.

This Droves Theorem 1.

4. Proof of Theorem 2.

From Lemma 4.1.1 in [4] it follows that there is C>0 such that

＼d{p(t,x,y)＼l＼p{t,x,y)＼^C＼lmt＼-i

if lmt<0, xqX and ysY. Therefore, it suffices to prove (1.1) for ;=0. In fact,

the Gauss theorem implies that d{p(t,x, y) satisfies (A-l)'. First let us consider

the case where r―1. Write

(l+i)p(t, x, y)=pi(t, x, y)+ipi(t, x, y),

where ph (h=l,2) are polynomials in t with real coefficients for (x,y)£XxY.

Then the Hermite theorem implies that ph(t,x,y)^Q if Imt^Q, xzX and yeY.

From (A-l)' it follows that ＼ph(t,x,y)＼^21/2＼p(t,x,y)＼if lmt<0 and (x,y)eXxY.

In fact, it is obvious that ＼t―a＼j＼t―a＼^lif Im£<0 and Ima^O. Therefore, it

suffices to prove Theorem 2 in the case where p satisfies (A-l) and (A-2). Assume

that p satisfies (A-l) and (A-2). Then, with the notations in § 3, similarly we

have P(t+s,x,e,y,sQl=O if Ims<0, ＼s＼^so,Ce[-c,c], Imf^O and (x, £,y)sQ{JJ;5i).

So there is c>0 such that Pit,x,$,y, z)^0 if -2^Im£<0, (x,$,y)£Q(U;d1), zeC

and 1^1^c|Im t＼. Since Pit, x, £,y, z) is a polynomial in (t,z), it follows from Lemma

4.1.1 in [4] that there is C>0 such that

＼mPit, x, ?, y, z)＼.-ol＼P(t,x, $, y, 0)|^C|Im t＼~^

if -l^Im^<0 and ix,^,y) Q(U;81). It is obvious that

d{%i(l+zdt)m-'p(t, x+z£, y)-P(t, x, £,y, 2))|,-o=O

for O^h^m―1. So we have, inductively,
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(4.1) ＼&$p(t,x+ zS,y)U=ol＼P(t,x, y)＼^C＼lmt＼^~h

if -l^Imf<0, (x,Z,y)sQ{U＼bC) and O^h^m-l. It is obvious that (4.1) holds

for ;=0 and h=m if dxctj(x,y)(＼a＼=m) are continuous. Therefore, Theorem 2

immediately follows from Lemma 2.6 if r―1. Next consider the case r<l. Put

Pit,x,£,y)=tm + E?.i tn-JZuMfdZafa v)l^-,

f(s,?,(t,x, y,v))= P(t+sr + va>sr＼$＼r,x,s£,y)

for Imf^O, Ims^O, (^f.^elx^xF and v>0, where a≫=exp[f(r-l>/2] and

lr = l. Let (fo,a?0,2/≪)i?XlxF. Then we have the following: (i) f{s,%,{t,x,y,v))

is analytic in s if Ims<0. (ii) For any open subset U of X with U<^X, there

are positive constants vv, 80 and 8t such that f(s,^,(t,x,y,vv))^0 if se[―≪50,50],

Im£<0 and (a;,f,y)zQ(U ;<5i).(Hi) There are positive constants c, so and e and a

neighborhood F of y0 in F such that so^<5o,c^5i and /(s,f,(t,x,y,vo))i=Oif [s|=

So,(t,x,£,y)£CxXxRnxV, ＼t-to＼^e,＼x-x°＼^sand |f|^c, where vo= vi7with U=

{xeX; ＼x-x°＼<e}.(iv) /(s,0,(t,x,y,v))i=0if Ims<0. In fact, we have

/</+sr + 1W|?|'>+s?)?/)^Q

if ImKv|srifrsin(l-r)jr/2, s i? and x+s£eX. Since

iflX^sf,?/)i^A|Sr'-|fiTOr

for (x,£,y) XxRnxY, seR and x+5feX, where p(t,x+g,y)-P(t,x,£,y) =

2 =i≪^(^,I, y)tm~j,the assertion (ii)easily follows from Lemma 2.1. Write

P(to+srT, x°,s£,i/o)=s"'<P(to.ao,Vo)(T,O+o(l)) as s-^0 ,

where P≪0,xo>yo)(r,?)^0 in (r,f). Then we have no^mr and

iV*o,yo)(r,f)= Lyr+i≪,-,0T^adid"xp(t0,x°,yo)l(jlal)

if [io<mr. Therefore, it follows from Lemma 2.4 that P(£o,^oi2/o)(l,0)^0. One can

also prove that Pa0,xo,v0)(T,£)=Pito,xoiyo)(T,0)if fxo<mr. We can write

P(t+srr,x,s?,y)=E,Sll0s"Mt,x,y,T,f)+o(s"≫) as s^O,

/X^o,a;0,yo; t,£)=0 for fi</i0,

fpo(to,x°,y0; z, )=Puo,xo,Vo)(t,£).

This verifiesthe assertion (iii). From Lemma 2.5 it follows that f(s,g,(t,x,y,v0))

^0 if Ims<0, |s|^s0, (t,x,$,y)eCxXxRnxV, Im^O, |^-/o|^e, ＼x-x°＼^eand

Ifl^c. Therefore, there are positive constants e' and 5' such that P(t,x,s£,y)i=0

if (^.l.^eCxIxrxF, |Re*-£0|^s', -e/^Im^<0, ＼x-x°＼^s,|||^l, scC and

s＼r^3'＼lmt＼.In fact, we have {(t,s$);IRe^-^l^s', -£/^Im^<0, seC and ＼s＼r^

8/＼lmt＼}c:{(t+sr(l+v0(ocr＼i＼r),csl):＼t-to＼^s,Im^O, Ims^O, Im^+Ims<08 |s|^s0
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and |=±f} if £e/2B, |£|^1, 3s'^e, 5'<(c~r+V0)""1 and dV^crs0. Applying Lemma

4.1.1 in [4] to the polynomial P(t,x,s$,y) in 5, we have

(4.2) ＼d{P(t,x, s£,y)＼..ol＼P(t,x, 0, y)＼̂ Qlm t＼^/r

if (t,x,£,y)zCxXxRnxV, IRe^-^ol^s', -e'^lmt<0, ＼x-x°＼^s, |f|^l. Since

<HP(t, x, sg, y)＼,=0=(Hp(t, x+sg, y)＼g=0for j^k, (4.2) and Lemma 2.6 prove the first

Dart of theorem 2. Then the second Dart of Theorem 2 is obvious.

5. Proof of Theorem 3.

Write

(5.1) P(to+ST,x°+s^y0)=sfl(pito,xo,yo)(T,^+o(l)) ass->0,

and put a=A≪0.Wl.°) (eC＼{0}) and

Pi(t,x, v) + ip*(t,x, y) = a(l+i)p(t, x, y),

where pj(t,x, y) (j=l, 2) are polynomials in t with real coefficients. Then it follows

from the Hermite theorem that pj(t,x,y) (j=l,2) satisfy (A-l), and that

pj(to+ST, x°+s£, yo)=s"(apa0,xO;y0)(T,$)+o(l)) as s->0.

Thus we have r(pUo,xo.jyo),'9)=r(pjaoiXo.yo),8)(; = 1,2). On the other hand,

r(Puo,x<>;yo),$)is equal to at least one of r(pjU(tiXo.yo),-9)
(; = 1,2). Therefore, it suf-

fices to prove the theorem under the assumptions (A-l) and (A-2)'. Assume that

p satisfies (A-l) and (A-2)'. Put

P(t, x, £,y, s,u) = (l+svmt)m-1(tm + Tl?^ tm-JZ^msM?d"xaj(x, y)l<xl).

Then, for any UmX and any v>0 there is d0=d0(U, v)>0 such that

(5.2) P(t,x,S,y,s,v)*0

if Im^O, (x,£,y) UxRnxY, |£|^2 and s [-50,30]. In fact, we have

(l+sv|£＼dt)m-lp(ttx+s$, y)-P{t, x, $, y, s, v)= 27=1 a}{x, f, y, s, v)tm^,

aj(x,t,y,s,v) = o(sm＼zn

if (x,$,y)eUxRnxY, |£|^2, se[-l,l] and x+s$eX. Thus Lemmas 2.1 and 2.J

give (5.2), applying the same argument as in §3. Since ^m in (5.1), we have

P(to+sz, x°,£,y0)s, y)=s"{(l+v|fW-ip^wiT, f)+o(l)} as s-+0.

From Lemma 2.2 or its proof, it follows that

(5.3) {(r, f)e^ra+1; (v-UmWl $)ery}<zr(Pw *)cr,,

where
rv=ra.-≪s)=r((l+^＼dT)m-1p(t.x.y)(T,£),-5).

For a compact subset M o:
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AAt0.*o;vo>≫^)n{(r,£) /ZB+1; If1^1} there are vo>O and a compact subset M of

^<.t0,xo,y0yv0)such that {(r,f);(r+c2(m)y0|f|,f)eAf}cM, where M denotes the interior

of M. It is easy to see that there are so>O, e>0 and a neighborhood V of y0 in

Y such that

if ＼t―to＼^s,＼x―x°＼^e,y£~V,＼s＼=sQand (r, £)eM. We may assume that M is con-

vex and # M. So we can apply Lemma 2.5 and obtain

(5.4) P(t+ST,x,£,y,s,vo)^O

If Imf^O, ＼t-to＼^e, ＼x-x°＼^e, ysV, Ims<0, |5|^so and (r,f)eM. Assume that

there are t^R, xxzX, y^V and (tu$1)^M such that ＼ti―to＼<e,＼x1―x°＼<eand

(l+vo|fI|3r)"l-1Ati.≪ii≫i)(Ti,fl)=O.Then there is d'>0 such that (r1±d',$l) M and

Kl+vol^lS.r-^.^^Xrj+^^O^c for teC with 1^1=5', where c>0. Rouche's

theorem implies that there are Si>0 and a function A(s) defined on [0,s^ such thai

|;(5)|<5' and

P(/i +5 Im X(s)-is(r1+Re JL(s)＼x＼£＼yu -is, yo)=O

for (Xs^Sl This contradicts (5.4). Therefore, we have MorUiX,y,vo) if (t,x,y)£

ExXxV, ＼t-tQ＼<s and [^―^°|<e. From (5.3) it follows that Mczr(pa,x.vh-9) iJ

(^,a;,y)ei2Xlx V, ＼t―to＼<eand |^r―a?°|<£.This proves the theorem.

We remark that one can easily prove Theorem 3 and, therefore, Theorems ]

and 2 if the coefficients aj(x, y) satisfy the condition (A-2) with k―m. In fact, one

has only to apply the above argument to P(t,x,%,y,s)={t-a)Sa)m + J^=1(t-(i)Sa)m--

xL＼a＼imslal$"dxaj(x,y)la＼,where l<a<l+8lm (^2), <w= exp[f(ff-:i>/2] and (-l)a =

exo [―imi＼.
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