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REMARKS ON HYPERBOLIC POLYNOMIALS

By

Seiichiro WAKABAYASHI

1. Introduction.

In the study of hyperbolic partial differential operators, it is important to in-
vestigate properties of the characteristic roots. Bronshtein [2] proved the Lipschitz
continuity of the characteristic roots of hyperbolic operators with variable coeffi-
cients, and he studied the hyperbolic Cauchy problem in Gevrey classes (see [3]).
Ohya and Tarama [7] extended the results in [2] and, also, studied the Cauchy
problem.

In this paper we shall give an alternative proof of Bronshtein’s results, which
seems to be simpler. Also, we shall prove the inner semi-continuity of the cones
defined for the localization polynomials of hyperbolic operators (see Theorem 3
below). In studying singularities of solutions the inner semi-continuity of the
cones plays a key role (see [8], [9], [10]). We note that our method can be appli-
cable to the mixed problem.

Let p¢, z, y)=t"+ X7, a(x, )™ be a polynomial in ¢, where the a,(z,y) are
defined for z=(z,, - - -, z2)e X and yeY, X is an open convex subset of R” and Y is
a compact Hausdorff topological space. We assume that

(A-1) p@t, 2z, 9)#0 if Im¢+0 and (x,y)e XX Y,
(A-2) 85eix,y) (|la|=k,1=j=m) are continuous and there ave C>0 and & with
0<0=1 such that

|0za,(z, y)—0zai(a’, v)| =Clz—a'|?

if lal=k, z,2'€X and yeY, where k is a nonnegative integer and 9=
(0/0z1) - - -(3]0zn) .

THEOREM 1. Assume that (A-1) and (A-2) are satisfied. Then, for any open
subset U of X with U€X there is C=C(U)>0 such that

24z, )= (=’ 9)| =Clz—2'|" for 1=j=m, x,2'e¢U and yeY,

where pt, z, y)= 17 (t— 2z, v)), 4z, V)= A, v)= - - <2ulx, y), and r=min (1, (£ +9)
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|m). Here UeX means that U is a compact subset of X.

ReMaRrk. Under the assumptions (A-1) and (A-2) below Bronshtein [2] proved
the above theorem. Theorem 1 was announced by Ohya and Tarama [7] who
proved it by the same argument as in [2].

THEOREM 2. Assume that
(A-1Y p(t, z,v)#0 if Im<0 and (z,y)eXXY
and (A-2) are satisfied. Then, for any open subset U of X with UeX there is
C=C(U)>0 such that

(L.1) 16103 p(t, , W1 D, , )| =C|Im #|=9='/"s

if 0=j=m—1, |a|=k, —1=Im¢<0 and (z,y)e XX Y, where r;=min (1, (k+d)/(m—J)).
Moreover, if 6=1 and 3z, v) (|la|=k+1) are continuous, then (1.1) holds for |a|
=k+1

ReMARK. The above theorem was announced by Ohya and Tarama [7] under
the assumptions (A-1) and (A-2).
Let us assume that (A-1) is valid and that

(A-2Y osaix,y) (la|=m) are continuous.
Define the localization polynomial pe,zu(z,€) of p at (f,z, y)e RXXXY as
pE+st, 2+5E, ¥)=5"(Pe.zn(t, E)+o1)  as s—0,

where pu.sa(c, £)£0 in (7, £)e R™'. Then pe,zy(r, &) is a homogeneous polynomial
of degree p. Moreover, it follows from Rouché’s theorem and Lemma 2.4 below
that

Det,zun(t, §)#0 if Imr#0 and £eR"

(see, e.g., Hormander [5]). We denote by I'(Pc,zy, 9) the connected component
of the set {(z, &) R™"; pu,zu(r, £)#0} which contains 9=(1,0)eR**'. For some
properties of hyperbolic polynomials and I'(p,z.4, 9) We refer to Atiyah, Bott and
Garding [1].

THEOREM 3. Assume that (A-1)Y and (A-2) are sartisfied, and let (to, 2°, yo)€
RXXXY. Then, for any compact subset M of TI'(Duyzog, D) there is a neighbor-
hood U of (to, 2° yo) in RXXXY suck that MCI'(pu,za, 9) for ¢, x, y)eU.

ReMARK. In [9] we proved the above theorem when the a;(x,y) are suffi-
ciently smooth.
In the rest of this paper we shall prove the above theorems.



Remarks on Hyperbolic Polynomials 19

2. Preliminaries.
Let p(t)=t"+ X7, ;4™ be a polynomial in ¢, where a;eC.
Lemma 2.1, Let q@t)= 3", b;t™, and write PO+ gO=T17s E—aj(by, - - -, bu)),

where the ayb, - - -, bn) are continuous functions of (b, »++,bwn)eC™. Then there is
@ positive constant C(m), depending only on m, such that

@) lasby, - -+, by)— | =Clm) max seam(|ba] 6+ B V™ 0] 4™), 1<j=m,
where a5=a;(0, ---,0).

Proor. There is an integer &, with 1<k,<m such that ajé{zeC; (hy—1A=
|z—al| <k,A} for 2<j=m, where A>0 is determined latter. Therefore, we have
| 6@~ la@) =(A2)"— ZTlbillel™ if |z—afl =(k—2""A.

It is easy to see that there is C’(m)>0, depending only on , such that
(Af2)™>m|b;l(1ad] + (ko —271) A)m~I

if 1=j=m, Az=C'(m)(|b;|"7+|b;|"™at]i=9™) and b;#0. Thus, Rouché’s theorem

shows that (2.1) with C(m)=(m~2-")C'(m) holds for j=1. Q.E.D.

In the proofs of theorems, we shall use Nuij's approximations (see [6]) and
need the following

LEMMA 2.2. Let p@&)=TIr, (t—al), where =al=---=a%. Then one can write
(A +s(@/de))™='p(t) =TTt —ay(s)) for se R, where a(S)=Saxs)=- - - Sam(s) and a;0)=a..
Moreover, there are positive constants c\(m) and c.(m) such that

2.2) ai(S)—aj-i(s)=ci(m)|s]| for seR and 2=<j=m,
2.3) 0< tlaj—ais)=cm)ls|  for +£5s>0 and 1=<j=m.

Proor. The first part of the lemma is obvious. Consider the case where
$>0. Similarly, one can prove the lemma in the case where s<0. Assume that
for a fixed / with 1=/=m—1 there is ¢,(/)>0 such that

2.4 ajs)~ds()zcl)s  for s>0 and 2<j=I/,
where (1+s(d/dt))~'p(t) =17, ({—ak(s)) and A(S)=al(s)=---=al(s). Put

f@, )= +s(d|dt))p(®)|(1+s(d]dt)}~p(t)
(=1+sZ7 E—aj(s)™).

If s>0, 1=k=m and a}_(s)<t<ai(s), then
1+ms(t—al(s) ' < f@, $)<1+sE—al(s))!  when h=1 .
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1+ (m—h+1)st—ah(s) ™ +s(t—af () <Sf(E,3)
< Ap+s(t—ab(s) st —ah-, () when 2=h=m,

where ai(s)=—oco0 and Ar=1 if £=2 and An=1+(h—2)s(ah_(s)—ah—(s))™" if 3=h=
m. Therefore, we have

ah-(8) < akH(s)<a(s) ,

al(s)—ms < at™(s)<al(s)—s when h=1,

ak(s) — 27 (Xn+(m—h+2)s—[(Xn— (m—h+2)s)*+45sXn]'"*)
L akr(s) < ah(s)— F( Xy, 25/ An)/2 when 2=h=m,

2.5)

where Xn=ak(s)—akb_,(s) and F(u, v)=u-+v—(u’+v?)"? if s>0 and ah_($)<ak(s). It
is obvious that at*'(s)=al(s)=al*(s)=- .- Zakl(s)=dk(s) for s=0. Since (Xn—{(m—
/z+2)s)2+4an=(Xh—(m—h)s)2+4(m—h,—l—l)szg(Xn—(m—h)s)z, (2.5) gives

(2.6) 0=ai(s)—ab" ' (S)=(m—h+1)s  for s=0 and 1=h=m.

Moreover, it follows from (2.4) and (2.5) that

2.7 z+1( _ z+1( > S (h=1),
@7 BRO = 2| o), 26D =24 D)2 Q=h=D),

since F(uy, v,)=Fus, v;) for uzu.=0 and v,=2,=0. (2.7) shows that (2.4) is valid,
replacing / with /+1, where ¢,(/+1)=min{l, Fle, D), 2c:(D)jd—2+c: )2y (>0).
This proves (2.2). With ca(m)=m(m—1) (2.3) follows from (2.6). Q.E.D.
LemMA 2.3. If p@)+#0 for Im¢<0, then
A+s(dld)p)#0  for Imt<0 and Ims=0.

Proor. Let p(f)=T[]"™, (¢—a;), where Ima;=0. Then we have
(L+s(djd)pt)=pE) L +s 27w (E—a)™)

It is obvious that Im (¢—a,)~'>0 and Ims~'=0 if Im¢<0, s+0 and Ims=0. This
proves the lemma (see [6]). Q.E.D.

LEMMA 2.4. Let (to, 2°, yo)e RX XX Y, and assume that (A-1) and (A-2) are
satisfied. If dipte, 2° yo)=0 for 0=h<! and 3;p(t, =°, 1)#0, then

Moz p(te, 2° yo)=0 when j<I and |a|<{—Hr",

where v =min (1, (k+9)/1).

Proor. The lemma is well-known if (A-2) is satisfied (see, e.g., [5]). And

we can prove the lemma similarly. Assume that there are j, and «° such that
jo<l, |a®|<(—joyr'" and 8{%9%p(te, 2° v0)#0. Then we have v’=min {|a|/((—7]);
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0105 p(to, 2°, y0)#0, j<I and |a|<k}<7’ (=1). Write v”=bla, where @ and b are
positive integers and mutually prime. Note that 1=b<a. It is easy to see that
Pllots™', @'+, yo)=q(z, €)' +0(s") as 510, where gz, &) =ct!+ Tocjuya cAE)T,
c=2a}p(t,, z°, yo)/l'#0 énd Cj(f):z.'hxl:bj 0205 plto, x°, Yo)-E*[({—aj)lal). By assump-
tion there is £°¢ R such that all ¢;(£°) do not vanish. So there is r,¢ C\{0} such that
g(z0,£°)=0. Then we have g(z, +£°=0 if *=(x1)z{. On the other hand, (A-1)
implies that ¢(r, +£°+0 if Imz<0. This gives ¢=b=1, which contradicts a>1.
Q.E.D.

LEMMA 2.5. Let M be an arcwise connected subset of R, U a Hausdorff to-
pological space and S={seC;|s|<s, and Ims=0}. Let f(s, w,u) be a continuous
Junction on SXMXU which satisfies the Jollowing conditions; (i) f(s,w,u) is ana-
ytic in s if Ims<0, (ii) there is a dense subset U’ of U such that S(s,w, u)=0 for
SeSNE, welM and uel, (i) f(s,w, )0 if |s|=so, and (iv) there is w'e M such
that f(s,u®, u)#0 if Ims<0. Then

s, w, )0  if Ims<0.

ProoF. Assume that there are (s, w", )eSXMXU such that Ims, <0 and
J(su,w', u)=0. Since f(s,w',%,)#0 in s, applying Rouché’s theorem (or a variant
of the Weierstrass preparation theorem), we may assume that u,elU’. Let
{w(@)}osos: b a continuous curve in M satisfying w(0)=w' and w(l)=w’. Then it
follows from the conditions (i)-(iii) that there is a continuous function s(¢) defined
on [0,1] such that s(0)=s, and f(s(), w(8), u,)=0 for #e0, 1]. Observe that Im s(@)
<0 and |s(9)|<s, for 0¢[0,1]. Therefore we have f(s(1), w®, #,)=0, which contra-
dicts the condition (iv). This proves the lemma. Q.E.D.

The following lemma is elementary (see, e. g., [10]).

Lemma 2.6. Let V, be the vector space of all homogeneous polynomials with
real coefficients in & of degree I. Then there are DiE), -, pE)eV, such that
{Di(€), -+, &)Y is a basis of Vi, where v=dim V.

3. Proof of Theorem 1.
Put
Pz, y, 2)=(A+20)"plt, z,v)  for zeC with Im z=0 .

where 1"=1. By Lemma 2.2 the equation (¢ z, v, 2)=0 has only real roots for
(z,y)e XX Y, if 2=0 or zeR and r=1. Moreover, if z=0 or z¢ R and r=1, then
we have
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(3.1 @, y, D)= Az, v, 2)=clm)lz|”, 2

<j=
(3.2) [25(z, v)— 2=, ¥, 2)| =co(m)|2|", l=j=

j=m,
j=m,

for (z, y)e XX Y, where p(¢t, z, v, 2)=T17 (t— Az, ¥, 2)) and Az, y, 2)<i(z, v, 2)=" -
<in(z,v,2). If 2=0 and <1, then Lemma 2.3 gives
(3.3) pE+2", x,y,2)#+0  when Imt<|z| sinrr.
Write
aj@+2¢, y)= Das 29€0%5a5(x, y)lal + )z, &y, 2),

where zeR, eR" reX, x+2£eX and yeY. Then the condition (A-2) implies that
there is A>0 such that

(3.4) laj(x, &y, 2| = Alz|™ g™
if zeR, £eR™, zeX, xz-+26e€X and yeY. Let U be an open subset of X such that
UeX, and put

P, z, &y, 2)=(14+270)™ (" + DTt ™77 X a1 2716°050(z, )[a)) .

From Lemma 2.1 and (3.1) it follows that there are §,>0 and §,>0 such that
P(¢, & v, 2)=0 has only simple roots for (z, & v)e2(U;d,) if 0<z2=d, or z€[—do, do]
\{0} and r=1, where 2(U;d)={(x, & v)eUXR"XY;[¢|=d,}. Since the a,(x,§,v,2)
are real-valued, P, z, &, v, 2)=0 has only real roots for (z, &, y)eQ(U;é,) if 0=2=4,
or —8,=2=¢, and r=1. Therefore, we can write

P(t+zr: Z, 57 Y, Z)‘—-‘ ngn:l (t_A7(x, Sy Y, Z))

for (z, & v)eU;é,) and 0=2=4,, where A,(x, &, v, 2) =Mz, &, ¥, 2)= - - - =dnlx, &, ¥, 2).
It follows from Lemma 2.1 that there is ¢>0 such that

(3~ 5) IA]'(.'L‘, Ev Y, z)—zj(x’*—zfy Y, Z)l éCZr

if (z, & v)e2(U;46,) and 0=z=§,. Moreover, by Lemma 2.1, (3.3) and (3.4) we
have P(t+2", =, &, v, 2)#0 for (x,& v)e2(U;d,), Im£<0and ze[—d, &), if necessary,
modifying 8, and 8,. Let feR, 2¢€(0,5,/2] and (=, &, y)e2(U;4,), and write

P(t+(z+sE) +2" st 2, &, 9, 2+S0) =" (P ziz,e.0x(t, ) +0(1))  as sl0,

where Py zen(t, %0 in (r,{). Then Py ,aey(r,§) is a homogeneous polynomial
in (r,¢) of degree p and satisfies

(3.6) Pnmen(@ %0  if Im7<0 and LeR.

In fact, Pz’ +%", =&, v, £) is analytic in (f, Z) and microhyperbolic with respect
to (—1,0)eR? near (f,z)=(2*""t,2). This verifies (3.6) (see, e.g., Lemma 8.7.2 in
[5]), which easily follows from Lemma 2.4 and Rouché’s theorem. Note that
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Py zze(r, ) can be defined and satisfies (3.6) when =1 and z=0. Put f(s,¢,
tx,7,89,2)=Pl+@E+s0) +2""st,z, &, y,2+sL) for seC with Ims=0 and [s|=
So, T€[1/2, 2], Ce[0,1], teC with Im£=0, (z,&,v)e2(U;d,) and ze(0, <], where $,=5,/2
and ¢=0,/2. If r<1, then it is easy to see that (i) f is analytic in s for Im s<0,
(i) fGs, & (¢ =, 7,6, 9,2)#0 when Im#<0 and seR, (iii) for any T>0 there is ¢>0
such that f(s,{, (¢ x, 7,6, v, 2)#0 when |s|=s,, |{|=T and ze(0,¢], and (iv) f(s,0,
(¢, z, 7,6 v,2)#0 when Im s<0. In fact, the assertions (i), (i) and (iv) are obvious.
Since limy..t™P(¢, =, £, y,2)=1, the assertion (iii) is also obvious. Therefore, it
follows from Lemma 2.5 that

3.7) P(t+(z+s0) +2""'st, 2, &, y, 2+50)#0

if <1, Ims<0, [s|=s,, 7€[1/2,2], Le[0,1], Im¢=0, [¢|=T, (z,& v)eR(U;d,) and ze
(0,¢]. Next let us consider the case where r=1. From (3.6), for any (&, °, &, ¥o)
eRXUXR'XY with |£°|=<6,/2 there is ¢>0 such that

Py os0,00,55(1, 0)#0 if Lel0, c].
Therefore, there are s,>0, ¢>0 and a neighborhood V of y, in Y such that
(3-8) P(t+(z+s0)+se, 2,6, y, 2+0)+0

if |s|=5,, v€[l—¢, 14¢], [0, c, |t—tol<e, (x,& YeXXR "XV, |z—z°<e, |€—E<e
and ze[0,¢]. For we can write

P(t+(z+s0)+st, 2,6, v, 2+50)= 15, s Pyt z, &, v, 2, 7, £) +0(s*)
as s—0,

where P, (%o, 2% £°, 40, 0, 7, )= Prp0a0,0009(7, £).  Since Pjto, 2° &° ¥0, 0, 7, )=0 for j<
o, we have (3.8). Similarly, it follows from Lemma 2.5 that (3.7) is valid if »=1
and Ims<0, |s|=s,, te[l—e¢ 1+c], Le[0,c), Im¢=0, [t—il<e, (x,& 1)eXXR"XV,
lz—x°|<e, |E—E°|<¢ and z€[0,¢]. Since U and Y are compact, for any 7>0 there
are positive constant ¢, S,, ¢ and g, such that (3.7) holds if 7=1, Ims<0, |s|=s,,
te[l—e 14¢), Ce[0,cl, Im¢=0, [H=T, (z,& v)e2(U;d,) and ze(0,¢]. This implies
that Py zzen(l, #0 if teR, [t|<T, 2€(0,¢), (z, & v)e2(U;4,) and Ce[0,c]. In fact,
if there are #eR, z€(0,¢), (2% &, 90)eQ(U;4d,) and {o€[0, ¢] such that |4|< T and
Py zpa, 0091, £0)=0, then Rouché’s theorem gives a contradiction to the fact that
(3.7) is valid when 7=1, Ims<0, [s|=s,, t€[l—¢, 1+¢], Ce[0,c], Imt=0, |¢=T,
(x, & v)e2(U;0,) and ze(0,¢]. This proves the assertion.
Now we can prove Theorem 1. It is obvious that

0=P(A)x, &y, 2+S0)+(z2+5L), =, &, v, 2+50)
=SP(P(Aj(z,e.y,z),z;z,e,y)(zl_rs—l(/lj(x. £y, 2+sC)
— Az, &, 9,2),0)+o(1))  as sl0,



24 Seiichiro WAKABAYASHI

where g depends on (z,&,9,2) and j, if (x,& v)eQ(U;d), Ce0,¢] and z€(0, ¢).
Therefore, we have

(39) as/lj(.l', Er y’ Z+SC)]S=0<ZT—I

when (x, &, y)e2(U;6,), Le[0,¢] and ze(0,¢). It follows from (3.2), (3.5) and (3.9)
that there is C>0 such that

(3-10) Aw+28, y)— A2, v)=C2" if (,§1)eQU;6) and ze[0,¢].

Replacing z +2¢ and x with z and z+2¢ in (3.10), respectively, we have, with some
constant C’ >0,

|2, y)—2;(x?, v)| =C' |2 — z?|” if 2, z2%eU and yeY.

This proves Theorem 1.

4. Proof of Theorem 2.
From Lemma 4.1.1 in [4] it follows that there is C>0 such that
[01p(t, z, v)|/|p(t, 2, v)| =C|Im £[~

if Im¢<0, reX and yeY. Therefore, it suffices to prove (1.1) for j=0. In fact,
the Gauss theorem implies that o/p(f, x,v) satisfies (A-1)Y. First let us consider
the case where r=1. Write

(1+l)p(l" Z, y):pl(t: Z, y)+lp2(t) Z, y) ’

where pn (A=1,2) are polynomials in ¢ with real coefficients for (z,y)eXXY.
Then the Hermite theorem implies that pat, z, ¥)#0 if Im#+0, zeX and yeY.
From (A-1)Y it follows that |pa(t, z, ¥)|=2"%|p(, %, )| if Im¢<0 and (z,y)eXXY.
In fact, it is obvious that |f—al/[{—al=1 if Im¢<0 and Ima=0. Therefore, it
suffices to prove Theorem 2 in the case where p satisfies (A-1) and (A-2). Assume
that p satisfies (A-1) and (A-2). Then, with the notations in § 3, similarly we
have P(t+s,x, &, v9,s0)#0 if Ims<0, |s|=s,, {e[—c, c], Im¢=0and (z, £, y)e2(U; 6,).
So there is ¢>0 such that P, x,§, 9,20 if —2=Im#<0, (x,& v)e2U;s,), zeC
and |z|=c|Im¢?|. Since P{,z,¢&, v, 2) is a polynomial in (¢, 2), it follows from Lemma
4.1.1 in [4] that there is C>0 such that

|0I02P (¢, x, €, Y, 2)|s=o/ [P, 2, &, ¥, 0)| =C|Im ¢| -2
if —1=Im¢<0 and (z, &, v)e2(U;4,). It is obvious that
a{ag((l—{—zat)m_lp(tr $+ZE, y)—P(tr Z, Ev Y, Z))lz:OZO

for 0=2=m—1. So we have, inductively,
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4.1 0022, © + 28, Y)la=ol 1P, @, )| =CIm 2] ~7~"

if —1=<Imz<0, (z,& v)e2U;d,) and 0=h=m—1. It is obvious that (4.1) holds
for j=0 and Z=m if 82aix,v) (Jla|=m) are continuous. Therefore, Theorem 2
immediately follows from Lemma 2.6 if r=1. Next consider the case r<1. Put

P(t, 2, &) =t"+ 2 "7 Lz §0505(z, v)lal
f(s,6 (¢t 2, 9,) =P+ +vos"IE]", 2, 56, y)

for Im#=0, Ims=0, (x,& v)eXXR"XY and »>0, where o=exp [i(r—1)r/2] and
1"=1. Let (f, 2°, yo)e RX XX Y. Then we have the following: (i) f(s, &, (¢ z,v,v)
is analytic in s if Ims<0. (ii) For any open subset U of X with U€X, there
are positive constants vy, o and 8, such that f(s,& (¢, 2, v, v0)#0 if se[—do, dd],
Im#<0 and (x,§&, y)e.Q(U;(S,). (iii) There are positive constants ¢, s, and ¢ and a
neighborhood V of v, in ¥ such that s,=d, ¢=d, and f(s,&, (¢, z, ¥, v0))#0 if [s|=
So, (£, 2, &, Y)ECXXXR"XV, |t—ti|Z¢, |lz—2°|=¢ and |€|=c, where vo=vy with U=
{zeX;|lz—x'|<e). (iv) f(s,0,(, z, v, v)#0 if Ims<0. In fact, we have

p+s"+vos™|E]T, x+sE, y)#0
if Imt<v|s|"|¢]" sin 1—7)x/2, seR and x+séeX. Since
@z, s&, y)| = Als|™ ™"

for (z,& y)eXXR"XY, seR and z+séeX, where p{, z+E y)—P@ 6 v)=
nm, ay(x, & y)™7, the assertion (ii) easily follows from Lemma 2.1. Write

Pto+5"7, 2°, SE&, Yo) =" Pitg.a0.00(7, &) +0(1)) as s—0,
where P, z0.09(7, £)#0 in (z,€). Then we have go=mr and
P(tom",vo)(fr 5): Zir+\«1=m] rfé“aiﬁzp(to, z°, ?/0)/(_7!(1!)

if go<mr. Therefore, it follows from Lemma 2.4 that P, myy(1,0)#0. One can
also prove that P, 040(t, £) =Py a0up(t, 0) if po<mr. We can write

P@+5"t, %, 6, Y)= Dusu, S, x, y 57, 8) +o(s™)  as s—0,
Sulto, 2°% 9037, 6)=0 Jor p<po,
f#o(tﬂl :L.O’ Yo, T, s):P(LO,xO_yO)(T, S) .

This verifies the assertion (iii). From Lemma 2.5 it follows that f(s, &, (¢, z, ¥, v))
+0 if Ims<0, |s|=s,, ¢ 2,& Y)eCXXXR*"XV, Im¢=0, [t—t]=e, |z—a’|=¢ and
|&|=c. Therefore, there are positive constants ¢’ and ¢ such that P(¢, z, s§, y)#0
if (¢, x,89)eCXXXR"XYV, |Ret—t|=e/, —¢/’=Im <0, |[z—a°|=e, |£]=1, seC and
Is|"<d’|Im¢|. In fact, we have {(£,s£); |Ret—t|=¢/, —¢’=Im?<0, seC and [s|"=
& Imt)}c{(t+s"(L+vowc™|E]7), csE); |t—to| ¢, Im =0, Ims=0, Im¢+Ims<0, |s|=s,
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and é==+¢} if £eR", |£|<1, 3¢/ =¢, ' <(c" )™ and &'’ =c"s,. Applying Lemma
4.1.1 in [4] to the polynomial P(¢, x, s&, v) in s, we have

4.2) 1P (t, @, 5, ¥)ls=o/ |IP(t, 2, 0, )| =C|Im | ="

if (¢ 2&9)eCXXXR"XV, |Ret—t)|=¢/, —¢/=Imt<0, |z—2z°|=e, |&]=1. Since
GIP(t, x, SE, y)|seo=0{ p(¢, £ +5E, y)|s=o for j=k, (4.2) and Lemma 2.6 prove the first
part of theorem 2. Then the second part of Theorem 2 is obvious.

5. Proof of Theorem 3.
Write
(5.1) D(botst, 2+, o) =S"(Pepovun(t, E)+0(1))  as s—0,
and put a=pq,myy(l, 0) (€C\{0}) and
Dit, @, y) +ipe(t, x, y)=a(l+i) pt, x, v)

where p;(¢, z, y) (j=1, 2) are polynomials in ¢ with real coefficients. Then it follows
from the Hermite theorem that p;(t, z,v) (j=1,2) satisfy (A-1), and that

pj(to +ST, xo ‘|"S§, y0)=3”(6-¥p(¢0,zo;yo)(7, $)+0(1)) as S—)O .

Thus we have I'(Pyaouy, 9)=I Ditprwys9) (7=1,2). On the other hand,
I'( P 2009, 9) is equal to at least one of I'(Djee2009, 9) (7=1,2). Therefore, it suf-
fices to prove the theorem under the assumptions (A-1) and (A-2). Assume that
p satisfies (A-1) and (A-2). Put

Pt 2,8, 9,5, ) =(1+su[gl0)m (" + T7er 779 Ty am S 6°050,(m, y)]al) .
Then, for any Ue€X and any v>0 there is d,=d,(U, v)>0 such that
(5.2) Pt x, & y,5,v)+0
if Im#=0, (z,&,v)eUXR"XY, |¢|=2 and se[—d,,d,]. In fact, we have

(1 +SV}EI3L)m_IZ"(L $+S$, y)_P(t) Z, 59 Y, S, V)=ZJ7!L=1 dj(x’ 59 Y, S, U)tm_j s
@iz, & v, s, v)=0(s"|€|™)

if (z,69)eUXR"XY, |£|=2, se[—-1,1] and z+steX. Thus Lemmas 2.1 and 2.2
give (5.2), applying the same argument as in §3. Since p=m in (5.1), we have

Pltotsz, 2% & o, 5,1)=5"{(L+[£]0)"Prpaan(c, ) +0(1)}  as s—0.
From Lemma 2.2 or its proof, it follows that
(53) {(T’ E)GR"+1 ; (T_Cg(m)U]EI, E)GPV}CF(p(t.J:;!/)r 19)CF,, »

where I'=I¢ 0 =I((1+v,20.)" Py 0z, £), 9). For a compact subset M of
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I'( paparwy, HN{(z, £)e R™1; |£| <1} there are v>0 and a compact subset M of
Loa0,0000 SUCh that {(z, €); (c +ca(m)vol€l, )e MYC M, where M denotes the interior

of M. 1tis easy to see that there are s,>0, ¢>0 and a neighborhood V of v, in
Y such that

P@t+st, 2, € 9,5, v)70

if [t—t|=e, |z—2'|=¢, yeV, |s|=s, and (¢, &)eM. We may assume that M is con-
vex and 9eM. So we can apply Lemma 2.5 and obtain

(5.4) P(t+st,2,8,9,S8,v0)70

If Im#=0, [t=t]=e, |z—2°|=Z¢, ye V, Ims<0, |s|=s, and (r,&)eM. Assume that
there are #€R, z'eX, y,eV and (r,&)eM such that |4, —f)|<e, |2'—2'|<e and
(X+20[6'10)" " beey otwpy(71, £)=0. Then there is ¢’>0 such that (7.'14_:5',51)GM and
[(1+20l€'10)™ "Dy crap(ti+ 2, )| >¢  for 2eC with |2|=4§, where ¢>0. Rouché’s
theorem implies that there are s,>>0 and a function A(s) defined on [0, s,] such that
|A(s)| <&’ and

Pt 45 Im i(s)—is(z; +Re A(s)), 2%, &', v, —i5, vo) =0

for 0<s=s,. This contradicts (5.4). Therefore, we have A7I Clzywy it (¢ x,9)€
RXXXV, |t—t)|<e and |r—az°|<e. From (5.3) it follows that MCI'(pe s, 9) if
(¢ z, Y)eRX XXV, [t—t|<e and |x—=z°|<e. This proves the theorem.

We remark that one can easily prove Theorem 3 and, therefore, Theorems 1
and 2 if the coefficients a;(x, y) satisfy the condition (A-2) with #=m. In fact, one
has only to apply the above argument to P(¢ x, &, v, S)=(F—s*)"+ 17, (t—ws®)™?

X 2l ieism 8'71E°05a(, y)/al, where 1<a<1+68/m (<2), o=exp[ila—1)z/2] and (—1)=
exp [—iar].
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