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REFLEXIVE MODULES OVER QF-3' RINGS*

By

Jose L. Gomez Pardo and Pedro A. Guil Asensio

Abstract. We characterize reflexive modules over QF-3' rings us-

ing a linear compactness condition relative to the Lambek torsion

theory, and we also give a necessary and sufficientcondition for a

left QF-3' maximal quotient ring to be right QF-3'.

1. Introduction.

The problem of finding the reflexive modules over generalizations of QF

rings (and, in particular, over QF-3 rings) has a long tradition. One of the

firstcontributions is due to Morita [10], who determined the finitelygenerated

reflexive modules over a right artinian QF-3 ring and, some years later, Masaike

[8] extended this result by giving a characterization of reflexive modules over

QF-3 rings with ACC (or DCC) on leftannihilators. On the other hand, Miiller

[11] proved that if RUS is a bimodule that induces a Morita duality, then the

^/-reflexivemodules are precisely the linearly compact modules and this applies,

in particular,to the case in which R=U is a PF ring. Recently, Masaike [9],

extended this to QF-3 rings without chain conditions by showing that the re-

flexive modules over these rings are the modules of i?-dominant dimension I>2

that satisfy a suitablelinear compactness condition.

Recall that a ring is left QF-3 when it has a minimal faithful left module

and left QF-3' when the injective envelope E(RR) is torsionless. When R is

left and right QF-3', we will simply say that it is a QF-3' ring (and a similar

convention will be used for other classes of rings). QF-3' rings have been

studied by a number of authors and their relation with Morita duality and the

properties of the double dual functors has been analyzed by Colby and Fuller

in a series of papers (see, e.g., [1] and its references). One of the aims of

this paper is to show that a characterization of reflexive modules similar to

Masaike's one may be given for the much larger class of QF-3' rings. In fact,
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we obtain a more general module-theoretic result that embraces also the theorem

of Miiller mentioned above. As a further applicationof the techniques developed

here, we study the interplay between R being right QF-3' and linear compact-

ness conditions on the left, that leads to a necessary and sufficientcondition

for a left QF-3' ring to be right QF-3', and to a new one-sided characterization

of QF-3 maximal quotient rings.

Throughout this paper, R denotes an associative ring with identity and R-

Mod (resp. Mod-i?) the category of left (resp. right) i?-modules. If X and M

are left i?-modules, X is said to be finitelyM-generated when it is a quotient

of a finitedirect sum of copies of Mand^Y has M-dominant dimension >2 (M-

dom. dim^Y^2) when there exists an exact sequence 0―>J£―>F―>Z,whith Y and

Z isomorphic to direct products of copies of X.

We will call %M to the localizing subcategory of i?-Mod cogenerated by the

injective envelope E{M) of M. The corresponding quotient category of i?-Mod

will be denoted by i?-Mod/ 1M and its objects are precisely the modules of

E(M)-dom. dim^2. The most important case of this construction arises for

M=RR, and then <3lM=-C is just the Lambek (or dense) localizing subcategory

of i?-Mod (see [15]).

2. Reflexive modules.

We will fix a module Mei?-Mod and call S=End(flM). The M-dual func-

tors Homij(―, M) and Homs(―, M) will be denoted by ( )*, and their composi-

tion in either order by ( )**. For each X^R-Mod there is a canonical (evalua-

tion) morphism ex: X^ X**; ax is a monomorphisrn precisely when X is M-

cogenerated and when a x is an isomorphism, X is said to be M-reflexive (or

just reflexive if we take M=RR).

We are interested in characterizing reflexive modules and, not surprisingly,

a certain form of linear compactness plays a key role in this characterization.

Recall from [3] that an object of a Grothendieck category J.is said to be linearly

compact when, for each inverse system {pt: X-*Xt} i in
<J

such that the pt are

epimorphisms, the induced morphism lim pt: X ―>ljjnXt is also an epimorphism

(this just gives ordinary linear compactness when J.= R-Mod). We will also

use the following related concept (introduced by Hoshino and Takashima in [5]):

An i?-module X will be called 1 ^-linearly compact when, for each inverse

system {pt: X-*Xi＼i in i?-Mod such that the Xt are M-cogenerated and Coker

pi&^n, Coker (l.impt)^s:M. It is not difficultto show that when every finitely

M-generated submodule of E(M) is M-cogenerated and M is an object of R-
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Mod/ 3"M (M rationally complete), then M is 3Vlinearly compact if and only if

it is linearly compact in the category R-Mod/Sn- When a module is X-linearly

compact, we will also say that it is Lambek linearly compact.

£TM-linearlycompact modules have the following useful property:

Proposition 2.1. Let M be a left R-module such that each finitelyM-

generated submodule of E(M) is M-cogenerated. Then, for each 1M-linearly

comtact R-module X. Coker csx<El<Im.

Proof. The proof is essentiallythe same of [5, Corollary 2.2], where this

is shown in the case M=pR. fl

Lemma 2.2. Let X<=R-Mod, Y an M-reflexive module, and I a set. If

f'.X-^Y1 is a homomorphism, then there existsa homomorphism g;X**-^Yz

such thatg°(Jx= f-

Proof. Let, for each ?'g/, pt: YI^Y be the canonical projection and con-

sider the homomorphism gt:― 0Ylo(Pi° f)**'- X**-*Y. Since aY°pi°f =(/>i°/)**≫aX

we see that pi°f=Oylo(Pi°f)**°<*x=gi°Qx for each ig/ and so, calling g:X**

-^Y1 to the unique homomorphism such that pi°g=gi V/e/, we see that pt°f

= i)iopoOy We/ and hence that f=-saax. □

Proposition 2.3. Let M<=R-Mod be such that every finitelyM-generated

submodule of E(M) is M-cogenerated and let X^R-Mod a 1M-Hnearly compact

module. Then X is M-reflexiveif and onlyif M-dom. dim X^2.

Proof. The necessity is clear, for if X is M-reflexive and 5(t/)―>S(/)->X*

―≫0is a free presentation of X* in Mod-S, then applying ( )* we get an exact

sequence in R-Mod: 0―>X=X**-^M1-^MJ and so M-dom. dimJ^2.

To prove the sufficiency, assume that X is SV-linearly compact and that

u p
there exists an exact sequence in R-Mod: Q-+X ―>M1 -> MJ. By Proposition

2.1, Coker ffjefff and, as Z** is ST^-torsionfree, it is clear that ax is an

essential monomorphism. On the other hand, by Lemma 2.2 we see that there

exists a homomorphism g: X**-+M such that u―g°ax and, as ax is essential,

g is a monomorphism. Therefore, Coker ax is a 2Vtorsion module which is

isomorphic to a submodule of the M-cogenerated module Coker u and so Coker

ax=0. Thus ax is an isomorphism and X is M-reflexive. □

In the case M―R, the preceding result has been observed by Hoshino and
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Takashima in [5, Remark, p. 9]. In the following proposition we denote by

I'm the localizing subcategory of Mod-S cogenerated by E(MS).

Proposition 2.4. Let M<=R-Mod. Then E(RM) is M-cogenerated if and

only if, for every monomorphism g of R-Mod, Coker ^GffV

Proof. The proof can be easily adapted from that of [4, Theorem 1.1],

where a similar result is proved in the case M=R. □

We can now give our main result characterizing M-reflexive modules. Recall

that a bimodule RMS is called faithfully balanced when R=End(Ms) and S=

End (jtM).

Theorem 2.5. Let RMs be a faithfully balanced bimodule such that both

E(RM) and E(MS) are M-cogenerated, and let X^R-Mod. Then X is M-reflexivt

if and only if it is ^M-Unearly compact and M-dom. dimX'^2.

Proof. Applying Proposition 2.3, the only thing that remains to be proved

is that any M-reflexive left i?-module is 3V-linearly compact. Assume then

that X is M-reflexive and let {pt: X-^Xt} i be an inverse system with Xt M-

cogenerated and Coker /^eSV, for each/e/. Since ax is an isomorphism, we

can identify the inverse system {£f*}/ with the inverse system {(Jx^Piii and

we have:

|im <rXfo|impi=ljm p**=(＼im p*)*.

Since Coker pi^s:M, the £f are monomorphisms and so is lim p*. Now, since

E(MS) is M-cogenerated and R―End(Ms), it follows from Proposition 2.4 that

Coker (＼jmp**)^STM. But, on the other hand, as l^rn is a left exact functor,

we have that IJm aXi is a monomorphism and so Coker (＼jmpi)QCokev (ljm />?*).

Thus Coker (Ijm pi)<=3:M and so X is 3Vlmearly compact. □

Specializing Theorem 2.5 to the case M―R, we obtain the promised charac-

terization of reflexive modules over OF-3' rings.

Corollary 2.6. Let R be a QF-3f ring and X<=R-Mod. Then X is refle-

xiveif and onlyif it is Lambek linearlycompact and R-dom. dim X>2.

As we have remarked after Proposition 2.3, the "if" part of Corollary 2.6

has been proved by Hoshino and Takashima in [5], assuming only that every

finitelygenerated submodule of E(RR) is torsionless. The "only if" part, how-

ever, does not hold even in the case that R has this property on both sides.
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An easy example is the following. Let R―Z be the ring of rationalintegers

and X a countabledirectsum of copies of RR. Then it is clearthat X is not

Lambek linearlycompact, but X is reflexiveby a theorem of E. Specker [14].

3. Right QF-3' rings.

It is easy to infer from the proof of Theorem 2.5 that a right QF-3' ring is

Lambek linearly compact on the left, and now we want to go in the opposite

direction and, similarly to what is done in [9, Theorem 5] (see also [4, Theo-

rem 2.2]) to give conditions on the left for a left QF-3' ring to be QF-3' (on

both sides). Since the property of being QF-3' does not pass well from the

maximal quotient ring of R to R, we will assume that R is, furthermore, a

left maximal quotient ring. We will also need a stronger linear compactness

condition that appeared in [3]. Assuming that R^R-Mod/X, let *£[/?] be the

full subcategory of R-Mod/X consisting of the subobjects of quotients of finite

direct sums of copies of R in this category (this is just the smallest finitely

closed,i.e., closed under subobjects, quotient objects, and finite direct sums-

subcategory of i?-Mod/J7 containing R). We will say that afx＼_R~＼is a linearly

compact subcategory of R-Mod/X if, for each inverse system {pt: Xi-*Yi) t in

R-Mod/X with the pt epimorphisms and Xi<=<jfx＼_R~],the morphism l^m pt is

also an epimorphism of R-Mod/X.

Theorem 3.1. Let R be a left maximal quotient ring. Then the following

statements hold:

i) If tfirC-ft]*s a linearly compact subcategory of R-Mod/X, then R is right

QF-3' if and only if every finitelygenerated submodule of E(RR) is torsionless.

ii) // every finitelygenerated submodule of E(RR) is torsionless,then R is

right QF-3' if and only if <Jfx＼_R~]is a linearly compact subcategory of R-Mod/X.

Proof, i) Assume that each finitelygenerated submodule of E(RR) is tor-

sionless. Then, using Proposition 2.4 and [4, Theorem 1.1], it is enough to

prove that if /: X―*Y is a monomorphism in Mod-i?, then Coker j*^X, assum-

ing that the analogous property holds for monomorphisms in Mod-i? that have

finitelygenerated codomain. Thus, let /: X-+Y be a monomorphism of Mod-i?

and write F=limFi, where IFJ/ is the direct system of all the finitelygen-

erated submodules of Y. For each ze/, set Xt: = Xr＼Yit with inclusions

jiiXi―tYi. Using ABB we see that /=lim/i and, taking /?-duals, that '/*=

(Ijnj/i)*―ilm/f- Since the Yt are finitelygenerated right i?-modules, we have

that Coker jt^X for each ze/ and, since R is a maximal quotient ring, the
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X% and Ff are objects of R-Mod/X, so that we have an inverse system of

epimorphisms /f:Ff―≫J£fin R-Mod/X, with F?e<y^[i?]. Now, as ofx＼_R~＼is a

linearly compact subcategory of R-Mod/X, we see that j*=＼gn /? is an epimor-

phism of R-Mod/X and so Coker ;*eJT, completing the proof of i).

ii) Assume first that every finitelygenerated submodule of E(RR) is tor-

sionless and R is right QF-3'. Since R is, furthermore, a left maximal quotient

ring, it follows from [4, Theorem 1.5] that every object of ofx＼_R~＼is reflexive.

Thus if we have an inverse system of epimorphisms {pt: X-^Xt)! in i?-Mod/j:

with Xi^a{c[R~], we may identify each pt with />f* and we have Ijm pt=

(lim />*)*. Since Coker pt^X, each />$is a monomorphism in Mod-i?, and hence

so is lim pt. Now, as R is right QF-3', we have by Proposition 2.4 Coker

(I^m pi)^X and so o{c[R] is linearly compact. Finally, assume that every

finitelygenerated submodule of E(RR) is torsionlessand ofx＼_R~]is linearly com-

pact. Then R is a linearly compact object of R-Mod/X and by [4, Theorem

2.2], we have that every finitelygenerated submodule of E{RR) is torsionless,

so that, applying i) we see that R is right QF-3'. □

Recall that a right i?-module PR is called dominant if it is a finitelygen-

erated faithful projective module such that if T=End(PR), then TP cogenerates

all the simple left T-modules [7]. Then, assuming again that R is a left maxi-

mal quotient ring, the existence of a dominant right module is equivalent to

i?-Mod/=T being a module category by [7]. As it is well known, the left

minimal faithful module over a left QF-3 ring is dominant [13] and so we may

use the preceding theorem to characterize QF-3 maximal quotient rings. This

is an important class of rings for, according to the Ringel-Tachikawa theorem

[12], they correspond to Morita dualities. We next show that QF-3 maximal

quotient rings can be characterized by conditions on the left that are similar to,

but weaker than, those given by Masaike [9, Theorem 5] for QF-3 rings that

are not necessarily maximal quotient rings.

Corollary 3.2. Let R be a left maximal quotient ring. Then R is QF-3

if and only if the following conditions hold:

i) R is left QF-3'

ii) R is left Lambek linearly compact

iii) R-Mod/X is a module category {equivalently,R has a dominant right

module).

Proof. It is clear from what we have already said that if R is QF-3, then

all three conditions above hold. Conversely, if conditions ii) and iii)hold, then
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it follows from [6, Theorem 7.1] that ofx＼_R~＼is a linearly compact subcategory

of R-Mod/X and then, if i) also holds, we see from Theorem 3.1 that R is a

QF-3' ring. Now, using [2, Corollary 6], we see that R is a QF-3 ring. □

Remarks, i) The hypothesis that R is a leftmaximal quotient ring cannot

be dropped from Theorem 3.1 and Corollary 3.2. Indeed, the ring ^=(n n)

satisfiesi),ii) and iii)of Corollary 3.2 but is neither left QF-3 nor right QF-3'.

ii) Assume that R is a left maximal quotient ring which is linearly com-

pact as an object of R-Mod/X. Then, a sufficient condition for a{c[R~]to be

a linearly compact subcategory of i?-Mod/J7 is that R-Mod/X has a projective

generator, as can be seen in the proof of [3, Corollary 7]. Thus an argument

similar to the one used in the proof of Corollary 3.2 gives that if R is a left

maximal quotient ring such that every finitelygenerated submodule of E(RR)

is torsionless,R-Mod/X has a projective generator, and R is Lambek linearly

compact, then R is right QF-3'.
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