REFLEXIVE MODULES OVER QF-3' RINGS*

By

José L. GÓMEZ PARDO and Pedro A. GUIL ASENSIO

Abstract. We characterize reflexive modules over QF-3' rings using a linear compactness condition relative to the Lambek torsion theory, and we also give a necessary and sufficient condition for a left QF-3' maximal quotient ring to be right QF-3'.

1. Introduction.

The problem of finding the reflexive modules over generalizations of QF rings (and, in particular, over QF-3 rings) has a long tradition. One of the first contributions is due to Morita [10], who determined the finitely generated reflexive modules over a right artinian QF-3 ring and, some years later, Masaike [8] extended this result by giving a characterization of reflexive modules over QF-3 rings with ACC (or DCC) on left annihilators. On the other hand, Müller [11] proved that if $_{R}U_{S}$ is a bimodule that induces a Morita duality, then the U-reflexive modules are precisely the linearly compact modules and this applies, in particular, to the case in which R=U is a PF ring. Recently, Masaike [9], extended this to QF-3 rings without chain conditions by showing that the reflexive modules over these rings are the modules of R-dominant dimension ≥ 2 that satisfy a suitable linear compactness condition.

Recall that a ring is left QF-3 when it has a minimal faithful left module and left QF-3' when the injective envelope $E(_RR)$ is torsionless. When R is left and right QF-3', we will simply say that it is a QF-3' ring (and a similar convention will be used for other classes of rings). QF-3' rings have been studied by a number of authors and their relation with Morita duality and the properties of the double dual functors has been analyzed by Colby and Fuller in a series of papers (see, e.g., [1] and its references). One of the aims of this paper is to show that a characterization of reflexive modules similar to Masaike's one may be given for the much larger class of QF-3' rings. In fact,

^{*} Wark partially supported by the DGICYT (PB93-0515, Spain). The first author was also partially supported by the European Community (Contract CHRX-CT93-0091). Received November 22, 1993. Revised December 7, 1994.

we obtain a more general module-theoretic result that embraces also the theorem of Müller mentioned above. As a further application of the techniques developed here, we study the interplay between R being right QF-3' and linear compactness conditions on the left, that leads to a necessary and sufficient condition for a left QF-3' ring to be right QF-3', and to a new one-sided characterization of QF-3 maximal quotient rings.

Throughout this paper, R denotes an associative ring with identity and R-Mod (resp. Mod-R) the category of left (resp. right) R-modules. If X and M are left R-modules, X is said to be finitely M-generated when it is a quotient of a finite direct sum of copies of M and X has M-dominant dimension ≥ 2 (M-dom. dim $X \geq 2$) when there exists an exact sequence $0 \rightarrow X \rightarrow Y \rightarrow Z$, whith Y and Z isomorphic to direct products of copies of X.

We will call \mathcal{T}_M to the localizing subcategory of *R*-Mod cogenerated by the injective envelope E(M) of *M*. The corresponding quotient category of *R*-Mod will be denoted by *R*-Mod/ \mathcal{T}_M and its objects are precisely the modules of E(M)-dom. dim ≥ 2 . The most important case of this construction arises for $M =_R R$, and then $\mathcal{T}_M = \mathcal{L}$ is just the Lambek (or dense) localizing subcategory of *R*-Mod (see [15]).

2. Reflexive modules.

We will fix a module $M \in R$ -Mod and call $S = \text{End}(_RM)$. The *M*-dual functors $\text{Hom}_R(-, M)$ and $\text{Hom}_S(-, M)$ will be denoted by ()*, and their composition in either order by ()**. For each $X \in R$ -Mod there is a canonical (evaluation) morphism $\sigma_X : X \to X^{**}$; σ_X is a monomorphism precisely when X is *M*cogenerated and when σ_X is an isomorphism, X is said to be *M*-reflexive (or just reflexive if we take $M =_R R$).

We are interested in characterizing reflexive modules and, not surprisingly, a certain form of linear compactness plays a key role in this characterization. Recall from [3] that an object of a Grothendieck category \mathcal{A} is said to be linearly compact when, for each inverse system $\{p_i: X \to X_i\}_I$ in \mathcal{A} such that the p_i are epimorphisms, the induced morphism $\lim p_i: X \to \lim X_i$ is also an epimorphism (this just gives ordinary linear compactness when $\mathcal{A}=R$ -Mod). We will also use the following related concept (introduced by Hoshino and Takashima in [5]): An *R*-module *X* will be called \mathcal{I}_M -linearly compact when, for each inverse system $\{p_i: X \to X_i\}_I$ in *R*-Mod such that the X_i are *M*-cogenerated and Coker $p_i \in \mathcal{I}_M$, Coker $(\lim p_i) \in \mathcal{I}_M$. It is not difficult to show that when every finitely *M*-generated submodule of E(M) is *M*-cogenerated and *M* is an object of *R*- $\operatorname{Mod}/\mathfrak{T}_M$ (*M* rationally complete), then *M* is \mathfrak{T}_M -linearly compact if and only if it is linearly compact in the category R-Mod/ \mathfrak{T}_M . When a module is \mathcal{L} -linearly compact, we will also say that it is Lambek linearly compact.

 \mathcal{T}_M -linearly compact modules have the following useful property:

PROPOSITION 2.1. Let M be a left R-module such that each finitely M-generated submodule of E(M) is M-cogenerated. Then, for each \mathfrak{I}_M -linearly compact R-module X, Coker $\sigma_X \in \mathfrak{I}_M$.

PROOF. The proof is essentially the same of [5, Corollary 2.2], where this is shown in the case $M = {}_{R}R$. \Box

LEMMA 2.2. Let $X \in \mathbb{R}$ -Mod, Y an M-reflexive module, and I a set. If $f: X \to Y^I$ is a homomorphism, then there exists a homomorphism $g: X^{**} \to Y^I$ such that $g \circ \sigma_X = f$.

PROOF. Let, for each $i \in I$, $p_i: Y^I \to Y$ be the canonical projection and consider the homomorphism $g_i := \sigma_{T^{-1}} \circ (p_i \circ f)^{**} : X^{**} \to Y$. Since $\sigma_{Y} \circ p_i \circ f = (p_i \circ f)^{**} \circ \sigma_X$ we see that $p_i \circ f = \sigma_{T^{-1}} \circ (p_i \circ f)^{**} \circ \sigma_X = g_i \circ \sigma_X$ for each $i \in I$ and so, calling $g: X^{**} \to Y^I$ to the unique homomorphism such that $p_i \circ g = g_i \quad \forall i \in I$, we see that $p_i \circ f = p_i \circ g \circ \sigma_X \quad \forall i \in I$ and hence that $f = g \circ \sigma_X$. \Box

PROPOSITION 2.3. Let $M \in \mathbb{R}$ -Mod be such that every finitely M-generated submodule of E(M) is M-cogenerated and let $X \in \mathbb{R}$ -Mod a \mathfrak{T}_M -linearly compact module. Then X is M-reflexive if and only if M-dom. dim $X \ge 2$.

PROOF. The necessity is clear, for if X is M-reflexive and $S^{(J)} \rightarrow S^{(I)} \rightarrow X^*$ $\rightarrow 0$ is a free presentation of X* in Mod-S, then applying ()* we get an exact sequence in R-Mod: $0 \rightarrow X \cong X^{**} \rightarrow M^{I} \rightarrow M^{J}$ and so M-dom. dim $X \ge 2$.

To prove the sufficiency, assume that X is \mathcal{T}_M -linearly compact and that there exists an exact sequence in R-Mod: $0 \rightarrow X \xrightarrow{u} M^I \xrightarrow{p} M^J$. By Proposition 2.1, Coker $\sigma_X \in \mathcal{T}_M$ and, as X^{**} is \mathcal{T}_M -torsionfree, it is clear that σ_X is an essential monomorphism. On the other hand, by Lemma 2.2 we see that there exists a homomorphism $g: X^{**} \rightarrow M$ such that $u = g \circ \sigma_X$ and, as σ_X is essential, g is a monomorphism. Therefore, Coker σ_X is a \mathcal{T}_M -torsion module which is isomorphic to a submodule of the M-cogenerated module Coker u and so Coker $\sigma_X = 0$. Thus σ_X is an isomorphism and X is M-reflexive. \Box

In the case M=R, the preceding result has been observed by Hoshino and

Takashima in [5, Remark, p. 9]. In the following proposition we denote by \mathcal{I}'_{M} the localizing subcategory of Mod-S cogenerated by $E(M_{S})$.

PROPOSITION 2.4. Let $M \in \mathbb{R}$ -Mod. Then $E(_{\mathbb{R}}M)$ is M-cogenerated if and only if, for every monomorphism g of \mathbb{R} -Mod, Coker $g^* \in \mathfrak{T}'_M$.

PROOF. The proof can be easily adapted from that of [4, Theorem 1.1], where a similar result is proved in the case M=R. \Box

We can now give our main result characterizing *M*-reflexive modules. Recall that a bimodule $_{R}M_{S}$ is called faithfully balanced when $R=\text{End}(M_{S})$ and S= End $_{R}M$.

THEOREM 2.5. Let $_{R}M_{S}$ be a faithfully balanced bimodule such that both $E(_{R}M)$ and $E(M_{S})$ are M-cogenerated, and let $X \in R$ -Mod. Then X is M-reflexive if and only if it is \mathfrak{T}_{M} -linearly compact and M-dom. dim $X \geq 2$.

PROOF. Applying Proposition 2.3, the only thing that remains to be proved is that any *M*-reflexive left *R*-module is \mathcal{I}_M -linearly compact. Assume then that *X* is *M*-reflexive and let $\{p_i: X \to X_i\}_I$ be an inverse system with X_i *M*cogenerated and Coker $p_i \in \mathcal{I}_M$, for each $i \in I$. Since σ_X is an isomorphism, we can identify the inverse system $\{p_i^{**}\}_I$ with the inverse system $\{\sigma_{X_i} \circ p_i\}_I$ and we have:

$$\lim_{x_i} \sigma_{x_i} \lim_{x_i \to \infty} p_i = \lim_{x_i \to \infty} p_i^{**} = (\lim_{x_i \to \infty} p_i^{*})^*.$$

Since Coker $p_i \in \mathcal{T}_M$, the p_i^* are monomorphisms and so is $\lim p_i^*$. Now, since $E(M_S)$ is *M*-cogenerated and $R = \operatorname{End}(M_S)$, it follows from Proposition 2.4 that Coker $(\lim p_i^*) \in \mathcal{T}_M$. But, on the other hand, as \lim is a left exact functor, we have that $\lim \sigma_{X_i}$ is a monomorphism and so Coker $(\lim p_i) \subseteq \operatorname{Coker}(\lim p_i^*)$. Thus Coker $(\lim p_i) \in \mathcal{T}_M$ and so X is \mathcal{T}_M -linearly compact. \Box

Specializing Theorem 2.5 to the case M=R, we obtain the promised characterization of reflexive modules over QF-3' rings.

COROLLARY 2.6. Let R be a QF-3' ring and $X \in R$ -Mod. Then X is reflexive if and only if it is Lambek linearly compact and R-dom. dim $X \ge 2$.

As we have remarked after Proposition 2.3, the "if" part of Corollary 2.6 has been proved by Hoshino and Takashima in [5], assuming only that every finitely generated submodule of $E(R_R)$ is torsionless. The "only if" part, however, does not hold even in the case that R has this property on both sides.

An easy example is the following. Let R=Z be the ring of rational integers and X a countable direct sum of copies of _RR. Then it is clear that X is not Lambek linearly compact, but X is reflexive by a theorem of E. Specker [14].

3. Right QF-3' rings.

It is easy to infer from the proof of Theorem 2.5 that a right QF-3' ring is Lambek linearly compact on the left, and now we want to go in the opposite direction and, similarly to what is done in [9, Theorem 5] (see also [4, Theorem 2.2]) to give conditions on the left for a left QF-3' ring to be QF-3' (on both sides). Since the property of being QF-3' does not pass well from the maximal quotient ring of R to R, we will assume that R is, furthermore, a left maximal quotient ring. We will also need a stronger linear compactness condition that appeared in [3]. Assuming that $R \in R$ -Mod/ \mathcal{L} , let $\sigma_{\mathcal{L}}^{f}[R]$ be the full subcategory of R-Mod/ \mathcal{L} consisting of the subobjects of quotients of finite direct sums of copies of R in this category (this is just the smallest finitely closed. i. e., closed under subobjects, quotient objects, and finite direct sums subcategory of R-Mod/ \mathcal{L} containing R). We will say that $\sigma_{\mathcal{L}}^{f}[R]$ is a linearly compact subcategory of R-Mod/ \mathcal{L} if, for each inverse system $\{p_i: X_i \rightarrow Y_i\}_I$ in R-Mod/ \mathcal{L} with the p_i epimorphisms and $X_i \in \sigma_{\mathcal{L}}^{f}[R]$, the morphism $\varprojlim p_i$ is also an epimorphism of R-Mod/ \mathcal{L} .

THEOREM 3.1. Let R be a left maximal quotient ring. Then the following statements hold:

i) If $\sigma_{\mathcal{L}}^{f}[R]$ is a linearly compact subcategory of R-Mod/ \mathcal{L} , then R is right QF-3' if and only if every finitely generated submodule of $E(R_{R})$ is torsionless.

ii) If every finitely generated submodule of $E(_{R}R)$ is torsionless, then R is right QF-3' if and only if $\sigma_{\mathcal{L}}^{f}[R]$ is a linearly compact subcategory of R-Mod/ \mathcal{L} .

PROOF. i) Assume that each finitely generated submodule of $E(_RR)$ is torsionless. Then, using Proposition 2.4 and [4, Theorem 1.1], it is enough to prove that if $j: X \rightarrow Y$ is a monomorphism in Mod-R, then Coker $j^* \in \mathcal{L}$, assuming that the analogous property holds for monomorphisms in Mod-R that have finitely generated codomain. Thus, let $j: X \rightarrow Y$ be a monomorphism of Mod-R and write $Y = \varinjlim Y_i$, where $\{Y_i\}_I$ is the direct system of all the finitely generated submodules of Y. For each $i \in I$, set $X_i := X \cap Y_i$, with inclusions $j_i: X_i \rightarrow Y_i$. Using AB5 we see that $j = \varinjlim j_i$ and, taking R-duals, that $j^* = (\varinjlim j_i)^* = \liminf j_i^*$. Since the Y_i are finitely generated right R-modules, we have that Coker $j_i^* \in \mathcal{L}$ for each $i \in I$ and, since R is a maximal quotient ring, the

 X_i^* and Y_i^* are objects of R-Mod/ \mathcal{L} , so that we have an inverse system of epimorphisms $j_i^*: Y_i^* \to X_i^*$ in R-Mod/ \mathcal{L} , with $Y_i^* \in \sigma_{\mathcal{L}}^f[R]$. Now, as $\sigma_{\mathcal{L}}^f[R]$ is a linearly compact subcategory of R-Mod/ \mathcal{L} , we see that $j^* = \varprojlim j_i^*$ is an epimorphism of R-Mod/ \mathcal{L} and so Coker $j^* \in \mathcal{L}$, completing the proof of i).

ii) Assume first that every finitely generated submodule of $E({}_{R}R)$ is torsionless and R is right QF-3'. Since R is, furthermore, a left maximal quotient ring, it follows from [4, Theorem 1.5] that every object of $\sigma_{\mathcal{I}}^{f}[R]$ is reflexive. Thus if we have an inverse system of epimorphisms $\{p_i: X \to X_i\}_I$ in R-Mod/ \mathcal{L} with $X_i \in \sigma_{\mathcal{I}}^{f}[R]$, we may identify each p_i with p_i^{**} and we have $\lim p_i = (\lim p_i^*)^*$. Since Coker $p_i \in \mathcal{L}$, each p_i^* is a monomorphism in Mod-R, and hence so is $\lim p_i^*$. Now, as R is right QF-3', we have by Proposition 2.4 Coker $(\lim p_i) \in \mathcal{L}$ and so $\sigma_{\mathcal{I}}^{f}[R]$ is linearly compact. Finally, assume that every finitely generated submodule of $E({}_{R}R)$ is torsionless and $\sigma_{\mathcal{I}}^{f}[R]$ is linearly compact. Then R is a linearly compact object of R-Mod/ \mathcal{L} and by [4, Theorem 2.2], we have that every finitely generated submodule of $E({}_{R}R)$ is torsionless, so that, applying i) we see that R is right QF-3'. \Box

Recall that a right *R*-module P_R is called dominant if it is a finitely generated faithful projective module such that if $T = \text{End}(P_R)$, then $_TP$ cogenerates all the simple left *T*-modules [7]. Then, assuming again that *R* is a left maximal quotient ring, the existence of a dominant right module is equivalent to R-Mod/ \mathcal{L} being a module category by [7]. As it is well known, the left minimal faithful module over a left *QF*-3 ring is dominant [13] and so we may use the preceding theorem to characterize *QF*-3 maximal quotient rings. This is an important class of rings for, according to the Ringel-Tachikawa theorem [12], they correspond to Morita dualities. We next show that *QF*-3 maximal quotient rings can be characterized by conditions on the left that are similar to, but weaker than, those given by Masaike [9, Theorem 5] for *QF*-3 rings that are not necessarily maximal quotient rings.

COROLLARY 3.2. Let R be a left maximal quotient ring. Then R is QF-3 if and only if the following conditions hold:

i) R is left QF-3'

ii) R is left Lambek linearly compact

iii) R-Mod/ \mathcal{L} is a module category (equivalently, R has a dominant right module).

PROOF. It is clear from what we have already said that if R is QF-3, then all three conditions above hold. Conversely, if conditions ii) and iii) hold, then

it follows from [6, Theorem 7.1] that $\sigma'_{\mathcal{L}}[R]$ is a linearly compact subcategory of *R*-Mod/ \mathcal{L} and then, if i) also holds, we see from Theorem 3.1 that *R* is a *QF*-3' ring. Now, using [2, Corollary 6], we see that *R* is a *QF*-3 ring. \Box

REMARKS. i) The hypothesis that R is a left maximal quotient ring cannot be dropped from Theorem 3.1 and Corollary 3.2. Indeed, the ring $R = \begin{pmatrix} Z & Q \\ 0 & Q \end{pmatrix}$ satisfies i), ii) and iii) of Corollary 3.2 but is neither left QF-3 nor right QF-3'.

ii) Assume that R is a left maximal quotient ring which is linearly compact as an object of R-Mod/ \mathcal{L} . Then, a sufficient condition for $\sigma_{\mathcal{L}}^{f}[R]$ to be a linearly compact subcategory of R-Mod/ \mathcal{L} is that R-Mod/ \mathcal{L} has a projective generator, as can be seen in the proof of [3, Corollary 7]. Thus an argument similar to the one used in the proof of Corollary 3.2 gives that if R is a left maximal quotient ring such that every finitely generated submodule of $E(_{R}R)$ is torsionless, R-Mod/ \mathcal{L} has a projective generator, and R is Lambek linearly compact, then R is right QF-3'.

Acknowledgements.

We thank the referee for pointing out that the "if" part of Corollary 2.6 was already contained in [5], and also for suggesting the example given after this corollary.

References

- [1] R.R. Colby and K.R. Fuller, *QF-3'* rings and Morita duality, Tsukuba J. Math. 8 (1984), 183-188.
- [2] J.L. Gómez Pardo and P.A. Guil Asensio, *QF*-3 rings and Morita duality, Comm. Algebra 18 (1990), 2755-2764.
- [3] J.L. Gómez Pardo and P.A. Guil Asensio, Linear compactness and Morita duality for Grothendieck categories, J. Algebra 148 (1992), 53-67.
- [4] J.L. Gómez Pardo and P.A. Guil Asensio, Morita dualities associated with the *R*-dual functors, J. Pure Appl. Algebra 93 (1994), 179-194.
- [5] M. Hoshino and S. Takashima, On Lambek torsion theories, II, Osaka J. Math., 31 (1994), 729-746.
- [6] C.U. Jensen, Les foncteurs dérivés de lim et leurs applications on théorie des modules, Lecture Notes in Math. 254, Springer-Verlag, Berlin (1972).
- [7] T. Kato, Rings having dominant modules, Tôhoku Math. J. 24 (1972), 1-10.
- [8] K. Masaike, Duality for quotient modules and a characterization of reflexive modules, J. Pure Appl. Algebra 28 (1983), 265-277.
- [9] K. Masaike, Reflexive modules over QF-3 rings, Canad. Math. Bull. 35 (1992), 247-251.
- [10] K. Morita, Duality in QF-3 rings, Math. Z. 108 (1968), 237-252.
- [11] B.J. Müller, Linear compactness and Morita duality, J. Algebra 16 (1970), 60-66.

- [12] C. M. Ringel and H. Tachikawa, QF-3 rings, J. Reine Angew. Math. 272 (1975), 49-72.
- [13] E.A. Rutter, Jr., Dominant modules and finite localizations, Tôhoku Math. J. 27 (1975), 225-239.
- [14] E. Specker, Additive Gruppen von Folgen ganzer Zahlen, Portugaliae Math. 9 (1950), 141-150.
- [15] B. Stenström, Rings of quotients, Springer-Verlag, Berlin, 1975.

394

José L. Gómez Pardo Departamento de Alxebra Universidade de Santiago 15771 Santiago de Compostela, Spain

Pedro A. Guil Asensio Departamento de Matemáticas Universidad de Murcia 30071 Murcia, Spain