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REFLEXIVE MODULES OVER QF-3' RINGS*

By

José L. GOMEZ PARDO and Pedro A. GUIL ASENSIO

Abstract. We characterize reflexive modules over QF-3’ rings us-
ing a linear compactness condition relative to the Lambek torsion
theory, and we also give a necessary and sufficient condition for a
left QF-3’ maximal quotient ring to be right QF-3’.

1. Introduction.

The problem of finding the reflexive modules over generalizations of QF
rings (and, in particular, over QF-3 rings) has a long tradition. One of the
first contributions is due to Morita [10], who determined the flnitely generated
reflexive modules over a right artinian QF-3 ring and, some years later, Masaike
[8] extended this result by giving a characterization of reflexive modules over
QF-3 rings with ACC (or DCC) on left annihilators. On the other hand, Miiller
[11] proved that if gUs is a bimodule that induces a Morita duality, then the
U-reflexive modules are precisely the linearly compact modules and this applies,
in particular, to the case in which R=U is a PF ring. Recently, Masaike [9],
extended this to QF-3 rings without chain conditions by showing that the re-
flexive modules over these rings are the modules of R-dominant dimension >2
that satisfy a suitable linear compactness condition.

Recall that a ring is left QF-3 when it has a minimal faithful left module
and left QF-3 when the injective envelope E(zR) is torsionless. When R is
left and right QF-3’, we will simply say that it is a QF-3 ring (and a similar
convention will be used for other classes of rings). QF-3’ rings have been
studied by a number of authors and their relation with Morita duality and the
properties of the double dual functors has been analyzed by Colby and Fuiler
in a series of papers (see, e.g., [1] and its references). One of the aims of
this paper is to show that a characterization of reflexive modules similar to
Masaike’s one may be given for the much larger class of QF-3’ rings. In fact,
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we obtain a more general module-theoretic result that embraces also the theorem
of Miiller mentioned above. As a further application of the techniques developed
here, we study the interplay between R being right QF-3’ and linear compact-
ness conditions on the left, that leads to a necessary and sufficient condition
for a left QF-3 ring to be right QF-3’, and to a new one-sided characterization
of QF-3 maximal quotient rings.

Throughout this paper, R denotes an associative ring with identity and R-
Mod (resp. Mod-R) the category of left (resp. right) R-modules. If X and M
are left R-modules, X is said to be flnitely M-generated when it is a quotient
of a flnite direct sum of copies of M and X has M-dominant dimension =2 (M-
dom. dim X=2) when there exists an exact sequence 0—X—Y—Z, whith ¥ and
Z isomorphic to direct products of copies of X.

We will call 9y to the localizing subcategory of R-Mod cogenerated by the
injective envelope E(M) of M. The corresponding quotient category of K-Mod
will be denoted by R-Mod/T, and its objects are precisely the modules of
E(M)-dom. dim>2. The most important case of this construction arises for
M=zR, and then 9y=.C is just the Lambek (or dense) localizing subcategory
of R-Mod (see [15]).

2. Reflexive meodules.

We will fix a module M<R-Mod and call S=End(zM). The M-dual func-
tors Homg(—, M) and Homs(—, M) will be denoted by ( )*, and their composi-
tion in either order by ( )**. For each X=R-Mod there is a canonical (evalua-
tion) morphism ¢y : X — X**; ¢y is a monomorphism precisely when X is M-
cogenerated and when oy is an isomorphism, X is said to be M-reflexive (or
just reflexive if we take M=pgR).

We are interested in characterizing reflexive modules and, not surprisingly,
a certain form of linear compactness plays a key role in this characterization.
Recall from [3] that an object of a Grothendieck category A is said to be linearly
compact when, for each inverse system {p,: X—X,}; in A such that the p; are
epimorphisms, the induced morphism lim p;: X — lim X; is also an epimorphism
(this just gives ordinary linear compactness when A=R-Mod). We will also
use the following related concept (introduced by Hoshino and Takashima in [5]):
An R-module X will be called Ty-linearly compact when, for each inverse
system {p;: X—X;}; in R-Mod such that the X, are M-cogenerated and Coker
p: €Ty, Coker (lim p)=Ty. It is not difficult to show that when every flnitely
M-generated submodule of E(M) is M-cogenerated and M is an object of R-
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Mod/ g (M rationally complete), then M is I y-linearly compact if and only if
it is linearly compact in the category R-Mod/g'y. When a module 1s .L-linearly
compact, we will also say that it is Lambek linearly compact.

g y-linearly compact modules have the following useful property:

PROPOSITION 2.1. Let M be a left R-module such that each finitely M-
generated submodule of E(M) is M-cogenerated. Then, for each I y-linearly
compact R-module X, Coker ¢xy& T y.

ProOF. The proof is essentially the same of [5, Corollary 2.2], where this
is shown in the case M=zR. [J]

LEMMA 2.2. Let X&€R-Mod, Y an M-reflexive module, and I a set. If
f1 XY is a homomorphism, then there exists a homomorphism g: X**—Y!
such that geox=f.

Proor. Let, for each i, p,: Y =Y be the canonical projection and con-
sider the homomorphism g; := 5" (p;° f)**: X**—Y . Since aypopsof =(p;of)** o0 5
we see that piof=ay'e(p;of)**-0x=g;°0x for eachi/&/ and so, calling g: X**
—Y’ to the unique homomorphism such that p,og=g; Yi€I, we see that p;of
=p,°g°0x Vil and hence that f=g-0y. O

PROPOSITION 2.3. Let M&R-Mod be such that every finitely M-generated
submodule of E(M) is M-cogenerated and let XeR-Mod a T y-linearly compact
module. Then X is M-reflexive if and only if M-dom. dim X=>2.

ProOF. The necessity is clear, for if X is M-reflexive and S —S— X*
—0 is a free presentation of X* in Mod-S, then applying ( )* we get an exact
sequence in R-Mod: 0—X=X**>M?'—>M’ and so M-dom. dim X>2.

To prove the sufficiency, assume that X is 9-linearly compact and that

there exists an exact sequence in R-Mod: 0—X Smrhope By Proposition
2.1, Coker oyedy and, as X** is g y-torsionfree, it is clear that oy is an
essential monomorphism. On the other hand, by Lemma 2.2 we see that there
exists a homomorphism g: X**—M such that u=g-0x and, as o is essential,
g is a monomorphism. Therefore, Coker ¢y is a 9 y-torsion module which is
isomorphic to a submodule of the M-cogenerated module Coker u and so Coker
g xy=0. Thus oy is an isomorphism and X is M-reflexive. [

In the case M=R, the preceding result has been observed by Hoshino and
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Takashima in [5, Remark, p. 9]. In the following proposition we denote by
g4, the localizing subcategory of Mod-S cogenerated by E(Ms).

PROPOSITION 2.4. Let McR-Mod. Then E(zM) is M-cogenerated if and
only if, for every monomorphism g of R-Mod, Coker g*&Ty.

PrOOF. The proof can be easily adapted from that of [4, Theorem 1.1],
where a similar result is proved in the case M=R. O

We can now give our main result characterizing M-reflexive modules. Recall
that a bimodule zMs is called faithfully balanced when R=End (Ms) and S=
End (M).

THEOREM 2.5. Let pMs be a faithfully balanced bimodule such that both
EG=M) and E(Ms) are M-cogenerated, and let Xe R-Mod. Then X is M-reflexive
if and only if it is I u-linearly compact and M-dom. dim X =2.

PrOOF. Applying Proposition 2.3, the only thing that remains to be proved
is that any M-reflexive left R-module is y-linearly compact. Assume then
that X is M-reflexive and let {p,: X—X;}; be an inverse system with X; M-
cogenerated and Coker p;&9y, for eachiel. Since oy is an isomorphism, we
can identify the inverse system {p%*}; with the inverse system {ox,°p:},; and
we have:

L_if_n UXZ-°LiLn Pi:liil P’f*:(liif} PH*.
Since Coker p; =Ty, the p¥ are monomorphisms and so is lim p¥. Now, since
E(Ms) is M-cogenerated and R=End (My), it follows from Proposition 2.4 that
Coker (lim p¥*)edy. But, on the other hand, as lim is a left exact functor,
we have that lim oy, is a monomorphism and so Coker (lim p;) SCoker (lim p¥*).
Thus Coker (lim p,)€T» and so X is Ty-linearly compact. [J

Specializing Theorem 2.5 to the case M=R, we obtain the promised charac-
terization of reflexive modules over QF-3’ rings.

COROLLARY 2.6. Let R be a QF-3" ring and X R-Mod. Then X is refle-
xive if and only if it is Lambek linearly compact and R-dom. dim X=2.

As we have remarked after Proposition 2.3, the “if” part of Corollary 2.6
has been proved by Hoshino and Takashima in [5], assuming only that every
finitely generated submodule of E(Rjy) is torsionless. The “only if” part, how-
ever, does not hold even in the case that R has this property on both sides.
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An easy example is the following. Let R=Z be the ring of rational integers
and X a countable direct sum of copies of gR. Then it is clear that X is not
Lambek linearly compact, but X is reflexive by a theorem of E. Specker [14].

3. Right QF-3’ rings.

It is easy to infer from the proof of Theorem 2.5 that a right QF-3’ ring is
Lambek linearly compact on the left, and now we want to go in the opposite
direction and, similarly to what is done in [9, Theorem 5] (see also [4, Theo-
rem 2.2]) to give conditions on the left for a left QF-3' ring to be QF-3’ (on
both sides). Since the property of being QF-3' does not pass well from the
maximal quotient ring of R to R, we will assume that R is, furthermore, a
left maximal quotient ring. We will also need a stronger linear compactness
condition that appeared in [3]. Assuming that Re R-Mod/.L, let ¢/:[R] be the
full subcategory of R-Mod/.L consisting of the subobjects of quotients of flnite
direct sums of copies of R in this category (this is just the smallest flnitely
closed. i.e., closed under subobjects, quotient objects, and flnite direct sums-
subcategory of R-Mod/.L containing R). We will say that ¢/[R] is a linearly
compact subcategory of R-Mod/.L if, for each inverse system {p;: X;—Y;}; in
R-Mod/.£ with the p; epimorphisms and X,=0¢/-[R], the morphism lim p; is
also an epimorphism of R-Mod/.L.

THEOREM 3.1. Let R be a left maximal quotient ring. Then the following
statements hold :

i) If ¢%.[R] is a linearly compact subcategory of R-Mod/.L, then R is right
QF-3" if and only if every finitely generated submodule of E(Rg) is torsionless.

ii) If every finitely gemerated submodule of E(gR) is torsionless, then R is
right QF-3' if and only if ¢%[R] s a linearly compact subcategory of R-Mod/.L.

PRrOOF. i) Assume that each flnitely generated submodule of E(zR) is tor-
sionless. Then, using Proposition 2.4 and [4, Theorem 1.1], it is enough to
prove that if j: X—Y is a monomorphism in Mod-R, then Coker j*=.L, assum-
ing that the analogous property holds for monomorphisms in Mod-R that have
finitely generated codomain. Thus, let j: X—Y be a monomorphism of Mod-R
and write Y'=lim Yy, where {Y';}, is the direct system of all the flnitely gen-
erated submodules of Y. For each i=l, set X;:=XNY,;, with inclusions
Ji: X;—Y . Using AB5 we see that j=lim j; and, taking R-duals, that j*=
(lim j;)*=lim j¥. Since the Y, are flnitely generated right R-modules, we have
that Coker j¥e.£ for each 7=/ and, since R is a maximal quotient ring, the
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X% and Y¥ are objects of R-Mod/.L, so that we have an inverse system of
epimorphisms j¥: Y*¥—X¥ in R-Mod/.L, with Y¥€¢/[R]. Now, as ¢%[R] isa
linearly compact subcategory of R-Mod/.C, we see that j*=lim j% is an epimor-
phism of R-Mod/.£ and so Coker j*<.r, completing the proof of i).

ii) Assume flrst that every flnitely generated submodule of E(zR) is tor-
sionless and R is right QF-3’. Since R is, furthermore, a left maximal quotient
ring, it follows from [4, Theorem 1.5] that every object of ¢%[R] is reflexive.
Thus if we have an inverse system of epimorphisms {p;: X—X;}; in R-Mod/.L
with X;c0/[R], we may identify each p; with p¥* and we have lim p;=
(lim p¥)*. Since Coker p;=.L, each p¥ is a monomorphism in Mod-R, and hence
so is lim p¥. Now, as R is right QF-3', we have by Proposition 2.4 Coker
(im p;)e.C and so ¢Z[R] is linearly compact. Finally, assume that every
finitely generated submodule of E(zR) is torsionless and ¢/%[R] is linearly com-
pact. Then R is a linearly compact object of R-Mod/.L and by [4, Theorem
2.2], we have that every flnitely generated submodule of E(Rjp) is torsionless,
so that, applying i) we see that R is right QF-3'. [J

Recall that a right R-module Pr is called dominant if it is a flnitely gen-
erated faithful projective module such that if T=End(Pg), then P cogenerates
all the simple left T-modules [7]. Then, assuming again that R is a left maxi-
mal quotient ring, the existence of a dominant right module is equivalent to
R-Mod/.L being a module category by [7]. As it is well known, the left
minimal faithful module over a left QF-3 ring is dominant [13] and so we may
use the preceding theorem to characterize QF-3 maximal quotient rings. This
is an important class of rings for, according to the Ringel-Tachikawa theorem
[12], they correspond to Morita dualities. We next show that QF-3 maximal
quotient rings can be characterized by conditions on the left that are similar to,
but weaker than, those given by Masaike [9, Theorem 5] for QF-3 rings that
are not necessarily maximal quotient rings.

COROLLARY 3.2. Let R be a left maximal quotient ring. Then R is QF-3
if and only if the following conditions hold :
i) R is left QF-3
ii) R s left Lambek linearly compact
itiy R-Mod/.L is a module category (equivalently, R has a dominant right
module).

ProoF. It is clear from what we have already said that if R is QF-3, then
all three conditions above hold. Conversely, if conditions ii) and iii) hold, then
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it follows from [6, Theorem 7.1] that ¢%[R] is a linearly compact subcategory
of R-Mod/.c and then, if i) also holds, we see from Theorem 3.1 that R is a
QF-3 ring. Now, using [2, Corollary 6], we see that R is a QF-3 ring. O

REMARKS. i) The hypothesis that R is a left maximal quotient ring cannot
be dropped from Theorem 3.1 and Corollary 3.2. Indeed, the ring R:(OZ g)

satisfles i), ii) and iii) of Corollary 3.2 but is neither left QF-3 nor right QF-3'.

il) Assume that R is a left maximal quotient ring which is linearly com-
pact as an object of R-Mod/.L. Then, a sufficient condition for ¢%[R] to be
a linearly compact subcategory of R-Mod/.L is that R-Mod/.£ has a projective
generator, as can be seen in the proof of [3, Corollary 7]. Thus an argument
similar to the one used in the proof of Corollary 3.2 gives that if R is a left
maximal quotient ring such that every flnitely generated submodule of E(zR)
is torsionless, R-Mod/L has a projective generator, and R is Lambek linearly
compact, then R is right QF-3.

Acknowledgements.

We thank the referee for pointing out that the “if” part of Corollary 2.6
was already contained in [5], and also for suggesting the example given after
this corollary.

References

“17 R.R. Colby and K.R. Fuller, QF-3’ rings and Morita duality, Tsukuba J. Math. 8
(1984), 183-188.
.27 ].L. Gémez Pardo and P.A. Guil Asensio, QF-3 rings and Morita duality, Comm.
Algebra 18 (1990), 2755-2764.
737 ].L. Gémez Pardo and P.A. Guil Asensio, Linear compactness and Morita duality
for Grothendieck categories, J. Algebra 148 (1992), 53-67.
J.L. Gémez Pardo and P.A. Guil Asensio, Morita dualities associated with the R-
dual functors, J. Pure Appl. Algebra 93 (1994), 179-194.
5] M. Hoshino and S. Takashima, On Lambek torsion theories, I, Osaka J. Math., 31
(1994), 729-746.
61 C.U. Jensen, Les foncteurs dérivés de lim et leurs applications on théorie des

«—-

modules, Lecture Notes in Math. 254, Springer-Verlag, Berlin (1972).

[77] T. Kato, Rings having dominant modules, Téhoku Math. J. 24 (1972), 1-10.

[87 K.Masaike, Duality for quotient modules and a characterization of reflexive modules,
J. Pure Appl. Algebra 28 (1983), 265-277.

{97 K. Masaike, Reflexive modules over QF-3 rings, Canad. Math. Bull. 35 (1992),
247-251.

[10] K. Morita, Duality in QF-3 rings, Math. Z. 108 (1968), 237-252.

(117 B.J. Miiller, Linear compactness and Morita duality, J. Algebra 16 (1970), 60-66.



394

fiz]
(13]
[14]

(15]

José L. GOMEZ PARDO and Pedro A. GUIL ASENSIO

C.M. Ringel and H. Tachikawa, QF-3 rings, J. Reine Angew. Math. 272 (1975),
49-72.

E.A. Rutter, Jr., Dominant modules and finite localizations, T6hoku Math. J. 27
(1975), 225-239.

E. Specker, Additive Gruppen von Folgen ganzer Zahlen, Portugaliae Math. §
(1950), 141-150.

B. Stenstrém, Rings of quotients, Springer-Verlag, Berlin, 1975.

José L. Gémez Pardo

Departamento de Alxebra
Universidade de Santiago

15771 Santiago de Compostela, Spain

Pedro A. Guil Asensio
Departamento de Matematicas
Universidad de Murcia

30071 Murcia, Spain



