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KILLING VECTOR FIELDS ON SEMIRIEMANNIAN

MANIFOLDS

By

Enric Fossas i Colet

Abstract It is well known that a Killing vector fieldon a riemannian

compact manifold is holonomic (Kostant (4)). In other words, the

Ax operator (Ax=Lx―Vx=― VX) liesin the holomony algebra of

the manifold.

The covariant derivative of Ax gives us a curvature transfor-

mation. This fact and the Ambrose-Singer theorem show that the

Ax operator liesinfinitesimallyin the holonomy algebra h.

(i.e. VF, lYAx^RxY^h) (*)

The subject of our study is the holonomicity of a Killing vector

fieldon a semiriemannian compact manifold. We remark the validity

of (*) on semiriemannian manifolds.

In order to simplify its study, we constrain it to Lorentz locally

strictly weakly irreducible manifolds (1.SWI). We remark that

Berger (1) showed that the holonomy algebra of a Lorentz manifold

which is irreducible and non locallysymmetric is the whole po(n, 1).

Therefore, we can leave out this case.

Strictly weakly irreducible manifolds, defined by H. Wu (5, 6)

in 1963 are the cornerstones of this study. Among these we have

found examples of compact manifolds with a non holonomic Killing

vector field.

0. Preliminaries.

Let M be a semiriemannian manifold of dimension n and signature s and

take £eM. Any loop a with base pointp providesus with an isometry of

TPM. The set of isometriescan be structuredas a Lie group: the holonomy

group with base-pointp, GP(M). When we consideronly nulhomotopes loops,
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we obtain Gp(M), the restricted holonomy group. Both are Lie groups. Their

algebra h is the holonomy algebra of M; it is a subalgebra of po(n, s).

The Gp(M)-action on TPM is strictly weakly irreducible (SWI) if there is

some degenerate subspace of TPM invariant by the Gp-action and there are no

invariant and nondeerenerate subspaces.

Example 1. Let e0, eu ■･■,en be a basis of Rn+1. In this basis we define

an inner product <･. ･> on Rn+1 bv the matrix

0

1

Let G be the group of isometries of (Rn+1, <･, ･≫ which have e0 as an

eigenvector. Then (Rn+1, <･, ･>) is SWI by the G-action.

Proof. Clearly e0 spans an invariant degenerate subspace. If U is a G-

invariant and nondegenerate subspace of Rn+1, then

Rn^=URUL (0.0)

and U and UL are invariant and nondegenerate.

The eigenvector e0 lies on U or on U±. Suppose eo^U. Then

If v^UL, we can find an isometry <p^G such that

<p(v)=eo+v

Then eo^G(v) because yeG(y) and this is impossible by (0.0). (Q.E.D.)

Remarks, i) Whenever we take into consideration the G£-action instead

of the Gp-one, we will add the word "locally" to the other abjectives.

ii) A vector space S is G2-invariant if and only if it is ^-invariant.

Proposition 2. Let M be a SWI manifold. Then, there is an isotropic

subspace of TPM, invariant by the Gp-action.

Proof. The SWI conditionprovidesus with a Gp-invariantdegenerate sub-

space V of TPM. Take w<bV in such a way that <v, w}=0 VveF. The sub-

space W=Gp(w) is Gp-invariantand isotropic. (Q.E. D.)

Corollary 3. Let M be a Lorentz SWI manifold. Then,



i)

ii)
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there is a G-invariant totallygeodesic distributionof dimension one on M,

if dimM>2, that distributionis unique.

Proposition 4. Let M be a Lorentz manifold with dim M>2. If M is

locallySWL then M is SWI.

Proof. Let Wq be the G^-invariant subspace of Corollary 3. If r is a

path, by the uniqueness of the distribution(3. ii)

T{WTW)=WtU>

Where t(W) means the paralleltransport of W along r. If a is a loop, we have

tus Wq is Gp-invariant. (Q. E. D.)

Lemma 5. Take a basis e0, elf･･･, en of the Lorentz space Ln+i. Suppose

that the inner product matrix is, in such basis,

The matrix of an isometry ＼ leaving e0 invariant looks like

X

0

a

x-1

0 -~0 X

0

A

)

where X(=R~{0}, w^Rn~＼ A^O(n-l), a=(-<w, w)>/2?)^R, v

(0.1)

(0.2)

=X-＼-Aw)

Let M be a time orientable Lorentz manifold, locally SWI. Let D be the

distributionof Corollary 3. We can take a global vector field Vo that generates

D and, locally, a frame Vo, V1} ･･･, Vn in such a way that the matrix of the

inner product is (0, 1). If necessary, the field Vr could be global.

Definition. The set of isometries of lemma 5 is a group / which is iso-

morphic to i?xi?""1x0(n―1) with the product rule:

(X, lw, A)-(ft,lv, B)=(Xpt, X'v+'wB, AB)

where {X, lw, A) refers to the matrix (0.2).

The group / is a Lie group. Its algebra J is isomorphic to RxRn~lXo(n―1)
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with the bracket rule
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[(a, w, A),(b,v, fl)]=(O,Vw-a'v+'vA-twB, [A, BJ)

where (a, w, A) refers to the matrix:

a

0

0

0

a

w

lw

0

A

In order to reduce the Levi-Civita connection we are going to define a fibre

bundle on M. Let D be the distribution of Corollary 3. If n: L(M)->M is the

bundle of linear frames on M, we define B{M) by:

i) u^L(M) is an isometry between Ln+l and T^U-)M.

ii) u^B(M) if and only if u(eo)^D and the inner product matrix related

to the basis {u(ei)} is (0.1). ({ef} basis as in lemma 5).

Proposition 6. B(M) is a principal fibre bundle on M with structural

group /.

Proof. The /-action on B{M) is free; on the other hand,

B(M) is locally trivialbecause so is L(M).

B(M)/J=M and

(Q.E.D.)

Proposition 7. The Levi Civita connection of M is reducible to a connection

on B(M).

Proof. Let s(t)be a curve on M and s(t)one lift of s(t)on L(M). In a

trivializingneighborhood we have

?(0=(s(0, W0(0, PTx(O, - , W ≫(0]

It is sufficient to prove that if S(o)eJ3(M), then s(t)<=B(M). Assume s(0)e

5(M). Then PF0(0)eZ). Hence WQ(t)^D, since i) is parallel. And the linner

product matrix is (0.1) because it is in s(0) and the parallel transport is an iso-

metry. (Q.E.D.)

Corollary 8. // h is the holonomy algebra of M, then

dim/^l +
n(n-l)
2
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1. First Aproach.

Theorem 9. Let M be a Lorentz SWI manifold. If J is the Lie algebra

°fJ> then any Killing vector field on M satisfiesAx^J.

Proof. We can take a frame Va, Vls ■･･, Vn such that the subspace sub-

space spanned by Vo is D (Corollary3) and the inner product is expressedin

this basis by the matrix (0.1). A skew symmetric matrix takes for form:

a

0

w

0

tw＼

A

where flGi?,u and v^Rn~＼ A<^o{n―1).

The elements of the holonomv algebra have the forme:

f

＼o

(1.1)

where 6ei?, v<=Rn~＼ 5ec(n-l).

Let (1.1) be the Ax operator matrix. Since ＼_AX,h~]ah, we have

B-w―b-w=0

hence w=Q or 6=0.

If m/=0 the proof is finished. If thisis not the case, it must be 6=0 and

Bw=0 for any (b, v, B)^h. In order to have ＼_AX,hjdh, it must be iy-£u=0.

But then the vector (0, 0, w) would be ^-invariant and this is impossible be-

cause M is locally SWI. Q. E. D.

Remark. An interesting and simple case occurs when RXYD~0 MX, Y.

Then we can choose a frame as Vo> Vu ･･･, Vn satisfying that Vo is parallel.

In this case the (b, v, B) elements of the holonomy algebra have 6=0.

Theorem 9 is not enough for this case. We also need ^4x^0=0. This

This happens when the parallel vector fieldis globally defined and M is com-

pact. The following example shows how indispensable the compactness of M is.

Example 10. Let an. a,, a,, be coordinates of R3. In the associated frame

d1
da i

i= 0, 1, 2.

the following matrix defines an inner product



(1.3)
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0

1

0

1

0

g

where g=g{ax, ≪2) and h = h(cti

where.

Changing the frame to

a2) are

0

g

hz

R

(1.2)

valued functions and h=£0 every-

vB=do, v1=d1, v2=h-＼-gdQ+d2),

it is easy to check that:

[To, Vr1]=[7,f F2]=Q and [Vlf 7,]=-A-1[(3l^)Vp,+(SiA)7,]

The matrices of the endomorphisms of TM, IV＼,1VU 1VZ, using the basis

Vo, Vi, Vz act on the leftand are given by:

0

7F0=0 7V＼ =
0

0

0

0

dig

h

0

0

dih

h

7F2=

0

0

0

3

h

0

0

g -dih
h

0

0

Finally

Rv1vzVl=h-＼h{dldlh)-{dAg)^h-＼dlg){dzhWi.

Then Vo is paralleland dim/is^l. If dimA=l (i.e.Ry^^^O), then the holo-

nomy algebra h is spanned by

＼o

0 -1

0

1

0

0

(in the basis Vo, Vu V2)

Note that the inner product matrix is (0.1).

A Killing vector field

X― x0Vo+XiV＼+x2V2

such that AXVO

and

―aVa must satisfy:

xo= ―aaoJi'F(a1>az)

Xi=aai+K (K=cst)

xi=x2(au a2)
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dlF-xth-Kd1g)=0

-(d1x2+(aal+K)h-1(dlg))=h-＼d2F-xAh)

dzxz-^r{aal+K)dlh=^.

We are interested in a solution with x2=0. Then (1.4) becomes:

-(aa1+K)h~＼d1g)=h-＼diF)

(aa1+K){d1h)=0

Hence dth―Q. Finally,

F=G(a2), g^i-dzOlogia^+K), /i= l

satisfies(1.5).
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(1.4)

(1.5)

(1.6)

Summarizing the example. In the subspace of R3 definedby aati+K>Q,

we considerthe inner product

0

1

0

1

0

g

0

g

1

where g is given by (1.6). This manifold is locally SWL The vector field d0

is parallel and dim h= 1. The vector field

X^-aao+GWo+iaay+KWt

is a non holonomic Killing vector fieldsince AxV0=aV0 and V/ie/i, /i(F0)=0.

Corollary 11. Let (M, g) be a compact Lorentz locally SWI manifold.

Let h be the holonomy algebra and assume that there is on M a global parallel

light-like vector field Fo. Let X be a Killing vector field. Then AxV<>=R.

Proof. It is easy to check that

grad(g(F0, X))=AXVO.

By Theorem 9, AxV0=aVQ. Actually a is a constant. In fact, for every

vector field Y,

0=RxrVo=^vAx)V0=Q7YAx)Vo+Ax(7YV0)^r(AxVQ)

=^Y(aV(s)=(YaWo+a(lyVo)=(Ya)Vo

because Vo is parallel. Hence Ya=0 and a is constant. Taking a frame V0,
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Vi, ■･･,Vn where the inner product is expressed by (0.1),it is easy to verify

that

a = Vlg(V0, X)

Since M is compact, g(V0, X) reaches a maximum (minimum), On this point

a = Vlg(VQ, X)=0

so AxVo=0. (Q.E.D.)

2. Genera! case.

Definition. Let <p,<p be endomorphisms of TPM. We define

0(<pf<p)=―trance (<p°<J))

This is a bilinear form called the Cartan-Killing form.

Theorem 12. (2) Let M be a semiriemannian compact manifold, X a Killing

vector field on M. If 0 is nondegenerate on the holonomy algebra, then the Ax-

operator decompose in the form

Ax=h+Bx

where heh, Bxh1- and O(BX, BX)=Q- This decomposition is unique.

Remark. On Lorentz surfaces the Cartan-Killing form is negative definite.

A Lorentz surface which is not flatis locally SWI.

Corollary 13. Let M be a compact Lorentz surface. If X is a Killing

vector fieldon M then Ar^h.

Theorem 14. Let M be a Lorentz SWI manifold, h its holonomy algebra,

Vf> a light-like vector fieldin the direction of the parallel 1-distributionD and r

the radical of the trace form on h.

Let X be a Killing vector field on M, we have

i) // dim M=3

a) dim h=2 implies X is holonomic.

b) dim^=l implies dimr=l.

c) // dim/r=l, M is compact and Vo is global, then X is holonomic

(See 10 for the noncompact case).

ii) // dim M=A and h(Vo)^0, then

a) dim h^4

b) // dim/i^3, then X is holonomic. (See 22 for dim /i=3).

iii) If dim M=4 and MVa)=0. then



a)

b)
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dim ^^3

// M is compact, Vo is global and dim h=3, then X is holonomic.

Proof, i) In an adequate basis, the holonomy algebra h is generated by

n o

a) 0 -1

＼0 0

0 0

0 0

0 0

0 -1

0 0

1 0

I

c) 0

＼0

0 -1

0 0

1 0

Theorem 9 implies a).

The SWI character of M implies b) and Corollary 11 implies c).

ii) In this case the discussion is longer but the tools are the same as in i)

plus the fact that ＼_AX,h~]ah.

iii) In an adequate basis, the elements of the holonomy algebra can be

written as

/O

0

a

0

＼0

0 -1

0

1

0

0

0

0

On /O

o o

0 0

o) ＼o

0

0

0

1

0 -1＼

0 0

0 0

0 0/

so that dim h^3. Hence Corollary 11 gives iii-b).

/O

0

+c

0

＼o

0

0

0

0

0

0

0 -

1

0＼

0

1

o

)

(Q.E.D.)

3. Lorentz nondegeiterate case.

Theorem 15. Let M be a compact Lorentz locally SWI manifold, h its

holonomy algebra ond 0 the Cartan-Killing from. Assume that 0 is nondegene-

rate on h. Then if X is a Xilling vector field, we have Ax^h.

To prove the Theorem we use the following lemmas:

Lemma 16.

0(A, [J3, C])=*([i4, B], C).

Lemma 17. Le£ V fee a K-vector space. Assume that A, .SeEnd(V) and

[A, J3]=0. T/ien V^eiC[x], Ker />(^) fs B-invariant.

Lemma 18. Let V be a Lorentz vectorspace,

product is given by (0.1) and an endomorphism

form:

Take a basis where the inner

A which has in this basis the
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A = ＼Q

＼0

where b<=R, v^Rn~l and ?Feo(n-l).

COLET

0 -

-b

v

°

)

W

// b^ or ＼^0, then there is a subspace

of V which is A-invariant and nondegenerate by the Lorentz inner product.

PROOF. Let e0, eu ･･･,en be our basis. Since ＼^o(n―1), there exists an

orthonormal basis ≪, ･･･,un of <e0,≪i>xin such a way that F is given by the

matrix

B

0

0

fll

0
―fll

0

Related to the basis e0, eu u2, ･･･,

＼o

0

ar

― flr

0

0

ar

― ar

0

0

un the endomorphism A is

0 -

-b

v

0

B

0

If b^Q or W^Q, then 62+a!^0 for some at. The subspace Ker (Az+a＼I)

is ^4-invariantand nondegenerate by the Lorentz inner product. This is the

primary component associatedto the eigen-valueat. (Q. E.D.)

Prrof of Theorem 15. Theorem 12 allows us to decompose

AX=K+BX

where K^h, Bx^hx and 0(BX, Bx)=0.

It is easilyverifiedthat

tBx, /i]=0 V/lGE/i

In fact, from Lemma 16

0<£Bx, hi, 1)=0(BX, [_h,l])=0
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Then

0(£Bx,h],l)=O V/iefc.

But [Bx, h~]^h and 0 is nondegenerate on h, hence (3.1) holds.

By theorem 9, there exists a frame Vo, Vlf ■･･, Vn where Bx is expressed by

b 0 -lv＼

0. -6 0

0 v B]

where fee/?, v^Rn~＼ 5eo(≪-l) and b2=0(B, B).

We must consider two cases

a) 6^0

By Lemma 18 there is a nondegenerate subspace of TM which is 5x in-

variant. By Lemma 17 this subspace is ^-invariant. Then M will not be locally

SWI.

b) b=0. Consequently BX=Q.

An element of h can be written as

a

0

0

Then, since Ax liesin the normalize! of h and 0 is nondegenerate on h,

it must be

Hv+av=Q

V(i/,a) such that H^oCn―l), aei? and 3w^Rn~l such that

a

0

0

0 -w

― a

w

0

H

<=h.

If a=£0 for some H^h, it must be v=0. Otherwise, if v^O, a frame such

as Vo, Vu ■･■,Vn-i, Vn=v/＼＼v＼＼could be taken. In such a frame, the elements

of the holonomy algebra h are expressed by

fa

0

0

＼0

0 ― lW ―Wn-i

― a

w

0

H

Wn-l 0

0

0

0
/
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where u>ei?n~2, wn-i^R and Heo(n-2). Since some wra_i must be different

from 0, we can choose an ^-basis

Jt=(0, u/,,0, #≪) 1=1, -,(r-l); Ir=(0, w;r,l,i/r).

Let J be the ideal spanned by A, ･･■, /r-i and assume that

L=(0, w, e, /f)

is a generator of J1dh. It is easily verified that

0([L, 74],/>)=*(£, [/, J,])=0 Vi,;e{l, - , r). (3.2)

By the nondegeneracy of 0

[L,/i]=0. (3.3)

The L matrix in the F's frame takes the form

0

0

0

0

0

u

0

U

where u(ERn-＼ £7eo(n―1), U&o.

Again by Lemma 18 there is a subspace of TM which is L-invariant and

nondegenerate. Using (3.3) and Lemma 17, we see that it is ^-invariant. But

this is impossible because M is locally SWL Then v―0 implies v=Q. (Q.E.D.)

Proposition 19. Let M be a compact Lorentz locally SWI manifold. Let

0, h and D be as above. Suppose that the Ricci tensor is negative semidefinite,

h is nondegenerate by 0 and h{D)=0. Then any Killing vector field X must lie

in the distributionD1.

Proof. Since h(D)=Q, we can locally choose a vector fieldVo which is

paralleland RV0=D. In a frame Vo, Vu ･･■,Vn where the inner product is

given by (0.1),the elements of h can be expressed by

0

0

0

0

0

V

0

B

Note that 0 is negative semidefinite on h.

Since AxVo=0, from Theorem 15 and grad (g(V0, X))=AXVO, we obtain

that g(X, Vo) is constant. If this constant were different from zero one could

choose a frame Vo 'X, V2, ･･･, Vn in such a way that the inner product would
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1 2/

＼0 0
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It is well known that A/= ―trace(AxoAx)―Ricci(X, X), which is positive

or zero in this case. By integrating A/ on the compact manifold M,

0=f A/. (3.4)

Then A/=0 and trace(A^°i4x)=0. In the frame we have just defined, Ax is

Now we couldintegrate

A/2_
2

0

0

0

=A/-/+g(grad/, grad/)

(3.5)

so as to obtain by (3.4)

0=( £(grad/, grad/). (3.6)

Since grad/ is spatiallike, grad/=0. But grad f=AxX. Then / is con-

stant and .4x=0. (See (3.3)). Consequently X is parallel and the subspace

spanned by X and Vo is invariant and nondegenerate. This is a contradiction.

Hence g{X, Vo)=0. (Q.E.D.)

Theorem 20. With the hypotheses of Proposition 19, the Killing vector field

X is light-likeand parallel.

Proof. By Theorem 14, AxELh. If we take f=(l/2)g(X, X), then A/=0

and

0(AZ, Ax)=0 (3.6)

as in the last proposition.

In a frame Vo, Vu ■■■, Vn where the inner product is given by (0.1), the Ax

matrix is

1°

0

＼o

0

0

v

0

B



470 Enric Fossas i Colet

where yGi?""1 and Beo(n-l). But 5=0 by (3.6). Hence Ax is in the radical

of $iaxA. Then Ax=b and X is parallel

Finally since M is locally SWI, X must be light-like. By Proposition 19,

g(X, Vo)=0. Then X=kV0 and feis a constant. (Q.E.D.)

Corollary 21. Let M be a compact locally SWI manifold. Assume that

the Ricci tensor is negative semidefinite and the trace form 0 is nondegenerate

on h. If D and h(D) are asin Proposition 19, either there are no Killing vector

fields on M or there is a parallel light-likeKilling vector field X on M and any

other Killing vector fieldis XX, where X is a constant.

4. Examples.

In this section we show that Theorem 12 cannot be improved and we com-

plete Theorem 14. We will construct a compact Lorentz SWI manifold with a

non holonomic Killing vector field X that cannot admit a decomposition like in

Theorem 12.

Example 22. Let S1 be the unit circleincluded in the euclidean plane. We

define:

U^S^id, 0)} Ut=S＼[(-l, 0)}

Ut*={(x, y)^Sl:y>0} Ut2={(x, y)^Sl: y<0}

Utz, U12 are the path-components of UxCSUz.

Let 7T:M-+S1 be the bundle on S1 such that

i) 3c'＼U1)^S1xS1xS1xUi i=l,2

ii) The transition function <p:U^U2->Aut(S1xS1xS1) is given by:

<p(x):S'XS'XS'―^S'XS'XS1

(Zo,Z＼,Z2)I >{Zo'Z2 >zi> Zz) " XEzU it

<p(x):S1XS1XS1―>S1XS1XS1

(Zq,Z＼,Z2)I >(S'o'^,2"i,̂g) II XZElU＼2.

M is a fiber bundle on S1 with the fibreisomorphic to S^S^S1.

In order to define a metric tensor on M, consider a system of coordinates

on ttWi)

V >n-1(Ul)

(a0, alt a2, at)i―> (g^"0, e27rittl,e2jrta2,e2jrias)

where /=(0, 1).
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We write di=d/dalt

by the matrix

% ^rr

471

where h

0, 1, 2, 3. In this basis the inner product is given

0

1

1 0

h 2a3

0 2a3

0 0

1

0

h{au a2> as) is a real C°°function

0＼

0

0

1/

well definedon jt'Wi) such that

lim h=0

and this also holds for the successive derivatives.

Analogously, on 7r"1(f72)consider a system of coordinates

/4- -*ic-KUt)

(a'o,ai. a*, ai) i―> (ei7zia'＼eZKia'＼eZKia'＼e^^+w)

(4.1)

where J=(0, 1).

We write d[=d/da[, 2=0, 1, 2, 3. In this basis the inner product is given

by the matrix

/0 1 0 (h

1 h' 2a'3 0

0 2a's 1 0

＼0 0 0 1,

where h'=h'(a'o, aL a's)is a real C00 function well defined on tc~＼U^)such that

This mner product is well definedon M and has signatureone.

One can check, forinstance on x~l(]Ui)that,in the di basis,

0

ldo= 0

0

＼0

djh

2

0

0

0

0

0

0

0

0

0

0/
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Vdx=

Rdod! ―

-ftdo33―

h

dodoh

2

0

0

0

d2d0h
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(-m+h

_doh
2

+tsd2h

,,, d2h
t3doh―y

/

0

Vd2= 0

0

＼0

/
0

Vd3= 0

0

Vo

2

2

0

0

-1

2 3

0

1

0

{-m+h

m-h)
dJdnh

dodoh

2

0

0

-1

0

0

0

0

1

0

0

＼

0

0

0/

0

+t3d0d2h

2

-1

0

0

0

0/

2 h

0

1

0

d(,d2h

2

0

0

0

1-
dodth

d0d3h

2

0

0

0

0

0

0

dQd3h

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

t*dodoh

2

d0d2h

d0d3h

2

t%O2O2 il £l%

dodoh

2

d2d0h

2

―t3d2d0h +

d2d3h
2

0

0

0

2 22

0

0

0

2

2
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dsdoh
(4≪

(4≪

-1

2U

0

0

0

0

1

h)
d3doh

2
―tid3d2h-{-t3doh

dJdoh

2

/o

0

0

＼0

doh―dsd2h
2

0

0

0

1-
dsdsh

2

0

0

0

is generated by

2t3 -1

0

1

0

and so dim h=3

0

0

0

0＼

0

0

0/
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(4.10)

(4.11)

0

0

0

2

Lemma 23. In the dt basis,

/I

0

0

＼0

/O

0

hs=

0

＼0

Proof. In the dt

variant take the form

―t3d,dohJr

a
3
a

2

did2h

ah

2

-12

The knowledge of the holonomy algebradetermines the existenceof a non-

holonomic Killingvector field.This is done in the followinglemma.

-h) 0

0

0

0

0

0

0

0

the holonomy algebra h

0＼

0

0

0/

-i＼

o

o

0/

basis,the skew-symmetric endomorphisms leaving dQ in-

(a -a(it＼-h)-2t3b -b -c＼

0 -a 0 0

0 2t3a+b 0 ―d

＼0 2tzd+c d 0/

Then dim ^4 and (a, 6, c, d) describes any of its elements.

By (4.7),･･･,(4.11),the curvature transformations span a subalgebra included

in the hyperplane d=0.

Assume pGK~1(U1)(^7r~1(U2). The holonomy alegebra hp is spanned by all

curvature transformations in p and those in any other point translated to p by

parallel transport. If geM, we can assume that ^gs'^J/i) and y is a path

joining p and q which also lies in k~1(Ux). Because of (4.2),･･･,(4.5) we can
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assume that there exist functions

satisfying the initialconditions

/(0)=l /,(0)=0 /,(0)=l /,(0)=0

in such a way that the fields

f(t)d0

fi(t)do+f2(t)d2+f3(t)d3

are parallel along y.

This fact and (4.6),･･･,(4.11) show that

(T-1RXYT)do=kdo (4.12)

(T-1RXyr)dt=ftdo VX, Y (4.13)

Hence the holonomy algebra h is included in the hyperplane d=0.

Finally, for a generic h, dim h=3, since curvature transformations (4.6),

(4.9), and (4.11) are linearly independent. (Q. E. D.)

Summarzing the example. From Example 22, M is a compact Lorentz

SWI manifold. The vector X―dx on n-＼Ux) extends to X=d{ and it is a Kill-

ing vector fieldglobally defined on M. It is non holonomic because Ax and hu

hz, h3 are linearly independent and a decomposition like

Ax=h+Bx

where ftsA, B{BX, Bx)=0 and Bx^h± is impossible because @{BX) Bx)=t0.

It is not difficultto give an example like thisin dimension n; for instance,

by choosing an adequate inner product on MxS^ XS1. A good metric

(ra-4)tensor could be

where h = h(a0, a2, at),i=

0

1

0

0

1

h

2*3

0

0

4, ･■･, n-1

0

2t%

1

0

0

0

0

1
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