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HARMONIC FOLIATIONS ON THE SPHERE

By

Zhi-Bo LI

Introduction.

Let M be a compact orientable manifold and let ¥ be a harmonic foliation
on M with respect to a bundle-like metric. Kamber and Tondeur [4] proved
a fundamental formula for a special variation of &, and making use of it they
proved that the index of a harmonic foliation & on the sphere S* (n>2) for
which the standard metric is bundle-like is not smaller than g+1, where ¢ is
the codimension of ¥. On the other hand, Nakagawa and Takagi [6] proved
that any harmonic foliation on a compact space form M™(¢), ¢=0, for which
the normal plane field is minimal is totally geodesic. Here a complete Rie-
mannian manifold of constant curvature is called a space form and an n-dimen-
sional space form of constant curvature ¢ is denoted by M7(¢c). However a
formula in [6] contains an error, and hence the above result is yet open.

The purpose of this paper is to study a harmonic foliation on the sphere.
We use the method of Nakagawa and Takagi [6] to calculate the divergence
of a vector field and obtain a formula of Simons’ type. Then, after Chern, do
Carmo and Kobayashi [2] it is proved that a harmonic foliation & of codimen-
sion ¢ on an n-dimensional unit sphere satisfying S<(n—¢)/(2—1/¢) for which
the normal plane field is minimal, is totally geodesic or n=4, ¢=2, where S
denotes the square of the norm of the second fundamental form of each leaf.
Moreover, was also prove that if S<(n—gq)/(2—1/¢) or K=(g—1)/(2¢—1) for a
harmonic foliation ¢ of codimension ¢ on the unit sphere with respect to a
bundle-like metric, here K denotes the sectional curvature of leaves, then F is
totally geodesic. Thus they have been completely classified by the theorem
due to Escobales [3].
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1. Preliminaries.

Let (M, g) be an n-dimensional Riemannian manifold and & a foliation of
codimension ¢ on M. We may choose a suitable Riemannian metric on the
tangent bundle T(M) of M and decompose T(M) as the direct product FHF+,
where F* is called a normal plane field. For any vector field X on M we
decompose it as

X=X'+X",
where X'’ (resp. X”) is tangent (resp. normal) to &.
We define two tensors A and 4 of type (1, 2) on M by

(L.1) AX, YV)=—NpX"Y, X, V)= p X"

for any vector fields X and ¥ on M, where V denotes the Riemannian connec-
tion with respect to g. The restriction of % to each leaf of F is identified
with the second fundamental from of the leaf.

After Reinhart [7] we define the second fundamental from B of the normal
field g+ by

(1.2) B(X,Y) =% {AX, VH+AY, X))}

for any vector fields X and Y on M.
The following convention on the range of indices will be used throughout
this paper:
A, B, C, =1, ,n;

Z.; .7., k) :1: R p;
a, ﬁ; 7 :p+1) ] p+q:n H

where p=n—g¢ denotes the dimension of 4. The summation X is taken over

all repeated indices, unless otherwise stated. We take a local orthonormal

frame field {e4} in (M, g, F) such that e,, -, e, are tangent to ¥ and hence

¢ps1, -+, €, are orthogonal to . The dual coframe field is denoted by {@a}.
The structure equations of M are given as follows:

dos+SoisNwp=0,
(1.3)
Waptwpa=0,
dwipt+Zwac Nwcp=8 45,
(1.4)

1
Quz ="'2—2RABCDCUC Nwp ,
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where w,p is the connection from with respect to w4, 24 denotes the curva-
ture form of M and R pcp are its components, which are the Riemannian cur-
vature tensor ‘with respect to g.
The Riemannian connection V on M is given by

(1.5) Ve e5=2wcr(es)ec .
It follows from (1.1) and (1.5) that
{ h(es, ej):zwai(ej>ea ,

Alea, €)= waj(ep)e; .

Thus the only components hfc (resp. AEp) of h (resp. A) which may not vanish

(1.6)

are
(1.7) hfy=wqq(ey), (resp. Als=wailes)).
Moreover the connection form w,; are given by

(1.8) Wai =2 h{0;+2Alsog .

The foliation & is said to be harmonic or minimal if 33h%=0. The foliation &
is said to be fotally geodesic if h§=0. The normal plane field g+ is said to be
minimal if Tr B=3]A%,e;=0. The normal plane field g+ is said to be totally
geodesic if B=0. The Riemannian metric tensor g is bundle-like (see Molino
[5]) if and only if

(1.9 Alg=—A}a.

This is equivalent to that B=0. Since the distribution w,=0 is integrably by
definition, it yields

(1.10) h&=hg.

Now, for a temsor field T=(T4L:47) on M, we define the covariant derivative

T4igre by

(1.11) 2T 8 cwc=dT gt — T hkiga-104an4rge
—2ZT858;_ 0By ,-B,008, -

Then, from the definition of (hficp), (Afcp) and (1.8), it follows that we have

(1.12) hijp=—32Lh$he,

(1.13) hija=—23h%;Abe,

(1.14) hig;=hgi;=3hshE;,
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(1.15) hisr=A%y=3h5A%,,
(1.16) hre=hicp=At5p=0,
(1.17) Alap=—2 45415,
(1.18) Aljp=—20AkAls,
(1.19) Alar=—3A}ahfy,
(1.20) ipp=—20Akgh%,
(2.21) Alg;=33Akghi;,
(1.22) Abss=2 AlpAls,
(1.23) Afp=Afcp=A%;p=0.

Moreover, by the exterior derivatives of (1.8) and by means of (1.14), (1.15)
and (1.18), we have

(1.24) hije—hi;=Raijr
(1:25) hiss—hig;+Akjs—Aksi=Raiss,
(1.26) hisy—hes+Absr—Alys=Raipr .
Next, the Ricci formulas for the second covariant derivatives of 4 are
given by
(1.27) hdcpe—h#cor=2(hEcRarpe+h#cRpros+hrReroE) .

2. The divergence of a vector field.

Let (M, g) be a locally symmetric Riemannian manifold and ¢ be a har-
monic foliation on M. We consider a global vector field v=jv4e4 on M de-
fined by

Uk=2h§1j $iks ve=0.

We calculate the divergence dv of v as follows: First, noting 3hf,=0, we

have

2.1) SWer=2 A hie X hGA e +2h?jh§jh?kh'§k
+ SR RGRE S hGRGR GRS,

(2.2) SWaa=20r Ak .

To calculate 2§, we take tUe exterior derivative of (1.24):

d(hgjk—hgkj):d]eaijk .
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Then, noting R,:;::=0, it yields

(2.3) hisni—hfin=2(hT—hE)hi—ZA(h§—h§e )
+H(hisr—hph b+ (hfs—his L}
—ZRnishiu+ D (RapuhfitRasgehfi+Raishfy) .

Remark. In [6] this formula is wrongly derived.

Now, interchanging 7, ; and %, [ in (2.3), we have also
(2.4) hiviy— hins=Z(hi— hEDhf— S {(hfu—hja)h;
+(hgsi—his)hi+(hgip—his)hE;)
=R uriih i+ S(Raprihfi+ Rargihfi+Rorish?),
from which together with (2.3) it follows that we get
(2.5) hijei—hiv;=(the right hand side of (2.3))
—(the right hand side of(2.4))

F(hfsi—hgu;) -
Noticing that

(2.6) hea=ha;,

and, by means of the Ricci formula (1.27) for hi, we can derive the following
equation from (2.5):

(2.7 hijei—hi;=(the right hand side of (2.3))
—(the right hand side of (2.4))
+ D (RapjthfetRinjhse+Remjhti) -
Putting /=% in (2.7) and noting 3hf,=0, we have
(2.8) hijer—hii;=2(h e — R Dhin—Z(hG e —h§2 )R,
+2 0B hn 28R~ R hE— S high;
F23Rimsnhmr =23 Rapsihfi+235Rap;nhf,
+ 2R nerihin;—ZRarsghfi+ 2 Reminhém -
It can be easily seen in [6, Lemma 2.2] that
2.9) Shiyi=—22hiihfihf; .

Hence we have
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(2.10) AR e =— 250Gk ik — S hEhi(hEhfi—hEhT)
— SR hE( A hf— hishE)— S hih§ihfhfy
+ 20 h B hihfi—hihf)— hhEhihf
+25 Rimjuhiihie+4SRasiehishe
125 R enshiih— S Rarsshisht .

Now, let M be a space of constant curvature ¢(=0). For each index «a,
we denote by H, the symmetric matrix (hf;) and set

(2.11) Sap=3hhE; .

Since the matrix S,s of order ¢ is also symmetric and it is diagonalizable, a
local field of orthonormal frames {e,} can be chosen in such a way that Sa.p=
S.0.5, where the eigenvalues S.’s are real-valued functions on M. We denote
by S the squence of the length of the second fundamental form h:

(2.12) S=3h%h=2S«.
From (2.1) and (2.10) we have

(2.13) Sver=2 %A
+20Tr(H*HH*HF—H*H*H*H?)
—2S5+peS.
Thus the divergence dv becomes
(2.14) 0v=2Waa+ 2T Tk
+Tr[(H*HF—HPH*H*H?—HFH")]
—2Si+peS.

3. The main result.

In the present section we follow Chern, do-Carmo akd Kobayashi [2] closely.
For an nXn matrix A with components (a;;) we denote by N(A) the trace of
the matrix A4, i.e., we put N(A)=33(a:;)?. First of all, we need the following

LEMMA [2]. Let A and B be symmetric gXq Watrices. Then
N(AB—BA)X2N(A)N(B)

and the equality holds for nonzero matrices A and B if and only i f A and B can
be transformed simultaneously by an othogonal matrix into scalar multiples of A
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and B respectively, where
0 1 1 0

A=|1

Moreover, if A, A, and A; are (nXn)--symmetric matrices and if
N(A Ap—AgAa)=2N(A,)N(Ap), 1<, B3,

then at least one of the matrices A, must be zero.

THEOREM 1. Let (S™c), g) be an n=(p-+q)-dimensional sphere of constant
curvature ¢ and let F be a harmonic foliation of codimension q on S™c). If the

normal plane field F+ is minimal, then we have

S‘Sn(b‘)s{(z— %)S —ﬁc}*lgo ,

where *1 denotes the volume element of S™(c).

PrROOF. Since the normal plane field g+ is minimal, we get Sv.,=0 by
(2.2), which implies that (2.14) becomes

3.1) =3 h{hf—SNH*HP—HPH*)—3S2+pcS .
Thus we have
—0v+2hehi =2 NH*H?—HPH*)+ S5 — pcS
ézagﬂN(H“)N(HﬁHZSﬁ—pcS

=2 ZASaS,g—}—ZS&—;ch
a*
=(ZSa)’+2 E@SaSp—pcS
al/

=¢*0t+qlg—1)o:—pcS
=—qlg—1)oi~0)+(2¢°—q)ai—pcS,
where go,=2315.=S and ¢(¢—1)0.=23],<zS.Ss. It can be easily seen that

g (g—1)oi—05)= %(Sa—Sﬁ)‘;O,

and therefore we get
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—0v+hErhEn <(2¢*—q)ai—peS

-

By Green’s theorem we have
1
< 2} a. ha. . —
O_SST‘(C) h”kh”k*légsﬂ(c)s{<2 7 )S PC}*I .

COROLLARY. Under the condition of Theorem 1, if F is not totally geodesic
and if SE<pc/(2—1/q) everywhere on S™(c), then

pc
o L
q

and the second fundamental form of each leaf is parallel along the leaf.

S=

Let S® be a unit sphere. We assume that the square length S of the
second fundamental form of each leaf is equal to p/(2—1/qg). If the foliation
F is harmonic on S”, then each leaf of & is the minimal submanifold in M.
So, the well known theorem due to Chern, do-Carmo and Kobayashi [2] implies
that there are only two cases as follows:

1. ¢=1,

2. p=q=2.

However, by a theorem of Barbosa, Kenmotsu and Oshikiri [1] it is seen
that the case 1 does not hold for our foliated Riemannian manifold. But we
give here a direct simple proof of this fact. By definition we get

Veps1@p+1=20ips1(Cpr1)e; = Abr1p41€;,
8(Tep 105400 = S Absips;s -
On the other hand, from (1.14), (1.18) and (1.25) we have
DRy vjipni=2hGta— 2 Afipes

"Zh?kﬁhfk“_2A11;+1p+1A§+1p+1-
Thus we have
Ve, 0pe)=—p—S—[A[<0.

Integrating it over M, we derived a contradiction. So we prove the following
THEOREM 2. Let S™ be an n=(p-+q)-dimensional unit sphere and F be a

harmonic foliation of codimension q on S™ satisfying S=p/(2—1/q). If the normal
plane field F+ is minimal, then p=q=2.
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COROLLARY. Let S™ be an n=(p-+q))-dimensional unit sphere and F be a
harmonic foliation of codimension q on S™ If the normal plane field F+* is
minimal and if SEp/(2—1/q) holds on M, then the foliation F is totally geodesic
or p=q=2,

Remark. Yau [8] has proved the following

THEOREM. Let M" be a compact minimal submanifold in the unit sphere
S?*e. Suppose that the sectional curvature of M™ is everywhere not less than
(g—1)/(2g—1), then either M™ is the totally geodesic sphere, the standard immer-
sion of the product of two spheres or the Veronese surface in S*(1).

Following Yau’s theorem we easily prove that a harmonic foliation on the
sphere, for which the normal plane field 9+ is minimal and the sectional cur-
vature of leaves K=(¢—1)/(2g—1), is totally geodesic or p=g=2.

The compact condition of leaves is not necessary, because the integration
is taken on the sphere.

Hereafter, we assume that the standard metric is bundle-like. Obviously,
it implies that the normal plane field is minimal. If the sphere S*1) is foliated
foliated by the Veronese surfaces, then it is known in [2] that

{0,
e

From (1.25) we have

3.2) hi)=

ZRoiia=—2 AL At —ZhER,
ie.,
3.3) ZA};ﬁAé,g=pq+S=?.
By differentiating (3.3) it yields
(3.4) SALAl5.=0.
On the other hand, it follows from (1.15) and (1.26) that we get
(3.5) D Abgr—Akrs+23h{A%=0.
By cycling the indecies @, 8 and 7, it yields
(3.6) SAbra—Alar+23 08 AL =0,
3.7 —ZAfapt+Afpa—23207;A45=0.
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Taking the summation of (3.5), (3.6) and (3.7), we have

3.8) SAlgr=—X(hi Al +hiAla—hi;Alp) .
By means of (3.4) and (3.8), we have

3.9 Sh$ALs Al hEAbp Ala—hi;Abs Adp)=0.
It yields

(3.10) g hi;Alg Afs=0.

Note that we do not take the summation with respect to a and f.
Now, taking y=3 and then y=4, we have

(3.1D) Ay A%=0,

(3.12) (As)*=(A%)".

From (3.11) and (3.12) we derive
Al=A4=0.

It contradicts to (3.3). So, we can prove

THEOREM 3. Let & be a harmonic foliation of codimension q on ST*4(1),
for which the standard metric is bundle-like. If S<p/(2—1/q) holds on S7*U(1),
then the foliation F is totally geodesic.

THEOREM 4. Let F be a harmonic foliation of codimension ¢ on SP*4(1), for
which the standard metric is bundle-like. If the sectional curvature K of leaves
satisfy K=(q—1)/(2qg—1) on ST*%(1), then the foliation F is totally geodesic.
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