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HARMONIC FOLIATIONS ON THE SPHERE
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Introduction.

Let M be a compact orientable manifold and let £Fbe a harmonic foliation

on M with respect to a bundle-like metric. Kamber and Tondeur [4] proved

a fundamental formula for a special variation of 3, and making use of it they

proved that the index of a harmonic foliation 3 on the sphere Sn (n>2) for

which the standard metric is bundle-like is not smaller than q-＼-l,where q is

the codimension of 1. On the other hand, Nakagawa and Takagi [6] proved

that any harmonic foliation on a compact space form Mn{c), c^O, for which

the normal plane fieldis minimal is totally geodesic. Here a complete Rie-

mannian manifold of constant curvature is called a space form and an n -dimen-

sional space form of constant curvature c is denoted by Mn{c). However a

formula in [6] contains an error, and hence the above result is yet open.

The purpose of this paper is to study a harmonic foliation on the sphere.

We use the method of Nakagawa and Takagi [6] to calculate the divergence

of a vector field and obtain a formula of Simons' type. Then, after Chern, do

Carmo and Kobayashi [2] it is proved that a harmonic foliation3 of codimen-

sion q on an n-dimensional unit sphere satisfying S^(n―q)/(2―l/q) for which

the normal plane field is minimal, is totally geodesic or n=4, q=2, where 5

denotes the square of the norm of the second fundamental form of each leaf.

Moreover, was also prove that if S^(n―q)/(2―1/q) or K^(q―l)/(2q―l) for 2

harmonic foliation 3 of codimension q on the unit sphere with respect to z

bundle-like metric, here K denotes the sectional curvature of leaves, then 3 is

totally geodesic. Thus they have been completely classifiedby the theorenr

due to Escobales [3].
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1. Preliminaries.

Let (M, g) be an n -dimensional Riemannian manifold and £Fa foliation of

codimension q on M. We may choose a suitable Riemannian metric on the

tangent bundle T{M) of M and decompose T(M) as the direct product <SR31,

where ff1 is called a normal plane field. For any vector field X on M we

decompose it as

X=X'+X",

where X' (resp. X") is tangent (resp. normal) to 3.

We define two tensors A and A of type (1, 2) on M by

(1.1) A{X, Y)=-C7y.X*)', h(X, Y)=&r.Xy

for any vector fields X and Y on M, where 7 denotes the Riemannian connec-

tion with respect to g. The restriction of h to each leaf of 3 is identified

with the second fundamental from of the leaf.

After Reinhart [7] we define the second fundamental from B of the normal

field 5X by

(1.2) B{X, Y) = j{A(X, Y)+A(Y, X)}

for any vector fields X and Y on M.

The following convention on the range of indices will be used throughout

this paper:

A, B, C, ■･■=!,･■■,n;

i,j, k, ･･･=1, ■■■,p;

a, j8,T>■■･=P + h -■, P+q=n,

where p = n―q denotes the dimension of 3. The summation 2 is taken over

all repeated indices, unless otherwise stated. We take a local orthonormal

frame field{eA＼in (M, g, 3) such that eu ･■･, ep are tangent to 3 and hence

eP+i>･■-, en are orthogonal to 3. The dual coframe fieldis denoted by {cda}.

The structure equations of M are given as follows:

(1.3)

(1.4)

{ (Oab + MbA^R ,

da}AB + 1]<t)AcAa)CB=z^AB ,

UAB ― ―k-^Rabcd^c Ao)d ,
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where o)ABis the connection from with respect to (da, &ab denotes the curva-

ture form of M and Rabcd are its components, which are the Riemannian cur-

vature tensor with respect to g.

The Riemannian connection V on M is given by

(1.5) ^JeAeB―Ti(OcB{eA)ec.

It follows from (1.1) and (1.5) that

(1.6)

Thus the only components hie (resp. A%D) of h (resp. A) which may not vanish

are

(1.7) hfj=a)ai(ej), (resp. A^=wai(e^).

Moreover the connection form a)aiare given by

(1.8) <w≪i=2/ii>j+IM*)3<u/j.

The foliation£Fis said to be harmonic or minimal if SM>=0. The foliation£F

is said to be totallygeodesic if /i%=0. The normal plane field ff1 is said to be

minimal if Tr B = ^Aiaaei=^. The normal plane field ff1 is said to be totally

geodesic if B=0. The Riemannian metric tensor g is bundle-like (see Molino

[5]) if and only if

(1.9) Ai^-AU-

This is equivalent to that -6=0. Since the distribution≪a=0 is integrably by

definition,it yields

(1.10) hfj=hft.

Now, for a tensor field T=(Ti＼::.%£)on M, we define the covariant derivative

T£j::i;cby

(1.11) S^j:::ijCfflC=rfTii:::i;-S^}:::^-i"^i"-%ia

―S^B11"^-1C7B6+1...BsCOcjs6･

Then, from the definition of {Hbcd), (^bcd) and (1.8),it follows that we have

(1.12) hlijk= -Jlh?jhfk,

(1.13) hltja= -^h!jA^a,

(1-14) h?BJ=hhj='Eh?llhlJ,
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(1.15) h?pr=Afir='Zh?kA^r,

(1.16) hfrC=hicD=A^D=0,

(1.17) A%p = -J]A}aAh,

(1.18) Aij^-XAirAlf,,

(1.19) >15≪*= -S^a^,

(1.20) ^* = -2Mi^&,

(2.21) ^,,=2^1,,

(1.22) ^=2^^,

(1.23) Afo=:A°lcD=A%jD=0.

Moreover, by the exterior derivatives of (1.8) and by means of (1.14),(1.15)

and (1.18), we have

(1.24) h?jk-h?kj=Raijk,

d'25) hZjp-hfa+Aljp-Aip^Raijti,

(1.26) h?pr-h2rp+Aiapr-AlarP=Ram ･

Next, the Ricci formulas for the second covariant derivatives of h are

given by

(1.27) hicDE-hicDE = lXh§cRAFDE+h$cRBFDE+hiFRcFDl!) ･

2. The divergence of a vector field.

Let (M, g) be a locally symmetric Riemannian manifold and 3 be a har-

monic foliation on M. We consider a global vector fieldv=^va^a on M de-

fined by

vk=llh?jh?Jk, va=0.

We calculate the divergence 8v of v as follows: First, noting 2/^=0, we

have

(2.1)

(2.2)

To calculate h?Jkk, we take tqe exterior derivative of (1.24):

d(h?Jk-h?kj)=dRaijk.
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Then, noting Raaki=0, it yields

(2.3)
h?jki-h?kJi='£(h?jk-hnj)h°ll-'2{(haPjk-hapkJ)h§l

+{ham-haik^l+{haij?-h^j)hll)

SRmijMl+'E(Ra{ijM+Raif)kh§l+RatJlihJ!l)

Remark. In [6] this formula is wrongly derived.

Now, interchanging i, j and k, I in (2.3), we have also

(2.4) htuj-htu^llih^-h^h^j-^ih^-h^hlj

+(hfa-hfo)h?j+(h2lt>-h!!{iMJ}

-URmklMj + ZXRapiihgj + Raklnhtj + Raktiihfa

from which together with (2.3) it follows that we get

(2.5)
hijki―hkuj―(the right hand side of (2.3))

―(the right hand side of(2A))
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Noticing that

(2.6) hfaj^hfaj,

and, by means of the Ricci formula (1.27) for hfj, we can derive the following

eauation from (2.51:

(2.7)
hijki ― hkuj―{the right hand side of (2.3))

―{the right hand side of (2.4))

~t1j{R a ftjlhik-＼-R'imjlhmk + R kmjlhmi)

Putting l=k in (2.7) and noting 2/i£*=0, we have

(2.8)

+ ^h?ikhamj+2^(hapki-hjik)hij-^h%kph$j

+^Rimjkhamk-2^Ra?kihlJ+2TlRa^hlk

+ HRmkkihamj-TlRakk?hlJ+^Rkmjkhaim.

It can be easilyseen in [6, Lemma 2.2] that

(2.9) UKui^-VZhtMMi ■

Hence we have
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(2.10)
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llhfjhfjt^^XhbhMhtj-^hbhmWi-hlthfc

-Hh?jhtk(h3lhfk-hf;lh?j)-'2h?jh?ih$khgi

+2^iRimjkhaijhamk+A'ZRa^khaijhlk

+2Y＼Rmkkih?ihami-yiRal!kBh?ihti ･

Now, let M be a space of constant curvature c(^0). For each index a,

we denote by Ha the symmetric matrix (hfj) and set

(2.11) Sap=HhM.

Since the matrix Sap of order q is also symmetric and it is diagonalizable, z

local field of orthonormal frames {ea} can be chosen in such a way that Sap =

Sadap, where the eigenvalues Sa'$ are real-valued functions on M. We denote

by S the squence of the length of the second fundamental form h :

(2.12) S=2/if,/i?,=2S≪.

From (2.1) and (2.10) we have

(2.13) 2v**=2≪,*fc&*

+2%Tr(HaH?HaHP-HaHaHPHP)

-HSl + frcS.

Thus the divergence 8v becomes

(2.14) dv=?:vaa+l}h?jkh?jk

+J}Tr[(HaHP-HPHa)(HaH?-HPHa)']

-HSl+pcS.

3. The main result.

In the present section we follow Chern, do-Carmo akd Kobayashi [2] closely.

For an nXn matrix A with components {at]) we denote by N(A) the trace of

the matrix A1 A, i.e., we put N{A)―^{aij)2. First of all,we need the following

Lemma [2]. Let A and B be symmetric qXq matrices. Then

N{AR-BA)^2N{A)N{B)

and the equality holds for nonzero matrices A and B if and only if A and B can

be transformed simultaneously by an othogonal matrix into scalar multiples of A
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and B respectively,where

0

1= 1

1

0

0

1

B= 0

0

-1

0

Moreover, if Au A2 and A3 are (nXn)symmetric matricesand if

N{AaAp-A?Aa)=2N(Aa)N(Ap),

then at least one of the matrices Aa must be zero.

l^a, /3^3
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Theorem 1. Let (Sn(c), g) be an n―{p-＼-q)-dimensionalsphere of constant

curvature c and let 3 be a harmonic foliation of codimension q on Sn{c). If the

normal Mane fieldff1 is minimal, then we have

f s＼(2--)S-pc＼*l>0,

where *1 denotes the volume element of Sn(c).

Proof. Since the normal plane field t3L is minimal, we get Si/aa=0 by

(2.2), which implies that (2.14) becomes

(3.1)

Thus we have

dv=^h?jkh?Jk-J]N(HaH^-H^Ha)-^S2a+pcS

dv+^h?jkh?jk=%N(HaHP-HPHa)+^S*-pcS

^2 S N(Ha)N(H?)+y:S2a-pcS

=(SS≪)2+2S5≪S;3-/)c5
a</9

= ?2(T?+ ^-l)(T2-/)cS

where g<Ji=l[]Sa

= -q(q-lXo＼-Ot)+{2q*-q)o＼-pcS,

=S and ^(<y―l)of2=2Sa<fl5a:Ss. It can be easily seen that

q＼q-l)(ol-at)='2(Stt-S{iy>0
≪</3

and thereforewe get
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-8v+^h?Jkh?jk^(2qz-g)at-pcS

By Green's theorem we have

=S{(2-I)S-*}

0Sf..,≪2*&.A&..lsk,
(oS{(2-j)s-*}.l

Corollary. Under the condition of Theorem 1, // 3 is not totallygeodesic

and if S^pc/(2―l/q) everywhere on Sn(c), then

c pc

and the second fundamental form of each leaf is parallel along the leaf.

Let Sn be a unit sphere. We assume that the square length S of the

second fundamental form of each leaf is equal to p/(2―l/q). If the foliation

3 is harmonic on Sn, then each leaf of 3 is the minimal submanifold in M.

So, the well known theorem due to Chern, do-Carmo and Kobayashi [2] implies

that there are only two cases as follows:

1. Q=h

2. p=g=2.

However, by a theorem of Barbosa, Kenmotsu and Oshikiri [1] it is seen

that the case 1 does not hold for our foliated Riemannian manifold. But we

give here a direct simple proof of this fact. By definition we get

Vep+10p+i==2<Wip+i(0p+i)0/=IMp+ip+i07,

On the other hand, from (1.14),(1.18) and (1.25) we have

Z-iK-p+ljjp+l―2-l"'jjp+l Zj^p +lp+lj

2->hjk hjk S^ljp+ip+i^p+ip+i･

Thus we have

dWep+1ep+1)=-p-S- |A |<0 .

Integrating it over M, we derived a contradiction. So we prove the following

Theorem 2. Let Sn be an n―{p-＼-q)-dimensionalunit sphere and 3 be a

harmonic foliationof codimension q on Sn satisfying S=p/(2―l/q). If the normal

plane field 31 is minimal, then fi=q=2.
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Corollary. Let Sn be an n=(p+q))-dimensional unit sphere and 3 be a

harmonic foliation of codimension q on Sn. If the normal plane field 31 is

minimal and if Sf^p/(2―l/q) holds on M, then the foliation 3 is totallygeodesic

or t―q―2.

Remark. Yau [8] has proved the following

Theorem. Let Mn be a compact minimal submanifold in the unit sphere

Sp+i. Suppose that the sectional curvature of Mn is everywhere not less than

(q―l)/(2q―T), then either Mn is the totallygeodesic sphere, the standard immer-

sion of the product of two spheres or the Veronese surface in SHI).

Following Yau's theorem we easily prove that a harmonic foliationon the

sphere, for which the normal plane field ff1 is minimal and the sectional cur-

vature of leaves K^(g―l)/(2g―l), is totallygeodesic or p=g=2.

The compact condition of leaves is not necessary, because the integration

is taken on the sphere.

Hereafter, we assume that the standard metric is bundle-like. Obviously,

it implies that the normal plane fieldis minimal. If the sphere S＼l)is foliated

foliated by the Veronese surfaces, then it is known in [2] that

(3.2) (hh)=i

From (1.25) we have

i

e.,

0

° / o

^-iK-aiia― ZjAar-^Ta Zjhijhij

0

V 3"

(3.3) HAiapAiap=pg+S=j.

By differentiating(3.3)it yields

(3.4) HA'pAlp^O.

On the other hand, it follows from (1.15) and (1.26) that we get

(3.5) HA^r-A^^^hfjA^O.

By cycling the indecies a, /3 and y, it yields

(3.6) S^r≪-^^r+2S/if^a=0,

(3.7) -S^^ + ^/j≪-2SM^≪=0 ･
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Taking the summation of (3.5),(3.6) and (3.7), we have

(3.8) HAU^-ZXhfjAU+htjAia-ttjAlp).

By means of (3.4)and (3.8),we have

(3.9)

It yields

(3.10)

Ti(hfJAiaBAir+hiJAiapAU-hrijAtapAifi)=O.

i.j

Note that we do not take the summation with respect to a and /3

Now, taking f=3 and then Y―4, we have

(3.11)

(3.12)

41 42 ―0
-<134^134―V

(Air= (AIY

From (3.11) and (3.12) we derive

41 42 A

It contradicts to (3.3). So, we can prove

Theorem 3. Let 1 be a harmonic foliation of codimension q on Sp+q(l),

for which the standard metric is bundle-like. If S^p/(2―l/q) holds on Sp+q(l),

then the foliation 3 is totallygeodesic.

Theorem 4. Let 3 be a harmonic foliationof codimension q on Sp+q(l),for

which the standard metric is bundle-like. If the sectional curvature K of leaves

satisfy K^(q―l)/(2q―l) on Sp+q(l), then the foliation 1 is totallygeodesic.
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