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Symmetric submanifolds of compact symmetric spaces

By

Hiroo Naitoh*

1. Introduction

This paper is the finalreport for the author's anouncement of the same title,appeared

in Lect. Notes in Math., 1090, Springer-Verlag ([15]). It contains the results of the

anouncement and their detailed proofs, and some further results.

Now symmetric submanifold is defined analogously to riemannian symmetric space.

Namely, for riemannian symmetric space itis assumed, the existence of the (intrinsic)sym-

metry at each point. And for symmetric submanifold itis assumed, the existence of the ex-

trinsic symmetry at each point in the submanifold. If the ambient spaces are riemannian

symmetric spaces, symmetric submanifolds are locally characterized as submanifolds with

parallelsecond fundamental form which satisfy some condition on the normal spaces. (See

Theorem 1.3.) This characterization corresponds to the characterization that riemannian

symmetric spaces are riemannian manifolds with parallel curvature tensor locally.If the

ambient spaces are rank-one symmetric spaces, submanifolds with parallel second fun-

damental form have already been classified by several mathematicians. (See [1], [4], [5],

[9], [10], [13], [14], [17], [18], [21], [22].) Hence we can take up symmetric submanifolds

of their spaces. But if the ambient spaces are other riemannian symmetric spaces, the sym-

metric submanifolds are almost unknown except Tsukada [23]. In this paper we consider

the classification for the case when the ambient spaces are compact simply connected

riemannian symmetric spaces.

Firstly we will show that symmetric submanifolds of compact riemannian manifolds

are equivariant for certain Lie groups acting transitively on the submanifolds, that is, the

inclusions are induced from Lie group homomorphisms of the Lie groups into the isometry

groups of the ambient spaces. (See Theorem 2.5.) This result implies that our classifica-

tion may be reduced into that of certain algebraic objects associated with Lie group or Lie

algebra.

Next for symmetric submanifolds we will define the totally geodesic symmetric sub-

manifolds tangent to the original symmetric submanifolds, and divide our classification

problem into the following two steps. The first step is to classify the associated totally

geodesic symmetric submanifolds. This is reduced to the local classification of non-
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compact affine symmetric spaces by Berger [2]. (See Theorem 3.3 and Proposition 3.6.)

And the second step is to fixa totally geodesic symmetric submanifold and to find allsym-

metric submanifolds tangent to it. The classification is also reduced to that of certain

algebraic objects associated with the corresponding non-compact affine symmetric space.

(See Theorem 4.4 and Cororally 4.6.)

Lastly, by using this reduction, we will give a sufficient condition for totally geodesic

symmetric submanifolds to satisfy that all symmetric submanifolds tangent to them are

the original totally geodesic symmetric submanifolds. (See Theorem 5.2.) There are many

examples satisfying this conditions. Moreover we will consider two series of totally

geodesic symmetric submanifolds which don't satisfy this condition. The one is close to

totally complex totally geodesic submanifolds of compact quaternionic symmetric spaces,

and the other is close to totally real totally geodesic submanifolds of compact hermitian

symmetric spaces. (See Theorem 5.4 and Theorem 5.7.)In these cases the symmetric sub-

manifolds tangent to them are not always totally geodesic.

1. Symmetric immersions

Let S, Mbe connected riemannian manifolds and let/be an isometric immersion of S

into M. Denote by TPS, NPS the tangent space, the normal space at p e S respectively. The

immersion / is called symmetric if for each peS there exist an isometry sp of S and an

isometry tp of M such that

(1.1) t,'f=f*Sp,

(1.2) sp(p)=p and thus tp(f (p))=f(p),

(1.3) (tp).MX) = -f*(X), (tp)*Z=Z

for XeTpS, £eNpS. Note that (sp)*X= -X for XeTpS by (1.1), (1.3) and thus S is a

riemannian symmetric space. Here we call the isometries sp, tpthe intrinsic, the extrinsic

symmetries at p respectively. If/is an imbedding, the image/ (S) is called a symmetric sub-

manifold and is identified with the manifold S. Then the isometry spis identified with the

restriction of tp to S. Moreover if S is regular, the restriction is automatically smooth

without the existence of sp.Hence the definition of regular symmetric submanifold may be

rewritten in the following form. For each peS there exists an isometry tp of M such that

tp(p) = p,tp(S) = S,

(tPux=-x,(tp)*z=t

for XeTpS, £eNpS.

For the local versions of symmetric immersion, symmetric submanifold we assume

only the existence of an isometry sparoundp and an isometry tparound/ (p) satisfying the

conditions (1.1)~ (1.3) and call these a locallysymmetric immersion, a locallysymmetric sub-

manifold respectively. Then the manifold S is a locally riemannian symmetric space.
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Return to an isometric immersion/of S into M and denote by ≪the second fundamen-

tal form of/and by V*a the covariant derivative of a defined in the following.

(Vxa)(YfZ)=Dx(cc(Y,Z))-a(VxY,Z)-a(Y,VxZ)

for vector fields X, Y, Z tangent to S. Here D, V denote the normal connection for /, the

riemannian connection on S respectively. The immersion/is called parallelif V*a ―Q and

moreover if/is an imbedding, the image f (S) or S is called a parallel submanifold.

Denote by R the curvature tensor on M. A linear subspace Fin a tangent space of Mis

called curvature-invariant if R(V, V)VcV. If / is a parallel immersion, the subspaces

f*(TpS), peS, are curvature-invariant by the Coddazi equation for/.

Next assume that/is a parallel immersion. Fix a point peS and let A be a linear en-

domorphism of Tf(P)M such that

(i.5) xw.&))=-/･&), m=z

for XeTpS, £eNpS. Let y(f), ＼t＼<l,be a geodesic in S such that y(0)=p. Then it follows

the following

Lemma 1.1. (Striiblng[16]).Assume thatA is an isometry of M definedon a domain

containingthe image f (y(t)),＼t＼<l,and satisfying

A{f{p))=f{p),A*f(p) = L

Then itholds A(f (y(t)))=/ (y(-0) for alltsuch that ＼t＼<l.

Now if/Is a parallelImmersion of S into a locally riemannian symmetric space M, the

manifold S is also a locally riemannian symmetric space. Hence we may consider the rela-

tion between symmetric immersions and parallelimmersions into locally riemannian sym-

metric spaces. Firstly we prepare the following

Lemma 1.2. (cf. Helgason [6]). Let L, L' be locallyriemannian symmetric spaces of the

same dimension, furnished with the curvature tensors R, R' respectively.FixpeL, p' eL' and

let k be a linear isometry of TPL onto Tp-L' such that

(1.6) k{R{X, Y)Z)=R'(k(X),k(Y))k(Z)

for X, Y, Ze T,L. Then,

(1) there existsa localisometry A of a domain around p onto a domain around p' such that

A (p) =p', A*p=k. If Lis simply connected and complete and if L' is complete, theisometry A

existsglobally on L.

For the geodesic y(f) in L such that y(0) =p, y(0) =X, denote by yx{t) the geodesic in L'

such that yk{Q)=p'', yx(0)=k(X).

(2) Let A be a (not necessarily smooth) mapping of a domain around p into L' such that

A (y(t))= yx(t)for alllocalgeodesies y(t) startingfrom p. Then A is a unique smooth isometry
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on some domain around p such thatA*p=X. Moreover assume thatL, L' are complete.If A is

definedgloballyon L, itis a smooth isometry on L.

Theorem 1.3. Let f be an isometric immersion ofS into a locallyriemannian symmetric

space M. Then f is a locallysymmetric immersion if and only if itis a parallelimmersion such

that the normal spaces NPS, peS, are curvature-invariant subspaces of Tf(p)M respectively.

PROOF. Assume that / is locally symmetric. Since tp,sp are isometries such that

tp°f=f° sp,we have

(V^xaWspUY, (spUZ) = (tpU((Vxa)(Y, Z)),

R((tP)*Z, (tP)*O(tp)*ri=(tP)*Ui(Z, On)

for X, Y, ZeTpS, £,(, qeNpS. Then, by (1.3), it follows

-(Vxa)(Y,Z) = (Vxa)(Y,Z),

R(£,z)ri= (tp)*(fl(Z,Ori).

These imply that Fa = 0 and R(NpS, NpS)NpScNpS respectively.

Conversely assume that/is a parallelimmersion such that the normal spaces are cur-

vature-invariant. Fix peS. Then the subspace/*7},Sis also curvature-invariant. Hence, by

the property of the curvature tensor R, it follows

(1.7)

I

R(f*TpS,f*TpS)f*TpScf*TpS, R(f*TpS,f*TpS)NpScNpS,

R(f*TpS,NpS)f*TpScNpS, R(f*TpS,NpS)NpScf*TpS,

R( NPS, NPS) /*TpSc /*TPS, R(NPS, NpS)NpScNpS.

Define a linear isometry X of Tf(P)M as in (1.5). Then the relations (1.7) imply that A

satisfies(1.6). Hence there exists a local isometry tparound/(i>) such that tp(f(p))
~f

(p),

(tp)tf(P)= k. Then, by Lemma 1.1,it holds tp(f(y(t)) =f (y(-t)) for alllocal geodesies y(t)in

S starting from p. Let sp be a mapping defined around p such that f°sp=tp°f Obviously it

follows sp(y(t))= y( ―t).By Lemma 1.2, (2), the mapping spis a smooth isometry. It is ob-

vious that these isometries tp,sp satisfy the conditions (1.1)~(1.3). Hence/is locally sym-

metric, q.e.d.

Cororally 1.4. Let M be a simply connected riemannian symmetric space and letSbea

submanifold of M. Then S is a symmetric submanifold if and only if it is a complete parallel

submanifold such that the normal spaces are curvature-invariant.

Particularly a complete locallysymmetric submanifold is always a symmetric submanifold.

Proof. If S is symmetric, itis a riemannian symmetric space and thus itis complete.

By Theorem 1.3, itis a complete parallel submanifold such that the normal spaces are cur-

vature-invariant .

Conversely assume that S is such a submanifold. And recall the local isometries tp,sp
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definedin the proof ofTheorem 1.3.Since M is simply connected and S is complete, they

are defined globallyas smooth isometries by Lemma 1.2.Hence S is symmetric, q.e.d.

Remark 1.5. Assume thatMhas constant curvature and let/be an isometricimmer-

sion of S into M. Then the normal spaces are always curvature-invariant.

2. The equivariance of symmetric immersions and their classification problem

Let S, Mbe riemannian manifolds. Denote by I°(S),I°(M) the connected components

of the isometry groups of S, M respectively, containing the identity transformations. Then

the Lie algebras g, g of I°(S),I°(M) are canonically identified with the Lie algebras of all

Killing vector fields on S, M respectively.

Let/be an isometric immersion of S into M. Define a Lie subalgebra qf of g as follows.

A Killing vector field X on S is contained in g/ if and only if it satisfiesf*X=X°f for

some Xeq. Let Ijbe a Lie subalgebra of Qf.Then Ijis called deaf ^-relatedsuhalgehm if there

exists a Lie algebra homomorphism p of Ijinto g such that/* X=p(X) °/for Xe 5j.Such a p

is called an /^-related Lie homomorphism.

Let Ijbe an/*-related subalgebra and p an/*-related Lie homomorphism of Ijinto g.

Denote by H the universal convering of the connected Lie subgroup of I°(S) with Lie

algebra Ij,and by the same notation p the Lie group homomorphism of Hinto I°(M) whose

differentialis p. The Lie group if acts on S through I°(S),while it acts on M through p(H)

C/°(M).

Lemma 2.1. The isometric immersion f is H-equivariant, i.e.,

p{h)(f{q))=f{h{q))

for heH, qeS.

Proof. Let Je| and fixgeS. We may show that

(2.1) Mexp tX)(f(q))=f((exp tX)(q))

for the one parameter subgroup exp tX of H. Note that /?(exp tX)(f(q)), (exp tX)(q) are

integral curves of Killing vector fields p(X), X respectively. Since f*(X)=p(X) °f,the

curve/ ((exp tX)(q)) is also the integral curve of p(X) through q at t=0. Hence the equali-

ty (2.1) holds by the uniqueness of integral curves. q.e.d.

Now let/be a symmetric immersion of S into a riemannian manifold M. Recall that S

is a riemannian symmetric space. Let y(t), -oo<Koo,bea complete geodesic in S. Then

it follows

(2.2) sy{c)(y(t))= y(2c-t)

for c,teB. Denote by xa,b,aSh, the parallel translation for the riemannian connection on S,

from Ty{a)S to Ty{b)S along y(t).Then the following equalities hold:
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(2.3) "£a,b~~＼Sy(a+b/2))*y(a)>

(2.4) Sy(a)°Sy(O)°5y(J)=Sy(ffl+i).

Let S(t) be a curve in /°(S) defined by

S(f)=Sy(t/2)°Sy(O)

for all ^ei2. Then the equality (2.4) implies that S(t) is a one parameter subgroup. (See

Helgason [6] for (2.3), (2.4).)

Now consider the image curve f(y(t)) of a complete geodesic y(t)in S. Denote by xa,b

the parallel translation for the normal connection, from Ny(a)S to Ny{b)S along/ (y(t)).Then

we have the following lemma analogous to (2.3), (2.4). The proof is also along Helgason's

arguements.

Lemma 2.2. Ft holds that

(2.5)

for ^eNy(fl)S and moreover

(2.6)

Ta,b(Q ~~
(ty(fi

+ b/2))*fMa))
(0

ty(a)
°

ty(O)
°

ty(b) ― ty(a
+ b)-

Proof. Firstly we show the equality (2.5). Obviously it follows

(2.7) ty(c)(f(y(t)))=f(y(2c-t)),(ty(c))*NY{t)S=NYi2c-t)S

by (1.1), (2.2). Put c=(a + b)/2 and fix ZeNmS. Then normal vectors fc>c(£),i are parallel

and thus (ty{c))*(iaiC(R), (W*£ are also parallel by (2.7). Since (ty{C))*(Ta,c(&) = fa,c(& and

fa,c(O is parallel to fa,b(O, normal vectors fa,ft(£),(^(c))*<^ are parallel. Hence it follows that

Ta,b(O = (ty(c))*t

Next we show the equality (2.6). Put w~ty(a) °̂ <o) °ty(b)a.ndp=y(a + h). Then it follows

v(f(P)) = tp(f(P) = f(P) by (2.7). Consider the differential y/*m of y/ atf(p). The restric-

tion of y/*f(P)to f*(TpS) is the minus identity by (1.1), (2.4), and moreover that of w*ap) to

NPS is the identity by (2.5). Hence it follows that y/*np)= ifp) */</>)･Since y/, tpare isometries,

it holds y/=tp on M. q.e.d.

Let T(t) be a curve in /°(M) defined by

T(t) = ty(t/2)°^y(O)

for all teR. Then the equality (2.6) implies that T(t) is a one parameter subgroup.

Now fix peS and define an involutive automorphism d of I°(S) by S(g) =sp °g °sp for

ge/°(S). Then the differential induces an involutive automorphism of g. Denote it by the

same notation S. Let p be the ( ―l)-eigenspace of S. Let Xep. Then the integral curve y(t)

of X such that y(0) = p is a complete geodesic in 5. Moreover the one parameter subgroup

S(t) defined from y(t) coincides with the one parameter subgroup exp tX generated by X.

Put fn=[p, pl and Oo=foctK
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Proposition 2.3. Letf be a symmetric immersion of S into a riemannian manifold M.

Then it holds goCg/.

PROOF. We may show that peg/. Take Xep and let y(t) be the integral complete

geodesic such that y(O)=p. Then the one parameter subgroups S(t), T(f) satisfy T{t) °f

=/° S{t) by (1.1). Let Xbe the Killing vector fieldon M which generates T(t). Since S(f) is

generated by X, it follows/*(I)=Z°/and thus Xeqf. This implies that pCQ/. q.e.d.

Next we consider a sufficient condition for g0 to be /*-related. Denote by K the Lie

subgroup of I°(M) whose elements leave the point/ (p) fixed and by 1 its Lie algebra. Let

goC g be the Lie subalgebra of Killing vector fieldsX on Msuch that/*(X) = X °/for some

XeQ0. Define the projection n of g0 onto g0 by n{X)=X for XeQ0, where f*(X)=Xof.

Since / is an immersion, the projection is a well-defined Lie homomorphism.

Lemma 2.4. If% admits a nondegenerate symmetric bilinearform B satisfying thefollow-

ing conditions, then g0is anf* -related subalgebra of %f.The conditions are:

(i) endomorphisms ad (X), Xe%0, o/§0 are skew adjoint with respect to B, i.e.,

I?(ad (X) Y, Z) +B(Y, ad (X)Z) = 0

for Y, Zeg0, and

(ii) the restrictionofBtot is positive(or negative) definite.

Proof. Note that the kernel Ker n of n is contained in f. Then Ker n is a

nondegenerate subspace in g with respect to B by (ii).Hence we have the direct sum

a = a c Ker n, where o= {X e 5; B(X, Ker n) = {0}}. Put (Ker n)x = a n o0-Then we also have

the orthogonal direct sum go= Ker n c (Ker 7r)x.Since Ker n is an ideal of g0,the subspace

(Ker n)L is a Lie subalgebra of g0 by (i). Then the projection n induces a Lie algebra

isomorphism of (Ker n)1 onto g0 and the inverse gives an/*-related Lie homomorphism of

g0.Hence go is/*-related. q.e.d.

Let Go be the universal covering of the connected Lie subgroup of I°(S) with Lie

algebra g0.Since S is a riemannian symmetric space, the Lie group Go acts transitively on

.9

Theorem 2.5. Let M be a riemannian manifold satisfying either of the fallowings:

(1) I°(M) is compact.

(2) I°(M) is semi-simple.

Then every symmetric immersion of S into M is Gn-equivariant.

Proof. Assume that M satisfies(1). Then g admits a positive definite inner product

such that ad (X), Xeq, are skew symmetric. This inner product satisfiesthe conditions (i),

(ii)in Lemma 2.4.
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Next assume that M satisfies(2). Take the Killing form of g.Then itsatisfiesthe condi-

tions (i),(ii).(See Kobayashi-Nomizu [8], Vol. II, p. 247 for the proof.)

Hence, by Lemma 2.4, every symmetric immersion of S into Mis G0-equivariant.q.e.d.

Remark 2.6. Compact riemannian manifolds satisfythe condition(1).And rieman-

nian symmetric spaces of noncompact type satisfythe condition(2).

Remark 2.7. Naitoh [12] has shown thisTheorem for the case when S are w-dimen-

sionaltotallyrealsymmetric submanifolds of the complex projectiveM-space,and Tsuka-

da [21] for the case when S are n-dimensional totallycomplex symmetric submanifolds of

the quaternionic projectiven-space. The crucialpoints of theirarguements are the con-

crete constructions of/*-relatedLie homomorphisms.

CoRORALLY 2.8. Let Mbea riemannian manifold satisfying either of the conditions (1),

(2) in Theorem 2.5, and letf be a symmetric immersion ofS into M. Then the image f(S) has

the structure of symmetric submanifold such that f is a riemannian covering of S onto f(S).

PROOF. Let p be an/*-related Lie homomorphism of g0 and denote by the same nota-

tion the Lie group homomorphism of Go to I°(M) whose differentialis p. By Theorem 2.5

the image/(S) is the /?(Go)-orbitat the fixed point f(p). Since p(Go) has the structure of Lie

subgroup such that p is a Lie group homomorphism of Go onto p(G0), the image/(S) has

the differentiable structure as p(G0)-orbit. Then/(S) is a submanifold of M and /induces a

smooth mapping of S onto f(S). Consider the metric on/(S) induced from that on M. Since

S is complete, / is a covering of S onto /(S).

Let qef(S) and take geS such that/(#)=#. Then, since/(S) is a complete locally

riemannian symmetric space, the restriction of tqto f(S) gives the smooth intrinsic sym-

metry at q by Lemma 1.2, (2). Hence/(S) is a symmetric submanifold of M. q.e.d.

Let / /' be isometric immersions of riemannian manifolds 5, S' into riemannian

manifolds M, M' respectively. The immersions/, /' are called equivalent to each other if

there exist an isometry y/of S onto S' and an isometry ＼jjof M onto M such that/'° y/=

y/°fon S.

Remark 2.9. Let M be a riemannian manifold satisfying either of the conditions (1),

(2) in Theorem 2.5, and let/,/' be symmetric immersions of simply connected riemannian

manifolds S, S' into M. Then/is equivalent to/' if and only iff(S)->M is equivalent to

/'(S')-M.

In the rest of this section we consider the classification problem of symmetric sub-

manifolds in riemannian symmetric spaces without euclidean factor. Since such rieman-

nian symmetric spaces satisfy the condition (2) in Theorem 2.5, itis natural to consider the

problem. And the classification problem of symmetric immersions is also reduced to the
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problem by Remark 2.9.

Let/be a symmetric immersion of S into a riemannian symmetric space M. Let peS.

Since f*TpS is curvature-invariant,there exists a unique complete totallygeodesic sub-

manifold N{p) such thatN(p)3f(p), T/ip)N(p)=f*TpS (cf.Helgason [6]).

Lemma 2.10. The submanifold N(p) is symmetric. Moreover all symmetric sub-

manifolds N(p), peS, are equivalentto one another.

Proof. Let p' eN(p) and take a geodesic y(t) in N(p) such that y{a) =p, y(―a) =p'.

Put m = y(0) and consider the geodesic symmetry sm of M at m. Then it holds sm(P) ―p',

and moreover the restriction of sm to N(p) induces an isometry of N(p) by Lemma 1.2, (2).

Hence it follows (sJ*Np(N(p))=Np- (N(p)). Since Np(N(p))=NpS is curvature-invariant,

so is Np- (N(p)). Hence N(p) is a symmetric submanifold by Theorem 1.3.

Next let N{q) be the totallygeodesic symmetric submanifold defined at q e S. We show

that N(q) is equivalent to N(p). Let y(t)be a geodesic in S such that y(b) =p, y( ―b)= q, and

put n = y(0). Then the extrinsic symmetry tn satisfies that (tn)*TpN(p) = TqN(q). Since

N(p), N(q) are totallygeodesic, the restriction of tnto N(p) induces an isometry of N(p) on-

to N{q) by Lemma 1.2, (2). Hence N(q) is equivalent to N(p). q. e. d.

Hereafter this N(p) is denoted simply by N and is called the totallygeodesic symmetric

submanifold associated with f.

Remark 2.11. Let/, /' be symmetric immersions into riemannian symmetric spaces

M, M' and N, N' the totally geodesic symmetric submanifolds associated with/,/' respec-

tively.If/is equivalent to/', iVis also equivalent to N'. (See the last arguement of the pro-

of for Lemma 2.10.)

Next let M=M＼ x M2 be the riemannian product of riemannian manifolds Mx, M2. Let

/ / be isometric immersions of S to M, Mi respectively and let m2 be a point in M2.

Moreover assume that / (q) = (/ (q), m2) for q e S. Then / is symmetric if and only if / is

symmetric. An isometric immersion/of S to M is called substantial if for no proper rieman-

nian product M=Mi xM2 there exist an isometric immersion/and a point m2 satisfying

the above assumption.

Lemma 2.12. Assume that M is a simply connected riemmanian symmetric space

without euclidean factor. Let f be a symmetric immersion ofStoM and N the totallygeodesic

symmetric submanifold associated withf. Then f is substantial if and only if theinclusion ofN

to M is substantial.

PROOF. Obviously / is substantialif the inclusion of N to M is substantial.We show

the converse. Fix peS and set N=N(p). Assume that the inclusion of N to M is not

substantial,i.e.,there existsa proper decomposition M―M＼ x M? such thatNcMi x {m2}
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for some m2eM2. Let qeS and take a geodesic y(t)in S such that y{0) =p, y(a) ―q. Then it

holds that {T{a))*f*TpS=f*TqS. Let TM=TMlRTM2 be the decomposition of the

tangent bundle TM associated with the product decomposition Af=MixM2. Since T(a)

g/°(M)=/0(M1)x/0(M2), it follows (Tia))*T/(p)Mi=TfUl)Mi. Moreover since f*TpS=

Tf(p)NcTf(P)M＼ by the assumption, it follows f*TqScTf(g)Mi. Hence we have f(S)

cMi x {w2}. This implies that/is not substantial. Consequently the inclusion of TV to Mis

substantial if/ is substantial. q.e.d.

Now we propose the following

Problem. Classify the substantial symmetric suhmanifolds of simply connected rieman-

nian symmetric spaces without euclidean factor, up to the equivalence.

By the virture of Remark 2.11, Lemma 2.12, this problem is devided into the following

two steps.

The First Step. Classify the substantial totally geodesic symmetric submanifolds.

The Second Step. Next fix a substantial totally geodesic symmetric submanifold.

And classifythe symmetric submanifolds which have itas associated totallygeodesic sym-

metric submanifold.

In the following sections we will study this problem when the ambient spaces are com-

pact simply connected riemannian symmetric spaces.

3. Totally geodesic symmetric submanifolds

A symmetric Lie algebra is, by definition, a pair (g, 0) of Lie algebra g and an involutive

automorphism 9 on g. Let g = fcp be the eigenspace decomposition by 8 into the ( + 1)-

eigenspace f and the ( ―1)-eigenspace p. Then the symmetric Lie algebra (g, 9) is called

effective if the adjoint representation adp of f into gl(p) is faithful, where gl(p) denotes the

Lie algebra of all endomorphisms of p. Next a quadruple (g, a, r, < ≫ satisfying the follow-

ing conditions is called a compact orthogonal quadruple, abbreviated as COQ: (1) g is a Lie

algebra of compact type, namely compact semisimple Lie algebra, (2) (g, or),(g, r) are sym-

metric Lie algebras, (3) a °t=t °a, and (4) < > is a positive definite inner product on g

which is left invariant by a, x and for which ad8(X), Xe% are skew symmetric. A COQ

(g, a, r, < ≫ is called effective if the symmetric Lie algebras (g, a), (g, t) are effective.

And two COQ's (g, a, t, < ≫, (g', a', r', < >') are called equivalent to each other if there

exists a Lie algebra isomorphism 0 of g onto g' such that 0 °a ―a' °4>, 0 °t=t' °4>, and

<<t>(X), <t>(Y)Y = (X, Y> for X, Feg. Define the "directsum" of finite COQ's canonically.

Then the direct sum keeps the equivalence and moreover it is effective if and only if each is

effective.

Let M be a compact simply connected riemannian symmetric space and iV a substan-

tial totally geodesic symmetric submanifold of M. Hereafter this pair is denoted by (M, N).
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Firstly we note that the Lie algebra g of 7°(M) is of compact type. Fix p e N and denote by

sp the geodesic symmetry of M at p. Then sp, tpinduce involutive automorphisms a, x of

I°(M) defined by

o(g)=sp°g°sp, x(g)=tp°g°tp

for geI°(M). The differentials are also denoted by the same notations. Since [sp, tp]= 0, it

follows

(3.1) [<x,t] = 0.

Let g=fcp be the eigenspace decomposition by a into the ( + l)-eigenspace f and the

( ―l)-eigenspace p. Identify p with TPM by the identification: X^XP for Xep. Then the

restriction of the riemannian metric to TPM induces an inner product < >p on p such that

adp(T), Tel, are skew symmetric. Note that (jj,a) is effective and thus

(3.2) [p,p]=f.

Then the inner product < >s is uniquely extended to a positive definite inner product < >

on g which is left by a and for which adsCX"), Xe%, are skew symmetric.

Lemma 3.1. The quadruple (g, a, x, < ≫ is an effective COQ and is independent of the

fixed point p.

Proof. Firstly we show that (g, t) is effective. Let g = f*cp* be the eigenspace

decomposition by x into the ( + 1)-eigenspace I* and the ( ―1)-eigenspace p* and gx the

kernel of the adjoint representation adp* of I* into gl(p*). Then gi is an ideal of g. Since a

leaves!*, p* invariant by (3.1), it also leaves g~iinvariant. We suppose that (g, t) is not effec-

tive, i.e., gi=£{0}. Moreover we may suppose that gi=£g. If gi = g, it follows t=1s and thus

tp― 1m- This implies that N= {p}. Now let g2 be the orthogonal compliment of jji.Since %2 is

also left invariant by a, the decomposition g=gic02 induces the proper riemannian pro-

duct decomposition M=MixM2. Set Mx{p) = {M＼, m2), M2(/>) = (w1, M2), where p=

(mltm2). Since tp((exp tX)(p)) = (exp tX)(p) for Xequ it follows that Tp(Mi(P))cNpN

and thus TpNcTp(M2{p)). Moreover since N, M2(p) are totally geodesic, it holds

NcM2(p). This contradicts that N-≫M is substantial. Hence (g, t) is effective.

Next we show that x leaves < > invariant. Note that < >s is left invariant by x. Since x

leaves f,p invariant by (3.1), we may show that <t(T), t(S)> = <T, S> for T, Set By (3.2)

we may put T=[X, Y] for some X, Yep. Then it follows

<x([X, Y]), t(S)>= -<t(Y), x([X, S])＼

= -<Y,[X,S]＼=<[X, Y},S>.

Hence x leaves < > invariant.

Lastly we show the second claim. Let qeS and take a geodesic y(t) in S such that y(0)

―p, y(a)=q. Then the isometry T(a) induces a Lie group isomorphism <j>of I°(M) defined
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by 4>(g)= T(a) °g °T(a) J for geI°(M). The differentialis also denoted by the same nota-

tion. It is obvious that this isomorphism of g gives an isomorphism between the effective

COQ's defined at p, q respectively. q. e. d.

Define the "direct product" of finitesubmanifolds canonically. Then the direct product

is a (substantial) symmetric submanifold if and only if each is a (substantial) symmetric

submanifold. Our correspondence: (M, N) -*■(jj,a, x, < ≫ keeps each equivalence and

translates the direct product of substantial totally geodesic symmetric submanifolds into

the direct sum of effective COQ's.

Conversely let (g, a, r, < ≫ be an effective COQ and g=?cp the eigenspace decom-

position by a. Take a compact simply connected Lie group G with Lie algebra g and the

connected compact Lie subgroup K of G with Lie algebra 1. Then M= G/K is a compact

simply connected riemannian symmetric space, together with the G-invariant metric induc-

ed from the restriction < >s of < > to p. Here the tangent space T0M at o=K is identified

with p by the identification: p al≪ (d/dt) 11=0(exp tX) (o)e T0M. Then the curvature tensor

^0 at o is identified as follows:

(3.3) R0(X, Y)Z= -ad,([Z, Y])(Z)

for X, Y, Zep. Note that t leaves p invariant and let p±be the (±l)-eigenspaces of the

restriction of rto p respectively. Obviously p±are curvature-invariant subspaces in T0Mby

(3.3). Let Nbe the complete totally geodesic submanifold of Msuch that Nbo, ToN=§-,

N0N=p+.

Lemma 3.2. The totallygeodesic submanifold N is a substantial symmetric submanifold

o/M.

Proof. It is proved in the same way as in Lemma 2.10 that TV is symmetric. We show

that TV is substantial. Suppose that TV is not substantial, i.e., there exists a proper product

decomposition M=M1xM2 such that Nc(Mi,o2), where o=(olfo2). Let pi, p2 be the

subspaces of p identified with the tangent spaces of (Mi, o2), {o＼,M2) at o respectively. Put

to― [p≪≫P≪]cPi> *'―li 2. Since 1= [p, p] by the effectivity of (g, a), we have the ideal decom-

position g=gic§2- Then, since p-Cjji by the assumption, the ( + l)-eigenspace of x con-

tains p2 and thus q2. This implies that the (― l)-eigenspace of z is contained in jjx.This con-

tradicts to the efFectivity of (g, z). Hence TV is substantial. q.e.d.

Our correspondence: (g, a, x, < ≫->(M, TV) also keeps each equivalence and

translates the direct sum of effective COQ's into the direct product of substantial totally

geodesic symmetric submanifolds.

Theorem 3.3. These correspondences: (M, iV)->(g, a, x, < ≫, (g, a, t, < ≫-≫(M, TV)

are the inverses of each other.
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Proof. Let (M, N) be a pair of compact simply connected riemannian symmetric

space M and substantial totally geodesic symmetric submanifold N, and (g, a, x, < ≫ the

effective COQ associated with (M, N). Moreover let (M1, N') be the pair associated with

the COQ. We show that (M', N') is equivalent to (M, N). We retain the same notation as

above for the correspondence: (M, N) ->(jj,a, x, < ≫ and attach ' to the previous nota-

tions for the correspondence: (g, a, x, < ≫->>(M', iV). Since

G', I°(M) have the same Lie algebra g, there exists a Lie group homomorphism <2>of G' on-

to I°(M) whose differential is the identity of g. Obviously it holds &(K') cK. Hence # in-

duces a G'-equivariant isometric immersion y/ of M' onto M such that y/(o')=p, ≪//*,/= lp.

Here T0M'', TPM are identified with the subspace p canonically. Since y/is a covering map

and M is simply connected, ^ is an isometry of M onto M. Moreover since T^N", TPN are

both identified with the subspace p_ in p, it follows that y/(N')=N. Then y/ induces an

isometry of N' onto N by Lemma 1.2, (2). Hence (M1, N') is equivalent to (M, N).

Conversely let (g, a, x, < ≫ be an effective COQ and (M, N) the pair associated with

the COQ. Moreover let (g', a , r', < >') be the effective COQ associated with (M, N). We

show that (g, a, t, < ≫ is equivalent to (g', a', x , < >'). We retain the same notations as

above for the construction: (g, a, x,{ ≫ -≫■(M, N) and attach ' to the previous notations

for the construction: (M, N)-*(q', a', x', < >'). Now since (g, a) is effective, the Lie

algebras g, g' are isomorphic to each other. The isomorphism ^ of g onto g' is given as

follows. For Xe g, denote by X' the Killing vector field on M' given by the one parameter

subgroup exp tX of G. Then <f>is defined by 0(X) =X'. This <j>satisfies that <£(i)= f', </>(jj)

=p' and thus it follows 4> °a=a °<£.(See Helgason [6], p. 243 for these.) Moreover note

that <4>(X), <j>(Y)Yf = <X, F>p for X, Yep from the definition of < >J.. Since < >', < >

are unique extensions of < )y, < >s to g', g, it follows <<£(X), <j>(Y))' = (,X, Y) for X,

Ye g. Lastly we show that <j>°r= x °<f>.Since </>°t, t' °0 are Lie algebra isomorphisms and

f=[p>p]> we may show the equality on p. Let Xep-. Then (expfX)(o) =

(exp t(j)(X))(o) is a geodesic in TV. Hence it follows

(exp *r'(*(X)))(o) = T'(exp ^(X))(o) = 4((exp ty(X))(o))

= (exp-/0(A-))(o).

Since 0(Z), t'(<A(X)) ep', it holds exp tz'(4>(X)) =exp-t<j>(X) and thus x'(<t>(X)) = -<f>(X).

Similarly we have r'(<f>(X)) = <l>(X) for Xep+. These imply that x °</>=0 °x on p and thus

on g. By these arguments (jj',a', x , < >') is equivalent to (g, a, x, < ≫. q. e. d.

REMARK 3.4. Let (g, cr, t, < ≫ be an effective COQ. Then (g, x, a, < ≫ is also an

effective COQ. Let (M, N), (M*, N*) be the pairs associated with (g, a, x, < ≫, (g, x, a,

< ≫ respectively. Then Nis locally isometric to iV* as riemannian manifold. Also fix^ eN

and let NxcM be the totally geodesic symmetric submanifold such that ^Bp,

TpN±=NpN. Then the COQ associated with (M, N^ is isomorphic to (a, a, a °x, < ≫.
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This COQ is not necessarily effective since (g, a °x) is not necessarily effective.

Remark 3.5. Totally geodesic symmetric submanifolds of simply connected rieman-

nian symmetric spaces of noncompact type, can be got through the duality between sym-

metric spaces of compact type and those of noncompact type.

Now consider triples (9, a, x) underlying COQ's. That is, g is a Lie algebra of compact

type and a, x are involutive automorphisms of g such that [a, r] = 0. This triple (9, a, x) is

called a compact triple.If the symmetric Lie algebras (g, a), (g, t) are effective, itis also call-

ed effective. Among effective compact triples we can define the "equivalence" and the

"direct sum" canonically. On the other hand a symmetric Lie algebra (g, f) is called of non-

compact type if the underlying Lie algebra § is a semisimple Lie algebra of noncompact

type. Among effective symmetric Lie algebras of noncompact type we can also define the

"equivalence" and the "direct sum" canonically. Here we see that there exists a one-to-one

correspondence between these two kinds of objects.

Let (0, a, x) be an effective compact triple and let g=lcp be the eigenspace decom-

position by a into the (+ l)-eigenspace I and the (― l)-eigenspace p. Then g=?+ V ―lp has

the structure of Lie algebra of noncompact type canonically. Define an involutive automor-

phism f of g by f(T+ /ZIlX) = x(T) + -f^liiX) for Tel, Xep. Then, since (jj,r) is effec-

tive, (g, t) is also effective. Hence (g, t) is an effective symmetric Lie algebra of noncom-

pact type.

Conversely let (g, f) be an effective symmetric Lie algebra of noncompact type. Take a

Cartan involution a of g such that [a, f] = 0. Such a always exists and is unique in the

sense. If a, a are such Cartan involutions, there exists a Lie algebra isomorphism $ of g

such that $ °0=0' °<£,[<£,f] = 0. (cf. See the arguement in Helgason [6], p. 184 for the uni-

queness.) Let fl=!ci≫ be the eigenspace decomposition by a into the ( + 1)-eigenspace I

and the ( ―1)-eigenspace p. Then g = f c V ―lp has the structure of Lie algebra of compact

type. Define involutive automorphisms a, x of g by c(T+ -/―1X) = T― -f―lX,

r(T+ J=lX) = x(T) + J^lx(X) for Tel, Xep. Obviously the symmetric Lie algebras

(fi≫o), (fl,t) are effective. Hence the triple (g, a, x) is an effective compact triple.

Proposition 3.6. Our correspondences: (g, a, r)-≫(g, f), (g, f)-*■(g, a, t) keep each

equivalence and each direct sum. Moreover they are the inverse of each other.

Remark 3.7. An object is called irreducible if it is not decomposed into any proper

direct sums. Irreducible and effective symmetric Lie algebras have been classified in

Berger [2]. Moreover an effective COQ is irreducible if and only if the underlying effective

compact triple is irreducible.



Symmetric Submanifoldsof Compact Symmetric Spaces 229

4. Substantial symmetric submanifolds

Let (g, a, x, < ≫ be an effective COQ and g=Ic p the eigenspace decomposition by a.

Moreover let 1=1+ c?_, 5=6+ c6- be eigenspace decompositions by the restrictions of t

to t, p into ( + l)-elgenspaces i+, p+ and ( ―l)-eigenspaces f_, p_ respectively. Put

f* =1+ c p+ and p* = f_ c p_. Then g =1* c p* is the eigenspace decomposition by r.A linear

subspace m in p* is called a Lie triplesystem ifit holds [[nt,m], m] Cm. Consider a Lie triple

system tnCp* such that

(L.I) [m,m]c!+

and

(L.2) the orthogonal projection: nt-*p_ is a linear isomorphism. And denote by (jj,a,

t, < >: m) the pair of effective COQ (g, a, t, < ≫ and such Lie triple system nt.We call

this pair a QL-pair. Two QL-pairs (g, a, r, < >: nt), (g', a', t',< >':nt') is said to be

equivalent to each other if there exists an isomorphism 0 of the COQ (g, a, x, < ≫ onto the

COQ (g', a', r', < >') such that 0(nt) =nt'. Moreover the "direct sum" of finiteQL-pairs is

defined canonically.

Let (M, S) be a pair of compact simply connected riemannian symmetric space M and

substantial symmetric submanifold S of M. Moreover fixp e S and let N be the associated

substantial totally geodesic symmetric submanifold through p, with an effective COQ (g,

a, t, < ≫. Let nt be the subspace in p*, of Killing vector fieldson M whose restrictions to

S are also Killing vector fields on S.

Lemma 4.1. The pair (g, a, x, < >: m) is a QL-pair.

PROOF. Obviously m is a Lie triple system since p* is so.

Recall that the projection n is defined by the relation: n(X) =Xior Killing vector fields

X on M projectable to Killing vector fields X on S. Moreover recall that the vector space p

is defined as the (― l)-eigenspace of S. Here S is the involutive automorphism of g defined

from sp.Then it holds n(m) Cp since S °n = n °t on m.

Firstly we show that the projection n is a linear isomorphism of m onto p. Let Xep and

take the integral complete geodesic y(t) such that y(0) =p. Consider the Killing vector

fields X on M which generates the one parameter subgroup T(t). Since (tp °T(t)°tp)(p)

= T(-MP) = y(-t) and (tp<>T(t)<>tp)*p=(T(-t))*p by (2.3), (2.5), (2.7), it follows

tp°T{t)°tp=T{-t) and thus x(X)=-X. Moreover since n{X)=X, it follows Xem.

Hence n is surjective. Next let Xem. such that n(X) = Q. Then it follows (exp tX)(p)=p

and (exptX)*TpS=TpS, (exptX)*NpS=NpS. Moreover since t(X) = -X, it follows

tp°exp tX° tp―exp ―tX. Hence it holds (exp tX)*p=(exp ―tX)*p. Since these are both

isometries, it follows exp tX=exp ―tX and thus X=0. This implies that n is injective.

Hence n is a linear isomorphism of m onto p.



230 Hiroo Naitoh

Now we show that in satisfies the conditions (L.I), (L.2). Let X, Fern. Then it holds

n([X, ?])ef and thus [X, Y]el, where f denotes the (+l)-eigenspace of S. Moreover

since r([X, Y]) = [X, Y], it follows [X, Y] ef+. Hence ntsatisfiesthe condition (L.I). Next

let Jfemn!_. Then it follows n(X) efflp and thus n(X)=0. Since n is injective, it holds

X=0. This implies that the projection: nt-≫p_is injective. Since dim m=dim p = dim p_, it

is also surjective. Hence nt satisfies the condition (L.2). q. e. d.

Remark 4.2. The Lie triple system m consists of allKilling vector fields on M which

generate the one parameter subgroups T(t).

Conversely let (g, a, t, < >: m) be a QL-pair and (M, N) the pair associated with the

effective COQ (§,a, r, < ≫. Put f)m= [m, m] and gm=f)mcm. Since ntis a Lie triple system,

gmis a Lie subalgebra of g. Let Gm be the connected Lie subgroup ofI°(M) with Lie algebra

gm and S the orbit of the base point o by Gm.

Lemma 4.3. The submanifold S is a substantial symmetric submanifold with N as

associated totallygeodesic symmetric submanifold.

PROOF. Obviously S is tangent to iVat o. We show that S is symmetric. Since S is Gm-

equivariant, we may show the existence of the extrinsic, the intrinsic symmetries t0,s0 at o.

Now consider the involutive automorphism t of g and denote by the same notation the Lie

group automorphism of G whose differentialis t. Since T(gm)= gm, x induces a Lie group

automorphism S of Gm. Let t0,s0 be the smooth mappings of M, S induced from t, 3 respec-

tively. Then s0is the restriction of t0to S. Since t leaves < >pinvariant and satisfiesr(X)

= ―X, r(O = ^ior Xep-, ^ep+, the mapping t0is the extrinsic symmetry at o and thus sBis

the intrinsic symmetry at o. Hence S is symmetric.

It is obvious by Lemma 2.12 that S is substantial. q.e.d.

Now our correspondences: (M, S) ->(q, a, r, < >: m), (g, a, r, < >: m)-*(M, S) keep

each equivalence and moreover the followings hold.

Theorem 4.4. These correspondences are the inverses of each other and translate the

directproduct of substantial symmetric submanifolds into the direct sum of QL-pairs.

Proof. Let (M, S) be a pair of compact simply connected riemannian symmetric

space M and substantial symmetric submanifold S of M, and (g, a, t, < >: nt) the QL-pair

associated with (M, S). Moreover let (M', S") be the pair associated with the QL-pair. We

show that (AT, S') is equivalent to (M, S). We retain the same notations as in the proof of

Theorem 3.3. Now firstlywe show that n is a Lie algebra isomorphism of gm onto go. Ob-

viously it holds 7i(gJ = g0.Let Xe%m such that n(X) =0. Since n is a linear isomorphism of

nt onto p,it follows Xe$m and adm(X)(Y) = 0 for Fern. Note that the adjoint representa-

tion adm of hm to m is faithful since qm admits a positive definite inner product such that



Symmetric Submanifolds of Compact Symmetric Spaces 231

ad9m(F), Fegm, are skew symmetric. Hence it holds X=0. This implies that n is injective

and thus is a Lie algebra isomorphism of gm onto g0. Let i be the inclusion of S into M. Then

n~l is an i*-related Lie homomorphism of g0 into gmCg. Denote by Gm the connected Lie

subgroup of I°(M) with Lie algebra gm. By Cororally 2.8 the group Gm is a Lie transforma-

tion group acting on S transitively. Here recall the Lie group homomorphism 0 of G' onto

I°(M), which induces the isometry 1//of M' onto M. Then 4> induces a Lie group homomor-

phism of G'm to Gm and thus a smooth mapping of S' to S. Obviously it is the restriction of ＼j/

to S' and thus an isometry of S' onto S. This implies that (M', S') is equivalent to (M, S).

Next let (g, a, x, < >: m) be a QL-pair and (M, S) the pair associated with the QL-pair.

Moreover let (g', a', x', < >': m') be the QL-pair associated with (M, S). We show that

(g', a', t', < >': m') is equivalent to (g, a, x, < >: m). Again we retain the same notations

as in the proof of Theorem 3.3. Recall the isomorphism <j>of the COQ (jj,a, x, < ≫ onto

the COQ (g', a'',x, < >'). Obviously the restrictions of <t>(X), Xem, to S' are Killing vec-

tor fields on S". Moreover since <j>°x=x' °<f>,it follows x'(4>{X)) = ―<f>(X) for Xem. Hence

it holds <f>(m)Cm. Since dim m=dim m', it follows </>(m)=m'. This implies that (g, a, x, < >: m

) is equivalent to (g', a', x', < >': nt').

The second claim is obvious. q.e.d.

Remark 4.5. Let (g, a, x, < >: m) be a QL-pair and (M, S) the pair associated with

the QL-pair. Moreover let M* be the compact simply connected riemannian symmetric

space defined by the orthogonal symmetric Lie algebra (g, x, < ≫. Then, since m is a Lie

triple system in p*, it is identified with a curvature-invariant subspace in the tangent space

T0>M* at the base point 0*. Hence it defines a unique complete totally geodesic sub-

manifold S* of M* such that S*3O*, T0*S*=nt. The study of QL-pairs is to see S* satisfy-

ing the conditions (L.I), (L.2). Generally many examples of totally geodesic submanifolds

in riemannian symmetric spaces are known in Nagano-Chen [3]. Lastly note that S, S* are

locally isomorphic as symmetric space but they are not always isometric even locally.

Now let (g, a, x, < >: nt) be a QL-pair. By the condition (L.2) there exists a unique

linear map A of p_ to f- such that

m= {X+HX) ep_ 0f_; Xep_}.

Then the condition (L.I) and the condition that nt is a Lie triple system, can be rewritten as

follows respectively.

(A.I) [X,A(Y)] = [Y,Wt)],

(A.2) X([X, Y],Z])+X([[X(X),X(Y)],Z]) = [[X, Y], A(Z)] + [[A(X), X(Y)], X(Z)]

for X, Y, Zep_. We call this pair {%, a, x, < >: X) a QA-pair. Two QA-pairs (g, a, x, < >:

A), (g＼ a', x＼ < >': X') are equivalent to each other if there exists an isomorphism <j>of (g,

a, x, < ≫ onto (g', a', x', < >') such that </>°X=X' °<j>on p_. Moreover define the "direct
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sum" of finite QA-pairs canonically. Obviously we have the following.

Cororally 4.6. There existsa one-to-one correspondence between the equivalent classes

of substantial symmetric submanifold and those of QA-pair, and the correspondence translates

the directproduct into the direct sum.

5. Substantial symmetric submanifolds with specific effective COQ

Let (g, a, t, < ≫ be an effective COQ and (M, N) be the pair associated with the

COQ. Note that p_ is a Lie triplesystem and consider the adjoint representation adp_ ofij_ to

p_, where i)_= [p_, p_]. Since the representation is faithful,the Lie algebra fj_is isomor-

phic to the holonomy algebra of N.

Lemma 5.1. Let (g, a, r, < >: A) be a QA-pair. Then the kernel of X is an ads_(i)_)-

module ≪ i..

Proof. Let X, Y, Zep_. We may show that X([[X, Y], Z])=0 if A(Z)=0. Assume

that A(Z)=Q. By the condition(/1.2)it follows

A([[X, F], Z])+A([[A(X), A(y)], Z]) = 0

and moreover, by the condition(A.I),it follows

{[MX), X(Y)], Z]= -[[X(Y), Z], A(X)]-[[Z, X(X)], X(Y)]

= -[[X(Z), Y], A(X)]-[[X, HZ)], X(Y)]=O.

Hence we have X([[X, Y], Z]) = 0. q.e.d.

Theorem 5.2. Let (jj,a, r, < ≫ he an effectiveCOQ such that

(1) p_ is irreducible as adp_ (t)-)-moduk and

(2) diml_<dimp_.

Let (M, N) be the pair associated with the COQ and S a substantial symmetric submanifold

with N as the associated totallygeodesic symmetric submanifold. Then (M, S) is equivalent to

(M, N) and particulars S is totallygeodesic.

Proof. Let (g, a, r, < >: A) be the QA-palr associated with (M, S). Since the kernel

of A is an adp_ (|_)-module, itis {0} or p_ by the condition (1). Moreover since A is not injec-

tive by the condition (2), the kernal is p_ and thus it follows 2 = 0. This implies that (M, S)

is equivalent to (M, N).

Remark 5.3. Let {M*, N*) be the pair associated with the COQ (§,x,a, < ≫ and

N*x the totallygeodesic symmetric submanifold perpendicular toN* at the base point o*.

Then it holds dim l_ =dim N*L, dim 5_ =dim iV=dim N*.
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Now among the irreducible effective COQ's there exist many examples satisfying the

conditions (1), (2). We introduce one of them. Let Mbe the ≪(^2)-dimensional complex

quadric CQn and TV the w-dimensional sphere S" imbedded in CQn as totally real totally

geodesic symmetric submanifold. Then (M*,N*) is equivalent to (Sn+1, Sn). Hence the

COQ (g, a, t, < ≫ associated with (M,N) satisfies the conditions (1), (2). (This pair

(CQn, Sn) appears as (M*, N*) in Table II, No. 13, i = l.)

Remark 5.4. Assume that M has rank one. Then (M, N) is equivalent to one of the

followings: (Sn, Sr), (CPn,CPr), (CPn,RPn), (HPn,HPr), [HPn,CPn), (CayP2,S8), (CaM

P2, HP2). Here RPn, CPn, HPn, Cay P2 denote the projective ≪-spaces over fieldsR, C, ^re-

spectively and the Cayley projective plane, and the inclusions: /V~*M are standard. Now

symmetric submanifolds S, with these TV as associated totally geodesic symmetric sub-

manifold, have been allclassified and among them there exist many examples which are

not totally geodesic. (For the classificationssee [17], [18], [14], [21], [22].) Assume that

(M, N) has a symmetric submanifold which is not totally geodesic. Then, since N is ir-

reducible, it holds dim 1_^dim p- by Theorem 5.2.

Now we consider a series of effective COQ's satisfying dim !_ =dim p_. They are defin-

ed as effective COQ (a, a, r, < ≫ satisfying the following conditions.

(C.I) There exists some Hoep+ such that adp*(ifo)2==~V≫ where lp* denotes the

identity of p*. Denote J=adf(Ho).

(C.2) The linear space 5+ is decomposed into the sum of subspaces 6, b such that

J°adf(T)-<

{ ad6'(i)°y V

Tea,

Teb.

Obviously it holds dim f_ = dim p_.

Generally let (g, a, r, < >: A) be a QA-psdr. Then it follows

(5.1) ad(TW=-A'≪>a<l(r)

on p_ for Tep+, where (*)' denotes the transposed map of (*). In fact,let X, Yep-. By the

condition (A.I) it follows

<ad (T)'MX), Y> = <[X(X), Y], T> = <[X(Y), X], T>

= <-A'°ad(T)X, F>.

Hence the equality (5.1) holds.

Next assume that the underlying COQ (jj,a, x, < ≫ satisfies the conditions (C.I),

(C.2). Then it follows

(5.2) A°ad(T)=-ad(7)°A'

on ?_ for Tep+. In fact, consider the endomorphism /° A of p_. Then it is symmetric by

(5.1). Since/° A= -/･ A °/°/and (/≫A)'= -J° (A ≫/)'≫/,the endomorphism A ≫/of f_ is
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also symmetric. Let Tea. Then it follows

J°ad (T) oa'= -ad (T) °/°A'=ad (T) ≫l≫/=-l'≫ad (T) °/

=A'-/°ad(T) = -/oA≪ad(T)

by (5.1). Hence the equality (5.2) holds for Tea. In the same way it also holds for Teh.

Define an endomorphism Ax of p* by Ax(X+£) =X(X) -A'(£) for Xep-, £el_.

Lemma 5.3. The endomorphism Ax is skew symmetric and it holds [ad? (T), Ax]=0 for

Tei)+Rp+, where |+ = [p+, p+].

PROOF. The firstclaim is obvious. For the second claim it holds [adp*(T), Ax] = 0 for

Tep+ from (5.1), (5.2), and consequently for Te|+. Hence the equality holds for all

Teij+cp+. q.e.d.

Now we consider the following two kinds of effective COQ's satisfying the conditions

(C.I), (C.2). We retain the above notations, i.e., (M,N), (M*,N*) denote the pairs

associated with the effective COQ's (a, a, t, < ≫, (a, t, a, < ≫ respectively.

I

Totally complex totallygeodesic symmetric stibmanifolds N* of compact

csuaternionie symmetric spaces M*

Let M* be a compact quaternionic symmetric space. Then itis simply connected and ir-

reducible. Moreover let N* be a complete totally complex totally geodesic submanifold

such that 4 dim N* = dim M*. Then N* is a substantial symmetric submanifold. Moreover

the effective COQ (g, a, r, < ≫ associated with (M, N) satisfiesthe conditions (C.I), (C.2).

In fact, it holds dima=l and the subalgebra JMjj'c[adjj*(a),/]cJJ7cadp*(a) of End

(p*) gives the quaternionic structure of M* at the base point o*, where End (p*) denotes

the associative algebra of all endomorphisms of p*. We refer to Takeuchi [20] for the

definitions, the classifications,and the above notes of quaternionic symmetric space and

totally complex totally geodesic submanifold. In this paper we just list up allCOQ's {%, a,

r, < ≫ of this type in Table I. Then, from the table, we can see that they, except No. 1,

satisfy

(C.3) f+ = [p+,p+]andthusl*=ij+cp+.

Theorem 5.4. Assume that (§,a, r, < ≫ is an effectiveCOQ in Table I, except No. 1,

No. 2. Let S be a substantial symmetric submanifold with the associated N. Then (M, S) is

equivalent to (M, N) and particularly S is totallygeodesic.

Proof. Note that M* is an irreducible riemannian symmetric space which is not her-

mitian, except No. 1, No. 2. For such an M* itis scalar, an endomorphism Z of p* such that

＼I,adB* mi = 0 for Tel*. Now let (5, a, r, < >:I) be the CM-pair associated with (M, S).
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Then Ak satisfiesthe above condition for Eby the condition (C.3) and Lemma 5.3. Hence it

is scalar and, since it is skew symmetric, it follows Ai=0. This implies our claim, q.e.d.

Remark 5.5. The effective COQ's of No. 2 appear in Table II again. Hence Qvl-pairs

associated with the COQ's will be looked up in Part II. Next consider the effective COQ's

in No. 1. Then (M, N) is equivalent to (Gi<n-i(C), CPf-_iX CP.-i-i), where Gin-i{C)

denotes the Grassmann manifold of z'-subspaces in Cn. Particularly if i=l, (M,N) is

equivalent to (CPn-＼, CPn-2). Then symmetric submanifolds S have already been

classified.In fact, S are equivalent to either of the linear subspace CPn-2 or the complex

quadric CQn-2. For the case when i^2, S is equivalent to the totally geodesic submanifold

CPt-i x CPn-i-i. In fact, note that S is also a parallel Kahlerian submanifold. Such sub-

manifolds of hermitian symmetric spaces have been classified by Tsukada [23]. By the

classificationit follows that S is equivalent to CP,-_i x CPn-i-＼.

II. Totally real totally geodesic symmetric siibmanifolds N* of compact

hermitian symmetric spaces M*

Let M* be a compact simply connected hermitian symmetric space and N* a complete

totallyreal totallygeodesic submanifold of M* such that 2 dim TV* = dim M*. Then N* is a

substantial symmetric submanifold. Moreover the effective COQ (g, a, t, < ≫ satisfies

the conditions (C.I), (C.2). In fact, it holds 5= {0} and HoeC (l*)np+=£ {0}, where C (f*)

denotes the center of I*. If (g, a, t, < ≫is irreducible, it holds dim (C (1*) Op+) = 1 and we

may suppose that/gives the complex structure of M* at o*. We refer to Takeuchi [19] for

the definitions, the classifications,and the above notes of hermitian symmetric space and

totallyreal totallygeodesic submanifold. In this paper we just listup allirreducible COQ's

(g, a, t, < ≫ of this type in Table II.

Assume that the effective COQ (g, a, t, < ≫ is irreducible. For ceR define a linear

map Xc of p_ to f_ by Xc=cJ. Then kc satisfies the conditions {A.I), {A.2). In fact, they

follow from the fact that HQeC (!*). Hence (g, a, r, < >: Ac) is a QA-pair. Denote by

(M, Sc) the pair associated with the QA-pair.

Lemma 5.6. (1) The suhmanifold Sc is pseudo-umbilical. Moreover, (2) symmetric sub-

manifolds Sc,S-c are equivalent to each other. And symmetric submanifolds Sc,c^O, are not

equivalent to one another.

PROOF. (1) Since Sc is equivariant, we may show that it is pseudo-umbilical at the

base point o. Put ntc= {X+cJX; Xep-} and identify TOSC, NOSC with mc, p+ respectively.

Then the curvature tensor Ro and the second fundamental form a0 of Sc at o are identified

as follows:



236 Hiroo Naitoh

R0(X+cJX, Y+cJY)(Z+cJZ) = -[[X+cJX, Y+cJY], Z+cJZ]

= (l+c2)(~[[X, Y],Z]-cX[[X, Y],Z]))

and

a0(X+cJX, Y+ cJY) = [X, cJY]

for X, Y, Zep-. (cf. See Naitoh [11] for a0.) Moreover identify rac with p_ by the cor-

respondence: mc3X+cJX+*Xe$-. Then Ro, a0 are also identified as follows:

(5.3) R0(X, Y)Z=-{l+c*)[[X, Y], Z], ao(X, Y) = [X, cJY]

for X, Y, Zep-. Denote by r＼0the mean curvature vector of Sc at o and by RD the curvature

tensor of M at o. Moreover denote by J?*% Ric** the curvature tensor, the Ricci tensor of

M* at o* respectively. Take an orthonortnal basis ＼ex,･･ ･, es＼of p_. Then, by (5.3) and the

Gauss' equation, it follows

s<ao(X, Y), no> = J] ≪R0(X, et)Y, ei>-<R0(X, et)Y, ei>+ <a0(X, et),ao(Y, *,-)≫

i

= c2 2 ≪[[X, ≪,-],Y], e^ + qXJeUYJei]})

i

=c2Ri^(X, Y)

for X, Yep― Note that M* is Einstein. In fact, for No. 7~No. 18, M* is irreducible and

thus Einstein. For No. l~No. 6, M* is not irreducible, but < > is left invariant by a.

Hence M* is Einstein. Consequently it follows (ao(X, Y;), t]oy=a(X, Y} for some aeR.

This implies that Sc is pseudo-umbilical at o.

(2) The isomorphism a of (g, a, r, < ≫ satisfies a(mc)=m-c. Hence Sc is equivalent

to S-c.

The second claim is obvious by (5.3). q.e.d.

Theorem 5.7. Assume that (g, a, r, < ≫ is an effectiveCOQ in Table II, except No. 13,

i=l. Let S be a substantial symmetric submanifold with the associated N. Then (M, S) is

equivalent to some (M, S,).

Proof. Assume that (jj,a, r, < ≫ is one of No. 7-No. 18, except No. 13, i= 1. Then

M* is an irreducible hermitian symmetric space and satisfies the condition (C.3). Let (g,

a, r, < >: A) be the QA-pak associated with (M, S). Then it follows that [Ak, adp*(T)] = 0

for Tel* by Lemma 5.3. Generally for an irreducible hermitian symmetric space, it is a

scalar multiple of the complex structure/, a skew symmetric endormorphism Z of p* such

that [27,adp-(T)]=Q for Tel*. Hence it holds Ax = cJ tor some ceR. This implies that

X=cJ. Hence (M, S) is equivalent to CM, Sc).
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Next assume that (g, a, x, < ≫ is one of No. I―No. 6. Then the COQ is constructed as

follows. Let (g, f, < * )) be an irreducible orthogonal symmetric Lie algebra corresponding

to an irreducible hermitian symmetric space of compact type. Moreover let g = fcp be the

eigenspace decomposition by f into the ( + l)-eigenspace f and the ( ―l)-eigenspace p.

Then fhas the one-dimensional center c and is also decomposed into the sum of cand semi-

simple ideal f'.Put g = g c g. The involutive automorphisms a, x and the inner product < >

are defined as follows:

a(X, Y) = {Y,X), x(X>Y) = (x(X)^x(Y)),

<(x, y), (z, w)>=<x7z>+<y/w>

for X, F, Z, Weq. Moreover 1,1±,p, p± are given in the followings.

i={(X,X);XeR, p={(X,-X);Xeg},

t+={(X,X);Xet}, v+={(X,-X);Xei],

l-=[(X,X);Xe$), t-={(X,-X);Xe$.

Now let (g, a, x, < >: A) be the QA-pak associated with (M, S) and define an endomor-

phism A of p such that A(X, -X) = (l(X), 1(X)) for X ep. Note that l＼X, X) = (lt(X),

-l＼X)) for Xep. Then by (5.1), (5.2) it follows

adp(T) ≫A=-i'≪ ads(T), A ≫ads(T) = -ads(T) oI*

for Tef. Hence the endomorphisms A± of p defined by A± = (l±lt)/2 satisfy

(5.4) ad^(T)=/l± = +yl±oadp(T)

for Tef. Note that the complex structure /of (g, t, < ' ≫ is given by adp(H0) for some

Hoet. Since A- is skew symmetric, it follows yi_=c/for some ceR in the same way as

above. Also itholds adp(T) °A2+ =A2+ °adp(T) for Te I by (5.4). Hence A2+ is scalar, since

itis symmetric and (p, f, < " ≫ is irreducible. On the other hand, since !'= [!,!],it follows

adp-(T) °A + =A+ °adp(T) for Tef and thus [?, A+ ($)]= {0} by (5.4). Here note that

1'^ {0}. If A+ is non-degenerate, it follows [?, p]= {0}. This contradicts that the adjoint

representation adp of fis faithful.Hence it holds A + = 0. This implies that l=cj. Since we

may suppose that the complex structure/of p* is given by adp*(HQ, ―Ho), it follows k=cj.

Hence (M, S) is equivalent to (M, Sc).

Remark 5.8. If (§,a, x, < ≫ is one of No. 13, i= 1, the pairs (M*, N*), {M, N) are

equivalent to (CQn, Sn), (Sn+1, Sn) for some n respectively. Hence symmetric sub-

manifolds with the associated N have already been classified.In fact, they are equivalent

to generalized Clifford torus of Sn+1.

Remark 5.9. The symmetric submanifolds (M, Sc) associated with (M, N) in No

l~No. 6, have been constructedin Tsukada [231.



238 Hiroo Naitoh

References

[1] Backes, E. and Reckziegel, H., On symmetric submanifolds of spaces of constant curvature,

Math. Ann. 263 (1983), 419-433.

[2] Berger, M, Les espaces symetriques non compacts, Ann. Sci. Ecole Norm. Sup. (4), 74 (1957),

85-177.

[3] Chen, B.Y. and Nagano, T., Totally geodesic submanifolds of symmetric spaces II, Duke Math.

J., 45 (1978), 405-425.

[4] Ferus, D., Symmetric submanifolds of euclidean space, Math. Ann., 247 (1980), 81-93.

[5] Funabashi, S., Totally complex submanifolds of a quaternionic Kaehlerian manifold, Kodai

Math. J., 2 (1979), 314-336.

[6] Helgason, S., Differential Geometry, Lie groups and Symmetric spaces, Academic Press, New

York, 1978.

[7] Kobayashi, S. and Nagano, T. On filtered Lie algebras and geometric structures I, J. Math, and

Mech., 13 (1964), 875-907.

[8] Kobayashi, S. and Nomizu, K., Fundations of Differential Geometry I, II, Interscience, New

York, 1963, 1969.

[9] Kon, M., On some complex submanifolds in Kaehler manifolds, Canad. J. Math., 26 (1974),

1442-1449.

[10] Nakagawa, H. and Takagi, R., On locally symmetric Kaehler submanifolds in a complex

projective space, J. Math. Soc. Japan, 28 (1976), 638-667.

[11] Naitoh, H., Isotropic submanifolds with parallelsecond fundamental form in Pm(c), Osaka J.

Math., 18 (1981), 427-464.

[18]

[19]

[20]

[21]

[22]

[22]

, Totally real parallel submanifolds in P"(c), Tokyo J. of Math., 4 (1981), 279-306.

, Parallel submanifolds of complex space forms I,II, Nagoya Math. J.,90 (1983), 85-117

and 91 (1983), 119-149.

, Parallelprojective manifolds and symmetric bounded domains, Preprint.

, Stabilityof certain minimal submanifolds of compact Hermitian symmetric spaces,

Tohoku J. Math., 36 (1984), 293-314.

, Totally complex submanifolds of quaternionic symmetric spaces, Preprint.

, Parallelsubmanifolds of Cayley plane, Preprint.

, ParallelKaehler submanifolds of hermitian symmetric spaces, Preprint.

Department of Mathematics

Yamaguchi University

Yamaguchi, 753 Japan

[14] Naitoh, H. and Takeuchi, M., Totally real submanifolds and symmetric bounded domains,

Osaka J. Math., 19 (1982), 717-731.

[15] Naitoh, H., Symmetric submanifolds of compact symmetric spaces, Lect. Notes in Math., 1090

(Proceedings), ed. by K. Kenmotsu, Springer-Verlag, New York, 1984.

[16] Striibing, W., Symmetric submanifolds of riemannian manifolds, Math. Ann., 245 (1979), 37-

44.

[17] Takeuchi, M., Parallel submanifolds of space forms, Manifolds and Lie groups, in honor of Y.

Matsushima, ed. by J. Hano et al., Birkhauser, Boston, 1981, 429-447.

Tsukada, K., Parallelsubmanifolds in a quaternion projectivespace, Preprint.



Symmetric Submanifoldsof Compact Symmetric Spaces

TABLE I
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No. (fl,f) (a,a),M (9,t),M* Remark

1
§u(i,n ―＼)l

tod,l)+to(n-i-l.i-l)

+ T

≪u(n)/
≪(u(O+u(w-O)

≪u(n)/

≪(u(2)+u(n-2))

w^4,

l£f£n-f,

iV*cM*:Kahler

2 ≪I(n;R)l

§U2;R)+$t(n-2;R)+R

≪u(≫)/≪o(w) ≪u(n)/

≪(u(2)+u(n-2))

n£4,

N* CM*: totally

real

3 go(*,n―i)l

≪o(2,2)+≪o(i-2,≫-i-2)

≪o(≫)/

§o(i)+§o(n ― i)

≪o(≫)/

≪o(4)+≪o(m-4)

4 ≪p(n;R)l

9a(l＼R) + 9o(n-＼＼R)

≪p(w)/u(≪) ≪p(≫)/

≪p(l)+≪p(≫-l)
w^3

5 ≪o*(2n)/

go*(4)+§o*(2≪-4)

≪o(2≫)/u(≪) ≪o(2n)/

go(4)+≪o(2w-4)

≪^5

6

≪I(2: Je)+≪I(2: JS)

G2I
3u(2)+gu(2)

G2I

≪u(2)+≪u(2)

7 F＼l

gp(3;J?)+g((2;Jg)

FJ

gp(3)+Su(2) #p(3)+≪u(2)

8 Ell

≪(6:J8)+≪I(2:JB)

£6/≪P(4)

≪u(6)+≪u(2)

9 Ell

≪u(3,3)+≪I(2:JJ)

EJ

Su(6)+Su(2)

EJ

Su(6)+gu(2)

10 Ell

fti(l,5)+≪I(2:JK)

EJ
so(io)+r ≪u(6)+≪u(2)

11

≪o(6,6)+§I(2;i?)

£7/§u(8) E7/

≪o(12)+≪u(2)

12

So*(12) +$1(2; J?)

E7I

≪o(12)+§u(2)

E7/

§o(12)+3u(2)

13

≪o(2, 10)+≪I(2:J8)

E7/

E6 + T

E7/

§o(12)+gu(2)

14

El+9l(2;R)

£8/≪o(16)

£7 + ≪u(2)

15 Ell

E37 + Sl(2;R)

EJ

£7+Su(2) £7+≪u(2)
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TABLE I (Continuation)

No. !+ 5_(iV,iV*),U^*x) PAN1)

1 ≪(u(l)+ u(l))+

≪(u(t-i)+u(≫-i-i))+r
≪u(O/≪(u(l)+u(i-D)
+

m(n-i)/%(u(l)+n(n-i-l))

≪u(2)/≪(u(l)+u(D)

+ &u(n-i)/§(n(l)+u(n-i-l))

2 §>&{2)+%o(n-2) ≪o(w)/

≪o(2)+ §o(w~2)

≪u(2)/≪o(2)

+ ≪u(≫-2)/≪o(≫-2) + T

3 ≪o(2)+ ≪o(2)+≪o(i-2) +

Soin ―i―2)
8o(l)/≪o(2)+to(*-2)

+ ≫<≫-4>/to(/_2)+<0((l_l-_2)

4 u(l) + u(≫-l) u(≫)/

u(l)+u(≫-l)

≪p(l)/u(l)

+≪≪(≪-l)/u(≪-l)

5 u(2)+u(n-2) u(≫)/
u(2)+u(n-2)

≪o(4)/u(2)

+ §o(2n-4)/tt(n-2)

6 U(2)+u{2) Su(2)/≪o(2) + ≪u(2)/≪o(2) ≪u(2)/≪o(2) + #u(2)/#o(2)

7 u(3)+≪o(2) ≪p(3)/u(3) + ≪u(2)/≪o(2) ≪p(3)/u(3) + ≪u(2)/≪o(2)

8 ≪o(6) + ≪o(2) ≪p(4)/u(4) ≪u(6)/6o(6) + ≪u(2)/≪o(2)

9 §(u(3)+u(3)) + §o(2) ≪u(6)/≪(u(3)+u(3))

+ ≪u(2)/≪o(2)

≪u(6)/≪(u(3) + u(3))

+ ≪u(2)/≪o(2)

10 ≪(u(l)+ u(5))+≪o(2) ≪o(10)/u(5) ≪u(6)/≪(u(l) + u(5≫

+ §u(2)/§o(2)

11 ≪o(6)+ ≪o(6)+§o(2) ≪u(8)/≪(u(4)+u(4))
§o(12)/#o(6)+*o(6)

+ ≪u(2)/≪o(2)

12 u(6) + §o(2) ≪o(12)/u(6)

+ ≪u(2)/≪o(2)

≪o(12)/u(6)

+ gu(2)/go(2)

13 So(2) + go(10) + 3o(2) EJ

≪o(lO)+≪o(2)
+ §lJ(2)/§o(2)

14 §u(8) + ≪o(2) ≪o(16)/u(8) E7/$n(8) + ≪u(2)/≪o(2)

15 E6 + T+ §o(2) E7/ + m(2)/§o(2)
&6 +1

Eilj? ,T+≪u(2)/≪o(2)
H.a+ 1
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TABLE TT
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No. (fl,f) (fl,ff),Af (I,T),M* Remark

1 ≪!(≫;C)l

≪l(i:C)+≪I(≫-i:C)+ C*

≪u(m)+≪u(≪)/

≪u(≫)

3u(≪)/≪(u(*)+ u(n-f))

+

≪u(≫)/≪(u(*)+u(≫-*))

isSiSsH―i,

hS3

2 6o(2≫; C)l

9l(n:C) + C*

%R{2n)+u{2n)l

9o(2n)

≪o(2≫)/u(n)

+ $o(2n)/u(n) nS4

3 §o(n;C)l

§o(n-2:C) + C*

≪0(≫)+≪<>(≪)/

≪o(≫)
§oW/≪o(n-2) + T

+

*0{n)/Mn-2) + T

n^5, =£6

4 ≪p(n;C)l ≪p(≫)+≪p(n)/

≪p(≫)

≪p(≫)/u(≫)

+≪p(≫)/u(≫)

mS3

5 Ell

§0(10; C) +(7*

E6+E6/

E6

6 EC7I

Ee + C*

E7+E7/

E7

E7/ 6 +E7/ 6

7
§u(n,n)l ≪u(2≫)/

≪(u(≫)+u(n))

≪u(2≫)/

≪(u(w) + u(n))

n^2

8 ≪o*(4≫)/

9u*(2n)+R

%f>{An)lu{2n) ≪o(4tt)/u(2ff) w^2

9 ≪p(≫;R)l

%＼(n;R)+R

≪p(≫)/u(w) ≪p(w)/u(≫) n^2

10

Ei+R
E7/

E6 + T

E7I

E6+T

11 ≪I(n;R)l

t＼(i＼R)+i＼(n-i＼R)+R

≪u(≫)/≪o(≫) tu(n)/
Un(i)+n(n-i))

ISiSn ―i,

n^3

12 ≪u*(2n)/

≪u*(2i)+iu*(2n-2i)+R

§u(2n)/§p(n) ≪u(2n)/

≪(u(2*)+u(2n-2O)

ltSsiZsin ― i,

n^3

13 &o(i,n―i)l

%o(i-＼,n-i-l)+R

≪o(≫)/

§o(i)+$o(n-i)

≪o(≫)/

io(n-2) + T

f = l:n£3,

* = 2: n£7, *6,

i = 3: ≪^7,

* = 4: wS9,

5^t^≪ ―i

14 §o(n,n)l

≪I(n;R) +R

≪o(2≫)/

≪o(≫)+≪o(≫)

≪o(2n)/u(≫) nS4

15 Sp(w,n)l

$n*(2n)+R

≪p(2≫)/

6p(≫)+6p(*)

$t≫(2n)/u(2n) n^2

16 Ell

§o(5,5)+R

£6/≪P(4) EJ

≪o(10) + T

17

≪o(l,9)+/8

EJFA
§o(10) + T

18

El+R

£7/§u(8) E7/

E6 + T
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TABLE II (Continuation)

No. u 6_ (#,#･),!_(AT-1-) P+ (N1)

1
≪(u(i)+u(n-i)) ≪u(≫)/≪(u(z)+u(n-*)) S(u(i)+ u(n-i))+s(u(i)

+u(n-i))/

≪(u(O+ u(n-/))

2 u(n) §o(2m)/u(≪) u(≫)+u(n)/

n(n)

3 §o(n-2) + T ≪o(n)/

%o(n-2)+ T

§o(≫- 2) + T+ $o(n -2) + Tl

§o(n-2) + T

4 u(n) ≪tt(n)/u(n) n(n)+n(n)/

5 ≪o(io)+r

§o(10) + T

≪0(io)+r+§o(io)+iy

§o(10)+ T

6 E6+T

E6 + T

E6+T+E6+T/

E6 + T

7 m(n) T+*n(n)+*(*)/ T+ta(*)+tu(n)/

8
≪b(m) T + ≪u(2≪)/gp(≪) T + ≪u(2n)/≪p(n)

9 ≪o(w) T + eu(n)/eo(n) T + ≪u(n)/≪o(n)

10 F, T+EJF, T + EJF4

11 io(i)+io(n-i) ≪o(≫)/

io(i)+9o(n-i)

T + eu(t )/eo(t)

+§u(n ―i)/8o(n―i)

12 9p(i)+≫a(n-i) ≪p(≫)/

≪p(*)+≪p(≫-0

T + ≪u(2f)/≪p(i)

+ %n(2n-2i)l%ts{n-i)

13 ≪o(*-l)+≪o(≫-*-l) ≪o(*)/≪o(≪―1)

+§o(n-i)/Mn-i-l)

T +

≪d(≫-2)/ (f._1)+ (f|_f._1}

14 o(n) Mn)+Mn)/ T + 0u(n)/≪o(ft)

15 ≪p(n)
Mn)+Mn)/ {n)

T + ≪u(2w)/≪p(≪)

16 So(5)+§o(5)
§P(4)/Sp(2)-Up(2) r+to(10)Ws.(5)

17 ≪o(9) jy§o(9) T + ≪o(10)/≪o(9)

18 ≪P(4) ≪u(8)/≪p(4) T + £6/§p(4)


