
TSUKUBA J. MATH.

Vol. 17 No. 1 (1993), 143―158

HALF CONFORMALLY FLAT STRUCTURES AND

THE DEFORMATION OBSTRUCTION SPACE

Dedicated to ProfessorH. Nakagawa on his sixtiethbirthday

By

MitsuhiroItoh

1. A compact connected oriented Riemannian 4-manifold (M, g) is called

half conformally flat,or a Riemannian metric g on M is called self-dual or

anti-self-dual,when ^"=0 or W+=0 where W± is the self-dual(anti-self-dual)

part of the Weyl conformal curvature tensor W of g.

We denote for an arbitrary Riemannian metric g by R ―{Rijki), Ric=(Rij)

and p the Riemannian curvature tensor, the Ricci tensor and the scalar curva-

ture, respectively. Then the Weyl conformal curvature tensor W=(Wijki), con-

sidered as a section of the symmetric product bundle S2(Q2), is defined by

R=W+LRg

(L = l/2 (Ric―(p/6)g) is the Schouten tensor and @ is the Kulkarni-Nomizu

product).

In terms of the Hodge star operator the bundles Q2 and S2(Q2) decompose

as Q2=Q+RQ~ and SHQ2)=S2(Q+m(Q+$)@-)R(@-$)Q+)RS2(Q-), respectively

and then the tensors R and W splitas R=

such a way that R±=W±+(p/12)I.

r ＼ (W+ 0 ＼
and W=＼ in
/ ＼0 W~

The notion "half conformaS flatness"depends only on a conformal structure

[_g~],the conformal equivalence class represented by a Riemannian metric g,

because W and the Hodge star operator are conformal invariants.

The significance of the half conformally flatstructure is that it ensures the

integrability of the almost complex structure which is naturally defined on the

twistor space ZM^>M, the unit sphere bundle of Q+ such that ZM becomes a

complex 3-fold admitting a real structure ([1]).

Like Yang-Mills instantons on 4-manifolds, every half conformally flat

structure [g] enjoys an ellipticcomplex at any representative within [g] pro-

vided W=W~ i.e., W+=0
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Lg Dg
C°°(M,TM) ―> C°°(M,Sl(T%)) ―* C~{M, Sl{Q+)),

where Lg is the tracefree Lie derivative of g and the second order operator

Dg is the linearization of the self-dual part W+ of W ([10]).

The index of this complex is from the Atiyah-Singer index theorem 1/2

(29r(M) + 15Z(A/)) ([10]).

This ellipticcomplex gives rise to a local description of the moduli space

MM of half conformally flat structures on M, the space of all diffeomorphism-

equivalence classes of half conformally flatstructures on M. The moduli space

has a structure of real analytic variety. In fact it is written as Zero (K)/CZgl,

the zero locus of the map K between cohomologies H＼ H2 of the complex

divided by the [g]-conformal diffeomorphism group CZgl at each [g] ([Theorem

2, 10]). In the sense of thislocal description Hl and H2 represent the space of

infinitesimal deformations of half conformally flat structures and the space of

obstruction for local deformations, respectively.

We restrict ourself in this article to 4-manifolds of certain type, namely,

Kahler surfaces of zero scalar curvature and investigate how the second co-

homology group H2 relates with certain cohomology groups of other elliptic

complexes which are holomorphically defined.

The following are several examples of half conformally flat 4-manifolds

for which H2 is computed: (i) the 4-sphere S4 with the standard metric;

H2=0, (ii)the complex projective plane CP2 with Fubini-Study metric; H2=0,

(iii)a complex 2-torus with a flatmetric; H2 = Rb, (iv) a K3 surface with Ricci

flat metric; H2^R＼

The latter two 4-manifolds are examples of Kahler surface of zero scalar

curvature. Another example of those Kahler surfaces is a ruled surface Mk of

genus &(2>2) (a CP1 bundle over a compact Riemann surface Zk of genus k^2)

with a Kahler metric induced from the product metric on D^xCP1 (D1: the

unit disk in C) of metrics of curvature ±1.

Any compact Kahler surface of scalar curvature p=0 is necessarily one of

the following ([9], [4])

i) a Kahler surface covered by a complex 2-torus with a flat metric (a

complex 2-torus and a hyperelliptic surface)

ii) a Kahler surface covered by a K 3 surface with a Ricci flatKahler

metric (a K 3 surface and an Enriques surface)

iii) a ruled surface Mk (k>2) with a Kahler metric of zero scalar cur-

vature

iv) a Kahler surface, obtained by blowing up / times either CP2 (/2>10),a
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ruled surface of genus 0 (/^9) or a ruled surface of genus k (72^1).

We remark that LeBrun showed recently by using the generalized Hawking

Ansatz the existence of Kahler metric of zero scalar curvature on a compact

complex surface of type (iv) above, namely a surface derived by blowing up /

points of a ruled surface Mk of genus k>2, 1^2 ([15]).

When H2 vanishes, the moduli space 3iM admits at worst conformal sym-

metry singularities. On the other hand the vanishing of H2 might give like

Yang-Mills instantons guarantee to the grafting procedure for concentrating

half conformally flat structure (see [7], where CP2 with the Fubini-Study

metric behaves as "half conformally fiat 1-instanton"), which corresponds in

terms of twistor spaces to the connected sum procedure of half conformally

flat4-manifolds (see [6] in which the isomorphism H2 = H2(ZM, c(T|f0)) is as-

serted).

As for half conformaily flat structures of positive scalar curvature on a

simply connected 4-manifold, the positivity might ensure vanishing of H2 as is

conjectured and is proved partially under the condition dim|iTi1/2|>0 ([14]).

This conjecture corresponds to the vanishing theorem in the Atiyah-Hitchin-

Singer complex for Yang-Mills instantons ([1]) and other vanishing theorems

of half spinorially defined operators ([p. 178, 8]).

For Kahler surfaces of p=0 the bundles Sl(T%), S20(Q+) appeared in the

ellipticcomplex have natural decompositions and the kernel of the adjoint D*

can be described in terms of cohomologies H°(M, O(K1m)), i=l, 2 and

H＼M, 0{TW)).

In fact we have the following for Ker D%―H＼

Theorem 1. Let (M, g) be a compact Kdhler surface of zero scalar curva-

ture. Let Sg(i2+)= F°cF1cF2, V°=lR be the real subbundle decomposition cor-

responding to the identificationSt(Q+)=lRRKM(BK2M. Then (i) Ker (£*|c≫<JlfiF0>)

=M/eC"(M);Hes(/) = -l/4A/g-l/2/ito}, (u)Ker{D*＼c^M.v^) = H≫M,O{KM))

and, (iii)*'/H＼M, O(Tfe°))=0, then

Ker(D*＼c^M.v2>) = H°(M, O(K%)).

Moreover (iv) under the condition HZ(M, 0(7V))=O

Ker(D*＼c^M,viev^) = H＼M, O(KM))RH＼M, O(K%)).

By applying this theorem we get the

Theorem 2. Let (M, g) be a complex 2-torus or a K 3 surface with a flat

Kdhler metric or a Ricci flat Kdhler metric. Then Hl = R5.
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2. Proof of Theorem 1.

(i) To verify our theorem we begin with a sufficientbut small amount of

Kahler geometry needed for our study.

Assume that (M, g) is a Kahler surface with a complex structure /. The

Kahler form is 0= V― lga$dzaAdzh

We omit the symbol of summation by Einstein convention.

The bundles of self-dual(anti-self-dual)2-forms Q+, Q~ on M are identified

by the aid of (p, <?)-formbundles Qp-q as

Q^RO^Q2-0

(2.1) fl-^J-^teGEfl1-1, £=£,0A£=O}.

Here Q2t0=KM, the canonical line bundle of M and the identification for Q+ is

Fix a point />eM and take at p complex coordinates {z1= x1 + V― lx2,

z2z=xs-＼-V― I*4} in such a way that {d/dxa} a=1>...,4is an orthonormal frame at

/> with dual frame {dxa}a=1,...,4.

So {(y^rfx^cfx^rfx^rfx4, 7}= dxlAdx5 + dx4Adx2, £= dx1/＼dx*+ dxs

/＼dxs} forms a frame of £?+at />.

Notice that 2ft>=^ and <J)―y]+ iZ,is a (2, 0)-form.

The bundle Sl(Q+) has then the following canonical basis at p:

0=(t>2-l/2{7]2+Q2) = l/462-l/2^-^,

≪･37= 1/40(0+^), a)-^=l/{A^^l)d(<f>-$),

(2.2) __

^2-C2 = l/2(^+^2), 2iyC=l/(2 V-T)(#W2).

From this we have the identificationSI(Q+) = Ir@KuRK2m in such a way that

G0+^)+^<―>G^ + (^ + ^)A^+(^+^),

qg/J, (p<=KM, <p(E:K2M. Here ^2+C2 and hence 0 does not depend on a choice

of 7?,C so that 0 is globally defined.

Lemma 2. 1 ([5]). The globally defined tensor 0 is g-parallel.

Proof. Since Fa>=l/2F0=O, it sufficesto show F^+O^^-F^+C-FQ^O.

For any point />eM choose an orthonormai frame field{ea}a=i.-.idefined

around p satisfying ea=d/dxa, a = ＼,･･･, 4 at p and <?2―Jeu e4=Jes.

Since P 1=0, we have the connection forms {a)ba}associated to ＼ea)in the
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For the dual frame {ea}a=i,..,4of {ea＼ the connection forms {£"}, defined by

Vea=IbSiteb, satisfy a>£= -G>6a.

By the aid of these connection forms we have for the frame field{a)=e1Ae2

+esAe＼ rj=e1 Ae^+e* Ae2, C―e1Ae4-＼-e2Ae3} of Q+ the following connection

forms

J 7]= (S)＼+ail)(i)+(d≫J+a*2)C- (a≫2+543)C

Hence r?.F77+C-Fr=0.

We remark that for an arbitrary Kahler surface the self-dual part W* of

W is given by W+―cp0 for a constant c>0 ([5]). A Kahler surface is then

anti-self-dualif and only if
|O=0.

We would like now to decompose the bundle S20(T%), the tracefree sym-

metric product of the real cotangent bundle, whose sections give the space of

infinitesimal deformations of metrics of a fixed volume form.

As is shown in [9], the bundle S20(T%) is in general isomorphic to

UomR(Q+, Q~)= Q+<S>Q~ in such a way that from the identification(2.1) we have

(2.3) S§(n)=Hero(T*)0Sko(T*),

where Hero(T*)= {h^St(T%); h(JX, JY)=h(X, Y)}, isomorphic to Q＼-1 and

Sko(T*)={AeSg(T*); KJX, JY)=-h(X, Y)}=S2(Qh0).

By making use of these identificationsone can represent Dg: C°°(M,S20(T*))

-^C^iM, S20(Q+)) and its formal adjoint Z)J in terms of naturally defined

operators.

(ii) Let g be an arbitrary anti-self-dualmetric. The operator Dg is re-

oresented as

(2.4)

h^C"(M, S&T*)) (see

D{h)={U{h)y+{V{h)y,

[Appendix, 10]). Here (U(h))+ and (V(h))+ are the

So(i3+)-components of U{h) and V(h), which are defined as

U, V : C"(M, St(T)) ―> C~{M, Q+RQ+)
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(2.5) U{h)ijkl=l/2{VkVjhn-VlVjhik-VkVihjl+VlVihjk)

(2.6) V(h)=l/4 (B)Rh), B=Ric-p/4 g.

Here the Kulkarni-Nomizu product is

(h(^k)tjki=hkjkii―hijktk ―hkikji+hukJk .

Assume that (M, g) is a Kahler surface of zero scalar curvature.

Lemma 2.2. In the decomposition (2.3) (hRk)+=O for /ieHero(T*), &e

Sko(T*) and (hRk)+=-l/3(h, k)0 for h, £eHero(T*) {(h, k) is the inner product

induced from the metric g).

Remark. The tracefree Ricci tensor B is in C°°(M,Hero(T*)) and then

(V(h+k))+=(V(h))+=-l/3(Ric, h)0 for /ieHero(T*), £<EESko(T*).

The formulae in Lemma 2.2 follow from simple computation.

We extend the forth order covariant tensors U(h) and V(h) over C as

U{h) ―(UABcD), U ABCD=U ABCD,

UABCD=m{VcVBhAD-VDVBhAc-VcVAhBD+VDVAhBc^,

with respect to complex coordinates {zA, A=l, 2,I, 2}.

We symmetrize U(h)(EC°°(M,QZRQ2) as U(h)=l/4UABCD(dzAAdzB)-

(dzcAdzD), Uabcd=1/2(UABCd+Ucdab). Then (U(h))+ is the S20(i3+)-component

of U(h).

By using the canonical basis (2.2) for Sl{Q+) we write the So(£?+)-component

of U(h) or more generally of Z^C°°(M, S*(Q+)).

Then the S;K£+)-component Z+ of Z=l/4:ZABCD(dzAAdzB)-(dzcAdzD)&

S2(i?2(g)C),ZABCd=Zcdab is given as

Z +=― 1/6(Z ilU-＼-2ZHZ2+Z 2222+&Z 12I2)R

+(Z1212+ZI§I,)(r72-C2)+(Z1212-Zi,i,)(2V=T)?-O

+ (Zltii+Zim + Zim + Ziiii)(―s/―l(D-7])

+ (Zi2iJ+Z1222 Z m2 Z22l2)(<W'C)･

We have then

Lemma 2.3. With respect to {0, d-<j>,d-<p, <j>＼02} Z+ is

(2.7) Z+=-l/6 (Zmi+2Zim+Z8S2S+8Zm8)^
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Next we consider the adjoint operator

D* : C~(M, S20(Q+))―> C°{M, S02(T*)).

In real local coordinates {xa＼ it has the form

(2.8) (£*Z)a6=(PF*+PP)Zaed6+i?cdZaC(2&,

Z=(Zo6C(i)eC°°(M, Sl(Q+)) where Rcd=gacgbdRab is the Ricci tensor of g ([Ap-

pendix, 10]).

By using complex coordinates {zA) we rewrite this formula as

(2.9) (D*Z)AB=(FCF°+F°FC)ZACDB+RCDZACDB

for Z = l/2ZABCD(dzAAdzB)-(dzc AdzD), ZABCd=ZAScd so that for the adjoints

((U+)*Z)AB=(FCFD+FDFC)ZACDB,

(2.10)

((V+)*Z)AB=RCDZACDB.

iii) We deduce firstthe Hessian equation from Ker (D*＼c°°(m.vo-}).

From the decomposition Sg(T*)=Hero(T*)cSko(T*) we have

Lemma 2.4. The Her0(T*ypart of D*(f0), f@<=C°°(M, V°)is

(2.11) D*{fQ)afi=-rarfif-l/4Jf-gafi-1/2 fR.fi,

(Jf=2nf=-2gaPFaFpf is the real Laplacian) and the Sko(T*)-part is

(2.12) D*(f0)aP=l/2FaFpf.

Proof. From (2.10) and the definition of 0 and 0 the Hero(T*)-part oJ

(U+)*(f<P) is computed as

{u+nf0)afi=-r>Frfta8$rlt-Farfif.

Substitute the value of 0 at a point p. Then (U+)*(f@)ap = -FaFpf-l/2＼3fgap

On the other hand (V+)*(f0)ap is

(F+)*(/0)^-=-l/4 fRVfafa-l/A fR.fi

reducing to ―1/2 /i?≪Jgso that (2.11) is derived.

The Sko-part of D*(fQ) is from Lemma 2.2 equal to that of (U+)*(f0]

which is

{U^{f0)^=F"F^0aCD?+FDFcf0aCD^-2F'sFrf0an-8.

Then (2.12) follows since @arBd=―1/4 ga?gB5-



150 Mitsuhiro Itoh

Remark. From this lemma f0EiC°°(M.V°)is in KerDf if and only if

(2.13) Hes(/)=-l/4J/.£-l/2/fl,

since Ric=B for a Riemannian metric of zero scalar curvature. Similar Hessiar

equations with a positive smooth function solution were dealt with in [11].

Next we consider the kernel of D* restricted to C°°(M,V1), namely, tc

those Z(eC°°(M,St(Q+)) of the form Z=%>+$>), <p^C~{M, KM).

Z=(Zabcd), ZABcd=(O<p)abcd+(@(p)abcd has nontrivial components Zapr8=

l/2V―lgap(prd and Zapfs―1/2 V― igap<Prt and other components are zero.

The Hermitian part ha§of h=D*(Z) is from (2.9)

hai=FBrozaBCi+rGrBzaBci

={Vm+FrFP)Zapr-5+(Vm+FfFP)Zapf5

+(ytFr+PrFt)Zajirs+(Ftyf+1rTPt)Zaiir8.

Since Zafif-8=Zafir-8=0,ha-d=2(Fmza?r-d+F'mza-rrs) reduces to V-l{F-s(FP<paP)

Thus we have

Lemma 2.5. The Hermitian part of D*Z, Z~d{y+ip), ^ eC°°(M,Km) is

(2.14) {D*Z)a§= V^l(FiFP<paP+FaF^r8).

Remark. We can rewrite (2.14) as

(2.15) Hero(T*)-part of D*Z=-V=rl {3(5*^+9(5*^)},

when we regard it as section of Q＼'x. Here 9*, 5* are the adjoint of 9: Qlf0->

Qz-＼ B-.Qo-^Q0'2, respectively; (d*(p)a=-F^a, d*(p=Wup.

The skew hermitian part of D*Z, Z = d(<p-＼-(p)is

(FBPc+FcPB)ZaBCs=<yW+FW?)Zarr8+{FtPr+FrFt)Zam.

So substituting Zapr8= V-T/2 gap<prswe get

Lemma 2.6. For Z = 0(<p+<p), <p<EC°°{M,KM) D*Z has the following skew

hermitian part

(2.6) (D*Z)a8= V^/2 (FrFa+FaFr)(prd+ v~l/2 (FrF8+F8Fr)(pra .

Now we will show
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Proposition 2.7. For Z = d((p+ <p)^C°°(M)V1), Z is in KerD* if and only

if <pis a holomorphic section of KM> i.e., <p<^H%M, O(KM)).

Proof. Assume D*Z=0. We have from (2.15) d(d*<p)+d(d*(p)=Q. To this

we operate 3*: Qul-^Qh0, the adjoint of 5: 01-0―01-1. Then d*dd*<p+B*d(d*$)

―0. Here the second term vanishes since it reduces to ―g^^aFf^rd =

-FaP~5Pr<prd=Q. Hence 3*8d*y>=0.

Since 0=<3*33*^> d*<p>= <.d(d*<p),B(d*<p)} if follows that 33*^=0, in other

words, d*<p is holomorphic as a (1, 0)-form. So dd*<p is holomorphic and then

is written as dd*(p―<p0for some <po^H°(M, O(KM)).

Together with d<p=O this implies (dd*-＼-d*d)(p=<p0to which we use the fact

that H＼M, O(KM))= {parallel sections of Ku＼ (see Lemma 2.10). Then 11(99*+

d*d)^||2=<d*^, d*^0>=0, namely (95*+9*3)^ = 0. To this we apply the Weitzen-

bock-Bochner formula and then conclude that <p is parallel, that is, pe

H＼M, 0{KM)).

It is obvious that conversely any <p in H°(M, O)KM)) satisfies(2.14) and

(2.16),since <p is parallel.

In the rest of this section we will show (iii) of Theorem 1.

For Z of form Z=<p-＼-<p, </>e C°°(M,K%) components ZABCD are all zero

except for ZaprS, Za^fs- So the Hermitian part of D*Z vanishes since

f
(h, D*Z)dv=[ (Dh, Z)dv=[ (U(h)+, Z)dv and U(h)+, /ieC°°(M, Hero(T*)), has
JM JM JM

neither a/frd-components nor d^fd-components.

Therefore, ZeKerD* if and only if

^(D(h),
Z)dv=^(U(h)+, Z)dv -0

for all htEC°°(M, Sko(7*)).

Since every h^SkQ(T*) satisfies h(JX, JY) = -h{X, Y), there exist an endo-

morphism / of T = TM satisfying that h(X, Y)=g(IX, Y)+g(X, IY) and //+//

=0 hold (/ is the complex structure of (M, g)).

From the last relation / is represented in complex coordinates as

I=Ii£-*Rdz!i+Ti£*Rdzli

so that a/j-component of h is hap = Iap-＼-Ipa, where Isp=grsIL.

From Lemma 2.3 the Q2- °RQ2- "-component of U(h)+ is t/(/i)1212=l/2(F/2/i12

+F'2F1/i12―F2F2hu―PiPih22). Since from the Kahler property we have l7iF2/z12=

V2Vxhl2> this reduces to l/2(2F1F2h12―V$%hlx―V^xh^ and its conjugate is the
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Q°-ZRQ°-2-component U(h)m-2.

Thus

(2.17) U(h)m-2=F1F-2Iri+FiF-JV2-FiVlI-2-2-FiViIu.

On the other hand, because of IJ+JI―0, I is a deformation of complex struc-

tures and is regarded as a section of the bundle Tli0R£0>1, I=Ij(d/dza)RdzP.

The bundle T'^^Q0-1 is equipped with the 5-operator 5: C°°(M,T1"0R*?0'1)―

Cco(Mj T1, o^o. 8)i So 5/e Coo(M> Ti. o^^o, 2)>

Define an operator

(2.18) Q : C°°(M,Tu °RQ°-2)―> C~(M, Q°-2Ri30'2)

by

(2.19) ${L)=b{d(#L)), L^C<°(M,Tl-≫RQ°-z)

where #: T1'0R^0-2-^0-1R^2^0, L^Lir and b＼Q≫-*RA2TU!>-^QQ'2RQ^＼

Lemma 2.8. The Q2-°RQ2-°(BQ0-2RQ0'2-componentof U(h)+, /ie

C~(M, Sko(7*)) coincides with (#3/)+(#5/). Here I is I=I^{d/dza)Rdz'^

C~(M, T1-0^0-1) satisfyinghsp=ISfi+Ips and Isp=gral^.

From thislemma

＼(Dh,
Z)dv = [(U(h)+,Z)dv=＼(&dI+85I, Z)dv=O

for all JeEC°°(M, T1-0R^0'1) and this is equivalent to that the Q°-26?)@Q-2-com

ponent I of Z satisfies[{S, &5I)dv=[(-9*S, 3I)dv=0 for all /, in other words,

^*2"eKer 3*=H＼M, O(TU0)).

We assume now H＼M, C(T1'°))=0. Then £*£=0. Since T'-'^Q0'1, the

operator ^ is considered as

■9: C°°(M,Q0-1RR0-2) ―> C°°(M,Q≫-2RQ≫-2).

So for a=l/2aSfifdz*R(dzsAdzT)eEC'*(M, R°'1RQ0-2)

and for Z=1/4 ^sjiridz"Adz8)R(dz~PAdzf) the adjoint #* is

(2.20) <fl*2)afi?=-goSPa2Sa!r

Lemma 2.9. For any WeeC°°(M, Q°-2RQ0-2)
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(2.21) {M*+$*&)＼=F "*V ≫W,

where &: C°°(M,Q0-2RQ°-2)-*C°°(M, Q°'3($Q0-2) is the extended operator of 9 on

£0,1000,2 and p,,*p≫ is the rough iapiacian ―g^vy..

In fact, from the Weitzenbock-Bochner formula

m*+$*W *m=-grfff &**&+?*& nVdv*ni

We apply the Ricci identity and 2p=gaPRap to have

(2.22) (99*+9*&)W=F"*F"W+pW

from which (2.21) follows.

From Lemma 2.9 the i2°>2(g)i20'2-component2 of Z satisfiesPfSaa£f=0 and

then by applying the Ricci identity again ^7<7Sa^f=0 so that 2" and its complex

conjugate I are parallel. So I gives a holomorphic section of K%.

Conversely, given Xr=H＼M, O(K%)). Then I is parallelfrom Lemma 2.10,

(iii)so that Z ―S+I turns out to be in the kernel of D*, which proves (iii),

Theorem 1.

The proof of (iv) of Theorem 1 is easily done, since for Z of form 6((p+<p)

(0+$, <p<EEC°°(M,Km), <p^C°°(M,K2m) we have

＼(D(h),
Z)dv

for h^C°°(M, Hero(T*)) and

＼(D(h),
Z)d

=J(ZW, O(fp+<p))dv

v = {(D(h), <p+$)dv

for /igC°°(M,Sko(T*)).

Thus by these arguments we can prove Theorem 1 completely.

(iii) We would like to show the following parallel lemma which was

applied to the proof of (iii),Theorem 1.

Lemma 2.10. Let (M, g) he a compact Kdhler surface of zero scalar cur-

vature. Then for any positiveinteger m>0

H°(M, O(KZ))= {parallel sections of K%＼.

Proof. The space of holomorphic sections of K%, H°(M, O(K%)), is

{W^C~{M, K%); d*d＼=O}, where 5: C^M, K%)->C~{M, K%RQ0-1) and, d* is

its adjoint with respect to the naturally induced fibremetric on the w-th power
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of KM- The Weitzenbock-Bochner formula is then

(2.23) d*d＼=-gaW aV pW+m/2pW

(see Theorem 6.2in [12], we applied a similar argument to our case). From

|0=O we have Fp＼―Q for any ^3and further from the RicciidentityFaF=0

and thus FW=0.

3. Cohomologies of KlM,i=l, 2 and Ty.

For each type of compact Kahler surface of zero scalar curvature we can

evaluate cohomologies //°(M,O(KJt)),i=l, 2 and H＼M, C(T^0)).

H＼M,O(KM)) H＼M,O{K＼)) H＼M,O(TU0))

(i)

(ii)

(iii)

(iv)

complex 2-torus

K3 surface

Enriques surface

ruled surface Mk

blown up of Mk

c

c

0

0

0

c

c

c

0

0

C2

0

0

0

0

For the evaluation of H＼M, O(KlM)), i=l, 2 we apply Lemma 2.8 to the

first three cases. H°(M, O(Kji))=0, i=l, 2 for the last case since

dimH°(M, O(Kir)), z>0, is a birational invariant.

The cohomology group H＼M, O(T1>0)) which is the obstruction space

for deformation of complex structure is isomorphic by Serre's duality to

H＼M, 0{KMR@u*)). For the first two surfaces this is isomorphic to

H°(M, 0{Ql-a)) because O(KX)=O and then H＼M, o(T1>0))is isomorphic to C2

for a complex 2-torus and is zero for a K 3 surface.

For an Enriques snrface with a Ricci flatKahler metric we have similarly

H＼M, O(Th0))=H°(M, O(KM<$QU0))=Q since it is a Z2-quotient of a K 3 sur-

face.

That H2(M, O(Th °))vanishes for the case of ruled surface is obtained by

restricting <p<=H°(M, OiKu^Q1'0)) to each fibre,a complex projective line CP1,

since any holomorphic covariant tensor on CP1 must vanish.

Vanishing of H2(M, C(T1>0)) for the last case is derived from the fact that

there is a one-to-one correpondence between holomorphic covariant tensors on

M and those on M, a one point blown up of M ([p. 225, 131).

Remark. A hyperelliptlc surface M is a finitegroup quotient of a product

of elliptic curves. As a smooth 4-manifold the surface M is a quotient of
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complex 2-torus and it is seen that M admits a flatKahler metric. It is shown

that the canonical line bundle KM is a torsion bundle of order 2, 3, 4 and 6

according to the type of M ([p. 148, 2]). So we have H＼M, o(KM))=0 and

H＼M, O(Th °))=0. Moreover H＼M, O(K2M))= C when 0(K%)=0 and H＼M, O(K%))

=0 when O(K%)=tO. That H＼M, O(Th0)) vanishes follows from the fact that

H＼M, O(Qh0)) = C together with Lemma 2.10.

4. The case of trivial KM.

Let M be a complex 2-torus or a K 3 surface with a Ricci flatKahler

metric. Since KM=O, it admits a holomorphic section (f>which is parallelwith

respect to the Ricci flat Kahler metric from Lemma 2.10.

We now show Theorem 2, namely that the second cohomology group H2

is isomorphic to R5 for such a 4-manifold M. For this it sufficesto verify

from the proof of iv), Theorem 1 that Ker (/}*ic°°(M.F0cri))= ^3-

Suppose that f@+Z is in Ker D*, for Z = 6(<p+$)sECeo(M, V1). Then we

have (2.11) and (2.14).

Since (p^C^iM, KM) is written as (p= F<fifor a complex valued function F

on M. So combining the formulae (2.11) and (2.14) we get the equation

(4.i) -rttrjj/-i4j/.^/5+v::TFiBr^.0aa+Far?F.^}=o.

Operating the partial covariant derivation 7P to both sides and taking the con-

traction we have

(4.2) -FWaFpf-l/4 FaJf+ V=T{W/aF-0a3} =0 ,

since in the forth term VWJ'^F-^^VJ/W^F-^^ and [7^,7^=0 and §n is

skew symmetric.

Since M is Ricci flat,(4.2) reduces to

(4.3) 1/4 PaJ/- V-r/2(PJF)0a8=O .

So, by integrating, we derive the following over M

(4,4) 1/4 f ＼＼dJf＼＼2dv-V-i/2＼F5JFPaAf0ad=O

The second term is f Af(VaFsJFUaS and then vanishes. So dJf=0, that is,

J/ is constant and then by integratingit over M space / must be constant.

Therefore, it follows from D*(f@+Z)ap=0 that / is constant and that

D*(Z)ap=0. We can then apply the statement of (ii),Theorem 1 and have

Theorem 2.
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5. The Hessian equation.

Let (M, g) be a compact Kahler surface of zero scalar curvature.

Consider on M the equation (2.13),

Hes(/) = -l/4J/.*-l/2/-fl,

B = Ric―p/4 g―Ric.

Except for the case of a complex 2-torus or a K 3 surface as is seen in

Theorem 2, so far we do not have exact knowledge of the solution space of

the above equation.

Now we assume that (M, g) is a ruled surface of genus k>2. M is then

a compact quotient of the product Kahler surface D1 X CP1 by a subgroup F of

SL(2, R)xSU(2)/Z2 acting freely and properly discontinuously.

Let (z＼z2),zl=z, z2―w, be the complex coordinate of DlX.CPl in such a

way that z and w represent complex coordinates of D1 and CP1, respectively.

Then the metric g is g=gi + g2, gx―gi{z)dzdz, g2―gt{w)dwdw and the Ricci

tensor is Ric= ―gl+g2.

Suppose now that f^C°°{M) is a solution of (2.13).

We consider / as a function on DlxCPl invariant under the action of F.

So by taking (2, 0) and (0, 2) parts of (2.13) we have

(5.1) d2dwf=O, dzdmf=O

and also

(5.2) dzdmf=dwdzf=O

by substituting (d/dz, d/dW) into (2.13).

(5.1) and (5.2) are the second order partial differential equations and then

/ must be written in the form f=F(z, z)-＼-G{w,w) where F and G are real

valued functions on D1 and CP1, respectively.

We put f=F+G into (2.13). We have then

(5.3) 3,a2-F=l/2 (gT1d&F+gt1dwd1BG)'g1 + l/2 gl{F+G),

(5.4) dvdnG^migT'dzd-zF+g^dvdM'gz-mgziF+G).

So n＼iF=―gi1dzdiF and DiG =―g21dwdmG satisfy the following equation:

(5.5) D1F-D2G = -(F+G)

from which

(5.6) □,F+F=D2G-G=constant X
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holds. Thus F― 1 is an eigenfunction of Di corresponding to the eigenvalue

―1. Since / is F-invariant, F is considered as a function on a compact Rie-

mann surface Dx/F. Hence F―X is an eigenf unction of negative eigenvalue

and must be zero, in other words, F―X and then f ―G{w, w)+A.

Since □2(G+^) ―(G+^)=0 and D2=l/2 J2, f=G+A is an eigenfunction of

the real Laplacian J2 on CPl corresponding to the eigenvalue 2. These eigen-

functions are obtained by restricting each coordinate function x, y and z of

R3 to the unit sphere S2={(x, y, z)e/28; x2+y*+z2=l} ^CPl (see [p. 160, 3]).

It is easily shown that these functions satisfy the rest of the equation (2.13)

because of the symmetry of S2.

We have thus

Proposition 5.1. Let (M, g) be a ruled surface of genus k^2 with a

Kdhler metric of zero scalar curvature. Then the solution space of the equation

(2.13) is isomorphic to R＼ namely the kernel of D* restricted to C°°(M,V°) is

Ker D*＼c^M,wo,=Rz.

The proof of Theorem 2 given in §4 can be applied to the case of Ricci

flatKahler surfaces with nontrivial canonical line bundle (for example, Enriques

surface and hyperelliptic surface). In fact we have

Proposition 5.2. For a Ricei flat Kdhler surface Ker D*＼c<*'(m,vo)=R.

Proof. Suppose that D*(f0)=O for /eC°°(M). Then from (2.11) we have

-rjPfif-i/w-g≪t=o,

since Ric―Q. So

_F^|7aF^/_i/4Faj/=o

which reduces to l/WaAf―0. Thus / must be constant.
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