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ABSTRACT. We introduce the notion of D-sets (D*-sets) and establish the Un-
knotting Theorem for D-sets in a manifold modeled on R*=dir lim R" or Q7=
dir lim ", where Q is the Hilbert cube. This yields equality of D-sets, D*-sets
and infinite (i.e., R*- or @=-) deficient sets. Our Theorem corresponds to a weak
version of the Unknotting Theorem for infinite deficient sets proved by V.T. Liem.
However our proof is elementary and short. And we give an alternative proof
of the Infinite Deficient Embedding Approximation Theorem due to Liem. Using
Anderson-McCharen’s trick, this Approximation Theorem strengthens our Unknot-
ting Theorem in the strong form. Moreover, we show that the union of two R>-
(or @-) manifolds meeting in an R (or @*-) manifold is also an R (or Q=)
manifold, and that for any space X, Xx R is an R (or @*-) manifold if and only
if so is Xx1I

0. Introduction.

Separable paracompact manifolds modeled on B*=dir lim R" and @*=dir lim Q",
where @ is the Hilbert cube, are called R*-manifolds and Q~-manifolds, respectively.
These manifolds have been studied by R. E. Heisey, V.T. Liem, et al. (cf. References
of [11]). In the previous paper [11], we gave a characterization of these manifolds
and elementary short proofs of the Open Embedding Theorem, the Stability
Theorem, the Classification Theorem, etc. This paper is a sequel of [11].

The notions of D-sets and D*-sets are introduced in Section 1, as generaliza-
tions of closed sets contained in collared sets, and the Unknotting Theorem for D-
sets in R*- (or @-) manifolds is established in Section 2. Our theorem yields
characterizations of infinite deficiency in these manifolds, i.e., the equality of D-
sets, D*-sets and R>- or @Q>-deficient sets (see Section 3), and some fundamental
properties of infinite deficient sets are easily derived, e. g., (1) @ finite union of R>-
(or Q-) deficient sets is also R™- (or Q>-) deficient [7, Proposition 1.4] (or [5, Pro-
position 2]); (ii) locally R*- (or Q=-) deficient closed set is also R™- (or Q) deficient
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[7, Theorem 5.1 (or 5.3)1; (iii) a collaved submanifold is R™- (or Q) deficient [7,
Theorem 3.3 (or 3.4)]. Using the result of Section 7 mentioned below, we have
a short proof of the converse of (iii) [6, Theorem 4.2] (or [4, Theorem 2.3]) i.e,
(iliy an R=- (or Q=-) deficient submanifold is collaved. Thus we have an alterna-
tive proof of the Collaring Theorem. The Unknotting Theorem for infinite de-
ficient sets was established by Liem [7], (5], in the weak form for R~-case (i.e.,
without an ambient isotopy). Our theorem corresponds to the weak version of
Liem’s theorem but our proof is elementary and short. In Section 4, using our
theorem, we give an easy proof of the Infinite Deficient Embedding (D-Embedding)
Approximation Theorem due to Liem [6], [4]. Using Anderson-McCharen’s trick
[1], this Approximation Theorem strengthens our Unknotting Theorem in the
strong form (see Section 5).

In [2], it is shown that for any space X, XX R=o (resp. ¥) if and only if
XxI=g (resp. 3), where the space ¢ (resp. X) is a metric version of B~ (resp. Q).
In Section 6, we show this valid equally to R* and @~. From this, we can see
that a space X containing an R™- (or @-) manifold M as a dense open set is an
R>- (or @~-) manifold if X\ M is contained in a collared set in X.

Let X, and X. be closed subsets of a space X with X=X,UX; and X,=X\N
X,. J. Mogilski [9] showed that if X,, X, and X, are /,-manifolds then X is also
an l,-manifold. In Section 7, we prove its R*- (or @) version. J.P. Henderson
and J.J]. Walsh [2] constructed cell-like decompositions of ¢ and X whose de-
composition spaces are not homeomorphic to ¢ and X but the products with R or
I are homeomorphic to ¢ and 3 respectively. Their examples apply equally to R
and @~, as mentioned in Section 7 of [2]. Then one should remark that the
Mogilski’s method in [9] cannot apply to the R™- (or @~-) version.

For undefined terms and notations, refer to the previous paper [11].

1. D-Sets and D*-Sets.
Let A be a closed subset of a space X. We call A a D-set in X if it satisfies

the following condition :

(@) For each compact sets CDC, in X and each open cover U of X, there
exists an embedding /#: € — X ¢J-near to the inclusion CcX with 2|C,
=id and A(C\Co)C X \A.

And A is a D*-set in X if it satisfies the following:

(9*) For each closed set X, in X and each open cover ¢J of X, there exists
an embedding f: X— X @J-near to id with f|Xo=id and f(X\X»)C
X\ A.
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Clearly each D*-set is a D-set. These sets are generalizations of closed sets con-
tained in collared subsets of X as seen below. In this section, we will observe
some properties of D-sets and D*-sets in general spaces. However those are not
required in the proof of the Unknotting Theorem for D-sets in an R*- (or @~-)
manifold (see Section 2).

We will start to prove the following lemma:

1-1 LeEmMA: Let a: X—[0,00) be a map of a pavacompact space X and U
a collection of open sets in XX R such that for each xeX there is a UeU contain-
ing {z} x[0, a(x)]. Then there exists a map B: X —(0,00) such that for each zeX
there is a UeqJ containing {x} X[—pB(x), a(x)+p(x)].

Proor: For each zeX, choose an open neighborhood U{x) of » in X and an
e(2)>0 so that Ulz)X[—e(x), alx)+e(x)] is contained in some Ueq. The open
cover {U(x)|xe€X} has a locally finite open refinement {V;]i€4}. From normality
of X, there is an open cover {W,|2e} such that clW,c V, for each 1€A. For each
ieA, choose z,€X so that V,cU(x;) and take a Urysohn map #,: X— I with
w (X N\ V2)=0 and #,(c1W;)=1. Then we define f: X —(0,c0) by

Blx)=sup {e(x)ux)| 1€ A}

The continuity of g follows from local finiteness of {V;|2ed}. It is obvious that
B has the required property. [

1-2 PrOPOSITION. Let A be a closed subset of a pavacompact perfectly novmal
space X. If A is contained in some collaved set in X, then A is a D*-set in X,
hence a D-set in X.

Proor: Let B be a collared set in X with Ac B Then we have an open
embedding %: Bx[0,1)— X such that k(x,0)=x for each xeB. Let X, be a closed
set in X and U an open cover of X. Now we will construct an embedding f:
X — X qJ-near to id with f|X,=id and f(X\ Xy <X\ A. Let W be an open set
in X with Ac WcclWck(Bx[0,1)). Each ze(BNW)\X, has an open neigh-
borhood V, in X which is contained in W\ X, and some UeqJ. From Lemma
1-1, we have a map 8: (BN W)\ X, — (0, 1) such that each {z}x[0, f(x)] is contained
in some £ YV,). Take a map y: B— 1 with y7{0)=(B\W)U(BNX,) and define
a map «: B—[0,1) by

Blx)y(x) for ze(BN WN\ X,

We define an embedding %4: Bx[0,1)— BX[0,1) by
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1 1 ) . .
, —t+-—alx f 0<t<alz),
B, F)= [(x 5 + 20{(1‘) if 0<t<a(2)
(x,0) otherwise.

Observe that % is & '(U)-near to id and A[(Bx[0, DNE (W )HUE(X,)=id. Then
khk™' extends to an embedding f: X — X with f|X\Ak(BX[0,1))=id. Clearly f
is the desired embedding. []

The following is trivial :

1-3 ProposiTionN: (1) Any closed subsed of a D-set (vesp. D*-set) in an
arbitvary space X is also a D-set (resp. D*-set) in X.

(2) A finite union of D*-sets of an arbitrary space X is also a D*-set in X.

(3) A discrete union of D-sets (resp. D*-sets) of a Hausdor[f (resp. arbitrary)
space X is also a D-set (resp. D*-set) in X.

4) If Ais a D-set in a Hausdorff space X, then for any open subsei U of
X, AnU is a D-set in U.

(5) If A is a closed subsei of a Hawsdorff (rvesp. normal) space X which is a
D-set (vesp. D*-set) in an open subset of X, then A is a D-sel (resp. D*-
set) in X.

A closed subset A of a space X is a local D-set (resp. a local D*-set) in X if

each zeA has an open neighborhood U in X such that AN/ is a D-set (resp.

D*-set) in U. Then using Michael's theorem for local properties [8], we easily
obtain

1-4 PROPOSITION: Any local D*-set in a paracompact space X is a D*-set in
X.

Proor: Let A be a local D*-get in X. By (1) and (5) in 1-3, each zcA has
a closed neighborhood in A which is a D*-set in X. Using [8, Theorem 5-5], the
result follows from (1), (2) and (3) in 1-3. []]

In the above proof, we only use the fact that each z€¢A has a neighborhood
Ay in A which is contained in some open subset U of X as a D*-set in U. We
will call such a closed set A a weakly local D*-set in X. Similarly a weakly local
D-set in X is defined.

1-5 CoroLLARY: Amny locally compact set A in an R” (or Q-) manifold M
is a D*-set in M, hence a D-set in M.

Proor: Because of similarity, we show only the R>-case. Each z€A has a
compact neighborhood A. in A which is contained in an open subset U of M
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homeomorphic to an open set on R”. Since R*=I~=dir lim /", there is an open
embedding ¢:U—I>. From compactness, g(A;)cI® for some n. Hence g(A,) is
contained in a collared set in I*, so A, is also contained in a collared set in U.
By Proposition 1-2, A, is a D*-set in U. Thus A is a weakly local D*-set in M.
The above remark of Proposition 1-4 assure that A is a D*-set in X. []

2. Unknotting Theorem for D-sets.

An embetting f: X—Y of a space X into a space Y is called a D-embelting
if f(X)is a D-set in Y. We prove the following Unknotting Theorem for D-
sets (D-embeddings) in an R*- or Q*-manitold.

2-1 UNKNOTTING THEOREM for D-sets: Let M be an R>™- or Q -manifold,
f: A—>M a D-embedding of a D-set A in M and U, <V open covers of M. If f
is U-homotopic to the inclusion ACM, then f extends to a homeomorphism frM—
M which is st (U, <Y)-near to id.

The main lemma for our Unknotting Theorem is the following which is a
direct consequence of {11, Lemma 1-5] and the definition of D-sets.

2-2 LemMA: Let C be a D-set in an R7-manifold (resp. a Q-manifold) M
and f: B—=M a map from a finite dimensional compact metric space (resp. a
compact metric space) B to M that vestricts to an embedding flA: A—M on a .
closed subset A of B. Then for each open cover U of M, there exists an embedding
g1 B—>M such that g|A=f|A, g(BNA)CM\C and g is U-homotopic to f station-
arily on A.

It is easy to see that each R™- or @™-manifold is an ANE for compact metric
spaces, hence for countable direct limits of compact metric spaces. If X is a
countable direct limit of compact metric spaces, then so are a closed subspace of
X and the product space XxI. We use the next Homotopy Entension Theorem
(cf. Proof of [3, Ch. IV, Theorem 2.2]).

2-3 HomoTopry ExTENSION THEOREM: Let Y be an ANE for C and U an
open cover of Y, where C is a closed hereditary (=weakly hereditary) class of
normal spaces such that Xx1eC for all XeC. If h: AXI->Y is a U-homotopy
of a closed set A in XeC such that ho extends to a map f. XY, then h extends
to a U-homotopy Ry XxI—Y with Fy=Ff.

Proor of THEOREM 2-1: Write M=dirlim X, where each X, is a finite di-
mensional compact metric subspace (or compact metric subspace) of X,.,. From
paracompactness, ¢/ admits a sequence of open star-refinements
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CUSHCY > FCY > > %
Inductively, we define open covers 94/, Y, Wa, --- as follows .

Wo=U and We=st (W, Ux), n=1,2,---.
Then each 9/, refines st (7, C)).
Put #,=1. From the Homotopy Extension Theorem, f:A—M extends to a

map f/:M-—M 9y,-homotopic to id. Using Lemma 2-2, we have an embedding
fi: X, = M such that

Sl Xy NA=f1X, NA,
FlXa NACTMN\F(A) and

<y ) )
fi= SilX,, stationarily on X, NA.

Then f, extends to an embedding f,: X, UA—>M with f,|A=f. Clearly f, is
Cyi-homotopic to f/|X,, UA stationarily on A, hence 99 -homotopic to the inclusion
X, UACM.

Choose an m;>1 so that fi(X,)CX,,. Since Fi'is 91,-homotopic to the in-
clusion fi(X,,)U f(A)cM, it extends to a map ¢;: M — M gp,-homotopic to id by
the Homotopy Extension Theorem. From Lemma 2-2, we have an embedding
1t X, — M such that

9l A1 (X ) U (X N F (A =71 F1( X)) U (X, N F(A)),
G X NS(ANTMNA and

m= )X stationarily on £i(Xu)U(Xn, N f(A)).

Then ¢, f((Xn)=/f" and ¢, extends to an embedding §,: X, U f(A)— M with
g\l f(A)=f"" which is cV,-homotopic to ¢{|Xa U f(A) stationarily on f(A), hence
9W.-homotopic to the inclusion X U f(A)CM.

Choose an #,>n, so that 9(Xm )T X,,. Similarly as above, using the Homotopy
Extension Theorem and Lemma 2-2, we have an embedding f,: X, —> Xy, m2>m,
such that fi[g:(Xm)=¢i" and f. extends to an embedding fz:XnZUA — M with
f:lA=f which is 9¥s-homotopic to the inclusion Xa,UACM.

Thus by induction, we have the following commutative diagram of embeddings:

X, UA Xn,UA Xo,UA
U U U
Xoy, C© Xpy < X, C

”1/ f’z/ 93/
S S 13 e

J1

o

/ VS i
y, € Xm, © X, C
N n N
X, US(A) X, U F(A) Xu,UF(A)
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where each f; extends to an embedding fi:XniUA-ﬁXmiUf(A)cM with filA=f
which is 94/5_,-homotopic to the inclusion X, UAcM and each ¢; extends to an
embedding §i : X, U f(A) > Xn,,, UACM with §:|f(A)=f"" which is 9¥,-homotopic
to the inclusion X, Uf(A)cM. Then f,, fo, --+ induce a homeomorphism fw:M
— M which is st (qJ,C)-near to id and extends f. [

3. R~ or @ -deficient Sets.

Let £ be a pointed space with the base point 0¢%. A closed subset A of a
space X is said to be E-deficient in X if there exists a homeomorphism f: X > X
X E with f(A)cXx{0}). And A is locally E-deficient in X if each xe€A admits an
open neighborhood U in X such that AnU is E-deficient in U. Taking (R*,0),
(@>,0) or (1,0) as (£,0), we obtain the notions of (local) R>-deficiency, (local) @=-
deficiency of (local) I-deficiency, respectively. For example, as easily seen, compact
sets in an R>- or @™-manifold are B*- or Q=-deficient.

In the case that (EXE, (0,0)=(E,0), e.g., (E,0)=(R=0) or (@,0), for each
E-deficient set A in a space X, there exists a homeomorvphism g: X — XXE such
that g(x)=(x,0) for each xcA. In fact, let A:E—->EXE and f:X—>XXE be
homeomorphisms such that #4(0)=(0,0) and f(A)cXx{0}, then g¢g=(f"'Xidg)°
(idx X A)of : X > XX E is the desired homeomorphism.

Using Theorem 2-1, we can obtain the following characterization of infinite
deficiency in an R“- or @”-manifold.

3-1 THEOREM: Let A be a closed subset of an R>- (or Q=-) manifold M.
The followings are equivalent :

(1) A is R (or Q) deficient in M.

(ii) A is I-deficient in M.

(iii) A is contained in a collared closed submanifold of M.

(iv) A is contained in a collaved set in M.

(v) Ais a D*set in M.

(vi) A is a D-set in M.

Proor: (i) —(ii) is derived from (R>x I, (0, 0))=(R>, 0) or (@~ x I, (0, 0))=(Q~, 0).
(ii) —» (iil) — (iv) are trivial. (iv) — (v) is Proposition 1-2. (v)—» (vi) is obvious. We
prove (vi) —(i). By the Stability Theorem (e. g., see [11]), there is a homeomorphism
h:MXxR>—M (or h: MXxXQ*— M) homotopic to the projection. Let i:M—Mx
{O}cMx R~ (or cMxQ) be the natural injection. Using (i) —(vi), #i(A) is a D-
set in M, hence 4ilA is a D-embedding homotopic to the inclusion AcM. Then
hilA extends to a homeomorphism ¢: M- M. Since g 'hi|A=id, that is, A 'g|A=
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A, hg: M—MxR~” (or h'g: M— Mx@Q~) is a homeomorphism with A 'g(A)=
Ax{0}. The proof of theorem is complete. [}

In the above proof of (iv)— (i), a homeomorphism ¢~'4: MXR>—>M (or g 'h:
MxQ~— M) can be chosen arbitrarily close to the projection because /% can be so.
Thus we have

3-2 CoroLLARY: Let M be an R™- (or Q=) manifold and A a D-set in M.
Then for each open cover U of M, the projection p: MXR>— M (or p: MX Q= — M)
s U-homotopic to a homeomorphism stationarily on A x{0}.

In the above corollary, we can replace R*or @ by I and R because IX R*=
RXxR°=R> and IXQ*=RxQ>=Q~. This is used in Sections 4 and 5.

Using our characterization of infinite deficiency, one can easily obtain the
fundamental properties of infinite deficient sets in R*- or @ -manifolds. For ex-
ample, the properties mentioned Introduction have been seen in Section 1 and
those proofs are fairly easy.

4. Approximation Theorems.

First, we prove the following Closed Embedding Approximation Theorem :

4-1 CroseD EMBEDDING APPROXIMATION THEOREM: Let M be an R>- (or
Q=-) manifold, X a countable direct limit of finite dimensional compact metric
spaces (ov compact metric spaces) and f.X—->M a map that restricts to a D-
embedding on a closed subset A of X. Then for each open cover U of M, there
exists a closed embedding ¢: X — M such that g|A=f|A and ¢ is U-near io f
(moreover g is U-homotopic to f stationarily on A).

We use the next easily observed lemma:

4-2 LEmMA: Let f: X=dir lim X,, »Y=dir imY.,. be a map between countable
direct limits of compact metrvic spaces. If f is injective and F(X)NY.=rf(X,) for
each neN, then [ is a closed embedding.

Proor of THEOREM 4-1: Write X=dir lim X, and M=dir limY,, where each
X, and Y, are finite dimensional compact metric (or compact metric) subspaces
of X,.., and Y,,, respectively. From paracompactness, ¢/ admits a sequence of
open star-refinements

U >H*U >* > ¥ >0

Inductively, we define open covers Ci,, ClJ,, -+ as follows:
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=Y, and Vui1=5t (Vn, Uni1) , n=1,2, - .
Then each ¢y, refines qJ.

Put #,=1. From Lemma 2-2, we have an embedding g¢,: X,, — M such that

nlANXu, = fIANX,,,
gi(Xu NA) M\ f(A) and
<

0= f1X., stationarily on ANX,,.
Then ¢, extends to an embedding §,: X»,UA— M with §|A=f|A which is ;-
homotopic to f|X, UA stationarily on A. By the Homotopy Extension Theorem,
g, extends to a map ¢;: X—-M Cy/,-homotopic to f stationarily on A. Choose
>1 so that ¢,(X,,)C Y, and put

XfF=X, UAN S (Yn,)) and g¢F¥=4lXF  XF>Yn,.
Note that X¥ is compact and ¢¥* is an embedding such that

gHANXF=fIANXF and

v, . . )
g f1X¥ stationarily on AnX¥.

Choose an #n,>n, so that XfcX,, Since Y, is compact, ¥,,, is a D-set in
M from deficiency. Hence f(A)UYn., is also a D-set in M by 1-3 with 3-1.
From Lemma 2-2, we have an embedding g.: X., — M such that

72| Xa U(AN Xng):g”anu(Aang)’
92(Xuy \(Xn, UANCM \(f(A)UYr,) and
Us

G2 91| Xa, stationarily on X, U(ANX.,).
Since g2l AN Xa,=fIAN Xy, and g(Xn, NA)CT M\ f(A), ¢, extends to an embedding
Go: XnyUA— M with §:]A=f|A. Then §. is clearly 9.-homotopic to ¢]X,,UA
stationarily on X, UA. By the Homotopy Extension Theorem, §. extends to a
map ¢g,: X - M which is 9/.-homotopic to ¢] stationarily on Xa,UA, hence /-
homotopic to f stationarily on A. Choose an m,>m, so that ¢x(X.,)C Y, and put

X=X, UANf'(Ya,) and ¢F=§|XF: XF>Yn,.
Then X¥ is compact and ¢f is an embedding such that

g XF=gF, gFIANXF=flANXF,
gF(XNXF)CM \Yn, and

Ve ) )
gk~ f1X¥ stationarily on AnXF.

Thus inductively, we have integers l=n,<mn.<---, 1<m;<m.<--- and
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embeddings ¢} : Xf —Y,, of compact sets X¥ in X, i=1,2, - .-, such that

X CXfCXar,y,  aRIXF=aF,  gflANXF=flANXY,
GHXINXDCM \ Yo, if j<i, and

a7z
g¥ f1X¥ stationarily on AN XF.

Since X=dir lim X} and M=dir lim Y., embeddings ¢¥, ¢¥, --- induce a map g¢:
X — M extending f|A which is clearly injective and ¢J-near to f. By Lemma 4-
2, g is a closed embedding.

For the additional statement, we can construct a ¢U-homotopy between f and
g since each ¢} is 9J;-homotopic to ¢;., stationarily on X, UA (where gi=f and
Xn,=0). Otherwise, if we assume by the Open Embedding Theorem that M is
an open set in B* (or @) and each element of 9J is convex, then the additional
statement is immediate. []

The following Approximation Theorem has been proved by V.T. Liem. Using
Theorem 4-1 and Corollary 3-2, we give an easy alternative proof.

4-3 D-EMBEDDING APPROXIMATION THEOREM [4), [6]: Let M be an R™- (or
Q>-) manifold, X a countable divect limit of finite dimenisional compact metric (or
compact metric) spaces and f: X — M a map that rvestricts to a D-embedding on «a
closed subsed A of X. Then for each open cover U of M, there exists a D-
embedding g: X — M such that g|A=f|A and ¢ is U-homotopic to f stationarily
on A.

Proor : By theorem 4-1, we may assume without loss of generality that f
is a closed embedding. From Corollary 3-2 (cf. its remark), the projection p: MXx
I - M is UJ-homotopic to a homeomorphism /2: M x I -+ M stationarily on f(A)x{0}.
Let i: M — Mx{0lcMxI be the natural injection. The embedding g=/hif: X — M
is the desired one. []

For open embeddings, we can sirengthen the Open Embedding Approximation
Theorem [11]:

4-4 OpeN EMBEDDING APPROXIMATION THEOREM (strong version): Let M
and N be R>- (or Q~-) manifolds end A en R>- (or Q) deficient set in M. Then
for any open cover U of N, any map f: M N is U-homotopic to an open embed-
ding g:M— N such that g(A) is an R (or Q) deficient set in N. If fIA:A—N
is an R>=- (or Q-) deficient embedding, then f and g ave U-homotopic stationarily
on A (of course flA=g|A).
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Proor: From Theorem 3-3, we may assume that f|A:A— N is an R*- (or
Q=-) deficient embedding. Apply the proof of [11, Theorem 2-2] in which [11,
Lemma 1-5] is replaced with Lemma 2-2 in this paper (cf. Proof of Theorem 4-1).
]

As an immediate consequence, we have a strong version of the Open Embed-

ding Theorem :

4-5 OpEN EMBEDDING THEOREM (strong version): Let M be an R*- (or Q>-)
manifold and A an BR>- (or Q>-) deficient set in M. Then M can be embedded in
R> (or Q) so that M is open and A is closed and R>- (or Q=-) deficient in R*
(or Q).

5. Unknotting Theorem (strong version).

Using Theorems 2-1, 4-3, Proposition 1-3 (with 3-1) and Corollary 3-2, we
can prove the following strong version of Theorem 2-1 by Anderson-McCharen’s
trick in [1].

5-1 UNkNOTTING THEOREM (strong version): Let M be an R>- (or Q)
manifold, A a D-set in M and U, CV open covers of M. If a D-embedding f:A
— M is U-homotopic to the inclusion i: ACM, then f extends to a homeomorphism
f M — M which is ambiently invertibly st (U, C)-isotopic to id. Moreover if the
homotopy @ :i=f is stationary on a closed subset A, of A and cl ®(ANA)XI) is
contained in an open subset W of M, then the isotopy ¥ :id=f can be chosen to
be stationary on AcU(MN\W).

For the sake of completeness, we include the details. First we prove the

below :

5-2 LEmMA: Let y:Y —[0,0) be @ map of a paracompact space Y, W an
open set in YXRB and U an open cover of YXR such that if yecl (Y \ 7 10))
then {y} x[0,y(W)ICWNU for some UelU. Then there exists an ambient invertible
U-isotopy 0:YXBXI—->YXR stationary on "' O)X BU(YXR\W) such that 0,=
id and 0.(y, 0)=(y, y(¥)) for each yeY.

Proor: From Lemma 1-1, we have maps a, 8:Y — R such that for each ye?Y,
a(y)<0<r(y)<By) and {y} x[aly), Ay)] is contained in some UeqJ, moreover if ye
cH (Y \\7710)) then {y}xX[a(y), Bly)Jc W. Then the desired isotopy 0 : Y XRXI—~Y X
R is defined by
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a(y)—1y(y)
("J’ ()

0y, s, t)= Bl —~ty(y)
(y’ By)

(v,s) otherwise, []

s+tr<y>) if 7(0)%0 and a(y)<s<O,

»s+tr<y>) i 1(5)%0 and 0<s<p),

Proor of THEOREM 5-1: Let ¢/ he an open star-refinement of <7 and W’
an open set in M such that cl @(ANA)XI)cW ccdW cW.

First, we will construct an ambient invertible C{’-isotopy ¥’ : M x I — M station-
ary on A,UMNW’) such that ¥j=id and 7(f(AN\Ay)NA=0. From Proposition
1-3 with Theorem 3-1, AUf(A) is a D-set in M. Using Corollary 3-2 (cf. its
remark), we have a homeomorphism Z:Mx R —M such that A|(AUf(A))x{0}=
PICAU f(A)x {0}, where p:MxR—->M is the projection. Put Wi=p(Mx{0}n
Y (W"). From Lemma 1-1, we have a map # :W’'—(0,1] such that for each ze
Wi there is a Ve’ with {x} %[0, /()] (V)N (W’). Choose an open set
G in M so that cl f(ANAy)=cl(F(ANA)cGcelGa W, Take a map g/ :M—1
with g77(0)=A,U(M\G) and define a map 8: M—1 by

B (x)f"(x) if zeW;,

Bz)=
Ha) {o if 2 ¢ W,

Then A,cf0), fIANA)CMN\B0)cG and for each xeW; there is V'ec)
with {z}X[0, Alx)]cA™ (V)N A (W’). Hence by Lemma 5-2, we have an ambient
invertible A~Y(Cy’')-isotopy 4 : MxRXI—>MxR stationary on A,XRUMXEN\
ImY(W)) such that ¢5=id and 6;(x, 0)=(zx, f(x)) for each xeM. The desired isotopy
¥ MxI—M is defined by ¥'(x, t)=~r0"(h ' (x), ).

Next, we will construct an ambient invertible st? (J, C’)-isotopy ¥ : MxI—
M stationary on AU(MN\ W) such that ¥Y=id and ¥/|A=¥(f. Using ®:i=f
and ¥’ :id=¥’, we can obtain a st (¢J,C{’)-homotopy @’ : AxI— M stationary on
A, such that @)=i, @|=V¥f and @¢'(ANA)XI)cW’'. Let a:M—1I be a map with
a~Y(0)=A, Denote

K={(z,0,0lred, 0<t<a(z)}cMxIxR and
L={(x,0,0eK|t=0 or t=a(x)).

Then K is a D-set in MxIXR because it is contained in a collared set (1-2).

Define a map @”: K-> M by

@’(.7:, -v—~) if x¢A,,
'z, 0,8)= x
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Observe 9"(z,0,0) =z, 9”(x,0, a(x))="¥{(x) for each xeA and ¢"(L)=AU¥T f(A) is
a D-set in M (1-3 with 3-1). Since ¥ f(ANA)NA=0, @"|L is a closed embedding,
s0 a D-embedding. Note that @”"(K\A4.x{0}x{0HhcW’. Let W” be an open set
in M with clWcW/'ccdW’cW and ¢V an open cover of M which refines both
covers ¢’ and {W”, M\ clW’}. By Theorem 4-3, @’ is <}/”-homotopic to a D-
embedding @ : K-> M stationary on L. Then @ is homotopic to ¢|K because so
is @, where q: MXIXR — M is the projection. Since g is a near homeomorphism
by the Stability Theorem, " is homotopic to the restriction of a homeomorphism
from MXIXR onto M. Using Theorem 2-1, @” extends to a homeomorphism
g:MxIXR-—->M. For each xe AN A,, choose a UeqJ so that

9"({x} } {0} X [0, a(m) )= ({z} x ) st (U, Y )N W'
Since @7 and @ are C{/’-near,
@"({x} x {0} X [0, a(x)]) st (st (U, "), V)N W”
=st* (U, )NW".
Hence
{x} X {0} X [0, a(x)]c g™ st* (U, ) n W").
Let W be an open set in M with clW”cW"” cclW”cW. For each xecl (AN A4,)
there is some UeqJ such that
{2} X} {0} X190, a(=)lc g™ (st* (U, V") g™ (W)
Let N be an open neighborhood of cl (AN A,)x {0} in M x[I such that if yeN then
{w} <10, ar(y)lcg™(st* (U, V") N g™ (W)

for some Ueq, where »: MxI— M is the projection. Take a Urysohn map k:
MxT—TI with B(MxI\N)=0 and k(cl (AN A,)x{0})=1 and define a map y: MXxI
-1 by y(y)=Fk(y)-ar(y). Then observe that y|AX{0}=ar|AXx{0} and for each ye
cl (M Iy Y0)), there is a UeqJ such that

X0, y(wIcg (st* (U, V" )Ng (W).

Hence by Lemma 5-2, we have an ambient invertible ¢ '(st* (¢J, C{/’))-isotopy 6" :
MXIXRBXI—>MxIxR stationary on AoXIXRUMXIXRN\g'(W)) such that
0y =id and 6}(x, 0, 0)=(x, 0, 7(x, 0))=(x, 0, a(x)) for each xeM. Recall that for each
x€A, g(x,0,0)=x and g¢(x,0, a(x))=¥{f(z). Then the desired isotopy ¥ :MxI—
M is defined by ¥"(z,H)=g¢0"(¢ ' (z), ).

Finally, we define an ambient invertible isotopy ¥ : MXxI— M by ¥,=¥,"¥,
tel. This isotopy is stationarily on A,UMN\W). And it is a st (U, C)-isotopy
because
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st (st* (U, V"), V) =st (st (st (U, V"), V'), V')
=st (U, st V")
<st (U, V). [

6. Enlargement of Manifolds.

In previous paper [11], we gave a characterization of R*- or @Q<-manifolds.
The following is its variation as mentioned after Lemma 1-5 in [11].

6-1 THrEOREM: (a) A countable direct limit X of finite dimentional compact
metric spaces is an R>-manifold if and only if X is an ANE for (finite dimentional)
compact metric spaces and it has the following property:

(Ay) Let f:B— X be a map from e finite dimensional compact metric space
B into X that restricts to an embedding on a closed subset A of B.
Then there exists an embedding g: B— X such that fl|A=g|A.

(b) A countable direct limit X of compact metric spaces is a Q-manifold if
and only if X is an ANE for compact metric spaces and it has the property (A')
that is the above property (A'y) with the phase “ finite dimensional” deleted.

Using the above characterization, we prove the following R>- (or @-) version
of [2, Theorem 3].

6-2 THEOREM: For any space X, XX R is an R>- (or Q=) manifold if and
only if so is XX[0, col, hence if and only if so is Xx 1.

Proor. The “if” part is trivial since XX R can be embedded in XX[0, c0)
as an open set. We must prove the “only if” part. Because of similarity, we
show only R>-case.

First, we note that Xx[0,00) is an ANE for compact metric spaces which is
a countable direct limit of finite dimensional compact metric spaces, since so is
XXR. Then we may prove that Xx[0,oc0) has property (.A4y). Let f:B—XX
[0,00) be a map from a finite dimensional compact metric space B into XX[0, co)
that restricts to an embedding on a closed subset A of B From Corollary 1-5,
PF(A)XR is a D-set in an R™-manifold XX R, where p: XX R - X is the projec-
tion. Using Lemma 2-2, we have an embedding ¢: B—~ XX R such that g|A=f|A
and g(BN\A)CXXR\ pf(A)xR. If we can construct a homeomorphism 7%: XX R
— XX R so that A|pf(A)x R=id and A(g(B))c XX [0, c0), then /g: B— XX[0, 00) is
an embedding with kg|A=f|A, so Xx[0, o) has property (A7)

Now, we will construct such a homeomorphism. From compactness of ¢(B),
we may assume that g(B)cXXx(—1,00). For each neN, put
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Du=p(g(B)N XX (—o0, —27"]).

Then each D, is a closed set in X missing pf(A). Let k.: X—I be a map with
ku(pf(A))=0 and kn(D,)=1. Define a map k: X—1I by

kz)=3%.,2""k4(z)  for each zeX.
Then clearly &(pf(A))=0 and xeD, implies k(x)>2""1. It follows that
g(B)C{(z, ) e XX R|t> —k(x)}

because if g(y)=(x,£)e XX (27", —27"] then x€D, s0 t>—2"""V>_—k(z). The
desired homeomorphism 4: XX R — XX R is defined by

Mz, t)=(z,t+k(x)) for each (x,8)eXXR.

For the additional statement, the *if” part is trivial and the “only if” part
follows from XxI=Xx[0,1)UXx(0,1]. []

H. Toruficzyk [12] showed that if a complete ANR X contains an /,-manifold
whose complement is a Z-set in X then X is necessarily an /;-manifold. For ¢- or
2-manifolds, the similar statement holds (see [12, Theorem 5.2]). For R®- or Q~-
manifolds, we have the following :

6-3 PROPOSITION: Let M be an R™- (or Q=-) manifold which is embedded in
a space X as a demse set. If X\M is contained in a union \Uiea Az of collared
sets Ay, 2€4, in X and X\ M or \ s Ai is closed in X, then X is an R™- (or Q=)
manifold.

Proor: For each ¢4, let k;: A;%[0,1) - X be an open embedding such that
kixz,0)=2x for each zeA, Since k:(A:x(0,1)) is an open subset of M, A;x(0,1)
is an R™- (or @~-) manifold, hence so is 4,%[0,1). Note if \Usea Az is closed in X

then X\ \Ui1A: is an R*- (or @~-) manifold because it is an open subset of M.
Thus

{ea(Aax [0, I)|2e UMY or  {ki(A:X[0, 1)) A€ AL ULX \\User A}

is an open cover of X all whose member is an R™- (or @>-) manifold. Hence X
is an R>- (or @Q~-) manifold. []

In Section 1, we introduced D-sets and D*-sets as generalizations of closed
sets contained in collared sets. One should notice that Z-sets in an R>- (or Q)
manifold are not necessarily infinite deficient, hence not contained in collared sets
[S], whereas Z-sets in an /.- (or ¢- or 2-) manifold are infinite deficient, hence con-
tained in collared sets.
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6-4 ProsLEM: Let X be an ANE for compact metric spaces which is a
coutable direct limit of finite dimensional compact metric (or compact metric)
spaces. If X comtains an R (or Q-) manifold whose complement is a D-set in
X, then is an R>- (or @) manifold?

7. Union of Two R>- (or §~-) Manifolds.

In this section, we prove the following theorem:

7-1 THEOREM: Let X, and X, be closed subsets of a space X with X=X,U
X, and Xo=X\0Xo. If Xo, X\ and X, ave R>- (or Q) manifolds then so is X.

Although this is the R=- (or @-) version of the Mogilski's result [9], his
method cannot apply as mentioned in Introduction. We use the characterization
of R>- and Q=-manifolds, i.e., Theorem 6-1. To prove the theorem, we first show
the following lemma:

7-9 Lemma: Let Y and Z be closed subspaces of a space X with X=YUZ.
If Y=dirlimY, and Z=dirlimZ, where each Y, and Z, are closed in Yor and
Znsr 1espectively, then X=dir lim (Yo UZy).

Proor: Let AcX. Assume that AN(Y,UZ,) is closed in Y,UZ, for each
neN. Since AN Y. is closed in Y, for each neN, ANY is closed in Y, hence it
is closed in X. Similarly ANZ is closed in X. Therefore A is closed in X. Since

X=Unen(YnUZ,), this implies X=dir lim (YoUZn). [

Proor of THEOREM 7-1: Because of similarity, we proove only R*-case. From
the above lemma, X is a countable direct limit of finite dimensional compact metric
spaces. Note that X is an ANE for compact metric spaces. Therefore we may
show that X has property (.4} in Theorem 6-1. Let f:B-—> X be a map from a
finite dimensional compact metric space B into X that restricts to an embedding
on a closed subset A of B. Put Bi=f"Y(X;) and A;=AnNB; for i=0,1,2. First
using [11, Lemma 1-5], we replace f|B, with an embedding g0 : Bo — X, such that
9olAo=f|A, and g, is homotopic to f|B, stationarily on A.. Then g, extends to an
embedding ¢} : B,U A, — X, which is homotopic to f|B,U A, stationarily on A,. By the
Homotopy Extension Theorem, g; extends to a map gt : B, — X, which is homotopic
to f|B, stationarily on A, Using again [11, Lemma 1-5], we have an embedding
g1: Bi— X, such that ¢,|B,UA, =g, hence ¢,|By,=g, and g|A;=f|A,. From com-
pactness, g(B)NX; is a D-set in X, (1-5). Similarly as above, but using Lemma
2-2. we have an embedding ¢ : B. — X such that g:|Bo=¢e, ¢:|A2=f|A, and more-
over gAB:\B)Ng:(B)=0. Then we can define an embedding g:B— X by ¢g|B=
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g, and ¢g|By=g¢.. Clearly g|A=f|A. [

Since examples of Henderson-Walsh [2] apply equally to R* and @, as men-
tioned in Section 7 of [2], we have spaces Y and Z such that Y& R> and Z£Q~
but ¥YX/=YXR=R> and ZxI=ZxR=Q> (cf. Theorem 6-2). Let X,=YX[0,1]
(or Zx[0,1)) and X.=Yx[1,2] (or Zx[1,2]). Then X=X, UX,=X,=X,=R" (or
@) but Xo=X,NX,%R> (or @), so the assumption in Theorem 7-1 that X, is an
R>- (or @) manifold is not essential.

Because of examples of Henderson-Walsh [2], Mogilski’s method in [9] cannot
apply to the ¢- (or X-) version of Theorem 7-1. However, using Mogilski’s char-
actgrization of ¢- and 2-manifolds [10], this can be proved similarly as Theorem
7-1.

As an application, we prove the following Collaring Theorem due to Liem:

7-3 CoLLArRING THEOREM (7, Theorems 3-3 and 3-4]: Let N be a closed R>-
(or @-) submanifold of an R™- (or Q~-) manifold M. Then N is R>- (or Q)
deficient in M if and only if N is collared in M.

Proor: The “if” part is follows from Theorem 3-1. To prove the “only
if 7 part, put L=Mx{0}UNxI. From Theorem 7-1, L is an R>- (or @) mani-
fold. The projection p:L— M is a fine homotopy equivalence, so a near homeo-
morphism (e. g., see [11, Theorem 2-3]). Using Theorem 2-1, we have a homeo-
morphism /%:L—M such that A(xz,1)=2 for each zeL. Then N is collared in
M O
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