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A GAMMA RING WITH MINIMUM CONDITIONS

By

ShojiKyuno

Abstract. The aim of this note is to study the structure of a

F-hng (not in the sense of Nobusawa) with minimum conditions.

By ring theoretical techniques, we obtain various properties on the

semi-prime F-ring and generalize Nobusawa's result which corre-

sponds to the Wedderburn-Artin Theorem in ring theory. Using

these results, we have that a F-rlng with minimum right and left

conditions is homomorphic onto the /Vring *E,UiDnw,m<.i->,where

Dnw.mw is the additive abelian group of the allrectangular matrices

of type n(i)Xm(i) over some division ring Da＼ and Fo is a subdirect

sum of the Fi} l^iSq, which is a non-zero subgroup of A^m.nci)

of type m(i)Xn(i) over Dci).

1. Introduction.

Nobusawa [8] introduced the notion of a F-ring M as follows: Let M and

F be additive abelian groups. If for all a, b, cgM and a, ft,T^F, the conditions

Ni. aab^M, aafi^F

N2. (a+b)ac=aacJrbac, a{a+fi)b-=aab-＼-afib, aa(b+c)=aab+aac

N3. (aab)fic=a(abfi)c=aa{bfic)

N4. xry=0 for all x,j£M implies j=0,

are satisfied,then M is called a F-ring.

Barnes [1] weakened slightly defining conditions and gave the definition as

follows:

If these conditions are weakened to

Bj. aab&M

B2. same as N2

B8. (aab)pc=aa(bpc),

then M is called a F-ring.
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In this paper, the former is called a F-ring in the sense of Nobusawa and the

latter merely a F-ring.

Nobusawa [8] determined the structures of simple and semi-simple Tarings

in the sense of Nobusawa with minimum right and left conditions as follows:

Using the notation introduced in [5], when M is simple, as a ring,

r

＼M

where D is a division ring ([8]

(Rr)

r)

L

)

Theorem 2); when M is semi-simple, as a ring

i-Jmii)

■L'm(i'), nCi~>＼

r)(i) ndl I

where D(i＼l^i<^q, are division rings ([8] Theorem 3).

Nobusawa's definitionsare in the following: M is simple if aF6=0 implies

a=0 or 6=0; M is semi-simple if aFa=0 implies a―0.

In [2], we defined that a F-ring M is prime if for any ideal A and B of M,

AFB―0 implies A―Q or B=0; a F-ring M is semi-prime, if for any ideal A of

M, ArA=Q implies 4=0.

When Mis a F-ring in the sense of Nobusawa, one can easily verify that M

is prime if and only if aFb=0 implies a=0 or b=0; M is semi-prime if and only

if afa=0 implies a=0 ([1] Theorem 5). Thus, when M is a F-ring in the sense

of Nobusawa, Nobusawa's terms 'simple' or 'semi-simple' are equivalent to our

'prime' or 'semi-prime' respectively.

However, when M is a F-ring (not in the sense of Nobusawa), they are

quite different notations. Following Luh [7] we call a F-ring M is completely

prime if aFb=0 implies a~0 or b―Q; M is completely semi-prime if aFa―Q

implies a=0. Then, the primeness cannot imply the completely primeness, even

for a finite F-ring ([7] Example 3.1). The semi-prime F-ring is one without

non-zero strongly-nilpotent ideal (Theorem 2.10 below), while the completely

semi-prime F-ring is one without non-zero strongly-nilpotent element (Definition

2.2). The gap between the primeness and completely primeness and the gap

between semi-primeness and completely semi-primeness are caused by lack of a

multiplication: rxMxF~>r. In the following we do not treat completely prime

F-rings nor completely semi-prime ones, but prime and semi-prime F-rings.

Also, it should be noticed that a semi-prime F-ring with minimum right

condition cannot always have the minimum left condition, nor dim(LM) can be

equal to dim(M^) even if it has both minimum right and left conditions, while a

semi-prime ring R (an ordinary ring) with minimum right condition has the
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minimum left condition, and dim(RR) ―dim(RR) (The comments followed Theo-

rem 3.23).

The main aims of this paper are to study the structure of the semi-prime

JH-ringwith minimum right condition and to generalize Nobusawa's results to the

prime and semi-prime /"-rings with minimum conditions and to determine the

structure of the F-ring with minimum conditions.

Using ring theoretical techniques, we obtain various fundamental results on

/""-ringswith minimum right condition. Then, using these results, we have the

analogues of the Wedderburn-Artin Theorem for simple (Definition 3.9 and Theo-

rem 3.15 below) and semi-prime F-rings with minimum right and left conditions.

Also, these converses are considered. Nobusawa's results are obtained as corol-

laries of our theorems. Consequently, the structure of a F-ring with minimum

right and left conditions is determined.

For the following notions we refer to [2] : the right operator ring R, the

left operator ring L, a right (left,two-sided) ideal of M, a principal ideal <c>,

[iV, 0~],where NQM and 0QF, but for the prime radical £P(M), a residue class

F-ring, and the natural homomorphism to F31.

2. Strongly-itilpotent ideals.

Definition 2.1. Let M be a T-rmg and L be the left operator ring. Let S

be a non-empty subset of M and denote St―{a^L＼aS―0}. Then Si Is a left

ideal of L, called an annihilator left ideal. Let T be a non-empty subset of L

and denote TT= {x^M＼Tx=0}. Then Tr is a right ideal of M, called an

annihilator right ideal. For singleton subsets we abbreviate this notation, for

eyamnle. ＼a＼-=a~.where a is an element of T,.

Definition 2.2. An element x of a Turing M is nt[potent if for any fef

there exists a positive integer n=n{j) such that (x^)"z―(x7")(,t^)---(;i7),t=Q.A

subset S of M is nil if each element of S is nilpotent. An element x of a /"'-ring

M is strongly-nilpotent if there exists a positiveinteger n such that (xF)nx =

{xFxF'■■■xr)x=0. A subset of M is strongly-nil if each its element is strongly-

nilpotent. 5 is strongly-nilpotentif there exists a positive integer n such that

(snns=(srsr~- sns=o.

By definitionsfor a subset S of M we have the followingdiagram of impli

cation:

S is stronely-nilpotent.^ S is strongly-nil.=> S is nil.
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Lemma 2.3. The sum of a finite number of strongly-nilpotent right (left)

ideals of a F-ring M is a strongly-nilpotent right (left)ideal.

Proof. The proof needs only be given for two strongly-niipotentright ideals

A, B. Suppose (Ar)mA=(Br)nB=0. Now we have ((A+B)nm+n+1(A+B)=

(A+B)r(A+B)r-r(A+B), with m+n+2 brackets, so that((A+B)r)m+n+1(A+B)

is a sum of terms, each consisting of m+ra+2 factors which are either A or B.

Such a term T- contains either m+1 factors A or n-fl factors 5. In the former

case, T^{ADmA or TgM/l4O1M, because A is a right ideal; in the latter

case, T^MriBryB or TQ(Br)nB. Thus, {(A+B)nm+n+1(A+B)=0 and yl+ B

is strongly-niipotent.

Corollary 2.4. The sum of any set of strongly-nilpotent right {left) ideals

of a F-ring M is a strongly-nil right {left)ideal.

Proof. Each element x of the sum is in a finitesum of strongly-nilpotent

right ideals of M, which by Lemma 2.3 is strongly-nilpotent.Therefore x is

strongly-nilpotent,and the sum is strongly-nil.

Lemma 2.5. The sum S(M)' of all strongly-nilpotent right ideals of a F-ring

M coincides with the sum 'S(M) of all strongly-nilpotentleft ideals and with the

sum S(M) of all strongly-nilpotent ideals.

Proof. Let / be a strongSy-nilpotent right ideal. The ideal J+M/7 is

strongly-nilpotent, because ((/ + Mr/)F)n(/ + Mri)Q(IF)nI + Mr(ir)nI for n =

1,2, - It follows I^S(M) and hence that S(MYQS(M). But S(M)QS(MY

trivially,and hence S(M)=S(M)'. Similarly, S(M)='S(M).

When a F-ring M has the descending (or ascending) chain condition for right

ideals, it is abbreviated to M has min-r condition (or max-r condition). The

terms min-l condition or ynax-l condition on a Turing M are likewise defined.

It is natural to ask whether S(M) is strongly-nilpotent. This is so when M

has either the min-r or max-r conditions (min-/ or max-/ also serve). The case

of max-r is trivial,because S{M) is a finitesum of strongly-nilpotent right ideals.

When M has min-r condition,a strongly-nilright ideal is always strongly-nilpotent,

which will be shown in the following theorem. We note that a non-strongly-

nilpotent right ideal means the right ideal which is not strongly-nilpotent.

Theorem 2.6. Any non-strongly-nilpotent right ideal of a F-ring M with

min-r condition contains an idempotent element.
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Proof. Let / be a non-strongly-nilpotent right ideal of M and Ix be minimal

in the set of non-strongly-nilpotent right ideals which are contained in /. Then,

/1=/1/Y1, since hFlx is not strongly-nilpotent. Let S be the set of right ideals

S with properties (1) SH^O and (2) S£/,.

The set S is not empty (/i£<S) and we suppose that Sx is a minimal member

of S. Let seSi, 3(eF with sdl^Q. Then, sdIi=Slt because sdh^S. It follows

that flG/i exists with s<5a=s. Then a is not nilpotent, because if a is nilpotent,

s=sda=sdada~ ■■■=(sd)(ad) ･･･(ad)a―0, a contradiction. Hence, / cannot be a nil

right ideal. This proves that if / is a strongly-nil right ideal then / is strongly-

nilpotent, since if / is strongly-nil then / is nil.

Now aFM^Ii and aFM is not strongly-nilpotent, for a is not nilpotent.

Hence aFM=-l1, because of the minimal property of h. Likewise, aFoFM―Ix and

hence a^aFaFM, so that a=a(oau where ax^aFM. Note that aa)(ai―aiwa^―0

and hence ax―axwa^^a, ai]rr＼aFM. Set a2=:aJra1―aia)a. Then, a(Daz=aa)a-＼-aa)a1

―(acoa^doa = awa+a―aaxi = a. Also, a2<w(ci―a&di) = (a+Oi―Qio;a)(y(fli―GaG>aa) =

axQjai―dioxiiitia!.Moreover, az is not nilpotent, because ao)a2=a and a is not zero.

It follows that oFM―a^FM, and that [a2, Q)]rr＼aFM^＼_a, of＼rr＼aFM. However,

either a1<oa1=a1Qja1Qja1, in which case / contains the idempotent a&au or else

axiaaxi^axoiaxojai,in which case ax―Oxctxix^ta, <o~＼rand d―axo)a.x& [c2, of＼r- In the

latter case, [_a2,ofJrr^aFM^^a, oi]rr＼aFM. This process is repeated, if necessary,

beginning with a2 instead of a, and obtaining a4; etc. The process ceases because

of the minimum condition and this proves that / has an idempotent element.

Corollary 2.7. The sum S(M) of all strongly-nilpotentideals of the F-ring

M with min-r or max-r conditions,is a strongly nilpotent ideal.

Definition 2.8. When the sum S(M) of all strongly-nilpotent ideals of M is

strongly-nilpotent,S(M) is called the Wedderburn radical of M (or the strongly-

nilbotent radical) and denoted bv W.

Definition 2.9. A F-ring M is semi-primeif,for any idealU of M, UW=0

implies U―0.

For a semi-prime /"'-ringwe have the following theorem.

Theorem 2.10,([3] Theorem 1, 2 and 3). // M is a F-ring, the following

conditions are equivalent:

(1) M is semi-prime,

(2) If a EM and aFAf/a^O, then a=0.
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(3)

(4)

(5)

(6)

(7)

(8)

//
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<a> is a principal ideal of M such that <a>in'<G>=0, then fl=O

If U is a rightideal of M such that UFU―Q, then U=0,

// V is a left ideal of M such that vrV=O, then V=0,

The prims radical of M, S'(M), is zero,

M contains no non-zero strongly-nilpoientideals (right ideals,leftideals)

The sinn S(M) of all strongly-nilpotentideals of M is zero.

Theorem 2.11. Let M be a F-ring which has a Wedderburn radical W

Then the residue class F-ring M/W is semi-prime.

Proof. Set M=M/W and suppose TV is a strongly-nilpotentIdealof M, and

suppose that(NT)mN=O. Let N be the inverseimage of N under the natural

homomorphism M-*M. Thus, N= {x^M＼x+W&N}. Clearly,(KT)mN^W and

hence (Nr)mn+n+nN=0, where (＼＼F)nW=Q. Thus, NQW and N=O. Hence, M

is semi-prime.

If M has min-r condition,then M/W has min-r condition([3] Lemma 1),

Corollary2.7 and Theorem 2.11yieldthe followingtheorem.

Theorem 2.12. Let M he a F-ring with inin-r condition.Then the residue

classF-ring M/S(M) is a semi-prime F-ring with min-r condition,where S{M) is

the sum of allstrongly-nilpotentideals of M.

3. Semi-prime F-rlngs with, min-r condition.

For a right ideal / of a Aring M, if there exists an idempotent element / of

the left operator ring L such that I=IM, we say that / has the idempotent

generator I. The idempotent generator plays an important role in the following.

Theorem 3.1. Any non-zero right ideal in a semi-prime, F-ring M with

min-r condition has an idempotent generator.

Proof. The result is first proved when the Ideal is a minimal right ideal A.

Since M is semi-prime, AFA^O. Then, there exist d^F, a^A such that adA = A.

Thus, there exists e^A such that a=ade. Then, e=ede, since from a=aoe=

(aoe)oe we have ad(e~ede)=0 which means e ―ede~0, for the set B= {c^:A＼adc=0}

is a right ideal contained properly in the minimal right ideal A and is (0). Since

eeiA, Q-^-edMQA and hence edM―A, where [_e, d~]is an idempotent of L.

Let / be any non-zero right ideal of M. Since / contains one or more

minimal right ideals, idempotent generators of the minimal right ideal(s) exist in

＼_I,F]. Choose an idempotent /g[/, I1"] such that lrr＼I is as small as possible.
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If lrr＼I^Q, then lrr＼I^l'M, where /' is an idempotent of L. Then, /'e/'L=

I'LM, n^U>n and ll'=0, for since /'Mg/r, //'M=0. Set m=l+l'-l'l and

then me[/, F], for [/, F] is an right ideal of L. Clearly, m2=m, because ll'=0.

Moreover, mrr＼I^lrr＼L since we have lm―l which implies mr£/r, and //'=0 but

ml'―l'^Q which implies l'MQlr but /'＼gmr. This contradicts the minimality of

/rpj and the contradiction arises from taking lrr＼I^0. Hence one has lrf＼I=0.

Now let x£/, then /(z―/a:)=0, where x―lx^I, for ix^IFlQl. It follows that

7=/M, for since /e[J, T], IMQlTMQl.

Corollary 3.2. A semi-prime F-ring M with min-r condition has max-r

r.nndit.inn.

Proof. The proof is analogous to that in ring theory but to tackle the

situation that the generator does not exist in M but in L = ＼_M,/""].For the sake

of completeness, we write out it.

Suppose that the non-empty set 5 of some right ideals in M has no maximal

elements. Take an element Jx of S, then by the assumption there exists /2eS

such that /i§=/2. Repeating this process, we have an infinite sequence of right

ideals:

/^/^■･･^/^･･･.

Set N=＼JiJt. Then, by Theorem 3.1 N=IM, where / is an idempotent of L.

Thus, /―/2e/L=/[M, r] = pv, /*]= [＼JtJt,/"*] and hence there exists an integer

m such that /e[/m, T]. Then, N=lM^JmrMQjmt so that Jm=N=Jm+1, a con-

tradiction. Hence, every non-empty set of right ideals of M has a maximal

element. Evidently, the max-r condition holds in M.

Lemma 3.3. // a F-ring M is semi-prime, then the right operator R and the

left operator L are semi-prime.

Proof. Suppose rRr=0. Then MrFMr―0. Theorem 2.10(5)implies Mr=0

and then r=0. Thus, R is semi-prime. Similarly,it may be verifiedthat L is

semi-prime.

Theorem 3.4. Let T be any non-zero ideal of semi-prime F-ring M with

min-r condition. Then T has a unique idempotent generator.

Proof. Let T―sM, where s―StC^i, Si] is an idempotent, be the given ideal.

Then Si―Tt is a left ideal of the left operator ring L and Tir＼[T; F2=0,

because (T,r＼rT, ri)2^:TLrT, r~]=0 and L is semi-prime (Lemma 3.3). Hence
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SiHZT, H = 0. But for any 2,|><, Til^LT, T] (2,[>*, ft!]-2*[><, r<]s)s=0 and

hence StOi, ft] ―2*L><, ft]s e SiHlT, T], which means that 2iL>*, ft]=

2*L>*, ft]s- It follows that [T, r] = [T, r2s = sMfs and s is a two-sided identity

for the ring [T, F~＼.The latter fact shows that s is unique.

Definition 3.5. Let M be a T-ring and L be the left operator ring. If

there exists an element SzO?, S^^L such that 2^t^x-i for every element x

of M, then it is called that M has the left unity SiCe*, <5i].

It can be verified easily that 2i[>i, 5f] is the unity of L. Similarly we can

define the right unity which is the unity of the right operator ring R.

Corollary 3.6. A semi-prime F-ring M with min-r condition has a left

Proof. In Theorem 3.4 set T=M. Then, L=[M, r}=sMFs. Thus, s is

the unity of L. Then for any x of M[sx ―x, F]―0 and so (sx-x)rMr(sx-x)

=0. Since M is semi-prime sx ―x~0 or sx=x.

Corollary 3.7. A semi-prime F-ring M with min-l condition has a right

Corollary 3.8. Let T be any non-zero ideal of a semi-prime F-ring M with

min-r condition. Then, the generating idempotent of T is the idempotent which

Hot in iho roriiornf T.

Proof. Let T=(2Of, d{])M and suppose the /eL. Since(SO<, <5*])/e

[T, T], we have (SiC≪*,W)/=((2<[≪≪,W0Si[ei, W=Si[≪*, W(/S*Cei, W)=

/SiC≪i,W, for /SiC≪i,WeL[T,r]=[Mrr,ng[T,n. Thus, SO,, 3,] is

Definition 3.9. A jn-ringM is said to be simpleif MFM^O and M has no

Corollary 3.10. (1) Any non-zero ideal T of a semi-prime F-ring M with

min-r condition is a semi-prime F-ring with min-r condition. (2) Any minimal

ideals S of a semi-prime F-ring M with min-r condition is a simple F-ring.

Proof of (1). Let / be a right ideal of T (considered as a T-ring)(JFTQJ).

Let T=sM, where s= E<Cei, 8tl is an idempotent. Since If, F~1Q＼T,Fl Theo-
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rem 3.4 implies [/, Hs^U, T]. Thus, jrM=dJ, r^s)M=jr{sM)=jrT^J and

hence / is a right ideal of M. It is immediate that the Turing T has no strongly-

nilpotent right ideals and satisfiesthe min-r condition.

Proof of (2). Let T be any non-zero ideal of M. Then, as shown in the

proof of (1), a right ideal of T is a right ideal of M. Now, we show that a left

ideal Q of T is a left ideal of M. Suppose that T―sM, where s is an idem-

potent. Then, MrQ=lM, riQ=LM, Os£)=([M, ns)Q=(sLM, rj)Q=[T, F]Q

QQ. So Q is a left ideal of M. Therefore, an ideal of T is an ideal of M.

Since S is a minimal ideal of M, we deduce that S is a simple F-ring.

THEOREM 3.11. // T is an ideal in a semi-prime F-ring M with min-r

condition, then M=T@[T, r~]r.If M=T@K, where K is an ideal of M, then

k=it, rx.

Proof. Suppose that T=sM, where s='En[_ei> 5f] is an idempotent, then

M=sMc(lL-s)M, where 1L denotes the left unity of M. [T, r](lL―s)M=

[T, r]s(li-s)M=[r, r](s-s)M=0. Hence, (lL-s)Mg[T, T]r. Conversely,

suppose that [T, T]x=0 and x^x'+x'', where jc'eT, x*e(lL-s)M. Then,

sx=sx' + sx//=sx/ and Q=[T, r^x = {[T, r~＼s)x= ＼_T,r^sx' = ＼_T,r~＼xf.Since

TrMQT, TrMrx'=0 and hence *TA//V=0, which implies x'=0. Thus, jc=

x//e(lL-s)M and then [T, r]rg(U-s)M. Hence [T, r]r=(lL-s)M and M=

T0CT, T]r.

In the case when M=T@K, it follows that Tr/C=0 (since TFK^TnK) and

hence A"g[T, rir. However Tc/r=T0[7＼ nr and hence /C=[T, Hr.

We now prove the fundamental theorem on semi-prime Tarings with min-r

condition.

Theorem 3.12. A semi-prime F-ring M with min-r condition has only a

finitenumber of minimal ideals and is their direct sum.

Proof. Form M^MiR ■■■0M£ of minimal ideals Mt of M. Because M has

the max-r condition (Corollary 3.2),there is a sum S having maximal length q.

Suppose that [_S,F^r^O. Then [S, F~]rcontains a minimal ideal, which can

be added directly to S, because Sr＼LS, F^r^O. This contradicts our supposition

that S has maximal length of minimal ideals. Hence [S, F~]r―0 and M―

S0[5, F^＼r―S,which proves that M is a direct sum of minimal ideals, M―

M1cA/2c---cMg, say.
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By Corollary 3.10 and Theorem 3.12 we have

THEOREM 3.13. A semi-prime F-ring with min-r condition is a direct sum of

a finitenumber of sirnbleF-rines with min-r condition.

Definition 3.14. A T-ring M Is prime if for all pairs of ideals 5 and T of

M, SFT=0 implies 5=0 or T=0. A T-ring M is left (right) primitive if (i) the

left (right) operator ring of M is a left (right) primitive ring, and (ii)xFM=0

(MFx=0) implies x=0. M is a two-sided primitive F-rmg (or simply a primitive

F-rma) if both left and richt nrimitive.

Luh proved the following theorem.

Theorem 3.15([7] Theorem 3.6). For a F-ring M with min-l condition,the

three conditions

(1) M is prime,

(2) M is primitive,

(3) M is simple

are eauivalent.

Of course,Theorem 3.15also holds when M has min-r conditioninstead of

min-/ condition. Thus, we can replace the term 'simple' in Theorem 3.13by

' prime ' or 'primitive'.

We willprove furtherresultson the one sided ideal structure of a semi-

nritneF-rm<2 with min-r condition.

Lemma 3.16. Let I be a right ideal in a semi-prime F-ring M with min-r

condition and Jx be a right ideal contained in I, Then there exists a right ideal

h in I such that I=I,@)L..

Proof. Taking 1^0, Jx^0 and I=IM and Jx=sM, where /=£,[><,&],

5=SjC/^ £j]are idempotents. Write je/ as ^=sz+(/―s)jc. The set J2=

{%―■sx＼x(^I}is a rightidealand/2£/. Clearly,/=/iR/2.

Definition 3.17. Idempotents lu ･■-,/AeL are mutually orthogonal if lilj=Q

for z'=£/.

The notation /=/i0 ･■■04 indicates that l=lx+ ■■･+lk, where lu ■■■, lk are

mutually orthogonal idempotents.

In Lemma 3.16 we can choose generating idempotents St of Ju sz of J2, so
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thatl^s^Sz. The proofis given in the following.

Take I―IM and J1=sM as before,and set s1=sl and s2―l―sl.Then ls-=s

since se/[M, f], and s= s2=s(ls)=(sl)s=-s1sso thatJ1=sM=s1(sM)^slM~s(lM)

QsM=Ji. Thus, Ji=SiM. However, Jz={x ―sx＼x^I} = {la―sla＼a^M} =

{(/―s/)a|aeM}―s2M. We can easilyverify that slfs2 are idempotents and that

/=sics2. Q.E.D.

Definition 3.18. An idempotent of the left operator ring L is primitive if

it cannot be written as a sum of two orthogonal idernpotents.

Lemma 3.16 and subsequent comments imply that in a semi-prime F-ring

with min-r condition an idempotent of L is primitive if and only if it generates

a minimal right ideal.

Lemma 3.19. Let M be a semi-prime V-ring with min-r condition. Then any

idempotent element I of the left operator ring L is a sum of mutually orthogonal

primitive idempotents.

Proof. Let I=IM and Mi be a minimal right ideal in /. There exists a

right ideal M[Ql such that I^M^M', (by Lemma 3.16). Then, either M[=0,

in which case / is primitive (/ generates the minimal right ideal),or we choose

generating idempotents s1 of Mt; s{ of M[ such that /―s^Si (by the above

comment). Observe that sx is a primitive idempotent. If s[ is not primitive, this

process may be applied to M[=s'iM, giving Si=s2cS2, where s2 is primitive.

Evidently, /―Sics2cS2, and s'iM^s'2M. This process is continued and the

sequence s[M^s'zM^s'3M'3. ■■■being strictly decreasing, must be stop after a

finite number of terms. Then, /=Sic---0sft, say, which each sf is a primitive

idempotent.

Corollary 3,20. Any non-zero right ideal in a semi-prime F-ring M with

min-r condition is a direct sum of minimal right ideals.

Proof. Lemma 3.19 implies that /=/M=SiM0 ･･･(&skM.

By symmetry, we have

COROLLARY 3.21. Any non-zero left ideal in a semi-prime I -ring with min-l

condition is a direct sum of minimal left ideals.
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Luh proved the following theorem.

Theorem 3.22 ([6] Theorem 3.6). Let M be a semi-prime F-ring and L and

R be respectively the left and right operator rings of M. If ede=e, where

geM, 3^F, then the following statements are equivalent:

(1) Moe is a minimal left ideal of M,

(2) e8M is a minimal right ideal of M,

(3) ＼_M,F~＼X_e,<5]is a minimal left ideal of L,

(4) [<5, e~][T,M~＼is a minimal right ideal of R,

(5) [_e, b~＼{_M,F~＼is a minimal right ideal of L,

(6) [T, M~＼[d, e~]is a minimal left ideal of R,

(7) ＼_e,<3][M, r~＼[_e,d~＼is a division ring,

(8) ＼_o,e~＼[T,M~＼＼_d,e~＼is a division ring.

Moreover, the division rings ＼_e,5][M, /^][e, d~＼and ＼j8,e~＼[T,M][5, e] are

isomorphic if any of the above statements occurs.

Corollary 3.20 showed that every non-zero right ideal of a semi-prime Turing

M is a direct sum of minimal right ideals. This decomposition applies to M

itself and gives a right dimension number for M, considered as an /^-module.

Theorem 3.23. Let M be a semi-prime F-ring with min-r condition and let

M―720 ･･･R/≪=/ic ･･■R/n, where It, Js are minimal right ideals. Then, m―n.

The proof is established by the quite similar fashion to that for an ordinary

ring and so we omit it.

The integer m=n in Theorem 3.23 is called the right dimension of the semi-

prime F-ring with min-r condition and denoted by dim(Mfi). One can define the

left dimension of a F-ring in a similar manner. But it should be noticed that a

semi-prime /""-ringwith min-r condition cannot always have the min-/ condition.

For example, let D be a division ring and M be the discrete direct sum of the

division rings Di=D, z'eiV(the set of all natural numbers), and F be the set of

all transposed elements of M. Then, the Turing M is semi-prime and dim^M)

= 00, while dim(MR)=l. Even for a semi-prime F-r'mg with both min-r and

min-/? conditions, generally the right dimension cannot be equal to the left one.

When M=D2,1, the set of all matrices of type 2x1 over a division ring D, and

r=D1>2, dim(Mtf)=2 and dim^M^l.

When M is a semi-prime Turing with min-r condition, we consider the left

operator ring L. Corollary 3.6 shows M has the left unity. Thus, by Lemma
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3.19, 1l=[0i, di]+ ■･･+[ek, dk^i, where [_eu d{], ■■･,＼_ek,<5&] are mutually orthog-

onal primitive idempotents. This implies that L = ＼_eud{]Xc ･■■R[_ek, dk~＼L,

where ＼_e1}d{]L, ■■･, ＼_ek,8k~]L are minimal right ideals. Also, we have L=

L＼_eu <5i]c ･■･RL[ek, 8k~＼,where L[_e1} d{], ■■■,L＼_ek,dk~＼are minimal left ideals

(Theorem 3.22). Thus, we have dim(L£)~dim(LL). By symmetry, when M is a

semi-prime F-ring with min-l condition, for the right operator ring R we have

4. Simple Tarings with min-r and min-/ conditions.

We note that if a Turing M is simple, then the right operator ring R and

the left operator ring L are simple.

Let / be an ideal of R such that 0§i/§i/?.Then MI is an ideal of M. Since

M is simple, MI must be 0 or M. If M/=Af, then R=[_F, MI~＼= IF, M~]I=RIQI,

a contradiction. If MI=0, then 7=0, also a contradiction. Thus, i? has only

ideals 0 and R, and R2^0, for MR2=M[T, MrM^Mir, Ml=MrM=M^0.

This proves 7? is simple. Similarly,it may be shown that L is simple.

If M is simple, then M is semi-prime. Indeed, for any ideal U of M we

assume UFU=Q. Since only ideals of M are 0 and M, U=0 or U―M. If U=M,

then MFM―Mi^O, a contradiction. Thus, £/―0and M is semi-prime.

Definition 4.1. If Mt is a /Vring for i=l, 2, then an ordered pair (0, <p)

of mappings is called a homomorphism of Mt onto M2 if it satisfiesthe following

properties:

(1) 6 is a group homomorphism from Mx onto Mz,

(2) 0 is a group homomorphism from /^ onto F2,

(3) For every x, ;>eM1? reA, (xjy)d=:(xd)(r<p){y6).

Furthermore, if both 6 and <j>are injections,then (0, 0) is called an isomorphism

from the Faring Mi on/o Mg Fr-ring M≪.

Theorem 4.2. Let M be a simple F-ring with min-r and min-l conditions

and ro=r//c, where k―{j^F＼MjM~Q}. Then, the Faring M is isomorphic onto

the F'-ring Dn,m> where Dn>m is the additive abelian group of all rectangular

matrices of type nXm over a divisionring D, and F' is a non-zero subgroup of

the additive abelian group Dm,n of allrectangular matrices of type mXn, and

m=dlm( tM) and n=dim(Mn).

Proof. Let edM, where ede―e, be a minimal right ideal of M (Theorem 3.1)

and let B―WhMFa, 81: certainly D is a division ring (Theorem 3.22). Also,
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＼_edM,F~]~edL is a minimal right ideal of L (Theorem 3.22). Since (eoMred)edL

~edL (for O^(edMred)edL) we see that eoL is a vector space over D (a left

D~space).

First we prove:

/,,･-■, L<=edL are linearly independent over D if and only if

L/ic ■･■cL/B, where L = LM, H (A)

Suppose Llx-＼-･■･+ L/n is not direct sum. Then, there exist au ･■■, cneL,

not all adi zero, such that aj^ ■■･+anln=0. Set Ii={(ieL[≪, <5]|a:/fieZ,/1+■･■

+ L/f_1+L/i+1+ ･･･+ L/n}, where we suppose that adi^O. Then, 0=fGj[>, o]eLj

and Li―L[e, d~],because L＼_e,8~]is a minimal left ideal (Theorem 3.22). Hence,

O, <5]eL[>, o] = Li and then /i= e5/i = ;;i/i4-･･■+3;i-i^-i +^1+1^+1+ "･ +yJn,

where y^L. Then, /i= (e<5^1e<5)/1+･･■+(ed>'i-ieo)/i-.1 + (e5ji+1eo)/,-+1+･■･+

(e3yne3)ln, which means that lx, ■■■, ln are linearly dependent over D.

Conversely, if L/x+ ･･･+Lln is a direct sum, then (e8Led)l1+ ■･■-＼-(edLe())lnis

a direct sum, which means h, ■■■,ln are linearly independent over D. Q. E. D.

Next, we prove:

Gi<5iL0---0fl*<3fcLif and only if a^iMc ･･･0aftdfeM
(B)

Suppose <21<51M+ ･･･+ ak8kM is a direct sum. If 2*=i/f=0 with li^a-idiL, then

S*=i/iJc=0 for all xeM, where hx^hM^aidiM, r~]M^aidtM. Thus, /**= ()

for all .teM and for all i. Hence, /*=() for every z.

Conversely, assume that 0^^+ ･･･-＼-ak(>kL is a direct sum. If 2i=iXi = 0,

with Xi&didiM, then 2!=il>;, Tl=O for all f^F, where [_xu ;r]e[>

[didiM, r~＼=a,idiL.It follows that [_x{,?']=0 for every J^T and every

XiFMrxi=Q for every i. Since M is semi-prime, Xi=0 for every i. Thus, aidiM

+ ･･■-＼-<ZkdkMis a direct sum. Q. E. D.

Thus, by (A), the comment (followed Theorem 3.23)on the dimensions of L,

(B) and Theorem 3.22,we have dim(D[e8M, r^)=dlm(LL)=dhn(LL) = dlm(MR).

Similarly,we can prove d＼m(De8M)=dim(LM)=dim(RR)=dim(RR).

For cgM definea mapping pa of [_eoM, F] to edM by [_x,Tlpa^xya, where

lx, f＼eLedM, T]. Set N= {pa|aeM}.

For j(eF define a mapping (prof edM to ＼_edM,F'] by xc^r=[x, 7*],where

x<=e8M. Set yl={0rlrer}.

Then one can easilyverify that for alla, b^M and j,≪5eT

Pa + pb^Pa+b, (prJr(I's=(Pr+s,and pa<PrPt>=Pan,
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thus N becomes a Faring, where F^―A.

Set k= {f^F＼MyM―Q], then a-is a subgroup of F. For any element f&F/ic

we define afb=ajb (well defined), where j=j-＼-k. Then we get a /Vring M,

where F0―F/k.

Let /} be a mapping of M to W by p{a)~pa, aeM, and let <p be a mapping

from r0 to /I by <p(f)=<pr (well defined), where Y+tc=f(EF0. Then p(a)=0^>pa

=0^edMra=0^>Mde5MFa=03>Mra=Q3>arMra=Q3a=0, since M8edM=M, due

to M being simple, and M is semi-prime. Also, (p(f)=0^xpr―0^[edM, ^]=0=>

[MdeoM, r] = 0=>[M, 7-]=0=>MrA/=0^>f=0, since M is simple. Next, p(afb)=

p(afb)~parb=-pa(prpb― p(a)(p(f)p(b). Both, /? and <p are clearly surjections. Hence,

the mapping (p, (p) is a isomorphism from the F0-ring M onto the Faring N,

where F1=A.

Let dim(z,A/)-―m and dim(MjR)=n, and let £>n,m and Dm,n denote respectively

the set of all matrices of type nXm over D and that of all matrices of type

mXn over D. Similarly, Dn and Dm are respectively the total matrix ring of

type nXn over D and that of type mXm over D.

Choose a basis h, ･■■, ln of the vector space ＼_edM,F] and a basis m2, ■■･,um

of the vector space edM.

For dGlwe have

liCi=^lipa=^ailu1Jr ■■■-＼-0CiTnUm',i=l) 2, ■■■, n.

Now the correspondence

pa^(aij); l^i^n, l^j^m

is a group isomorphism from the additive abelian group A7 into the additive

abelian group Dn,m. Thus, d : a|-^(ai;-)is a group isomorphism of M into Dn,m.

We show that this is an isomorphism onto Dn,m:

Along the similar fashion described in the above, ring theory shows that

elements of the left operator L are linear transformations of the vector space

[edM, F~＼and as a ring L is isomorphic onto Dn, and elements of the right

operator ring R are linear transformations of the vector space edM and R

isomorphic onto Dm. Since M is a left L-right i?-bimodule, for any /ei, i£M,

r^R, lxr E.M. Let l^{oi})^-Dn, x^(aij)^Dnim, r^(rij)eZ)m. Then for any

a<=ledM, F],

a(/Arr)=((a/)jf)r=((a(ffi>))(ai;-))(7i^)=fl(ffii)(a^)(z-ij),

and hence, (lxr)d=(aij)(x)0(Tij). Thus, LMR^M implies (LMR)d<^(M)6, and so

Dn(M)6DmQ(M)9. It follows Dn.mQ(M)0f for (M)8QDn,m. Hence, (M)d = Dn,m.

Q. E. D.
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By the similar argument, we obtain that the additive abelian group Fo is

isomorphic onto a subgroup of Dm,n, and we denote the isomorphism by o.

We now prove (afb)d~adf(phd :

Let ad―{aij), bd = (Pij),f<p=(a}uv). Then, for any /e[g<5M, /""]we have

/(af6)=((/a)f)6=((/(aii))(a)BI,))(i9iJ)=/(aii)(ft>B0)(i9o),

thus, (afb)6=(aij)(a)uv)(Pij)=adr<f>b0.

Clearly, DBiB is a /""'-ring,where f is (F{))(p,which is a non-zero subgroup

of Dm,n.

Therefore, the T^-ring M is isomorphic onto the /"''-ring£>,,m and the proof

is completed.

When M is a F-ring in the sense of Nobusawa, /c=0 and then F0=r, and

furthermore since f is a right L- left i?-bimodule Dm(F)(fiDnQ(r)(fi. On the

other hand, (D6^Dm n, and so (r)6=Dm ,, thus we have

Corollary 4.3 ([8] Theorem 2). A simple F-ring M in the sense of Nobu-

sawa with min-r and min-l conditions is isomorphic onto the F'-ring Dn,m, where

We note that the term 'simple' in this corollary is the one given in Defini-

tion 3.9. However, as shown already, since M has minimum condition, M becomes

prime (Theorem 3.15). Then, since M is the prime Turing in the sense of Nobu-

sawa, M is completely prime ([1] Theorem 5), which coincides with 'M is

simple' in Theorem 2 in Nobusawa r8~l.

5. Tarings with minimum right and left conditions.

First we consider the semi-prime /"-ring with min-r and min-/ conditions.

Let ro=r/ic, where k= {r^F＼MrM=0}, and M=M^ ■■■0Me, where Mlt ■■■, Mq

are simple /"'-ringswith min-r and min-/ conditions (Theorem 3.13). Let k%-=

{j^r＼MijMi=Q}, l^i^q, then /c^tCiC ■̂■■r＼/cq.Thus, rQ=r//c is isomorphic to

a subgroup of /7*ic ･･･(BF/icq. Set F/iCi=Fi. This means that F＼is isomorphic

to a subdirect sum of the Fu l^iSq. Theorem 4.2 implies that Mi is isomorphic

onto Z)"(≪,mc≪over a division ring Dw and 7^ is isomorphic to a non-zero sub-

group of D(J,＼ihncttover Dci). Thus, we have

M=S?=i£n(≪,mco (direct sum) and

ro~=F/fc is a subdirect sum of the Ft, where riSD^D.^o, 1.^=^9, where the

product of elements of %),,(≪ and of D^io.mcfi is performed as usual if z=;
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Thus we have
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Theorem 5.1. Let M be a semi-prime F-ring with min-r and min-l condi-

tions. Then, the F-ring M is homomorphic onto the Faring 2f=iD"≪),m(i) where Fo

is a subdirect sum of the Ft, l^i^q, which is a non-zero subgroup of DSlo na).

Theorem 2.12and Theorem 5.1 yieldthe followingcorollary.

Corollary 5.2. Let M be a F-ring with min-r and min-l conditions.Then,

the F-ring M is homomorphic onto the Faring S?=i-D"(≪,mc≪where Fo is a sub-

directsum of the Fi}l^i^q, which is a non-zero subgroup of DSm nW.

We consider the converse of the preceding comment to Theorem 5.1. First

we prove the converse of Theorem 4.2.

Theorem 5.3. Dn,m, D is a divisionring,is a simple F-ring with min-r and

min-l conditions,where F is a non-zero subgroup of Dm,n and [_F,DB,J=DW and

LDn,m,Fl = Dn.

Proof. Denote the elementary matrices by Eij£=Dn>m, l^i^n, l^j^m;

Gst<^Dm, l^s, t^m; Hpq^Dn, ＼tkp,q^n. Let A=(ctij) belong to Dn,m, then

A―^i.jOCijEij.

The ideal generated by A contains HpqAGst=aqsEpt. If A^O, then aqs^0

for some (q, s) and the Ept is in the ideal generated by A. This is true for all

p=l, ･･■, n; t―1, ･■･, m, and hence the ideal is equal to Dn,m, so that Dn,m is

simple. To verify the min-r condition, observe that Dn,m is a right vector space

of dimension nm over D. Every right ideal / of Dn,m is a subspace, since A^J

^>Ad―A(dEm)<Bj, where Em the identity matrix and d^D. The min-r condi-

tion holds. Similarly, the min-/ condition holds.

Theorem 5.4. // M=Mic ･■■cM,, where Mlf ■■■, Mq are simple Pi-rings

with min-r and rnin-l conditions,then M is a semi-prime P-ring with niin-r and

min-l conditions, where P is a subdirect sum of the Pi's, MiPMj=0 (ii=j) and

MtPM^O (i^j).

Proof. Let S be a strongly-nilpotent ideal of M and let Su ■■■, Sq be its

component ideals in Ml7 ■■■, Mq, respectively. If (SF)nS=0 then (Si/^S^O for

each i. Since Mt is simple Si=M£ or St=0. If 5i=Mi, then (Si^)nS^Mi=0,

a contradiction. Thus, Sj^O and hence 5=Sic ･･･cSo―0 and M is semi-prime.
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To verify the min-r condition, suppose /(1)2/C2)2 ･･･is a descending sequence of

right ideals of M. The components ]＼n^in the /Vring Mi are a descending

sequence in Mt (/I^S/PS ･･■2/T):2 ■■■)and hence /f<B>is fixed for n^n{i),

say. It followed that /(n) is fixed for n5^max[n(l), ･･･, n(</)],and hence the

min-r condition holds in M. Similarly, the min-Z condition can be verified.

We considerthe Taringsin the sense of Nobusawa.

Let M be a jH-ringin the sense of Nobusawa and M be semi-prime with

min-r and rain-/conditions. Let M=MXR ･･･QMq, where Mu ･■･, Mq are simple

/"-ringswith min-r and mln-l conditions(Theorem 3.13). Let Fi=F/Ku where

Ki={j^r＼MijMi={)}. We show that each F-ring Mt is the /Vring in the sense

of Nobusawa. Since FMiF^F, Kt is an ideal of F. Indeed, Mi(FMiKi)Mi =

(MiFMi)KiMi = MiKiMi=t) and then FMt/CiQ/Ci. Similarly,KiMiF^Kt. Hence, we

can definea multiplication:FiXMiXFi-^Fi as follows:

For any f, B^Fi, a^Mt, where r=YJr/ci,B―d+Ki,

fad=jao (well defined).

Clearly,MifM^Q implies f=0. Q. E. D.

Therefore, by Corollary 4.3, we have A―-Dmta.nci)- Since k=0 and so Fo―F,

F is isomorphic to the subgroup of S?=i-D??j)(^.nci)-Let this isomorphism be 6,

then

f(p=f1-＼ ＼~yq,where Ti=T+Ki, l^i^q-

We show that the subgroup coincides with the group Si^-Dmta.nU). Fix an

element i of the index set {1, 2, ･･■, q]. For any ai^Fi=D^＼i-)t7lii-),choose an

element a^F such that 0^=0-+/c<. Let atp^a^ ･･■+ ori+ ･･･+erg, where ffA=

ff+K'fe,1^^^^, and En be the unit matrix of DSio, and Fi4 be the unit matrix

of D(n%. Then, since F is the right L- left i?-bimodule and D(n% = [Mt, F^QL

and Dilo(≪= [:r<>M{]QR, 0i=Eii(o$)Fii(E(r)<f>,l^i^q. Now let i be free. Then,

2?=itx!;e(F)^, where each at is an arbitrary element of Ft. This means

2?=i0kV *≪)£(/>, and (00=2?=!^%,B(i).

Thus, we have

which is Theorem 3 of Nobusawa [8].
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