A GAMMA RING WITH MINIMUM CONDITIONS

By

Shoji Kyuno

Abstract

The aim of this note is to study the structure of a Γ-ring (not in the sense of Nobusawa) with minimum conditions. By ring theoretical techniques, we obtain various properties on the semi-prime Γ-ring and generalize Nobusawa's result which corresponds to the Wedderburn-Artin Theorem in ring theory. Using these results, we have that a Γ-ring with minimum right and left conditions is homomorphic onto the Γ_{0}-ring $\sum_{i=1}^{q} D_{n i(i), m(i)}^{(i)}$, where $D_{n(i), m(i)}^{(i)}$ is the additive abelian group of the all rectangular matrices of type $n(i) \times m(i)$ over some division ring $D^{(i)}$, and Γ_{0} is a subdirect sum of the $\Gamma_{i}, 1 \leqq i \leqq q$, which is a non-zero subgroup of $D_{m(i), n(i)}^{(i)}$ of type $m(i) \times n(i)$ over $D^{(i)}$.

1. Introduction.

Nobusawa [8] introduced the notion of a Γ-ring M as follows: Let M and Γ be additive abelian groups. If for all $a, b, c \in M$ and $\alpha, \beta, \gamma \in \Gamma$, the conditions
$\mathrm{N}_{1} . \quad a \alpha b \in M, \quad \alpha a \beta \in \Gamma$
$\mathrm{N}_{2} . \quad(a+b) \alpha c=a \alpha c+b \alpha c, \quad a(\alpha+\beta) b=a \alpha b+a \beta b, \quad a \alpha(b+c)=a \alpha b+a \alpha c$
$\mathrm{N}_{3} . \quad(a \alpha b) \beta c=a(\alpha b \beta) c=a \alpha(b \beta c)$
$\mathrm{N}_{4} . \quad x \gamma y=0$ for all $x, y \in M$ implies $\gamma=0$,
are satisfied, then M is called a Γ-ring.
Barnes [1] weakened slightly defining conditions and gave the definition as follows:

If these conditions are weakened to
$\mathrm{B}_{1} . \quad a \alpha b \in M$
B_{2}. same as N_{2}
$\mathrm{B}_{3} . \quad(a \alpha b) \beta c=a \alpha(b \beta c)$,
then M is called a Γ-ring.

[^0]In this paper, the former is called a Γ-ring in the sense of Nobusawa and the latter merely a Γ-ring.

Nobusawa [8] determined the structures of simple and semi-simple Γ-rings in the sense of Nobusawa with minimum right and left conditions as follows:

Using the notation introduced in [5], when M is simple, as a ring,

$$
\left(\begin{array}{cc}
R & \Gamma \\
M & L
\end{array}\right) \cong\left(\begin{array}{cc}
D_{m} & D_{m, n} \\
D_{n, m} & D_{n}
\end{array}\right)
$$

where D is a division ring ([8] Theorem 2); when M is semi-simple, as a ring,

$$
\left(\begin{array}{cc}
R & \Gamma \\
M & L
\end{array}\right) \cong \sum_{i=1}^{q}\left(\begin{array}{cc}
D_{m}^{(i)}(i) & D_{m}^{(i)}(i), n(i) \\
D_{n(i), m(i)}^{(i)} & D_{n(i)}^{(i)}
\end{array}\right)
$$

where $D^{(i)}, 1 \leqq i \leqq q$, are division rings ([8] Theorem 3).
Nobusawa's definitions are in the following: M is simple if $a \Gamma b=0$ implies $a=0$ or $b=0 ; M$ is semi-simple if $a \Gamma a=0$ implies $a=0$.

In [2], we defined that a Γ-ring M is prime if for any ideal A and B of M, $A \Gamma B=0$ implies $A=0$ or $B=0$; a Γ-ring M is semi-prime if for any ideal A of $M, A \Gamma A=0$ implies $A=0$.

When M is a Γ-ring in the sense of Nobusawa, one can easily verify that M is prime if and only if $a \Gamma b=0$ implies $a=0$ or $b=0 ; M$ is semi-prime if and only if $a \Gamma a=0$ implies $a=0$ ([1] Theorem 5). Thus, when M is a Γ-ring in the sense of Nobusawa, Nobusawa's terms 'simple' or 'semi-simple' are equivalent to our ' prime' or 'semi-prime' respectively.

However, when M is a Γ-ring (not in the sense of Nobusawa), they are quite different notations. Following Luh [7] we call a Γ-ring M is completely prime if $a \Gamma b=0$ implies $a=0$ or $b=0 ; M$ is completely semi-prime if $a \Gamma a=0$ implies $a=0$. Then, the primeness cannot imply the completely primeness, even for a finite Γ-ring ([7] Example 3.1). The semi-prime Γ-ring is one without non-zero strongly-nilpotent ideal (Theorem 2.10 below), while the completely semi-prime I-ring is one without non-zero strongly-nilpotent element (Definition 2.2). The gap between the primeness and completely primeness and the gap between semi-primeness and completely semi-primeness are caused by lack of a multiplication: $\Gamma \times M \times \Gamma \rightarrow \Gamma$. In the following we do not treat completely prime Γ-rings nor completely semi-prime ones, but prime and semi-prime Γ-rings.

Also, it should be noticed that a semi-prime Γ-ring with minimum right condition cannot always have the minimum left condition, nor $\operatorname{dim}\left({ }_{L} M\right)$ can be equal to $\operatorname{dim}\left(M_{R}\right)$ even if it has both minimum right and left conditions, while a semi-prime ring R (an ordinary ring) with minimum right condition has the
minimum left condition, and $\operatorname{dim}\left({ }_{R} R\right)=\operatorname{dim}\left(R_{R}\right)$ (The comments followed Theorem 3.23).

The main aims of this paper are to study the structure of the semi-prime Γ-ring with minimum right condition and to generalize Nobusawa's results to the prime and semi-prime Γ-rings with minimum conditions and to determine the structure of the Γ-ring with minimum conditions.

Using ring theoretical techniques, we obtain various fundamental results on Γ-rings with minimum right condition. Then, using these results, we have the analogues of the Wedderburn-Artin Theorem for simple (Definition 3.9 and Theorem 3.15 below) and semi-prime Γ-rings with minimum right and left conditions. Also, these converses are considered. Nobusawa's results are obtained as corollaries of our theorems. Consequently, the structure of a Γ-ring with minimum right and left conditions is determined.

For the following notions we refer to [2]: the right operator ring R, the left operator ring L, a right (left, two-sided) ideal of M, a principal ideal $\langle a\rangle$, [$N, \Phi]$, where $N \subseteq M$ and $\Phi \subseteq \Gamma$, but for the prime radical $\mathscr{P}(M)$, a residue class Γ-ring, and the natural homomorphism to [3].

2. Strongly-milpotent ideals.

Definition 2.1. Let M be a Γ-ring and L be the left operator ring. Let S be a non-empty subset of M and denote $S_{l}=\{a \in L \mid a S=0\}$. Then S_{l} is a left ideal of L, called an annihilator left ideal. Let T be a non-empty subset of L and denote $T_{r}=\{x \in M \mid T x=0\}$. Then T_{r} is a right ideal of M, called an annihilator right ideal. For singleton subsets we abbreviate this notation, for example, $\{a\}_{r}=a_{r}$, where a is an element of L.

Definition 2.2. An element x of a Γ-ring M is nilpotent if for any $\gamma \in \Gamma$ there exists a positive integer $n=n(\gamma)$ such that $(x \gamma)^{n} x=(x \gamma)(x \gamma) \cdots(x \gamma) x=0$. A subset S of M is nil if each element of S is nilpotent. An element x of a Γ-ring M is strongly-nilpotent if there exists a positive integer n such that $(x \Gamma)^{n} x=$ $(x \Gamma x \Gamma \cdots x \Gamma) x=0$. A subset of M is strongly-nil if each its element is stronglynilpotent. S is strongly-nilpotent if there exists a positive integer n such that $(S \Gamma)^{n} S=(S \Gamma S \Gamma \cdots S \Gamma) S=0$.

By definitions for a subset S of M we have the following diagram of implication :
S is strongly-nilpotent. $\Rightarrow S$ is strongly-nil. $\Rightarrow S$ is nil.

Lemma 2.3. The sum of a finite number of strongly-nilpotent right (left) ideals of a Γ-ring M is a strongly-nilpotent right (left) ideal.

Proof. The proof needs only be given for two strongly-nilpotent right ideals A, B. Suppose $(A \Gamma)^{m} A=(B \Gamma)^{n} B=0$. Now we have $((A+B) \Gamma)^{m+n+1}(A+B)=$ $(A+B) \Gamma(A+B) \Gamma \cdots \Gamma(A+B)$, with $m+n+2$ brackets, so that $((A+B) \Gamma)^{m+n+1}(A+B)$ is a sum of terms, each consisting of $m+n+2$ factors which are either A or B. Such a term T. contains either $m+1$ factors A or $n+1$ factors B. In the former case, $T \subseteq(A \Gamma)^{m} A$ or $T \cong M \Gamma(A \Gamma)^{m} A$, because A is a right ideal; in the latter case, $T \cong M \Gamma(B \Gamma)^{n} B$ or $T \cong(B \Gamma)^{n} B$. Thus, $((A+B) \Gamma)^{m+n+1}(A+B)=0$ and $A+B$ is strongly-nilpotent.

Corollary 2.4. The sum of any set of strongly-nilpotent right (left) ideals of a Γ-ring M is a strongly-nil right (left) ideal.

Proof. Each element x of the sum is in a finite sum of strongly-nilpotent right ideals of M, which by Lemma 2.3 is strongly-nilpotent. Therefore x is strongly-nilpotent, and the sum is strongly-nil.

Lemma 2.5. The sum $\mathcal{S}(M)^{\prime}$ of all strongly-nilpotent right ideals of a Γ-ring M coincides with the sum ' $\mathcal{S}(M)$ of all strongly-nilpotent left ideals and with the sum $\mathcal{S}(M)$ of all strongly-nilpotent ideals.

Proof. Let I be a strongly-nilpotent right ideal. The ideal $I+M \Gamma I$ is strongly-nilpotent, because $((I+M \Gamma I) \Gamma)^{n}(I+M \Gamma I) \cong(I \Gamma)^{n} I+M \Gamma(I \Gamma)^{n} I$ for $n=$ $1,2, \cdots$. It follows $I \subseteq \mathcal{S}(M)$ and hence that $\mathcal{S}(M)^{\prime} \subseteq \mathcal{S}(M)$. But $\mathcal{S}(M) \subseteq \mathcal{S}(M)^{\prime}$ trivially, and hence $\mathcal{S}(M)=\mathcal{S}(M)^{\prime}$. Similarly, $\mathcal{S}(M)=^{\prime} \mathcal{S}(M)$.

When a Γ-ring M has the descending (or ascending) chain condition for right ideals, it is abbreviated to M has min-r condition (or max-r condition). The terms min-l condition or max-l condition on a Γ-ring M are likewise defined.

It is natural to ask whether $S(M)$ is strongly-nilpotent. This is so when M has either the min-r or max- r conditions (min- l or max- l also serve). The case of max- r is trivial, because $\mathcal{S}(M)$ is a finite sum of strongly-nilpotent right ideals. When M has min- r condition, a strongly-nil right ideal is always strongly-nilpotent, which will be shown in the following theorem. We note that a non-stronglynilpotent right ideal means the right ideal which is not strongly-nilpotent.

Theorem 2.6. Any non-strongly-nilpotent right ideal of a Γ-ring M with min-r condition contains an idempotent element.

Proof. Let I be a non-strongly-nilpotent right ideal of M and I_{1} be minimal in the set of non-strongly-nilpotent right ideals which are contained in I. Then, $I_{1}=I_{1} \Gamma I_{1}$, since $I_{1} \Gamma I_{1}$ is not strongly-nilpotent. Let \mathcal{S} be the set of right ideals S with properties (1) $S \Gamma I_{1} \neq 0$ and (2) $S \subseteq I_{1}$.

The set \mathcal{S} is not empty ($I_{1} \in \mathcal{S}$) and we suppose that S_{1} is a minimal member of \mathcal{S}. Let $s \in S_{1}, \delta \in \Gamma$ with $s \delta I_{1} \neq 0$. Then, $s \delta I_{1}=S_{1}$, because $s \delta I_{1} \in \mathcal{S}$. It follows that $a \in I_{1}$ exists with s $\delta a=s$. Then a is not nilpotent, because if a is nilpotent, $s=s \delta a=s \delta a \delta a=\cdots=(s \delta)(a \delta) \cdots(a \delta) a=0$, a contradiction. Hence, I cannot be a nil right ideal. This proves that if I is a strongly-nil right ideal then I is stronglynilpotent, since if I is strongly-nil then I is nil.

Now $a \Gamma M \subseteq I_{1}$ and $a \Gamma M$ is not strongly-nilpotent, for a is not nilpotent. Hence $a \Gamma M=I_{1}$, because of the minimal property of I_{1}. Likewise, $a \Gamma a \Gamma M=I_{1}$ and hence $a \in a \Gamma a \Gamma M$, so that $a=a \omega a_{1}$, where $a_{1} \in a \Gamma M$. Note that $a \omega\left(a_{1}-a_{1} \omega a_{1}\right)=0$ and hence $a_{1}-a_{1} \omega a_{1} \in[a, \omega]_{r} \cap a \Gamma M$. Set $a_{2}=a+a_{1}-a_{1} \omega a$. Then, $a \omega a_{2}=a \omega a+a \omega a_{1}$ $-\left(a \omega a_{1}\right) \omega a=a \omega a+a-a \omega a=a$. Also, $a_{2} \omega\left(a_{1}-a_{1} \omega a_{1}\right)=\left(a+a_{1}-a_{1} \omega a\right) \omega\left(a_{1}-a_{1} \omega a_{1}\right)=$ $a_{1} \omega a_{1}-a_{1} \omega a_{1} \omega a_{1}$. Moreover, a_{2} is not nilpotent, because $a \omega a_{2}=a$ and a is not zero. It follows that $a \Gamma M=a_{2} \Gamma M$, and that $\left[a_{2}, \omega\right]_{r} \cap a \Gamma M \subseteq[a, \omega]_{r} \cap a \Gamma M$. However, either $a_{1} \omega a_{1}=a_{1} \omega a_{1} \omega a_{1}$, in which case I contains the idempotent $a_{1} \omega a_{1}$, or else $a_{1} \omega a_{1} \neq a_{1} \omega a_{1} \omega a_{1}$, in which case $a_{1}-a_{1} \omega a_{1} \in[a, \omega]_{r}$ and $a_{1}-a_{1} \omega a_{1} \notin\left[a_{2}, \omega\right]_{r}$. In the latter case, $\left[a_{2}, \omega\right]_{r} \cap a \Gamma M \subsetneq[a, \omega]_{r} \cap a \Gamma M$. This process is repeated, if necessary, beginning with a_{2} instead of a, and obtaining a_{4}; etc. The process ceases because of the minimum condition and this proves that I has an idempotent element.

Corollary 2.7. The sum $\mathcal{S}(M)$ of all strongly-nilpotent ideals of the Γ-ring M with min-r or max-r conditions, is a strongly nilpotent ideal.

Definition 2.8. When the sum $\mathcal{S}(M)$ of all strongly-nilpotent ideals of M is strongly-nilpotent, $\mathcal{S}(M)$ is called the Wedderburn radical of M (or the stronglynilpotent radical) and denoted by W.

Definition 2.9. A Γ-ring M is semi-prime if, for any ideal U of $M, U \Gamma U=0$ implies $U=0$.

For a semi-prime Γ-ring we have the following theorem.
Theorem 2.10. ([3] Theorem 1, 2 and 3). If M is a Γ-ring, the following conditions are equivalent:
(1) M is semi-prime,
(2) If $a \in M$ and $a \Gamma M \Gamma a=0$, then $a=0$,
(3) If $\langle a\rangle$ is a principal ideal of M such that $\langle a\rangle \Gamma\langle a\rangle=0$, then $a=0$,
(4) If U is a right ideal of M such that $U \Gamma U=0$, then $U=0$,
(5) If V is a left ideal of M such that $V \Gamma V=0$, then $V=0$,
(6) The prime radical of $M, \mathscr{P}(M)$, is zero,
(7) M contains no non-zero strongly-nilpotent ideals (right ideals, left ideals),
(8) The sum $S(M)$ of all strongly-nilpotent ideals of M is zero.

THEOREM 2.11. Let M be a F-ring which has a Wedderburn radical W. Then the residue class Γ-ring M / W is semi-prime.

Proof. Set $\bar{M}=M / W$ and suppose \bar{N} is a strongly-nilpotent ideal of \bar{M}, and suppose that $(\bar{N} I)^{m} \bar{N}=\bar{O}$. Let N be the inverse image of \bar{N} under the natural homomorphism $M \rightarrow \bar{M}$. Thus, $N=\{x \in M \mid x+W \in \bar{N}\}$. Clearly, $(N \Gamma)^{m} N \subseteq W$ and hence $(N \Gamma)^{m n+m+n} N=0$, where $(W \Gamma)^{n} W=0$. Thus, $N \subseteq W$ and $\bar{N}=\bar{O}$. Hence, \bar{M} is semi-prime.

If M has min-r condition, then M / W has min- r condition ([3] Lemma 1), Corollary 2.7 and Theorem 2.11 yield the following theorem.

Theorem 2.12. Let M be a Γ-ring with min-r condition. Then the residue class Γ-ring $M / S(M)$ is a semi-prime Γ-ring with min-r condition, where $S(M)$ is the sum of all strongly-nilpotent ideals of M.

3. Semi-prime l-rings with min- r condition.

For a right ideal I of a Γ-ring M, if there exists an idempotent element l of the left operator ring L such that $I=l M$, we say that I has the idempotent generator l. The idempotent generator plays an important role in the following.

Theorem 3.1. Any non-zero right ideal in a semi-prime [-ring M with min-r condition has an idempotent generator.

Proof. The result is first proved when the ideal is a minimal right ideal A. Since M is semi-prime, $A \Gamma A \neq 0$. Then, there exist $\delta \in \Gamma, a \in A$ such that $a \delta A=A$. Thus, there exists $e \in A$ such that $a=a \dot{\delta} e$. Then, $e=e \dot{\delta} e$, since from $a=a \dot{\delta} e=$ $(a \hat{\delta} e) \hat{\delta} e$ we have $a \delta(e-e \delta \delta)=0$ which means $e-e \delta \partial=0$, for the set $B=\{c \in A \mid a \delta \partial=0\}$ is a right ideal contained properly in the minimal right ideal A and is (0). Since $e \in A, 0 \neq \delta M \subseteq A$ and hence $e \delta M=A$, where $[e, \delta]$ is an idempotent of L.

Let I be any non-zero right ideal of M. Since I contains one or more minimal right ideals, idempotent generators of the minimal right ideal(s) exist in $[I, \Gamma]$. Choose an idempotent $l \in[I, \Gamma]$ such that $l_{r} \cap I$ is as small as possible.

If $l_{r} \cap I \neq 0$, then $l_{r} \cap I \supseteq l^{\prime} M$, where l^{\prime} is an idempotent of L. Then, $l^{\prime} \in l^{\prime} L=$ $l^{\prime}[M, \Gamma] \subseteq[I, \Gamma]$ and $l l^{\prime}=0$, for since $l^{\prime} M \subseteq l_{r}, l^{\prime} M=0$. Set $m=l+l^{\prime}-l^{\prime} l$ and then $m \in[I, \Gamma]$, for $[I, \Gamma]$ is an right ideal of L. Clearly, $m^{2}=m$, because $l l^{\prime}=0$. Moreover, $m_{r} \cap I \cong l_{r} \cap I$, since we have $l m=l$ which implies $m_{r} \subseteq l_{r}$, and $l^{\prime}=0$ but $m l^{\prime}=l^{\prime} \neq 0$ which implies $l^{\prime} M \subseteq l_{r}$ but $l^{\prime} M \nsubseteq m_{r}$. This contradicts the minimality of $l_{r} \cap I$ and the contradiction arises from taking $l_{r} \cap I \neq 0$. Hence one has $l_{r} \cap I=0$. Now let $x \in I$, then $l(x-l x)=0$, where $x-l x \in I$, for $l x \in I \Gamma I \subseteq I$. It follows that $I=l M$, for since $l \in[I, \Gamma], l M \subseteq I \Gamma M \subseteq I$.

Corollary 3.2. A semi-prime Γ-ring M with min-r condition has max-r condition.

Proof. The proof is analogous to that in ring theory but to tackle the situation that the generator does not exist in M but in $L=[M, \Gamma]$. For the sake of completeness, we write out it.

Suppose that the non-empty set S of some right ideals in M has no maximal elements. Take an element J_{1} of S, then by the assumption there exists $J_{2} \in S$ such that $J_{1} \varsubsetneqq J_{2}$. Repeating this process, we have an infinite sequence of right ideals:

$$
J_{1} \cong J_{2} \cong \cdots \subsetneq J_{n} \subsetneq \cdots .
$$

Set $N=\cup_{i} J_{i}$. Then, by Theorem 3.1 $N=l M$, where l is an idempotent of L. Thus, $l=l^{2} \in l L=l[M, \Gamma]=\left[N, I^{\prime}\right]=\left[\cup_{i} J_{i}, \Gamma\right]$ and hence there exists an integer m such that $l \in\left[J_{m}, \Gamma\right]$. Then, $N=l M \subseteq J_{m} \Gamma M \subseteq J_{m}$, so that $J_{m}=N=J_{m+1}$, a contradiction. Hence, every non-empty set of right ideals of M has a maximal element. Evidently, the max- r condition holds in M.

Lemma 3.3. If a Γ-ring M is semi-prime, then the right operator R and the left operator L are semi-prime.

Proof. Suppose $r R r=0$. Then $M r \Gamma M r=0$. Theorem 2.10 (5) implies $M r=0$ and then $r=0$. Thus, R is semi-prime. Similarly, it may be verified that L is semi-prime.

Theorem 3.4. Let T be any non-zero ideal of semi-prime Γ-ring M with min-r condition. Then T has a unique idempotent generator.

Proof. Let $T=s M$, where $s=\Sigma_{i}\left[e_{i}, \delta_{i}\right]$ is an idempotent, be the given ideal. Then $s_{l}=T_{t}$ is a left ideal of the left operator ring L and $T_{l} \cap[T, \Gamma]=0$, because ($\left.T_{l} \cap[T, \Gamma]\right)^{2} \cong T_{l}[T, \Gamma]=0$ and L is semi-prime (Lemma 3.3). Hence
$s_{l} \cap[T, \Gamma]=0$. But for any $\sum_{i}\left[x_{i}, \gamma_{i}\right] \in[T, \Gamma]\left(\Sigma_{i}\left[x_{i}, \gamma_{i}\right]-\Sigma_{i}\left[x_{i}, \gamma_{i}\right] s\right) s=0$ and hence $\Sigma_{i}\left[x_{i}, \gamma_{i}\right]-\sum_{i}\left[x_{i}, \gamma_{i}\right] s \in s_{l} \cap[T, \Gamma]$, which means that $\sum_{i}\left[x_{i}, \gamma_{i}\right]=$ $\sum_{i}\left[x_{i}, \gamma_{i}\right] s$. It follows that $[T, \Gamma]=[T, \Gamma] s=s M \Gamma s$ and s is a two-sided identity for the ring $[T, \Gamma]$. The latter fact shows that s is unique.

Definition 3.5. Let M be a Γ-ring and L be the left operator ring. If there exists an element $\sum_{i}\left[e_{i}, \delta_{i}\right] \in L$ such that $\sum_{i} e_{i} \delta_{i} x=x$ for every element x of M, then it is called that M has the left unity $\sum_{i}\left[e_{i}, \delta_{i}\right]$.

It can be verified easily that $\Sigma_{i}\left[e_{i}, \delta_{i}\right]$ is the unity of L. Similarly we can define the right unity which is the unity of the right operator ring R.

Corollary 3.6. A semi-prime Γ-ring M with min-r condition has a left unity.

Proof. In Theorem 3.4 set $T=M$. Then, $L=[M, \Gamma]=s M \Gamma s$. Thus, s is the unity of L. Then for any x of $M[s x-x, I]=0$ and so $(s x-x) \Gamma M \Gamma(s x-x)$ $=0$. Since M is semi-prime $s x-x=0$ or $s x=x$.

By symmetry we have
Corollary 3.7. A semi-prime Γ-ring M with min-l condition has a right unity.

Corollary 3.8. Let T be any non-zero ideal of a semi-prime Γ-ring M with min-r condition. Then, the generating idempotent of T is the idempotent which lies in the center of L.

Proof. Let $T=\left(\sum_{i}\left[e_{i}, \delta_{i}\right]\right) M$ and suppose the $l \in L$. Since $\left(\sum_{i}\left[e_{i}, \delta_{i}\right]\right) l \in$ $[T, \Gamma]$, we have $\left(\sum_{i}\left[e_{i}, \delta_{i}\right]\right) l=\left(\left(\sum_{i}\left[e_{i}, \delta_{i}\right] l\right) \sum_{i}\left[e_{i}, \delta_{i}\right]=\sum_{i}\left[e_{i}, \delta_{i}\right]\left(l \sum_{i}\left[e_{i}, \delta_{i}\right]\right)=\right.$ $l \sum_{i}\left[e_{i}, \delta_{i}\right]$, for $l \sum_{i}\left[e_{i}, \delta_{i}\right] \in L[T, \Gamma]=[M \Gamma T, \Gamma] \subseteq[T, \Gamma]$. Thus, $\sum_{i}\left[e_{i}, \delta_{i}\right]$ is central in L.

Definition 3.9. A Γ-ring M is said to be simple if $M \Gamma M \neq 0$ and M has no ideals other than 0 and M.

Corollary 3.10. (1) Any non-zero ideal T of a semi-prime Γ-ring M with min-r condition is a semi-prime Γ-ring with min-r condition. (2) Any minimal ideals S of a semi-prime Γ-ring M with min-r condition is a simple Γ-ring.

Proof of (1). Let J be a right ideal of T (considered as a Γ-ring) $(J \Gamma T \subseteq J)$. Let $T=s M$, where $s=\sum_{i}\left[e_{i}, \delta_{i}\right]$ is an idempotent. Since $[J, \Gamma] \subseteq[T, \Gamma]$ Theo-
rem 3.4 implies $[J, \Gamma] s=[J, \Gamma]$. Thus, $J \Gamma M=([J, \Gamma] s) M=J \Gamma(s M)=J \Gamma T \subseteq J$ and hence J is a right ideal of M. It is immediate that the Γ-ring T has no stronglynilpotent right ideals and satisfies the min- r condition.

Proof of (2). Let T be any non-zero ideal of M. Then, as shown in the proof of (1), a right ideal of T is a right ideal of M. Now, we show that a left ideal Q of T is a left ideal of M. Suppose that $T=s M$, where s is an idempotent. Then, $M \Gamma Q=[M, \Gamma] Q=[M, \Gamma](s Q)=([M, \Gamma] s) Q=(s[M, \Gamma]) Q=[T, \Gamma] Q$ $\subseteq Q$. So Q is a left ideal of M. Therefore, an ideal of T is an ideal of M. Since S is a minimal ideal of M, we deduce that S is a simple Γ-ring.

Theorem 3.11. If T is an ideal in a semi-prime Γ-ring M with min-r condition, then $M=T \oplus[T, \Gamma]_{r}$. If $M=T \oplus K$, where K is an ideal of M, then $K=[T, \Gamma]_{r}$.

Proof. Suppose that $T=s M$, where $s=\sum_{i}\left[e_{i}, \delta_{i}\right]$ is an idempotent, then $M=s M \oplus\left(1_{L}-s\right) M$, where 1_{L} denotes the left unity of M. $[T, \Gamma]\left(1_{L}-s\right) M=$ $[T, \Gamma] s\left(1_{L}-s\right) M=[T, \Gamma](s-s) M=0$. Hence, $\left(1_{L}-s\right) M \subseteq[T, \Gamma]_{r}$. Conversely, suppose that $[T, \Gamma] x=0$ and $x=x^{\prime}+x^{\prime \prime}$, where $x^{\prime} \in T, x^{\prime \prime} \in\left(1_{L}-s\right) M$. Then, $s x=s x^{\prime}+s x^{\prime \prime}=s x^{\prime}$ and $0=[T, \Gamma] x=([T, \Gamma] s) x=[T, \Gamma] s x^{\prime}=[T, \Gamma] x^{\prime}$. Since $T \Gamma M \subseteq T, T \Gamma M \Gamma x^{\prime}=0$ and hence $x^{\prime} \Gamma M \Gamma x^{\prime}=0$, which implies $x^{\prime}=0$. Thus, $x=$ $x^{\prime \prime} \in\left(1_{L}-s\right) M$ and then $[T, \Gamma]_{r} \cong\left(1_{L}-s\right) M$. Hence $[T, \Gamma]_{r}=\left(1_{L}-s\right) M$ and $M=$ $T \oplus[T, \Gamma]_{r}$.

In the case when $M=T \oplus K$, it follows that $T \Gamma K=0$ (since $T \Gamma K \subseteq T \cap K$) and hence $K \subseteq[T, \Gamma]_{r}$. However $T \oplus K=T \oplus[T, \Gamma]_{r}$ and hence $K=[T, \Gamma]_{r}$.

We now prove the fundamental theorem on semi-prime Γ-rings with min- r condition.

Theorem 3.12. A semi-prime Γ-ring M with min-r condition has only a finite number of minimal ideals and is their direct sum.

Proof. Form $M_{1} \oplus M_{2} \oplus \cdots \oplus M_{\iota}$ of minimal ideals M_{i} of M. Because M has the max-r condition (Corollary 3.2), there is a sum S having maximal length q. Suppose that $[S, \Gamma]_{r} \neq 0$. Then $[S, \Gamma]_{r}$ contains a minimal ideal, which can be added directly to S, because $S \cap[S, \Gamma]_{r}=0$. This contradicts our supposition that S has maximal length of minimal ideals. Hence $[S, \Gamma]_{r}=0$ and $M=$ $S \oplus[S, \Gamma]_{r}=S$, which proves that M is a direct sum of minimal ideals, $M=$ $M_{1} \oplus M_{2} \oplus \cdots \oplus M_{q}$, say.

By Corollary 3.10 and Theorem 3.12 we have
Theorem 3.13. A semi-prime Γ-ring with min-r condition is a direct sum of a finite number of simple Γ-rings with min-r condition.

Definition 3.14. A Γ-ring M is prime if for all pairs of ideals S and T of $M, S \Gamma T=0$ implies $S=0$ or $T=0$. A Γ-ring M is left (right) primitive if (i) the left (right) operator ring of M is a left (right) primitive ring, and (ii) $x \Gamma M=0$ ($M \Gamma x=0$) implies $x=0 . M$ is a two-sided primitive Γ-ring (or simply a primitive Γ-ring) if both left and right primitive.

Luh proved the following theorem.
Theorem 3.15 ([7] Theorem 3.6). For a I-ring M with min-l condition, the three conditions
(1) M is prime,
(2) M is primitive,
(3) M is simple
are equivalent.
Of course, Theorem 3.15 also holds when M has min- r condition instead of min- l condition. Thus, we can replace the term 'simple' in Theorem 3.13 by 'prime' or 'primitive'.

We will prove further results on the one sided ideal structure of a semiprime Γ-ring with min- r condition.

Lemma 3.16. Let I be a right ideal in a semi-prime Γ-ring M with min-r condition and J_{1} be a right ideal contained in I. Then there exists a right ideal J_{2} in I such that $I=J_{1} \oplus J_{2}$.

Proof. Taking $I \neq 0, J_{1} \neq 0$ and $I=l M$ and $J_{1}=s M$, where $l=\sum_{i}\left[e_{i}, \delta_{i}\right]$, $s=\Sigma_{j}\left[f_{j}, \varepsilon_{j}\right]$ are idempotents. Write $x \in I$ as $x=s x+(l-s) x$. The set $J_{2}=$ $\{x-s x \mid x \in I\}$ is a right ideal and $J_{2} \cong I$. Clearly, $I=J_{1} \oplus J_{2}$.

Definition 3.17. Idempotents $l_{1}, \cdots, l_{k} \in L$ are mutually orthogonal if $l_{i} l_{j}=0$ for $i \neq j$.

The notation $l=l_{1} \oplus \cdots \oplus l_{k}$ indicates that $l=l_{1}+\cdots+l_{k}$, where l_{1}, \cdots, l_{k} are mutually orthogonal idempotents.

In Lemma 3.16 we can choose generating idempotents s_{1} of J_{1}, s_{2} of J_{2}, so
that $l=s_{1} \oplus s_{2}$. The proof is given in the following.
Take $I=l M$ and $J_{1}=s M$ as before, and set $s_{1}=s l$ and $s_{2}=l-s l$. Then $l s=s$ since $s \in l[M, \Gamma]$, and $s=s^{2}=s(l s)=(s l) s=s_{1} s$ so that $J_{1}=s M=s_{1}(s M) \cong s_{1} M=s(l M)$ $\subseteq s M=J_{1}$. Thus, $J_{1}=s_{1} M$. However, $J_{2}=\{x-s x \mid x \in I\}=\{l a-s l a \mid a \in M\}=$ $\{(l-s l) a \mid a \in M\}=s_{2} M$. We can easily verify that s_{1}, s_{2} are idempotents and that $l=s_{1} \oplus s_{2}$.
Q. E.D.

Definition 3.18. An idempotent of the left operator ring L is primitive if it cannot be written as a sum of two orthogonal idempotents.

Lemma 3.16 and subsequent comments imply that in a semi-prime Γ-ring with min- r condition an idempotent of L is primitive if and only if it generates a minimal right ideal.

Lemma 3.19. Let M be a semi-prime Γ-ring with min-r condition. Then any idempotent element l of the left operator ring L is a sum of mutually orthogonal primitive idempotents.

Proof. Let $I=l M$ and M_{1} be a minimal right ideal in I. There exists a right ideal $M_{1}^{\prime} \subseteq I$ such that $I=M_{1} \oplus M_{1}^{\prime}$ (by Lemma 3.16). Then, either $M_{1}^{\prime}=0$, in which case l is primitive (l generates the minimal right ideal), or we choose generating idempotents s_{1} of M_{1}; s_{1}^{\prime} of M_{1}^{\prime} such that $l=s_{1} \oplus s_{1}^{\prime}$ (by the above comment). Observe that s_{1} is a primitive idempotent. If s_{1}^{\prime} is not primitive, this process may be applied to $M_{1}^{\prime}=s_{1}^{\prime} M$, giving $s_{1}^{\prime}=s_{2} \oplus s_{2}^{\prime}$, where s_{2} is primitive. Evidently, $l=s_{1} \oplus s_{2} \oplus s_{2}^{\prime}$, and $s_{1}^{\prime} M \supsetneq s_{2}^{\prime} M$. This process is continued and the sequence $s_{1}^{\prime} M \supseteqq s_{2}^{\prime} M \supseteq s_{3}^{\prime} M \supsetneq \cdots$ being strictly decreasing, must be stop after a finite number of terms. Then, $l=s_{1} \oplus \cdots \oplus s_{k}$, say, which each s_{i} is a primitive idempotent.

Corollary 3.20. Any non-zero right ideal in a semi-prime Γ-ring M with min-r condition is a direct sum of minimal right ideals.

Proof. Lemma 3.19 implies that $I=l M=s_{1} M \oplus \cdots \oplus s_{k} M$.
By symmetry, we have
Corollary 3.21. Any non-zero left ideal in a semi-prime I-ring with min-l condition is a direct sum of minimal left ideals.

Luh proved the following theorem.
Theorem 3.22 ([6] Theorem 3.6). Let M be a semi-prime Γ-ring and L and R be respectively the left and right operator rings of M. If $e \delta e=e$, where $e \in M, \delta \in \Gamma$, then the following statements are equivalent:
(1) Môe is a minimal left ideal of M,
(2) $e \delta M$ is a minimal right ideal of M,
(3) $[M, \Gamma][e, \delta]$ is a minimal left ideal of L,
(4) $[\delta, e][\Gamma, M]$ is a minimal right ideal of R,
(5) $[e, \delta][M, \Gamma]$ is a minimal right ideal of L,
(6) $[\Gamma, M][\delta, e]$ is a minimal left ideal of R,
(7) $[e, \delta][M, \Gamma][e, \delta]$ is a division ring,
(8) $[\delta, e][\Gamma, M][\delta, e]$ is a division ring.

Moreover, the division rings $[e, \delta][M, \Gamma][e, \delta]$ and $[\delta, e][\Gamma, M][\delta, e]$ are isomorphic if any of the above statements occurs.

Corollary 3.20 showed that every non-zero right ideal of a semi-prime Γ-ring M is a direct sum of minimal right ideals. This decomposition applies to M itself and gives a right dimension number for M, considered as an R-module.

Theorem 3.23. Let M be a semi-prime Γ-ring with min-r condition and let $M=I_{1} \oplus \cdots \oplus I_{m}=J_{1} \oplus \cdots \oplus J_{n}$, where I_{t}, J_{s} are minimal right ideals. Then, $m=n$.

The proof is established by the quite similar fashion to that for an ordinary ring and so we omit it.

The integer $m=n$ in Theorem 3.23 is called the right demension of the semiprime Γ-ring with min- r condition and denoted by $\operatorname{dim}\left(M_{R}\right)$. One can define the left dimension of a Γ-ring in a similar manner. But it should be noticed that a semi-prime Γ-ring with min- r condition cannot always have the min- l condition. For example, let D be a division ring and M be the discrete direct sum of the division rings $D_{i}=D, i \in N$ (the set of all natural numbers), and Γ be the set of all transposed elements of M. Then, the Γ-ring M is semi-prime and $\operatorname{dim}\left({ }_{L} M\right)$ $=\infty$, while $\operatorname{dim}\left(M_{R}\right)=1$. Even for a semi-prime Γ-ring with both min- r and min- l conditions, generally the right dimension cannot be equal to the left one. When $M=D_{2,1}$, the set of all matrices of type 2×1 over a division ring D, and $\Gamma=D_{1,2}, \operatorname{dim}\left(M_{R}\right)=2$ and $\operatorname{dim}\left({ }_{L} M\right)=1$.

When M is a semi-prime Γ-ring with min- r condition, we consider the left operator ring L. Corollary 3.6 shows M has the left unity. Thus, by Lemma
3.19, $1_{L}=\left[e_{1}, \delta_{1}\right]+\cdots+\left[e_{k}, \delta_{k}\right]$, where $\left[e_{1}, \delta_{1}\right], \cdots,\left[e_{k}, \delta_{k}\right]$ are mutually orthogonal primitive idempotents. This implies that $L=\left[e_{1}, \delta_{1}\right] L \oplus \cdots \oplus\left[e_{k}, \delta_{k}\right] L$, where $\left[e_{1}, \delta_{1}\right] L, \cdots,\left[e_{k}, \delta_{k}\right] L$ are minimal right ideals. Also, we have $L=$ $L\left[e_{1}, \delta_{1}\right] \oplus \cdots \oplus L\left[e_{k}, \delta_{k}\right]$, where $L\left[e_{1}, \delta_{1}\right], \cdots, L\left[e_{k}, \delta_{k}\right]$ are minimal left ideals (Theorem 3.22). Thus, we have $\operatorname{dim}\left(L_{L}\right)=\operatorname{dim}\left({ }_{L} L\right)$. By symmetry, when M is a semi-prime Γ-ring with min- l condition, for the right operator ring R we have $\operatorname{dim}\left({ }_{R} R\right)=\operatorname{dim}\left(R_{R}\right)$.

4. Simple Γ-rings with min-r and min- l conditions.

We note that if a Γ-ring M is simple, then the right operator ring R and the left operator ring L are simple.

Let I be an ideal of R such that $0 \subsetneq I \subsetneq R$. Then $M I$ is an ideal of M. Since M is simple, $M I$ must be 0 or M. If $M I=M$, then $R=[I, M I]=[I, M] I=R I \subseteq I$, a contradiction. If $M I=0$, then $I=0$, also a contradiction. Thus, R has only ideals 0 and R, and $R^{2} \neq 0$, for $M R^{2}=M[\Gamma, M \Gamma M]=M[\Gamma, M]=M \Gamma M=M \neq 0$. This proves R is simple. Similarly, it may be shown that L is simple.

If M is simple, then M is semi-prime. Indeed, for any ideal U of M we assume $U \Gamma U=0$. Since only ideals of M are 0 and $M, U=0$ or $U=M$. If $U=M$, then $M \Gamma M=M \neq 0$, a contradiction. Thus, $U=0$ and M is semi-prime.

Definition 4.1. If M_{i} is a Γ_{i}-ring for $i=1,2$, then an ordered pair (θ, ϕ) of mappings is called a homomorphism of M_{1} onto M_{2} if it satisfies the following properties:
(1) θ is a group homomorphism from M_{1} onto M_{2},
(2) ϕ is a group homomorphism from Γ_{1} onto Γ_{2},
(3) For every $x, y \in M_{1}, \gamma \in \Gamma_{1},(x \gamma y) \theta=(x \theta)(\gamma \phi)(y \theta)$.

Furthermore, if both θ and ϕ are injections, then (θ, ϕ) is called an isomorphism from the Γ_{1}-ring M_{1} onto the Γ_{2}-ring M_{2}.

Theorem 4.2. Let M be a simple Γ-ring with min-r and min-l conditions and $\Gamma_{0}=\Gamma / \kappa$, where $\kappa=\{\gamma \in \Gamma \mid M \gamma M=0\}$. Then, the Γ_{0}-ring M is isomorphic onto the Γ^{\prime}-ring $D_{n, m}$, where $D_{n, m}$ is the additive abelian group of all rectangular matrices of type $n \times m$ over a division ring D, and Γ^{\prime} is a non-zero subgroup of the additive abelian group $D_{m, n}$ of all rectangular matrices of type $m \times n$, and $m=\operatorname{dim}\left({ }_{L} M\right)$ and $n=\operatorname{dim}\left(M_{R}\right)$.

Proof. Let $e \delta \bar{M}$, where $e \delta e=e$, be a minimal right ideal of M (Theorem 3.1) and let $D=[e \delta M \Gamma e, \delta]$; certainly D is a division ring (Theorem 3.22). Also,
$[e \delta M, \Gamma]=e \delta \partial$ is a minimal right ideal of L (Theorem 3.22). Since ($e \delta M \Gamma e \delta) e \delta L$ $=e \delta \partial$ (for $0 \neq(e \delta M F e \delta) e \delta L$) we see that $e \delta L$ is a vector space over D (a left D-space).

First we prove:
$l_{1}, \cdots, l_{n} \in e \delta L$ are linearly independent over D if and only if
$L l_{1} \oplus \cdots \oplus L l_{n}$, where $L=[M, \Gamma]$.
Suppose $L l_{1}+\cdots+L l_{n}$ is not direct sum. Then, there exist $a_{1}, \cdots, a_{n} \in L$, not all $a_{i} l_{i}$ zero, such that $a_{1} l_{1}+\cdots+a_{n} l_{n}=0$. Set $L_{i}=\left\{a \in L[e, \delta] \mid a l_{i} \in L l_{1}+\cdots\right.$ $\left.+L l_{i-1}+L l_{i+1}+\cdots+L l_{n}\right\}$, where we suppose that $a_{i} l_{i} \neq 0$. Then, $0 \neq a_{i}[e, \delta] \in L_{i}$ and $L_{i}=L[e, \delta]$, because $L[e, \delta]$ is a minimal left ideal (Theorem 3.22). Hence, $[e, \delta] \in L[e, \delta]=L_{i}$ and then $l_{i}=e \delta l_{i}=y_{1} l_{1}+\cdots+y_{i-1} l_{i-1}+y_{i+1} l_{i+1}+\cdots+y_{n} l_{n}$, where $y_{j} \in L$. Then, $l_{i}=\left(e \delta y_{1} e \delta\right) l_{1}+\cdots+\left(e \delta y_{i-1} e \delta\right) l_{i-1}+\left(e \delta \partial y_{i+1} e \delta\right) l_{i+1}+\cdots+$ (e $\left.\delta y_{n} e \delta\right) l_{n}$, which means that l_{1}, \cdots, l_{n} are linearly dependent over D.

Conversely, if $L l_{1}+\cdots+L l_{n}$ is a direct sum, then $(e \delta L e \delta) l_{1}+\cdots+(e \delta L e \delta) l_{n}$ is a direct sum, which means l_{1}, \cdots, l_{n} are linearly independent over D. Q.E.D.

Next, we prove:
$a_{1} \delta_{1} L \oplus \cdots \oplus a_{k} \partial_{k} L$ if and only if $a_{1} \delta_{1} M \oplus \cdots \oplus a_{k} \delta_{k} M . \ldots \ldots \ldots \ldots \ldots \ldots$. (B)
Suppose $a_{1} \delta_{1} M+\cdots+a_{k} \delta_{k} M$ is a direct sum. If $\sum_{i=1}^{k} l_{i}=0$ with $l_{i} \in a_{i} \delta_{i} L$, then $\sum_{i=1}^{k} l_{i} x=0$ for all $x \in M$, where $l_{i} x \in l_{i} M \subseteq\left[a_{i} \delta_{i} M, \Gamma\right] M \subseteq a_{i} \delta_{i} M$. Thus, $l_{i} x=0$ for all $x \in M$ and for all i. Hence, $l_{i}=0$ for every i.

Conversely, assume that $a_{1} \delta_{1} L+\cdots+a_{k} \delta_{k} L$ is a direct sum. If $\sum_{i=1}^{k} x_{i}=0$, with $x_{i} \in a_{i} \delta_{i} M$, then $\sum_{i=1}^{k}\left[x_{i}, \gamma\right]=0$ for all $\gamma \in \Gamma$, where $\left[x_{i}, \gamma\right] \in\left[x_{i}, \Gamma\right] \subseteq$ $\left[a_{i} \delta_{i} M, \Gamma\right]=a_{i} \delta_{i} L$. It follows that $\left[x_{i}, \gamma\right]=0$ for every $\gamma \in \Gamma$ and every i, and $x_{i} \Gamma M \Gamma x_{i}=0$ for every i. Since M is semi-prime, $x_{i}=0$ for every i. Thus, $a_{1} \delta_{1} M$ $+\cdots+a_{k} \delta_{k} M$ is a direct sum.
Q.E.D.

Thus, by (A), the comment (followed Theorem 3.23) on the dimensions of L, (B) and Theorem 3.22, we have $\operatorname{dim}\left({ }_{D}[e \delta M, \Gamma]\right)=\operatorname{dim}\left({ }_{L} L\right)=\operatorname{dim}\left(L_{L}\right)=\operatorname{dim}\left(M_{R}\right)$. Similarly, we can prove $\operatorname{dim}\left({ }_{D} e \delta \partial\right)=\operatorname{dim}\left({ }_{L} M\right)=\operatorname{dim}\left({ }_{R} R\right)=\operatorname{dim}\left(R_{R}\right)$.

For $a \in M$ define a mapping ρ_{a} of $[e \delta \bar{M}, \Gamma]$ to $e \delta \bar{\delta}$ by $[x, \gamma] \rho_{a}=x \gamma a$, where $[x, \gamma] \in[e \delta M, \Gamma]$. Set $N=\left\{\rho_{a} \mid a \in M\right\}$.

For $\gamma \in I$ define a mapping ψ_{r} of $e \delta \bar{\delta} M$ to $[e \delta \partial, \Gamma]$ by $x \psi_{r}=[x, \gamma]$, where $x \in e \delta M$. Set $\Lambda=\left\{\psi_{\gamma} \mid \gamma \in \Gamma\right\}$.

Then one can easily verify that for all $a, b \in M$ and $\gamma, \delta \in \Gamma$

$$
\rho_{a}+\rho_{b}=\rho_{a+b}, \quad \psi_{r}+\psi_{\delta}=\psi_{r+\delta}, \quad \text { and } \quad \rho_{a} \psi_{\gamma} \rho_{b}=\rho_{a \gamma b},
$$

thus N becomes a Γ_{1}-ring, where $\Gamma_{1}=\Lambda$.
Set $\kappa=\{\gamma \in \Gamma \mid M \gamma M=0\}$, then κ is a subgroup of I. For any element $\bar{\gamma} \in \Gamma / \kappa$ we define $a \ddot{\gamma} b=a \gamma b$ (well defined), where $\bar{\gamma}=\gamma+\kappa$. Then we get a Γ_{0}-ring M, where $\Gamma_{0}=\Gamma / \kappa$.

Let ρ be a mapping of M to N by $\rho(a)=\rho_{a}, a \in M$, and let ψ be a mapping from Γ_{0} to Λ by $\phi(\bar{\gamma})=\psi_{r}$ (well defined), where $\gamma+\kappa=\bar{\gamma} \in \Gamma_{0}$. Then $\rho(a)=0 \Rightarrow \rho_{a}$ $=0 \Rightarrow e \delta M \Gamma a=0 \Rightarrow M \delta e \delta M T a=0 \Rightarrow M \Gamma a=0 \Rightarrow a \Gamma M \Gamma a=0 \Rightarrow a=0$, since $M \delta \delta \delta M=M$, due to M being simple, and M is semi-prime. Also, $\psi(\bar{\gamma})=0 \Rightarrow \psi_{r}=0 \Rightarrow[e \delta M, \gamma]=0 \Rightarrow$ $[M \delta e \partial M, \gamma]=0 \Rightarrow[M, \gamma]=0 \Rightarrow M \gamma M=0 \Rightarrow \vec{\gamma}=0$, since M is simple. Next, $\rho(a \bar{\gamma} b)=$ $\rho(a r b)=\rho_{a r b}=\rho_{a} \psi_{r} \rho_{b}=\rho(a) \psi(\vec{\gamma}) \rho(b)$. Both, ρ and ψ are clearly surjections. Hence, the mapping (ρ, ψ) is a isomorphism from the Γ_{0}-ring M onto the Γ_{1}-ring N, where $\Gamma_{1}=\Lambda$.

Let $\operatorname{dim}\left({ }_{L} M\right)=m$ and $\operatorname{dim}\left(M_{R}\right)=n$, and let $D_{n, m}$ and $D_{m, n}$ denote respectively the set of all matrices of type $n \times m$ over D and that of all matrices of type $m \times n$ over D. Similarly, D_{n} and D_{m} are respectively the total matrix ring of type $n \times n$ over D and that of type $m \times m$ over D.

Choose a basis l_{1}, \cdots, l_{n} of the vector space $[e \delta \bar{M}, \Gamma]$ and a basis u_{1}, \cdots, u_{m} of the vector space $e \delta M$.

For $a \in M$ we have

$$
l_{i} a=l_{i} \rho_{a}=\alpha_{i 1} u_{1}+\cdots+\alpha_{i m} u_{m} ; i=1,2, \cdots, n
$$

Now the correspondence

$$
\rho_{a} \mapsto\left(\alpha_{i j}\right) ; 1 \leqq i \leqq n, 1 \leqq j \leqq m
$$

is a group isomorphism from the additive abelian group N into the additive abelian group $D_{n, \pi}$. Thus, $\theta: a \mapsto\left(\alpha_{i j}\right)$ is a group isomorphism of M into $D_{n, m}$. We show that this is an isomorphism onto $D_{n, n}$:

Along the similar fashion described in the above, ring theory shows that elements of the left operator L are linear transformations of the vector space $[e \delta M, \Gamma]$ and as a ring L is isomorphic onto D_{n}, and elements of the right operator ring R are linear transformations of the vector space $e \delta M$ and R isomorphic onto D_{m}. Since M is a left L-right R-bimodule, for any $l \in L, x \in M$, $r \in R, \quad l x r \in M$. Let $l \mapsto\left(\sigma_{i j}\right) \in D_{n}, x \mapsto\left(\alpha_{i j}\right) \in D_{n, m}, r \mapsto\left(\tau_{i j}\right) \in D_{m}$. Then for any $a \in[e \delta \partial M, \Gamma]$,

$$
a(l x r)=((a l) x) r=\left(\left(a\left(\sigma_{i j}\right)\right)\left(\alpha_{i j}\right)\right)\left(\tau_{i j}\right)=a\left(\sigma_{i j}\right)\left(\alpha_{i j}\right)\left(\tau_{i j}\right),
$$

and hence, $(l x r) \theta=\left(\sigma_{i j}\right)(x) \theta\left(\tau_{i j}\right)$. Thus, $L M R \subseteq M$ implies $(L M R) \theta \subseteq(M) \theta$, and so $D_{n}(M) \theta D_{m} \sqsubseteq(M) \theta$. It follows $D_{n, m} \subseteq(M) \theta$, for $(M) \theta \sqsubseteq D_{n, m}$. Hence, $(M) \theta=D_{n, m}$.
Q. E. D.

By the similar argument, we obtain that the additive abelian group Γ_{0} is isomorphic onto a subgroup of $D_{m, n}$, and we denote the isomorphism by ϕ.

We now prove $(a \bar{\gamma} b) \theta=a \theta \bar{\gamma} \phi b \theta$:
Let $a \theta=\left(\alpha_{i j}\right), b \theta=\left(\beta_{i j}\right), \bar{\gamma} \phi=\left(\omega_{u v}\right)$. Then, for any $l \in[e \delta M, \Gamma]$ we have

$$
l(a \bar{\gamma} b)=((l a) \bar{\gamma}) b=\left(\left(l\left(\alpha_{i j}\right)\right)\left(\omega_{u v}\right)\right)\left(\beta_{i j}\right)=l\left(\alpha_{i j}\right)\left(\omega_{u v}\right)\left(\beta_{i j}\right),
$$

thus, $(a \bar{\gamma} b) \theta=\left(\alpha_{i j}\right)\left(\omega_{u v}\right)\left(\beta_{i j}\right)=a \theta \bar{\gamma} \phi b \theta$.
Clearly, $D_{n, m}$ is a Γ^{\prime}-ring, where Γ^{\prime} is $\left(\Gamma_{0}\right) \phi$, which is a non-zero subgroup of $D_{m, n}$.

Therefore, the Γ_{o}-ring M is isomorphic onto the Γ^{\prime}-ring $D_{n, m}$ and the proof is completed.

When M is a Γ-ring in the sense of Nobusawa, $\kappa=0$ and then $\Gamma_{0}=\Gamma$, and furthermore since Γ is a right L - left R-bimodule $D_{m}(\Gamma) \phi D_{n} \subseteq(\Gamma) \phi$. On the other hand, $(\Gamma) \phi \subseteq D_{m, n}$, and so $(\Gamma) \phi=D_{m, n}$, thus we have

Corollary 4.3 ([8] Theorem 2). A simple Γ-ring M in the sense of Nobusawa with min-r and min-l conditions is isomorphic onto the Γ^{\prime}-ring $D_{n, m}$, where $\Gamma^{\prime}=D_{m, n}$.

We note that the term 'simple' in this corollary is the one given in Definition 3.9. However, as shown already, since M has minimum condition, M becomes prime (Theorem 3.15). Then, since M is the prime Γ-ring in the sense of Nobusawa, M is completely prime ([1] Theorem 5), which coincides with ' M is simple' in Theorem 2 in Nobusawa [8].

5. Γ-rings with minimum right and left conditions.

First we consider the semi-prime Γ-ring with $\min -r$ and min- l conditions. Let $\Gamma_{0}=\Gamma / \kappa$, where $\kappa=\{\gamma \in \Gamma \mid M \gamma M=0\}$, and $M=M_{1} \oplus \cdots \oplus M_{q}$, where M_{1}, \cdots, M_{q} are simple Γ-rings with min-r and min- l conditions (Theorem 3.13). Let $\kappa_{i}=$ $\left\{\gamma \in \Gamma \mid M_{i} \gamma M_{i}=0\right\}, 1 \leqq i \leqq q$, then $\kappa=\kappa_{1} \cap \cdots \cap \kappa_{q}$. Thus, $\Gamma_{0}=\Gamma / \kappa$ is isomorphic to a subgroup of $\Gamma / \kappa_{1} \oplus \cdots \oplus \Gamma / \kappa_{q}$. Set $\Gamma / \kappa_{i}=\Gamma_{i}$. This means that Γ_{0} is isomorphic to a subdirect sum of the $\Gamma_{i}, 1 \leqq i \leqq q$. Theorem 4.2 implies that M_{i} is isomorphic onto $D_{n(i), m(i)}^{(i)}$ over a division ring $D^{(i)}$ and Γ_{i} is isomorphic to a non-zero subgroup of $D_{m}^{(i)}(i), n(i)$ over $D^{(i)}$. Thus, we have

$$
M=\sum_{i=1}^{q} D_{n(i), m(i)}^{(i)} \text { (direct sum) and }
$$

$\Gamma_{0}=\Gamma / \kappa$ is a subdirect sum of the Γ_{i}, where $\Gamma_{i} \subseteq D_{m(i), n(i)}^{(i)}, \mathrm{I} \leqq i \leqq q$, where the product of elements of $D_{m(i), n(i)}^{(i)}$ and of $D_{n(j), m(j)}^{(j)}$ is performed as usual if $i=j$
and is 0 if $i \neq j$.
Thus we have
Theorem 5.1. Let M be a semi-prime Γ-ring with min-r and min-l conditions. Then, the Γ-ring M is homomorphic onto the Γ_{0}-ring $\sum_{i=1}^{q} D_{n(i), m(i)}^{(i)}$ where Γ_{0} is a subdirect sum of the $\Gamma_{i}, 1 \leqq i \leqq q$, which is a non-zero subgroup of $D_{m}^{(i)}(i), n(i)$.

Theorem 2.12 and Theorem 5.1 yield the following corollary.
Corollary 5.2. Let M be a Γ-ring with min-r and min-l conditions. Then, the Γ-ring M is homomorphic onto the Γ_{0}-ring $\sum_{i=1}^{q} D_{n(i), m(i)}^{(i)}$ where Γ_{0} is a subdirect sum of the $\Gamma_{i}, 1 \leqq i \leqq q$, which is a non-zero subgroup of $D_{m}^{(i)}(i), n(i)$.

We consider the converse of the preceding comment to Theorem 5.1. First we prove the converse of Theorem 4.2.

Theorem 5.3. $D_{n, m}, D$ is a division ring, is a simple Γ-ring with min-r and min-l conditions, where Γ is a non-zero subgroup of $D_{m, n}$ and $\left[\Gamma, D_{n, m}\right]=D_{m}$ and $\left[D_{n, m}, \Gamma\right]=D_{n}$.

Proof. Denote the elementary matrices by $E_{i j} \in D_{n, m}, 1 \leqq i \leqq n, 1 \leqq j \leqq m$; $G_{s t} \in D_{m}, 1 \leqq s, t \leqq m ; H_{p q} \in D_{n}, 1 \leqq p, q \leqq n$. Let $A=\left(\alpha_{i j}\right)$ belong to $D_{n, m}$, then $A=\sum_{i, j} \alpha_{i j} E_{i j}$.

The ideal generated by A contains $H_{p q} A G_{s t}=\alpha_{q s} E_{p t}$. If $A \neq 0$, then $\alpha_{q s} \neq 0$ for some (q, s) and the $E_{p t}$ is in the ideal generated by A. This is true for all $p=1, \cdots, n ; t=1, \cdots, m$, and hence the ideal is equal to $D_{n, m}$, so that $D_{n, m}$ is simple. To verify the min-r condition, observe that $D_{n, m}$ is a right vector space of dimension $n m$ over D. Every right ideal J of $D_{n, m}$ is a subspace, since $A \in J$ $\Rightarrow A d=A\left(d E_{m}\right) \in J$, where E_{m} the identity matrix and $d \in D$. The min- r condition holds. Similarly, the min- l condition holds.

Theorem 5.4. If $M=M_{1} \oplus \cdots \oplus M_{q}$, where M_{1}, \cdots, M_{q} are simple Γ_{i}-rings with min-r and min-l conditions, then M is a semi-prime Γ-ring with min-r and min-l conditions, where Γ is a subdirect sum of the Γ_{i} 's, $M_{i} \Gamma M_{j}=0(i \neq j)$ and $M_{i} \Gamma_{j} M_{i}=0(i \neq j)$.

Proof. Let S be a strongly-nilpotent ideal of M and let S_{1}, \cdots, S_{q} be its component ideals in M_{1}, \cdots, M_{q}, respectively. If $(S \Gamma)^{n} S=0$ then $\left(S_{i} \Gamma_{i}\right)^{n} S_{i}=0$ for each i. Since M_{i} is simple $S_{i}=M_{i}$ or $S_{i}=0$. If $S_{i}=M_{i}$, then $\left(S_{i} \Gamma_{i}\right)^{n} S_{i}=M_{i}=0$, a contradiction. Thus, $S_{i}=0$ and hence $S=S_{1} \oplus \cdots \oplus S_{q}=0$ and M is semi-prime.

To verify the min $-r$ condition, suppose $J^{(1)} \supseteq J^{(2)} \supseteq \cdots$ is a descending sequence of right ideals of M. The components $J_{i}^{(n)}$ in the Γ_{i}-ring M_{i} are a descending sequence in $M_{i}\left(J_{i}^{(1)} \supseteq J_{i}^{(2)} \supseteq \cdots \supseteq J_{i}^{(n)} \supseteq \cdots\right)$ and hence $J_{i}^{(n)}$ is fixed for $n \geqq n(i)$, say. It followed that $J^{(n)}$ is fixed for $n \geqq \max [n(1), \cdots, n(q)]$, and hence the min- r condition holds in M. Similarly, the min- l condition can be verified.

We consider the Γ-rings in the sense of Nobusawa.
Let M be a Γ-ring in the sense of Nobusawa and M be semi-prime with min $-r$ and min $-l$ conditions. Let $M=M_{1} \oplus \cdots \oplus M_{q}$, where M_{1}, \cdots, M_{q} are simple Γ-rings with min- r and min- l conditions (Theorem 3.13). Let $\Gamma_{i}=\Gamma / \kappa_{i}$, where $\kappa_{i}=\left\{\gamma \in \Gamma \mid M_{i} \gamma M_{i}=0\right\}$. We show that each Γ-ring M_{i} is the Γ_{i}-ring in the sense of Nobusawa. Since $\Gamma M_{i} \Gamma \cong \Gamma, \kappa_{i}$ is an ideal of Γ. Indeed, $M_{i}\left(\Gamma M_{i} \kappa_{i}\right) M_{i}=$ $\left(M_{i} \Gamma M_{i}\right) \kappa_{i} M_{i}=M_{i} \kappa_{i} M_{i}=0$ and then $\Gamma M_{i} \kappa_{i} \sqsubseteq \kappa_{i}$. Similarly, $\kappa_{i} M_{i} \Gamma \subseteq \kappa_{i}$. Hence, we can define a multiplication: $\Gamma_{i} \times M_{i} \times \Gamma_{i} \rightarrow \Gamma_{i}$ as follows:

For any $\bar{\gamma}, \bar{\delta} \in \Gamma_{i}, a \in M_{i}$, where $\bar{r}=\gamma+\kappa_{i}, \bar{\delta}=\bar{\delta}+\kappa_{i}$,

$$
\bar{\gamma} a \bar{\delta}=\bar{\gamma} a \bar{\delta} \quad \text { (well defined). }
$$

Clearly, $M_{i} \bar{\gamma} M_{i}=0$ implies $\bar{\gamma}=0$.
Q.E.D.

Therefore, by Corollary 4.3, we have $\Gamma_{i}=D_{m}^{(i)}(i), n(i)$. Since $\kappa=0$ and so $\Gamma_{0}=\Gamma$, Γ is isomorphic to the subgroup of $\sum_{i=1}^{q} D_{m}^{(i)}(i), n(i)$. Let this isomorphism be ϕ, then

$$
\gamma \phi=\gamma_{1}+\cdots+\gamma_{q}, \text { where } \gamma_{i}=\gamma+\kappa_{i}, 1 \leqq i \leqq q
$$

We show that the subgroup coincides with the group $\sum_{i=1}^{q} D_{m(i), n(i)}^{(i)}$. Fix an element i of the index set $\{1,2, \cdots, q\}$. For any $\sigma_{i} \in \Gamma_{i}=D_{m(i), n(i)}^{(i)}$, choose an element $\sigma \in \Gamma$ such that $\sigma_{i}=\sigma+\kappa_{i}$. Let $\sigma \phi=\sigma_{1}+\cdots+\sigma_{i}+\cdots+\sigma_{q}$, where $\sigma_{k}=$ $\sigma+\kappa_{k}, 1 \leqq k \leqq q$, and $E_{i i}$ be the unit matrix of $D_{m(i)}^{(i)}$, and $F_{i i}$ be the unit matrix of $D_{n(i)}^{(i)}$. Then, since Γ is the right L - left R-bimodule and $D_{n(i)}^{(i)}=\left[M_{i}, \Gamma_{i}\right] \subseteq L$ and $D_{m}^{(i)}(i)=\left[\Gamma_{i}, M_{i}\right] \subseteq R, \sigma_{i}=E_{i i}(\sigma \dot{\phi}) F_{i i} \in(\Gamma) \phi, 1 \leqq i \leqq q$. Now let i be free. Then, $\sum_{i=1}^{q} \sigma_{i} \in(\Gamma) \phi$, where each σ_{i} is an arbitrary element of Γ_{i}. This means $\sum_{i=1}^{q} D_{m}^{(i)}(i), n(i) \subseteq(\Gamma) \phi$, and $\left(\Gamma^{\prime}\right) \phi=\sum_{i=1}^{q} D_{m(i), n(i)}^{(i)}$.

Thus, we have

$$
M=\sum_{i=1}^{q} D_{n(i), m(i)}^{(i)} \quad \text { and } \quad \Gamma=\sum_{i=1}^{q} D_{m}^{(i)}(i), n(i),
$$

which is Theorem 3 of Nobusawa [8].
Acknowledgement. I would like to thank the refree for several valuable and helpful remarks.

References

[1] Barnes, W.E., On the Γ-rings of Nobusawa, Pacific J. Math., 18 (1966), 411-422.
[2] Kyuno, S., On the radicals of Γ-rings, Osaka J. Math., 12 (1975), 639-645.
[3] Kyuno, S., On prime gamma rings, Pacific J. Math., 75 (1978), 185-190.
[4] Kyuno, S., A gamma ring with right and left unities, Math. Japonica, 24 (1979), 191-193.
[5] Kyuno, S., Nobusawa's gamma rings with right and left unities, Math. Japonica, 25 (1980), 179-190.
[6] Luh, J., On primitive Γ-rings with minimal one-sided ideals, Osaka J. Math., 5 (1968), 165-173.
[7] Luh, J., On the theory of simple Γ-rings, Michigan Math. J., 16 (1969), 65-75.
[8] Nobusawa, N., On a generalization of the ring theory, Osaka J. Math., 1 (1964), 81-89.

Department of Technology
Tohoku Gakuin University
Tagajo, Miyagi, 985
Japan

[^0]: AMS (MOS) subject classifications (1970). Primary 16A78, 16A48, 16A46 and 16A12. Received July 30, 1980.

