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A GAMMA RING WITH MINIMUM CONDITIONS
By
Shoji Kyuno

Abstract. The aim of this note is to study the structure of a
Iring (not in the sense of Nobusawa) with minimum conditions.
By ring theoretical techniques, we obtain various properties on the
semi-prime [-ring and generalize Nobusawa’'s result which corre-
sponds to the Wedderburn-Artin Theorem in ring theory. Using
these results, we have that a ['ring with minimum right and left
conditions is homomorphic onto the [Iyring %D m, where
DR, meiy 18 the additive abelian group of the all rectangular matrices
of type n(2)Xm(i) over some division ring D, and [ is a subdirect
sum of the [, 1=:¢=q, which is a non-zero subgroup of D&%
of type m(i)X n(i) over D,

1. Introduction.

Nobusawa [8] introduced the notion of a /-ring M as follows: Let A and
I’ be additive abelian groups. If for all ¢, b, ceM and «, B, r<I, the conditions

Ny aabeM, aafel’
Ne. (a+bac=anc+bac, ala-tBb=aab+aBb, aa(b+c)=aab+aac
Ns. (aab)Be=alabB)c=aa(bBc)
N, xyy=0 for all x, yeM implies y=0,
are satisfied, then M is called a I-ring.
Barnes [1] weakened slightly defining conditions and gave the definition as

follows :
If these conditions are weakened to

B.. aabeM
B,. same as N,
Bs. (aab)Bc=aalbfc),

then M is called a [-ring.
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In this paper, the former is called a Iring in the sense of Nobusawa and the
latter merely a [-ring.

Nobusawa [8] determined the structures of simple and semi-simple I-rings
in the sense of Nobusawa with minimum right and left conditions as follows:

Using the notation introduced in [5], when M is simple, as a ring,

M L) \Duw Da
where D is a division ring ([8] Theorem 2); when M is semi-simple, as a ring,

R I W Do, e
=27
M L Dy, may  DiRay

where D, 1=<i=<yq, are division rings ([8] Theorem 3).

Nobusawa’s definitions are in the following: M is simple if al'b=0 implies
a=0 or b=0; M is semi-simple if al'a=0 implies a=0.

In [2], we defined that a I-ring M is prime if for any ideal A and B of M,
AIl'B=0 implies A=0 or B=0; a [-ring M is semi-prime if for any ideal A of
M, AI'A=0 implies A=0.

When M is a [-ring in the sense of Nobusawa, one can easily verify that M
is prime if and only if al'b=0 implies ¢=0 or b=0; M is semi-prime if and only
if alla=0 implies a=0 ([1] Theorem 5). Thus, when M is a I-ring in the sense
of Nobusawa, Nobusawa’s terms ‘simple’ or ‘semi-simple’ are equivalent to our
‘prime’ or ‘semi-prime’ respectively.

However, when M is a [I-ring (not in the sense of Nobusawa), they are
quite different notations. Following Luh [7] we call a [-ring M is completely
prime if al'b=0 implies a=0 or b=0; M is completely semi-prime if ala=0
implies a=0. Then, the primeness cannot imply the completely primeness, even
for a finite I-ring ([7] Example 3.1). The semi-prime /'ring is one without
non-zero strongly-nilpotent ideal (Theorem 2.10 below), while the completely
semi-prime [-ring is one without non-zero strongly-nilpotent element (Definition
2.2). The gap between the primeness and completely primeness and the gap
between semi-primeness and completely semi-primeness are caused by lack of a
multiplication : I'X MXI'—I'. In the following we do not treat completely prime
I-rings nor completely semi-prime ones, but prime and semi-prime I-rings.

Also, it should be noticed that a semi-prime [-ring with minimum right
condition cannot always have the minimum left condition, nor dim( M) can be
equal to dim(Mp) even if it has both minimum right and left conditions, while a
semi-prime ring R (an ordinary ring) with minimum right condition has the
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minimum left condition, and dim(zR)=dim(Rz) (The comments followed Theo-
rem 3.23).

The main aims of this paper are to study the structure of the semi-prime
[ring with minimum right condition and to generalize Nobusawa’s results to the
prime and semi-prime [-rings with minimum conditions and to determine the
structure of the [-ring with minimum conditions.

Using ring theoretical techniques, we obtain various fundamental results on
[-rings with minimum right condition. Then, using these results, we have the
analogues of the Wedderburn-Artin Theorem for simple (Definition 3.9 and Theo-
rem 3.15 below) and semi-prime [-rings with minimum right and left conditions.
Also, these converses are considered. Nobusawa’s results are obtained as corol-
laries of our theorems. Consequently, the structure of a [“ring with minimum
right and left conditions is determined.

For the following notions we refer to [2]: the right operator ring R, the
left operator ring L, a right (left, two-sided) ideal of M, a principal ideal <&,
[N, @], where N&M and @<I”, but for the prime radical ®(M), a residue class
[ring, and the natural homomorphism to [3].

2. Strongly-nilpotent ideals.

DerNITION 2.1, Let M be a [-ring and L be the left operator ring. Let S
be a non-empty subset of M and denote S,={a=L|aS=0}. Then S, is a left
ideal of L, called an annihilator left ideal. let T be a non-empty subset of L
and denote T,={xeM|Tx=0}. Then T, is a right ideal of M, called an
annihilator right ideal. For singleton subsets we abbreviate this notation, for
example, {a},=a,, where ¢ is an element of L.

DeFINITION 2.2. An element x of a [ring M is nilpotent if for any yel”
there exists a positive integer n=n(r) such that (xP) ™ x=(x7)(x)(xr)x=0. A
subset S of M is nil if each element of S is nilpotent. An element x of a [lring
M is strongly-nilpotent if there exists a positive integer n such that (x/)"x=
(20" x[M)x=0. A subset of M is strongly-nil if each its element is strongly-
nilpotent. S is strongly-nilpotent if there exists a positive integer n such that
(SIMH*S=(ST'ST--- SIM)S=0.

By definitions for a subset S of M we have the following diagram of impli-
cation :
S is strongly-nilpotent. = S is strongly-nil. > S is nil.
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LEMMA 2.3. The sum of a finite number of stvongly-nilpotent right (left)
ideals of a I-ring M is a strongly-nilpotent right (left) ideal.

Proor. The proof needs only be given for two strongly-nilpotent right ideals
A, B. Suppose (AIN™A=(BIN"B=0. Now we have ((A+B)["™*"*'(A+B)=
(A+B)(A+B)---I'(A+ B), with m+n-+2 brackets, so that ((A+B)[")™*"*(A+B)
is a sum of terms, each consisting of m-+n-+2 factors which are either A4 or B.
Such a term 7' contains either m-+1 factors A or n-+1 factors B. In the former
case, TS(AIM™A or TS MI'(AN™A, because A is a right ideal; in the latter
case, T&€MI(B["B or T<(BIM™B. Thus, (A+B)IH)™*"*Y(A+4B)=0 and A+B
is strongly-nilpotent.

COROLLARY 2.4. The sum of any set of strongly-nilpoient right (left) ideals
of a I-ring M is a strongly-nil right (left) ideal.

ProoF. Each element x of the sum is in a finite sum of strongly-nilpotent
right ideals of M, which by Lemma 2.3 is strongly-nilpotent. Therefore x is
strongly-nilpotent, and the sum is strongly-nil.

LEMMA 2.5. The sum S(M)Y of all strongly-nilpotent right ideals of a I-ring
M coincides with the sum 'S(M) of all strongly-nilpotent left ideals and with the
sum S(M) of all strongly-nilpotent ideals.

PrOOF. Let I be a strongly-nilpotent right ideal. The ideal I+MIT is
strongly-nilpotent, because (I +MI'DIY"I+MITYS I+ MIU)"] for n=
1,2, . It follows ISS(M) and hence that S(M) SS(M). But S(MYSS(M)Y
trivially, and hence S(M)=S8(M)’. Similarly, S(M)='S(M).

When a I-ring M has the descending (or ascending) chain condition for right
ideals, it is abbreviated to M has min-r condition (or max-r condition). The
terms min-l condition or max-l condition on a Iring M are likewise defined.

It is patural to ask whether S(M) is strongly-nilpotent. This is so when M
has either the min-r or max-r conditions (min-/ or max-l/ also serve). The case
of max-r is trivial, because S(M) is a finite sum of strongly-nilpotent right ideals.
When M has min- condition, a strongly-nil right ideal is always strongly-nilpotent,
which will be shown in the following theorem. We note that a non-strongly-
nilpotent right ideal means the right ideal which is not strongly-nilpotent.

THEOREM 2.6. Any non-strongly-nilpotent right ideal of a I-ving M with

min-r condition contains an idempotent element.
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PROOF. Let I be a non-strongly-nilpotent right ideal of M and I, be minimal
in the set of non-strongly-nilpotent right ideals which are contained in I. Then,
I,=I,I'l,, since I.I'l, is not strongly-nilpotent. Let & be the set of right ideals
S with properties (1) SI'T,#0 and (2) SCI,.

The set S is not empty (/;€S) and we suppose that S, is a minimal member
of S. Let seS,, 9l with sdl,#0. Then, séI,=S,, because s8/,€S. It follows
that e/, exists with sda=s. Then a is not nilpotent, because if a is nilpotent,
s=sda=sdada= --- =(s0)(ad) --- (ad)a=0, a contradiction. Hence, / cannot be a nil
right ideal. This proves that if I is a strongly-nil right ideal then I is strongly-
nilpotent, since if I is strongly-nil then I is nil.

Now al'M<I, and al'M is not strongly-nilpotent, for a is not nilpotent.
Hence al’M=I,, because of the minimal property of /,. Likewise, al'al' M=I, and
hence a=alal’'M, so that a=awa, where a,=al'M. Note that ew(a;—a,wa,)=0
and hence a,—awa,€[a, wl,Nal' M. Set as;=a+a,—awa. Then, awa,=awa+awa,
—(awa))wa =awa+a—awa=a. Also, a,w(a;—awa,)=(a+a,—a,0a)w(e;—awa)=
a,wa,—awa,wa;,. Moreover, a, is not nilpotent, because awa,=a and ¢ is not zero.
It follows that al'M=qa,/'M, and that [a,, ol,Nal ME[a, wl,nal'M. However,
either a,wa,=a,wawa;, in which case / contains the idempotent a,wa, or else
a,wa;# a,0a;,wa;, in which case a,—a,wa,€[a, 0], and a;—awa,4 [a,, @], In the
latter case, [a,, wl;Nal'M&%[a, o],Mnal'M. This process is repeated, if necessary,
beginning with a, instead of @, and obtaining a,; etc. The process ceases because
of the minimum condition and this proves that I has an idempotent element.

COROLLARY 2.7. The sum S(M) of all strongly-nilpotent ideals of the I-ring

M with min-r or max-v conditions, is a strongly nilpotent ideal.

DEFINITION 2.8. When the sum S(M) of all strongly-nilpotent ideals of M is
strongly-nilpotent, S(A) is called the Wedderburn radical of M (or the strongly-
nilpotent radical) and denoted by W.

DEFINITION 2.9. A I<ring M is semi-prime if, for any ideal U of M, UI'U=0
implies U=0.

For a semi-prime /ring we have the following theorem.

TueoreM 2.10. ([3] Theorem 1, 2 and 3). If M is a I-ring, the following
conditions are equivalent :

(1) M is semi-prime,

2) If a=M and al' MI'a=0, then a=0,
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“(3) If <a> is a principal ideal of M such thal (ala) =0, then a=0,

(4y If U is a right ideal of M such that UI'U=0, then U=0,

5y If V is a left ideal of M such that VI'V=0, then V=0,

(6) The prime radical of M, (M), is zero,

(7Y M contains no non-zero strongly-nilpotent ideals (vight ideals, left ideals),
(8) The sum S(M) of all strongly-nilpotent ideals of M is zero.

THEOREM 2.11. Let M be a Itring which has a Wedderburn radical W.
Then the residue class T-ring M/W is semi-prime.

ProoOF. Set M=M/W and suppose N is a strongly-nilpotent ideal of M, and
suppose that (NI)"N=0. Let N be the inverse image of N under the natural
homomorphism M—M. Thus, N={xeM|x+WeN}. Clearly, (NT)"NSW and
hence (NI)mr+m+nN=(), where (WI)"W=0. Thus, NEW and N=0. Hence, M
is semi-prime.

If M has min-r condition, then M/W has min-r condition ([3] Lemma 1),
Corollary 2.7 and Theorem 2.11 yield the following theorem.

THEOREM 2.12. Let M be a I'-ring with min-r condition. Then the residue
class Irving M/S(M) is a semi-prime I'-ring with min-v condition, where S(M) is
the sum of all strongly-nilpotent ideals of M.

3. Semi-prime [-rings with min-» condition.

For a right ideal T of a Iring M, if there exists an idempotent element [ of
the left operator ring L such that I=[M, we say that I has the jdempotent
generator [. ‘The idempotent generator plays an important role in the following.

THEOREM 3.1. Any non-zero vight ideal in a semi-prime I-ring M with
min-r condition has an idempotent generator.

ProoF. The result is first proved when the ideal is a minimal right ideal A.
Since M is semi-prime, AI’A+0. Then, there exist 6/, a= A such that adA=A.
Thus, there exists e=A such that a=ade. Then, e=ede, since from a=ade=
(ade)de we have ad(e—ede)=0 which means e—ede=0, for the set B= {c= Aladc=0}
is a right ideal contained properly in the minimal right ideal A and is (0). Since
e= A, 0+edMZ A and hence edM=A, where [e, ] is an idempotent of L.

Let I be any non-zero right ideal of M. Since ] contains one or more
minimal right ideals, idempotent generators of the minimal right ideal(s) exist in
[I, I']. Choose an idempotent [€[[, '] such that [,/ is as small as possible.
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If [,~I+#0, then [,N[2['M, where [’ is an idempotent of L. Then, '€/’ L=
UM, &I, ] and [7=0, for since 'ME[,, [I'M=0. Set wm=[-+{"—['] and
then me[f, I'], for [I, I'] is an right ideal of L. Clearly, m®=m, because [I’=0.
Moreover, m,NIS[,NI, since we have [m=/ which implies m,</,, and [l’=0 but
ml’=1'+#0 which implies ['MZ/, but I'MZm,. This contradicts the minimality of
L;,nI and the contradiction arises from taking /,n\/#0. Hence one has [,N\]=0.
Now let x</, then {(x—[x)=0, where x—I(x<l, for IxeIl'T<I. 1t follows that
I=[M, for since [[I, "], IMSI'MZI.

COROLLARY 3.2. A semi-prime [-ring M with min-v condition has max-r
condition.

Proor. The proof is analogous to that in ring theory but to tackle the
situation that the generator does not exist in M but in L=[M, I']. For the sake
of completeness, we write out it.

Suppose that the non-empty set S of some right ideals in M has no maximal
elements. Take an element /, of S, then by the assumption there exists J,=S
such that J,% /.. Repeating this process, we have an infinite sequence of right
ideals :

Set N=U);J;. Then, by Theorem 3.1 N=[M, where [ is an idempotent of L.
Thus, [=0ellL=I[M, I']=[N, I']=[\U.Ji, '] and hence there exists an integer
m such that (€[ Jn, I']. Then, N=IMS [ MS],, so that J,=N=/,.., a con-
tradiction. Hence, every non-empty set of right ideals of M has a maximal
element. Evidently, the max-r condition holds in M.

LemMa 33. If a [-ring M is semi-prime, then the right operator R and the
left operator L are semi-prime.

Proor. Suppose rRr=0. Then MrI'Mr==0. Theorem 2.10 (5) implies Mr=0
and then »==0. Thus, R is semi-prime. Similarly, it may be verified that L is
semi-prime.

THEOREM 34. Let T be any non-zero ideal of semi-prime [-ring M with
min-v condition. Then T has a unique idempotent generaior.

Proor. Let T=sM, where s=2X)[e;, §;] is an idempotent, be the given ideal.
Then s,=T, is a left ideal of the left operator ring L and T,N[T, I"]=0,
because (T'NLT, 'S T[T, ']=0 and L is semi-prime (Lemma 3.3). Hence
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siNLT, I']=0. But for any X[ xy, 7 d€LT, I'T (Sidlxi, 7:1—ilxs, 7415)s=0 and
hence ;[ xi, 1]l—Zilxs, rids€sin[T, I'], which means that X,[x;, 1:]=
2%lxs, 7ils. It follows that [T, I']=[T, I'Js=sMIs and s is a two-sided identity
for the ring [7, I']. The latter fact shows that s is unique.

DEFINITION 3.5, Let M be a [ring and L be the left operator ring. If
there exists an element X,[e;, 6;1€L such that e 6,x=x for every element x
of M, then it is called that M has the left unity Xiles, 0.

It can be verified easily that X;[e;, 6,1 is the unity of L. Similarly we can
define the »ight unity which is the unity of the right operator ring R.

COROLLARY 36. A semi-prime Iring M with min-r condition has a left
unity.

PROOF. In Theorem 34 set T=M. Then, L=[M, I"]=sMTs. Thus, s is
the unity of L. Then for any x of M [sx—x, I']=0 and so (sx—x)'MI(sx—x)
=0. Since M is semi-prime sx—x=0 or sx=ux.

By symmetry we have

COROLLARY 3.7. A semi-prime Iring M with min-l condition has a right
unity.

COROLLARY 3.8. Let T be any non-zero ideal of a semi-prime [-ring M with
min-r condition. Then, the generating idempotent of T is the idempotent which
lies in the center of L.

PROOF. Let T=(3,[e;, §; )M and suppose the /L. Since (Zi[e;, ;)<
LT, I'], we have (Ziles, 0 I=((Z:les, 0102 ey, 0:]=2%les, 01U [es, 0:])=
12l ei, 6:1, for (Xile;, 6] L[T, I'}=[MI'T, ’1<[T, I']. Thus, >iles, 0.1 is
central in L.

DEFINITION 3.9. A I'ring M is said to be simple if MI'M+0 and M has no
ideals other than 0 and M.

COROLLARY 3.10. (1) Any non-zero ideal T of a semi-prime I-ving M with
min-r condition is a semi-prime I“ring with min-r condition. (2) Any minimal
ideals S of a semi-prime I-ving M with min-r condition is a simple [-ring.

ProoF of (1). Let J be a right ideal of T (considered as a I'ring) (JI'T <J).
Let T=sM, where s=3[¢;, §;] is an idempotent. Since [/, '1<[T, I'] Theo-
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rem 3.4 implies [ J, ['Is=[J, I']}. Thus, JI'M=], [1s)M=]JI'(sM)=J'T<] and
hence J is a right ideal of M. It is immediate that the [-ring T has no strongly-
nilpotent right ideals and satisfies the min-r condition.

PrOOF of (2). Let T be any non-zero ideal of M. Then, as shown in the
proof of (1), a right ideal of T is a right ideal of M. Now, we show that a left
ideal @ of T is a left ideal of M. Suppose that T=sM, where s is an idem-
potent. Then, MI'Q=[M, I'1Q=[M, I'1(sQ)=(M, ['1s)Q=(s[M, ')Q=[T, I']JQ
Q. So Q is a left ideal of M. Therefore, an ideal of T is an ideal of M.
Since S is a minimal ideal of M, we deduce that S is a simple ['ring.

THEOREM 3.11. If T is an ideal in a semi-prime [-ring M with min-r
condition, then M=T®[T, ['],. If M=TODK, where K is an ideal of M, then
K=[T, I'].

PrROOF. Suppose that T=sM, where s=2;[e; d,] is an idempotent, then
M=sMP(1,—s)M, where 1; denotes the left unity of M. [T, ['J(1,—s)M=
[T, Ms,—s)M=[T, 'l(s—s)M=0. Hence, (1,—s)MS[T, I'],. Conversely,
suppose that [T, ['Jx=0 and x=x'+4x", where x'€T, x"€(l,—s)M. Then,
sx=sx'+sx"=sx’ and 0=[T, x=CT, s)x=L[T, 'Jsx’=[T, I']x’. Since
TIMET, TI'MI'x’=0 and hence x’/'MI'x’=0, which implies x’=0. Thus, x=
x"e(l,—s)M and then [T, I'],S(1.,—s)M. Hence [T, I'],=(1,—-s)M and M=
TOLT, I'],.

In the case when M=T®K, it follows that TI'K=0 (since T'TKSTNK) and
hence KS[T, I'],. However TOK=TO®[T, I'], and hence K=[T, ['],.

We now prove the fundamental theorem on semi-prime [I-rings with min-r
condition.

THEOREM 3.12. A semi-prime [-ring M with min-r condition has only a
finite number of minimal ideals and is their direct sum.

Proor. Form M, @DM.D --- ©M, of minimal ideals M; of M. Because M has
the max-» condition (Corollary 3.2), there is a sum S having maximal length g¢.
Suppose that [S, I'],#0. Then [S, I'], contains a minimal ideal, which can
be added directly to S, because SN[S, ['],=0. This contradicts our supposition
that S has maximal length of minimal ideals. Hence [S,['],=0 and M=
S®LS, I'1,=S, which proves that M is a direct sum of minimal ideals, M=
MPMD - BM,, say.
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By Corollary 3.10 and Theorem 3.12 we have

THEOREM 3.13. A semi-prime I-ring with min-r condition is a dirvect sum of
a jinite number of simple I-rings with min-r condition.

DEFNITION 3.14. A ['ring M is prime if for all pairs of ideals S and T of
M, SI'T=0 implies S=0 or T=0. A ['ring M is left (right) primitive if (i) the
left (right) operator ring of M is a left (right) primitive ring, and (ii) xI'M=0
(MIx=0) implies x=0. M is a two-sided primitive Iring (or simply a primitive
Iring) if both left and right primitive.

Luh proved the following theorem.

THEOREM 3.15 ([7] Theorem 3.6). For a [“ring M with min-l condition, the
three conditions

(1) M 1is prime,

(2) M is primitive,

3) M is simple
are equivalent.

Of course, Theorem 3.15 also holds when M has min-» condition instead of
min-/ condition. Thus, we can replace the term ‘simple’ in Theorem 3.13 by
‘prime’ or ‘primitive .

We will prove further results on the one sided ideal structure of a semi-
prime I'ring with min-» condition.

LEMMA 3.16. Let I be a right ideal in a semi-prime [-ring M with min-r

condition and [, be a right ideal contained in I. Then therve exists a right ideal
Jo in I such that 1=],B/,.

Proor. Taking [I+0, J;#0 and I=IM and J,=sM, where [=3[e;, 6;],
s=2,[f; e;] are idempotents. Write x&I as x=sx+(—s)x. The set Jo=
{x—sx|xel} is a right ideal and J,S1. Clearly, I=],@/.,.

DEFINITION 3.17. ldempotents [/, ---, [, L are mutually orthogonal if 1:;=0

for 1+ J.

The notation /=0 --- PIl, indicates that [=[,+ --- +1,, where [, ---, [, are
mutually orthogonal idempotents.
In Lemma 3.16 we can choose generating idempotents s, of J,, s, of J, so
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that /[=s,Ds,. The proof is given in the following.

Take [=IM and J,—sM as before, and set s,=s! and s,=[—sl. Then [s==s
since s<l[M, I'], and s=s?=s(ls)=(sl)s=s;s so that Ji=sM=s,(sM)S s, M=5s((M)
< sM=],. Thus, J;=s M. However, Jo={x—sx|xel}={la—slalac M} =
{(—shalacs M} =s,M. We can easily verify that s,, s are idempotents and that
[=5,PBs.. Q.E.D.

DEFINITION 3.18. An idempotent of the left operator ring L is primitive if
it cannot be written as a sum of two orthogonal idempotents.

Lemma 3.16 and subsequent comments imply that in a semi-prime Iring
with min-r condition an idempotent of L is primitive if and only if it generates

a minimal right ideal.

LEMMA 3.19. Let M be a semi-prime [-ring with min-r condition. Then any
idempotent element | of the left operator ring L is a sum of mutually orthogonal

primitive idempotents.

PROOF. Let I=IM and M,; be a minimal right ideal in I. There exists a
right ideal M{STI such that I=M,DM; (by Lemma 3.16). Then, either M;=0,
in which case [ is primitive (/ generates the minimal right ideal), or we choose
generating idempotents s; of M;; si of M such that [=s,Ps] (by the above
comment). Observe that s; is a primitive idempotent. If s is not primitive, this
process may be applied to Mi{=siM, giving si=s,Ps;, where s, is primitive.
Evidently, (=s,Ps.Ds;, and siM2s;M. This process is continued and the
sequence s;M2siM2s;M2 --- being strictly decreasing, must be stop after a
finite number of terms. Then, [=sP --- Bs,, say, which each s; is a primitive

idempotent.

COROLLARY 3.20. Any non-zero right ideal in a semi-prime I-ring M with

min-r condition is a divect sum of minimal vight ideals.
Proor. Lemma 3.19 implies that [={M=sM®D --- Ds. M.
By symmetry, we have

COROLLARY 3.21. Any non-zero left ideal in a semi-prime [-ring with min-l

condition is a direct sum of minimal left ideals.
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Luh proved the following theorem.

THEOREM 3.22 ([6] Theorem 3.6). Let M be a semi-prime I'-ring and L and
R be respectively the left and right operator rings of M. If ede=e, where
ecM, =TI, then the following statements are equivalent :

(1) Mae is a minimal left ideal of M,

(2) edM is a minimal right ideal of M,

(3) M, I"1le, 8] is a minimal left ideal of L,

@) [0, el[I, M1 is a minimal right ideal of R,

(5) [e, d1[M, I'] is @ minimal right ideal of L,

6) [, M1[0, €] 7s a minimal left ideal of R,

(7 [e, 61LM, ['1Te, 6] is a division ring,

8) [6, eI, M1[6, ] is a division ring.

Moveover, the division rings [e, 61IM, I'1[e, 6] and [8, 1[I, M1[0, ¢] are

isomorphic if any of the above statements occurs.

Corollary 3.20 showed that every non-zero right ideal of a semi-prime /-ring
M is a direct sum of minimal right ideals. This decomposition applies to M
itself and gives a right dimension number for M, considered as an R-module.

THEOREM 3.23. Let M be a semi-prime ['-ring with min-r condition and let
M=I1,8 - BI.=]D - PJn, where 1,, J; are minimal right ideals. Then, m=n.

The proof is established by the quite similar fashion to that for an ordinary

ring and so we omit it.

The integer m=n in Theorem 3.23 is called the right demension of the semi-
prime [-ring with min-» condition and denoted by dim(Mg). One can define the
left dimension of a I-ring in a similar manner. But it should be noticed that a
semi-prime [-ring with min-r condition cannot always have the min-/ condition.
For example, let D be a division ring and M be the discrete direct sum of the
division rings D;=D, i€ N (the set of all natural numbers), and I" be the set of
all transposed elements of M. Then, the [-ring M is semi-prime and dim(, M)
=oo, while dim(Mg)=1. Even for a semi-prime I-ring with both min-r and
min-/ conditions, generally the right dimension cannot be equal to the left one.
When M=D, ,, the set of all matrices of type 2X1 over a division ring D, and
I'=D, ,, dim(Mz)=2 and dim(M)==1.

When M is a semi-prime [-ring with min-» condition, we consider the left
operator ring L. Corollary 3.6 shows M has the left unity. Thus, by Lemma
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3.19, 1,=[es, 6,1+ --- +[es, 8,1, where [ey, d,], -, [es, ;] are mutually orthog-
onal primitive idempotents. This implies that L={[e, 6,]L& - Dles, 6,]1L,
where [ey, 6,1L, -+, [es, 6,]L are minimal right ideals. Also, we have L=
Lle,, 6,15 --- DLLes, 6,7, where L[e,, 8,1, -, L[es, d,] are minimal left ideals
(Theorem 3.22). Thus, we have dim(L;)=dim(,L). By symmetry, when M is a
semi-prime /“ring with min-/ condition, for the right operator ring R we have
dim(zR)=dim(Rpg).

4. Simple [-rings with min-r and min-/ conditions.

We note that if a I'ring M is simple, then the right operator ring R and
the left operator ring L are simple.

Let I be an ideal of R such that 055/ R. Then MI is an ideal of M. Since
M is simple, MI must be 0 or M. If MI=M, then R=[I', MI1=[I", M]I=RIZI,
a contradiction. If MI=0, then /=0, also a contradiction. Thus, R has only
ideals 0 and R, and R*#0, for MR*>=M[I', MI'M]=M[T, M]=MI'M=M=+0.
This proves R is simple. Similarly, it may be shown that L is simple.

If M is simple, then M is semi-prime. Indeed, for any ideal U of M we
assume UI'U=0. Since only ideals of M are 0 and M, U=0 or U=M. If U=M,
then MI'M=M=0, a contradiction. Thus, U=0 and M is semi-prime.

DEFINITION 4.1. If M; is a [-ring for i=1, 2, then an ordered pair (4, @)
of mappings is called a homomorphism of M, onto M, if it satisfies the following
properties :

(1) @ is a group homomorphism from M, onto M,,

(2) ¢ is a group homomorphism from I, onto [,

(3) For every x, yeM,, rel, (xry)0=(x8)7¢)(y0).

Furthermore, if both # and ¢ are injections, then (8, @) is called an isomorphism
from the I'-ring M, onto the [y-ring M,.

THEOREM 4.2. Let M be a simple I'-ring with min-r and wmin-l conditions
and ['v=I"/k, where x={ycI'|MrM=0}. Then, the I';-ring M is isomorphic onto
the I'"-ring D, n, where D, n is the additive abelian group of all rectangular
matrices of type nXm over a division ring D, and I is a non-zero subgroup of
the additive abelian group D, . of all rectangular matrices of type mXn, and
m=dim( M) and n=dim(Mz).

PROOF. Let edM, where ede=e, be a minimal right ideal of M (Theorem 3.1)
and let D=[edMle, §]; certainly D is a division ring (Theorem 3.22). Also,
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[eoM, I"=ed L is a minimal right ideal of L (Theorem 3.22). Since (edM/ed)ed L
=edL (for 0#(edMIed)edl) we see that ¢dL is a vector space over D (a left
D-space).

First we prove:

ly, -+, l,€ed L are linearly independent over D if and only if
LD - DL, where L=[M, I' . . i, (A)
Suppose LI+ --- -+ Ll, is not direct sum. Then, there exist a, ---, a, €L,

not all g¢;l; zero, such that a,/,+ - +a,l,=0. Set L,={a<=Lle, §1lal,= L+ -
+ Ll 4+ Ll A+ - + L1}, where we suppose that a;/;0. Then, 0+a;[e, 6] L,
and L;=L[e, 6], because L[e, d] is a minimal left ideal (Theorem 3.22). Hence,
Le, 6] Lle, 01=L; and then lLi=edl;=yili-+ -+ yiaalici b yisddiva+ o+ Vala,
where y;= L. Then, /;=(edyed)l,+ -~ +(e0yi-10) i1+ (e0yi11€0) iy + -
(edy,ed)l,, which means that /,, ---, [, are linearly dependent over D.
Conversely, if LI+ - -+ Ll, is a direct sum, then (edLed)l,+ - +{ed Led)l, is
a direct sum, which means [, ---, [, are linearly independent over D. Q.E.D.

Next, we prove:
a6, L& PBapé, L if and only if a,6 MP - Bard M. ..o (B)

Suppose a0, M+ -+« +a,d6,M is a direct sum. If 3%.,/,;=0 with /;=a,d;L, then
S l;x=0 for all x&M, where Lixs;MZ[ad:M, 'MZa;6;M. Thus, [;x=0
for all x€ M and for all i. Hence, ;=0 for every 1.

Conversely, assume that a,6,L-+ --- +a,0,L is a direct sum. If 3%, x;=0,
with x;€a:0;M, then XV [x,;, 71=0 for all yel’, where [x;, ylelx;, [1S
[a:id:M, I'l=a:5;L. It follows that [x;, y]=0 for every y<I and every i, and
x:T'MIx;=0 for every i. Since M is semi-prime, x;=0 for every i. Thus, ¢,6,M
+ - +q,0: M is a direct sum. Q. E.D.

Thus, by (A), the comment (followed Theorem 3.23) on the dimensions of L,
(B) and Theorem 3.22, we have dim(p[edM, I'])=dim(; L)=dim(L ;)=dim(Mpg).
Similarly, we can prove dim(pedM)=dim(M)=dim(zR)=dim(Rz).

For a= M define a mapping g, of [edM, I'] to edM by [x, rJp.=x7a, where
[x, FleledM, I']. Set N={p,lacM}.

For yel' define a mapping ¢, of edM to [edM, '] by x¢,=[x, r], where
x€edM. Set A={p,|rel’}.

Then one can easily verify that for all a, beM and 7, dI”

Oat Ps=Parrr Prtds=¢rs and  padyps=pPar,
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thus N becomes a [-ring, where [=A1.

Set k= {yel’|MyM=0}, then & is a subgroup of [. For any element F&l/x
we define afb=ayb (well defined), where 7=7-+#. Then we get a [-ring M,
where [y=1"/k.

Let p be a mapping of M to N by p(a)=p., a=M, and let ¢ be a mapping
from Iy to A by ¢(P)=¢, (well defined), where y+r=7<l,. Then pla)=0=p,
=02ebMIa=0>MdedMIa=0>MIa=0=>al Ml a=0=a=0, since MdedM=M, due
to M being simple, and M is semi-prime. Also, ¢(F)=0=>¢,=0>[edM, 7]1=0>
[MéedM, y1=0=[M, r]1=0>MyM=0>7=0, since M is simple. Next, p(afb)=
0@rb)=po=poPrpv=p(@)P(i)p(b). Both, p and ¢ are clearly surjections. Hence,
the mapping (o, ¢) is a isomorphism from the ['y-ring M onto the [}-ring N,
where [,= 4.

Let dim(;M)=m and dim(Mz)=n, and let D, , and D, , denote respectively
the set of all matrices of type nXm over D and that of all matrices of type
mXn over D. Similarly, D, and D, are respectively the total matrix ring of
type nXn over D and that of type mXm over D.

Choose a basis /,, -+, {, of the vector space [edM, '] and a basis uy, -
of the vector space edM.

> Um

For as M we have
La=lip,=anu+ - +oimlin; 1=1, 2, -, 0.
Now the correspondence
Pa—(as); 1=2i=n, 1S7sm
is a group isomorphism from the additive abelian group N into the additive
abelian group D, . Thus, #:a—(a,;) is a group isomorphism of M into Dy m.
We show that this is an isomorphism onto Dy, n:

Along the similar fashion described in the above, ring theory shows that
elements of the left operator L are linear transformations of the vector space
[e6M, Il and as a ring L is isomorphic onto D,, and elements of the right
operator ring R are linear transformations of the vector space edM and R
isomorphic onto D,. Since M is a left L-right R-bimodule, for any €L, x& M,
reR, lxreM. Let l— (6 )€D, x—(a;)€Dy m, r—(ti;)€Dyp. Then for any
ac[edhd, I'],

a(lxr)=(a)x)r=ale)Nai))(ci)=alo ) @i)(Tis) ,
and hence, ((x7)8=(0:;)(x)0(z;;). Thus, LMREM implies (LMR)§<(M)6, and so
D,(MYED=(M)8. It follows D, . E(M)8, for (M)OZ D, .. Hence, (M)0=Dy, 4.
Q.E.D.
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By the similar argument, we obtain that the additive abelian group I, is
isomorphic onto a subgroup of D, ., and we denote the isomorphism by é.

We now prove (afb)0=ab7 b6 :

Let af=(a:j), bO=(B:;), T¢=(wy,). Then, for any I=[edM, I'] we have

l(afb):((lfl)f)b:((l(aij))(wun))(ﬁw): Z(aij)(wuv)(ﬂij) 5

thus, (a7bh)0=(a;)w..)(B:)=a0F $b0.

Clearly, D, » is a I"-ring, where I is (I',)¢, which is a non-zero subgroup
of Dy y.

Therefore, the [)-ring M is isomorphic onto the I-ring D, , and the proof
is completed.

When M is a I'ring in the sense of Nobusawa, £=0 and then [,=I", and
furthermore since I" is a right L- left R-bimodule DnIM¢D,=(IMé. On the
other hand, I"N¢S Dy 5, and so (IN¢=D,, ,, thus we have

CORrROLLARY 4.3 ([8] Theorem 2). A simple I-ring M in the sense of Nobu-
sawa with min-r and min-l conditions is isomorphic onto the I''-ring D, ., where
I'"'=D, ..

We note that the term ‘simple’ in this corollary is the one given in Defini-
tion 3.9. However, as shown already, since M has minimum condition, M becomes
prime (Theorem 3.15). Then, since M is the prime /-ring in the sense of Nobu-
sawa, M is completely prime ([1] Theorem 5), which coincides with ‘M is
simple’ in Theorem 2 in Nobusawa [8].

5. [I'-rings with minimum right and left conditions.

First we consider the semi-prime 7/-ring with min-» and min-/ conditions.
Let I'v=1"/k, where = {yel'|MyM=0}, and M=M,E --- BM,, where M,, -, M,
are simple /lrings with min-» and min-/ conditions (Theorem 3.13). Let x;=
{rell|MiyM;=0}, 1=<i=<gq, then k=g, - Nk, Thus, I'=I"/x is isomorphic to
a subgroup of I'/x,& -+ Pl /k,. Set I'/k;=I;. This means that [, is isomorphic
onto Dy mey over a division ring D™ and [ is isomorphic to a non-zero sub-
group of D&%y, ni» over D, Thus, we have

M=3%,D®% mc» (direct sum) and

I'=I/x is a subdirect sum of the I, where IS D@y ncr, 1=i=<gq, where the
product of elements of Dy ney and of DFYy mej is performed as usual if i=j
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and is 0 if i+ .
Thus we have

THEOREM b5.1. Let M be a semi-prime I'-ring with min-r and min-l condi-
tions. Then, the [-ving M is homomorphic onto the I'y-ring 39-:D%. meiy where [y
is a subdirect sum of the I'i, 1<i<q, which is a non-zero subgroup of D nciy-

Theorem 2.12 and Theorem 5.1 yield the following corollary.

COROLLARY 52. Let M be a [-ring with min-r and min-l conditions. Then,
the [-ving M is homomorphic onto the I'-ring 2%-:D% mey where I'y is a sub-
direct sum of the I';, 1=<i=<q, which is a non-zero subgroup of Dy, nciy-

We consider the converse of the preceding comment to Theorem 5.1. First
we prove the converse of Theorem 4.2.

THEOREM 5.3. D, n, D is a division ring, is a simple [-ring with min-r and
min-l conditions, where I' is a non-zero subgroup of Dum, n» and [I', Dy, n1=Dn and
[Dn,m, F]:Dn

Proor. Denote the elementary matrices by E €D, », 1=5i<n, 1SjSm;
Gu€Dy, 1=s, t=<m; Hy<sD,, 15p, q=n. Let A=(ay; belong to Dy n», then
A=3Y a4E .

The ideal generated by A contains Hy,AGs=agE,. 1f A#0, then ag+#0
for some (g, s) and the E,, is in the ideal generated by A. This is true for all
p=1, -+, n; t=1, ---, m, and hence the ideal is equal to D, », so that D, , is
simple. To verify the min-r condition, observe that D, , is a right vector space
of dimension nm over D. Every right ideal J of D, ,, is a subspace, since Ae]
>Ad=A(dE,)=], where FE, the identity matrix and d&D. The min-r condi-
tion holds. Similarly, the min-/ condition holds.

THEOREM 5.4. If M=MP - BM,, where M,, -, M, are simple [';-rings
with min-r and min-l conditions, then M is a semi-prime I-ving with min-r and
min-l conditions, where I' is a subdirect sum of the I'y's, Mi{I'M;=0 (i#j) and
M. IT;M;=0 (i ).

PrOOF. Let S be a strongly-nilpotent ideal of M and let Sy, ---, S, be its
component ideals in M,, -, M,, respectively. If (SI")"S=0 then (S;7)"S,=0 for
each i. Since M, is simple S;=M; or S5;=0. If S;=M;, then (5.[)"S;=M,;=0,
a contradiction. Thus, S$;=0 and hence S=S,@ - §S,;=0 and M is semi-prime.
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To verify the min-» condition, suppose J®2/® 2 .-+ is a descending sequence of
right ideals of M. The components J{™ in the [j-ring M; are a descending
sequence in M; (JORJP2 - 2J™2 ) and hence J{™ is fixed for nzn(7),
say. It followed that [ is fixed for nzmax[n(l), ---, n(¢)], and hence the
min-r condition holds in M. Similarly, the min-/ condition can be verified.

We consider the /-rings in the sense of Nobusawa.

Let M be a [/-ring in the sense of Nobusawa and M be semi-prime with
min-r and min-/ conditions. Let M=MP --- £ M,, where M,, ---, M, are simple
[rings with min-» and min-/ conditions (Theorem 3.13). Let [';=I/x;, where
ki={yel'|M;yM;=0}. We show that each [-ring M, is the [;ring in the sense
of Nobusawa. Since I'MJ'SI &; is an ideal of [. Indeed, M, Mk;)M;=
(M;PM DM =M, M;=0 and then I'M.x;Sk;. Similarly, r,M;'Sr;. Hence, we
can define a multiplication : Iy X M; < ;—1"; as follows

For any 7, 61, asM,, where F=y+r;, 6=0+x;,

Faé=yao (well defined).

Clearly, M;7M;=0 implies 7=0. Q.E.D.

Therefore, by Corollary 4.3, we have ;=D 4 ). Since k=0 and so I',=T,
I’ is isomorphic to the subgroup of 2%..D: nei. Let this isomorphism be &,
then
ré=r1t"+7, Where yi=r+u; 15i<q.

We show that the subgroup coincides with the group >%.:D% %, . Fix an
element 7 of the index set {1, 2, -, q}. For any o,€l;=D), 2>, choose an
element o<l such that o;=c+sx. Let og=0,+ - +04+ - +0, where g,
o+, 1Zk=gq, and E;; be the unit matrix of Dy, and Fy; be the unit matrix
of D&y, Then, since I'is the right L- left R-bimodule and DX, =[M,;, I7]SL
and D@y, =T, MER, 0:=E.(ap)Fe()p, 1=i=<q. Now let i be free. Then,
Z‘} o.M ¢, where each o; is an arbitrary element of [%. This means
2D, n(1)=(F)¢ and (F)GZS_"SW Do neoe

Thus, we have
M=27DRy mw> and I'=22.DPu neor,
which is Theorem 3 of Nobusawa [8].
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