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THE INTERSECTION OF QUADRICS AND

DEFINING EQUATIONS OF A PROJECTIVE CURVE

By

Katsumi Akahori

Abstract. Let C be a complete nonsingular curve over an

algebrically closed fieldK and L a very ample invertible sheaf on C.

We denote by (pL: C―>P(H°(L)), the projective embedding of C by

means of the vector space H°(C,L). There are two purposes in this

paper. One is to the question: What is the intersection of quadrics

through (f)L(O? The other is to answer the question: What degrees

are the minimal generators of the associated homogeneous ideal?

0. Introduction

Let C be a complete nonsingular curve over an algebrically closed fieldK and

L a very ample invertible sheaf on C. We denote by <pL:C ―>P(HQ(L)), the

projective embedding of C by means of the vector space H°(C, L).

Several authors have answered the questions of when (j)L(C) for a given

invertible sheaf L is projectively normal and when the associated homogeneous

ideal 1(L) of the embedded curve (j)L(C) is generated by quadrics. (see [3], [4],

[8], [9]) Since itis well-known thatif deg Li?2g + 2, then I(L) is generated by

quadrics (see [2],[9], [10]), they have treated low degree invertible sheaves (i.e.

deg L^2g + l). For example, Green and Lazarsfeld proved that if deg L = 2g

and C is a hyperelliptic curve, then <pL(C) is not projectively normal ([3]). Of

course I(L) is not generated by quadrics in thiscase. That is to say that (j)L(C) is

not cut out by only quadrics. So two related questions arise:

(I) What is the intersection of quadrics Q(<pL(C))?

(II)What degrees are the minimal generators of/(L)?

For the questions above the theorem of Noether-Enriques-Petri (cf. [1!]) is

the answer for canonical sheaf 0) of nonhyperelliptic curve. Serrano have

reported some resultsabout the firstquestion ([12]), and Homma have answered

for L on a curve of genus 3 ([6], [7]).In thispaper, our purpose is to answer for
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case of g =s4 (mainly g = 4).

Firstlet C be a hyperelliptic curve. Our result about Q((j)L(C)) is as follows.

THEOREM 0.1. Let C be a nonsingular hyperelliptic curve of genus g ( = 3)

and L a nonspecial very ample invertible sheaf of degree d. If (1) d^2g or (2)

d = 2g + l and h = h° (C,LRG)c~l)^= 1, ?/zen Q(<j>L(C)) is coincides with rational

ruled surface Fe embedded by ＼D = Co + l/2(d-g-l + e)F＼ for some invariant

e(<d ―g-l). (where Co is a minimal section, and F is a fiber.)

Furthermore in case of(2) if g = (3), 4, 5, then e = s?-4 + 2h .

By (0.1), I(L) is not generated by quadrics under the condition above. It is

known thatif L is normally generated and /f'(C,L) = (0), then /(L) is generated

by I2 and /3 (cf. [6]) (where /,,is Ker[S"T(L) -> F(Lm)]) If degL^2g + l, then

L is normally generated ([9]). Therefore if degL = 2g + l, then I(L) is generated

strictlyby I2 and /3. (we say that the homogeneous ideal I(L) is generated

strictlyby its elements of degrees v,,-",v,,if/(L) is generated by its elements of

degrees v,,-",vn and /(L) is not generated by its elements of degrees

v,,"-,v/v,v,I for any v^l^j^n), where v;-means that V- is omitted.) But if

degL^2g and C is a hyperelliptic curve, then L is not normally generated.

Therefore the question (II) arises. Our main results about /(L) are the answers

for the case of degL = 2g,2g-l.

THEOREM 0.2. Let C be a nonsingular hyper ellipticcurve of genus g and L a

very ample invertible sheaf of degree 2g. Then I(L) is generated by /-,,73 and

THEOREM 0.3. Let C be a nonsingular hyper ellipticcurve of genus g and L a

very ample invertible sheaf of degree 2g ―＼.Then I(L) is generated by /2,/3,/4

and I5 (Furthermore if g = 4, then I(L) is generated strictlyby I2 and I5. (see

(2.6))

Next let C be a nonhyperelliptic curve. Our results in this case are as follows.

THEOREM 0.4. Let C be a nonsingular nonhyperelliptic curve of genus 4 and

L a very ample invertible sheaf. If degL is 8, then Q((j)L(C)) is a surface of

degree 4 in P4. If degL is 7, then Q((j)L(C)) coincides with P* (see (3.1) and

(3.2))

The organization of the paper is as follows. In the first section
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(preliminaries), we summarize some facts about very ample invertible sheaves on

C and rational scrolls.In the second section we prove theorems 0.1, 0.2 and 0.3.

In the third section we prove theorem 0.4.

Notation. We fix an algebrically closed field K.

(1) For a finitedimensional vector space V over K,S'"(V) means the m-th

symmetric power of V. Let L be an invertible sheaf. The m-th tensor product of

L (resp. F(L)) is denoted by L'"(resp.F(L)'"). For the vector space of global

sections F{L) we define /in(L)(or /,,)and /(L), by

/,,(£)= Ker [S"T(L) -≫F(L'")] and /(L) = c/,,(L).

We denote by Q)c the canonical invertible sheaf on C.

(2) If L is an invertible sheaf on a variety X which is generated by global

sections, we may define a morphism (f)L: X―> P(H°(L)) by means of the vector

space H°(L).

(3) We denote by K: Fe -> P], the geometrically rational ruled surface with

invariant e ^ 0. A minimal section of K is denoted by Co and a fiber of K by F.

(4) Let X be a closed subvariety of a projective space P". We denote by

O(X) the intersection of quadrics through X.

1. Preliminaries

First, we shall recall facts about very ample invertible sheaves on a curve,

especially, of genus 4.

Let L be an invertible sheaf on a curve C of genus g. If deg L =S2g +1, then L

is very ample. If degL = 2g, then L is not very ample if and only if L is

isomorphic to (Oc (P+Q) for some points P,QeC (may be P=Q). (see, for

example, [1],I Exercises D-2) If g^2, then C has a very ample invertible sheaf

L of degree d with /z'(L)= 0 if and only if d^g + 3 (Halphen's Theorem) see,

for examole. T51.IV Prooosition 6.1)

LEMMA 1.1 Let C be a curve of genus 4 and L an invertible sheaf of degree

d^6 on C. Then L is very ample if and only if C is nonhyperelliptic and L =coc.

PROOF. Let L be a very ample invertible sheaf of degree d^=6. By virtue of

Halphen's Theorem, we have h](L)>0. Hence we have that h°(L)^g = 4 and

equality occures if and only if L = coc.It is clear that /z°(X)= 3. In the case of

h°(L)= 3, C is a plane curve. It is a contradiction by the genus formula

g = ＼/2(d-＼)(d―2). Therefore L must be the canonical sheaf &)..On the other
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hand, coc.is very ample if and only if C is nonhypereliiptic. This completes the

proof.

Secondly, we shall state several facts about rational scrolls associating to a

hyperelliptic curve C of genus g~2.

Let C be a hyperelliptic curve of genus g ^ 2 with a unique linear system g＼

of degree 2 and of projective dimension 1. We denote by Mo the invertible sheaf

corresponding to g＼.

Let L be a nonspecial and very ample invertible sheaf on C. For every yeP1

the linear span of the divisor (j)*{y)of C is a line ty c:Pd~g =P(H°(L)). (where

0:C^F' is a hyperelliptic double covering.) The union of these lines, S = [j£y,

is a scroll in Pd~li.S contains the curve CclF11^ and, consequently, is

nondegenerate. We call the scroll associated to the double covering (f>:C-^P]

with respect to L.

Lemma 1.2. ([8]), Lemma 3.1) Let (j):C-*P' be a hyperelliptic double

covering of genus g (g =?2) and L a nonspecial very ample line bundle of degree

d on C. Then the scroll S associated to <p with respect to L is either a cone over a

rational normal curve in Pd'g~lor smooth of degree d ―e ―＼in Pd~H.

REMARK 1.3. If d^2s or d^2e + 3 in Lemma 1.2,then S is smooth.

Proof. Suppose that S is a cone F. Let F ―≫F be the blowing up with a

center vertex. Then F coincides with the rational ruled surface Fd x with

invariant d-g ―l. Let H be a hyperplane section on F and H the stricttransform

of H on F. Since H-F = 1 and H ■Co = 0, we have H -C0+(d-g- ＼)F. Suppose

that the stricttransform C of 0,(C) is linearly equivalent to aCn + BF. Since

d = deg0L (C), we have

d = C-H = B

On the other hand, using the adjunction formula, we have

2g-2 = (C+ KF)-C (where KF is the canonical divisor on F. ,)

= a(a-2)(-d + g + l) + P(a-2) + a(P-d + g-l).

(1)

(2)

Solving (1) and (2), we have that C islinearly equivalent to 2C0+dF. Therefore

we have C･ Co = 2g + 2 - d. Since d ^ 2g or d ^ 2g + 3, we have

c
Co ^2,C-CO^-1

If the vertex of F does not lie on 0,(C), then C-Cn = 0. If not, then C

(3)

Co = 1
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This contradicts with (3). Therefore S is smooth in this condition.

REMARK 1.4. If d = 2g + l (g^3) and /?°(LRG)C~')^ 1, then S is smooth.

PROOF. This result is owing to ([7], Theorem 3.1).

The following lemma will be used to calculate the dimension of

H°(F.,nCn+mF) in the second section.

Lemma 1.5. (see, for example, [7], Lemma 2.1) Let L be the invertible

sheaf i}F(nCQ+mF) on Fe and n^Q and m^ne-l, then h＼L)-h2(L) = 0 and

h°(L)= (n + Dim +1) -1 /2n(n+ l)e.

2. Hyperelliptlc case

LEMMA 2.1. Let M and N be invertible sheaves on a curve C. If

hl(M)^h°(M)-].then hi(NRM) = O.

Proof. Suppose that h＼NRM)^ 1. Then h°(M)^h°(M) + h＼NRM)-l =

h°(M)+ h°(a)cRN~lRM~1)-l^h°(MRo)cRN~l RM~') = h＼N). It is a con-

tradictionwith theassumotion.

THEOREM 2.2. Let C be a nonsingular hyperelliptic curve of genus 4 and L a

very ample invertible sheaf of degree 8. Then (j)L(C)lies on F{ embedded by the

complete linear system ＼C0+ 2F＼in P4.

In this case, 0(0, (C)) coincides with F,.

PROOF. (Step 1) We shall claim that h[(LRAfo~') = O and h](LRM0~2) = Q.

In fact, since ti{LR M()"3)= 1^/z°(M0)-l, we get /z'(LRM0"2) = 0 by using

Lemma 2.1.In the same way we have h＼LR M0~')= 0 .

(Step 2) We will consider the natural map r＼:H°(LR Mo~')R H°(MQ)

―>H°(L). By the "base point free pencil trick" [11], dim Ker7] = h°(LRMQ~2)

= 1. Hence we have an exact sequence

0 -* Ker?] = H°(LR M('])<8>//°(M())-> //°(L)-≫0.

Therefore we get the following commutative diagram.
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P(H°(LRM~'
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C < > P(H°(L))

))xP{H＼M0))

IIS

P2xPl

F4

< ^

/

P(H＼LRM0-l)RHQ(M0))

IIS

P5

where /is the Segre embedding.

Let F be an irreducible component of P2 xP] f]P4 containing <j)L(C).Since

the Segre embedding of P2xP] does not lie on any hyperplane in P5, we have

dim F=2. From the degree of th Segre embedding of P2 xP] and deg F^ codim

F + l = 3 we get deg F=3. Varieties of degree 3 in P" can be classified,(see

[14])

By this fact, F is either Fx or the cone over the 3-uple embedding of Px in

P3. The lattercase does not occur by (1.3). So F must coincide with Fr

(Step 3) Finally we will show that /2(L) = /2(££)(where £ = $F(C0 +2F)). If

/2(L) = /2(i£),then Q((j)L(C))coincides with Fx.

Now we shall chase the following commutative diagram (for n=2).

(2.2.1)

0

i

|yn us

0 -> I (L) -≫ 5'T(L) -> r(L")

0

(n 2,3,4).

(Since X is normally generated, S2r(i£)―≫F(i£2)is surjectivein thisdiagram.)

Let <t>L(C)be linearly equivalent to aCd+(3F on fj. By using adjunction

formula and ^(C) = 8, we have a = 2 and 0 = 6. Then Ker</>2= H0(Fit£2R

&(-<l>L(C)))= H0(Fl,-2F) = (0). Therefore Coker y2=(0) by snake's lemma.

Hence we get the required assertion that /9(L) = /7(i£).This completes the proof.

Proof of Theorem 0.1. First 0L(C) lies on Fe embedded by

＼C0 + l/2(d-g-l + e)F | by (1.3) and (1.4), where e satisfies d-g-＼>e. By the

same argument in (Step 3) of (2.2) we have <j)L(C)~2C0 +(g + l + e)F and

Ker(r(££2)-≫r(^2)) = //°(F,,(</-2g-2)F) = (0). Therefore we get similar

results.
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Next we shall apply the next lemmas to determining e uniquely in some cases.

LEMMA2.3. ([13]),Theorem 2.5) We definethe number </,.(/^0):

4 =/i°(L(-iD))-/io(L(-(i+!)£>))(where Deg＼).

Then e #{j＼di = l}

In (2.3) we claim that dt^df for i<j. Therefore we have e = h°(L(-aD)),

where a = maxli＼hl(L(-iD))= O＼.

Lemma 2.4. h＼L(-iD)) = O for i^d-2g + 2-h (where h = h＼LR(o^)).

PROOF. First we claim that h°(kD)= k+ 1(0^ k^g). Hence

hQ((g-l-i)D)-l = g-l-i^h-d + 3g-3 = hi(LR(Oc-'). By using (2.1) we get

the above result.

If d = 2g + l and h=0, then h1(L(-iD)) = R (i^3) by (2.4). By using (2.3) we

have thate = 0 (resp. 1) in the case of g = 4 (resp. 5). By the same way, if

d = 2g + l and h = 1, then e = 2 (resp. 3) in the case of g = 4 (resp. 5). This

completes the proof.

Next we shall study /(L) by using above results of Q{(b,(C)).

LEMMA 2.5. ([6]),COROLLARY 3.6)Let L be a very ample invertihlesheaf

on an n-dimensional projectivevarietyX. Assume that H'(X,Lj)-(0) for any

integers i,j>0. If m = Max(n + 3,n(L) + ＼),then I(L) is generated by

where n(L) = Min {n e N ＼F{L)' -> F(L') is surjectivefor all i^n].

/
2. Im,

Proof of Theorem 0.2. Firstwe shallshow that pin:r(L)'"->r(L") is

surjectivefor all mi^3 by inductionon m. For a given mi?3, we consider the

followingcommutative diagram.

r(Lf+l

/L+l

fim R1

r(L")Rr(L)

r(L'"+1)

By the induction hypothesis fim is surjective,and also fimR1 is surjective.By

"generalized lemma of Castelnuovo" {see [9], Theorem 2) ym is surjective,and
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also j3m+1is surjective.Therefore we have only to prove the surjectivityof j83.

We shall chase the commutative diagram (2.2.1) (for rc=3 and

<e= &F(C0 + U2(g-l + e)F)).

Since we recall (j)L(C)~2C0 +(g + l + e)F from the proof of (0.1), we have

Ker03 = #o(Fe,Co + l/2(g-5 + e)F).By (2.4) we have h＼L(-2D)) = 0. Hence we

get that e^h°(L(-2D)) = g-3(i.e. l/2(g-5 + e)^e-＼) by (2.3). Now using

(1.5), we have dimKer 03 = g ―3. On the other hand, by the theorem of Riemann-

Roch and (1.5), we have dim T(L3) = 5^ + 1 and dim F(i£3)= 6g - 2. So we

conclude that 03 and /53 are surjective. Therefore we have n(L) = 3. By using

(2.5) /(L) is generated by /,,/,and /4.

Proof of Theorem 0.3. First we shall show that pm :F(L)m ->F(L'") is

surjective for all m i? 4 by induction on m. By an argument similar to the proof of

(0.2), we have only to prove the surjectivityof /34.

Secondly we claim that fc'(L(-2D)) = 0. Suppose that h](L(-2D)) = h°

(eocRL~＼2D))>0. Then coc(2D) = L(P + Q + R) for some points P, Q, R on C.

Hence we have that coc(P'+ Qf) = L(R) for some points P',Q' on C. That is to say

h＼L(-P＼-Q'))>0. Therefore h＼L)-h＼L(-P'-Q'))±2. This contradicts with

very ampleness of L.

Lastly we shall consider the commutative diagram (2.2.1) (for n = 4 and

<t = &F(C0 + U2(g-2 + e)F)).

In the way similar to the proof of (0.2) we have

Ker04=//°(F,,2Co+(g-5 + e)F). By (2.3) and /*'(L(-2D)) = 0 we get

e^h°(L(-2D)) = g-4(i.e.(g-5 + e)^2e-l). Hence, by using (1.5), we have dim

Ker04=3g-12. On the other hand we have dimr(L4) = 7g-3 and dimF(ig4)

= 10g-15. So we conclude that 04 and fi4are surjective.Hence we get n(L) = 4.

By (2.5) /(L) is generated by I.,,L,L and L.

COROLLARY 2.6. Let C be a nonsingular hyper ellipticcurve of genus 4 and L

a very ample invertible sheaf of degree 1. Then I(L) is generated strictlyby I2

and L.

Proof. From (0.3) I(L) is generated by /2,/3,/4 and /5. We recall

/2(L) = /2(££)in (0.1). Since 0L(C) is of degree 7 and lies on a quadric surface, it

does not lie on any irreducible cubic surface. Hence we have /3(L) = /3(5£).

Furthermore, we have /4(L) = /4(i£)because (j)4is an isomorphism in (0.3). By

the way, /, don't generate /(L). This completes the proof.
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3. Nonhyperelliptic case

THEOREM 3.1. Let C be a nonsingularnonhyperellipticcurve of genus 4 and

L a very ample invertiblesheaf of degree 8. Then Q((j>L(C))is a surface of

desree 4 in P4.

Proof. By the projective normality of 0L(C) (see [3], Corollary 1.4) we

have dim/2(L) = 2, and hence we have distinctquadric hypersurfaces Q} and Q2

in P4. Since Qt is irreducible, so dim Q＼[~＼Q2= ?■
■
Let F be an irreducible

component of Qx fid containing (f)L(C). Then we have deg F = 3 or 4, since deg

F£=4 and since F is nondegenerate. So we have only to show that deg F = 4. If

deg F = 3, then F is the rational ruled surface Fi embedded by |C0+2F| or the

cone over the rational normal curve in P3. But F is not the cone over the rational

normal curve in P3 by the argument of (1.3). Next if F coincides with Fx, we

have (j)L(C)~2C0+6F by the argument in (Step 3) of (2.2). Then C is

hyperelliptic curve. It contradicts the assumption. Hence we have deg F = 4 in

≫4

THEOREM 3.2. Let C be a nonsingular nonhyperelliptic curve of genus 4 and

L a very ample invertible sheaf of degree 7. Then Q((t>,(C))coincides with P*.

PROOF, we have to show that 0L(C) does not lie on a quadric hypersurface:

including double plane. Indeed, obviously <j)L(C)does not lie on a union of planes;

if <t>L(C)lies on a quadric cone, then g = 6, contradiction; if <pL(C) lies on

PlxP＼ (j)L(C) is of type (a,b) = (2,5) in the Picard group of F'xF1 by

considering degree and genus, i.e.,degL = a + b and g = (a-l)(b-＼). This means

that C is hvoerelliotic.which is a contradiction.

The following is a summary of the case of genus 4
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degree d of L h

6(01.(0)

C is hyperelliptic curve C is nonhyperelliptic curve

di=10(=2g + 2) (a) 0,(Q

d = 9(=2g + l) h=2 (b) the projective come in P5

over the rational normal

curve

(e) FQ embedded by the

linear system

|C0+2F| inP5

h=l (c) F2 embedded by the
complete linear system

IC.+3FI in P5

h=0 (d) FQ embedded by the

complete linear system

|Cft+2F in P5

(f)

01.(0

J = 8(=2g) (g) Fx embedded by the

linear system

|C0+2F| in P4

(h) the surface of degree

4 inP4

</= 7(=2*-l) (i) FQ embedded by the

linear system

Co + F~＼in P'

(j)

F3

d = 6(=2g-2) (k) an irreducible quadric

surface in f*3

(where h is the dimension of the vector space H{)(C,LRQ)c ') over K)

Statements (b), (e) are Homma's results([7]). Statement (k) is well-known.

Statement (f) is Green-Lazersfeld's result ([4]).
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degree of L h

I(L) is generated by I , /,I+1,-･･ / .

C is hyperelliptic curve C is nonhyperelliptic curve

d^W(=2g + 2) (1) I(L)isgeneratedstrictlyby I2.

J = 9(=2£ + 1) h=2 (2)

/(L) is generated

strictly by I2 and /?.

(3) I{L) is generated

strictlyby L and L.

h=l (4) I(L) is generated

strictly by I2 and I3.

h=0 (5) 1{L) is generated

strictly by L.

d = S(=2g) (6) I(L)is generated

by /,,/,and I4.

(7) I(L) is generated

strictly by I2 and /?.

d = l(=2g-l) (8) I(L) is generated

strictlyby 12 and L.

(9)

d = 6(=2g-2) (10) /(coc.) is generated

strictly by h and L.

(h)

"strictly"in statements (2), (3), and (7) follow from (b), (c), (d), (e), and

Statements (4),(5) are Green-Lazersfeld's results ([4]). Statement (10) is well
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