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1. Introduction

The wave front sets of solutions of hyperbolic Cauchy problems have been
studied by many authors. For hyperbolic operators with constant coefficients Atiyah,
Bott and Garding [1] studied the singular supports (wave front sets) and the
lacunas of fundamental solutions. In variable coefficient cases the wave front sets
of solutions are studied by using Fourier integral operators (see [2]). In this paper
we shall investigate the wave front sets of solutions for hyperbolic operators with
constant coefficient principal part by the same arguments as in [1].

Let P(z, D) be a partial differential operator of order m in # independent
variables where = (%4, ---, ») and D=¢"1(0/ox,, ‘--, 8/0xy).

We assume that

Pz, D)=Pn(D) +Q(x, D),
Q, D)=3 141<mas(2) D%, a,eC™(R™),

where « is a muiti-index (ay, -+, @»). Furthermore we assume that
(A) for each fixed z in R* P(z, §) is a hyperbolic polynominal with respect
to 9=(1,0, ---,0), where £=(§;, -, &x) (see [17).

From Svensson [6] it follows that this condition (A) is equivalent to the
condition

(A)' Pn(&) is a hyperbolic polynomial with respect to 9 and Q(x, &)< Pn(&)
for every fixed # in R”, where ¢(§)<p(§) means that there is a positive number
C such that

GO =(Calg®@ @ D2 Ch(E) for every & in R™.
Here we have used the notation ¢‘@ (&)= (3%/6é%)q(€).

Well-posedness of Cauchy problems for operators P(z, D) of this type was proved
by Dunn [3], obtaining energy inequalities. We note that P(z, D) satisfying the
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condition (A) has constant strength in R" (see [4]). So one can construct locally
a fundamental solution for P(z, D) in the same way as in [4].

The remainder of this paper is organized as follows. In §2 we shall construct
solutions of the Cauchy problems for P(x, D) by successive iteration. Dunn [3]
proved the convergence of the iteration by means of energy inequalities. However,
we shall prove the same result by obtaining the uniform convergence of the Fourier-
Laplace transforms in the iteration. Moreover we shall obtain energy inequalities
for P(z, D) if its coefficients are in % (R"). In §3 the wave front sets of solutions
will be considered, using the same arguments as in [1]. Localization theorem will
be give in §3.1 and outer estimates for wave front sets of solutions will be given
in §3.2. When the coefficients of P(z, D) are in C:(R™)T we can study the wave
front sets of solutions with respect to CL. This will be done in §4.

The author would like to thank Professor K. Kajitani for his valuable advices.

2. Construction of solution

First we shall state some lemmas.

Lemma 2.1. Let a(§) and b(§) be measurable functions of & in R" which
satisfy the inequalities

la@®|<An<E>TM, [b(O)|<BvE>TY,

where <E>=A+EDHV2 If M+ N—n>0, s<<M+N—-n and s<min (M, N), then
there is a positive number C=C(M, N, s, n) such that

laxb(&)| K CAuBn<E>5.

We omit the proof of Lemma 2.1. We remark that a less precise result is
sufficient for our discussion below.

LeMmMa 2.2 (Svensson [6]). Let Pn(§) be a hyberbolic polynomial with respect
to 9 and homogeneous of degree m and p(€) a polynomial of degree less than m.
Then the following three conditions are equivalent:
(1) Pu®)+D(E) is a hyperbolic polynomial with resbect to 9.
(ii) p<Pn.
(iii) There is a positive number C=C(Pn, P) such that

P&+ 89/ Prn(é+sI)|<ClIm s|™! when & in B and |Im s|>1.

1 The definition of CL(Rn) is given in [5].
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Set V={p()eC&]t; degp<im and p<Pn) and let {p;} be a basis of the finite
dimensional vector space V.

The following lemma is obvious.

LeMMA 2.3. Under the condition (A) we can write
Q, ) =2igi(@)p;i (&), qieC(R™).

Moreover the g are in Cy(R") (vesp. CL(R™)) if the coefficients of P(x, &) awe
in Co”(R™) (resp. CE(RM)).

Let us consider the equation
{P(z‘, Du(z) = f(x),
supp #(2) C{zeR"; 2-9>0},

2.1

where f is in @'(R*) and supp fC {(zcR"; 2.9>0}. First we construct a solution
of (2.1) by successive iteration when the g;(z) are in Co"(R™). Assume that f

is in &’ and that the ¢; are in Cy®. Then there are a positive number C(f) and
a real number s such that

@t <Ciry<e>s.
Define wi, 1=0,1,2, -+, by

Pou(D)uy(2) = f(2),

Pr(Dywi () = — Q(x, D)us (%),

supp #1Csupp f+ I'(Pn, 3)*,
Where I'(Pn, 9)* is the dual cone of I'(Pn, 9) which is the component of the set
{§eR"; Pn(£)+#0} containing 9.

LeMMA 2.4. Assume that the condition (A) is satisfied, the coefficients of
P(x, D) are in Co”(R™) and that fis in &' and has its support in {xeR"; z-9>0).
Then

@22 [ =iy DT (f)CPETHC( Py Q I ESS,

l=0,1,2,“',7};1.
Thus we can define u(x) in ' (R") by

(2.3) 4E—irN=3,. E—ir9), 1>C(Pm Q, 5.

Then u(z) is a solution of (2.1), supp #(x) Csupp @)+ (P, 9)* and

T C[&] denotes the space of polynomials of £ with complex coefficients,
T+ f(g) denotes the Fourier-Laplace transform of £,
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|4 E—irN| < C'(f)CPm) ey (A — C(Pm, @ ) 1<E>5 1 >C(Pmy @ 9.

ReMARK. We can also show that the right-hand side on (2.3) is convergent
for y>>C, where C is independent of s. This can be proved by the same methods
as in the proof of Lemma 2. 8.

Proor. We have

fin(E—ir9) = —Pu(6—ird) ' [Q, D)m]E—ir D),

& [Qx, DusJ(E—ir9)

=—2m)%,qi&) * {p;E—ir)) Pu¢—ir9) ' [Q, DmlE—ird)},
1=-1,0,1, ",
where —Q(z, D)u_,(x)=f(2). So the estimates (2.2) follow from Lemmas 2.1
and 2. 2. Q.E.D.

THEOREM 2.5 (finite propagation property). Assume that the condition (A)
is satisfied. If a distribution u with support in {xeR"; z-9>0} satisfies the
equation P(z, D)u(2)=0 in a neighborhood of 2°—I(Pn, 9)%, then u=0 in a
neighborhood of 2°.

Proor. Let U be a neighborhood of 2? such that P(x, D)u(2)=0 in a neighbor-
hood of U—I'(Pw, 9)*. We note that the tranposed operator !P(z, D) of P(z, D)
satisfies the condition (A). Choose ¢ in C,™ such that ¢(2)=1 in a neighborhood
of {U=T"(Pn, 9*}N{2-9>0}. Then we have

(Pn(D) +¢(2)Q(z, D))u(x) =0 in a neighborhoed of 20—1I"(Pu, 9)*.

Since Lemma 2.4 is applicable to the operator {(Pn(D)+¢(2)Q(, D)), to every ¢
in C,*(U) there is a smooth function » such that

L Pm(D) +¢(2) Q(z, D))v(2) =¢(2),
supp vCsupp ¢ —I'(Pm, 3)*CU—T" (P, 9)*.
Since t(Pn+ @)v=¢ in a neighborhood of {z-9>0}, we have
<ty 9> = <thy t (Pt Qv>=<(Pn+Qu, v>=0.
This implies that #=0 in U. Q.E.D.

From Lemma 2.4 and Theorem 2.5 we have the following

THEOREM 2.6. Under the condition (A) the equation (2.1) has a unique solu-
tion u in o'(R™).
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ReMARK. (i) This theorem was proved in [3]. (ii) The Cauchy problem
Pz, Du(x)=0, z,>0,
@.4 )
D™ yls=0=gi (&) e ' (R™™), ' = (23 -, zn)eR™, 1<j<m,
also has a unique solution in C*([0, oo]; @'(B*1))t. This easily follows from
Theorem 2.6 and the following lemma.
LemMmA 2.7. Assume that the hyperplane z-9=0 is non-characteristic with
respect to P(x, D). Let ve'(R™) be a solution of the equation
@.5) Pz, Dv(x) =7 (g, =+, gm),
supp vC{z-9>0},
where the g; are in o' (B™1) and
P (G, -+ )= Sy Sm 171860 (2)®0b; (0, 27, D) ("),
P(z, D) =S 7ebi(2, DDy, D' =i1(3)0zs, -+, 8foxx).

Then u(@2)=v(2)|x,>€C”([0, 00); FZ'(R*™)) is a solution af (2.4). Conversely
#(z) is a solution of (2.5) if u(x) in C=([0, ©); Z'(R*Y)) is a solution of
(2.4). Here i(x) is the distvibution defined by

2.6) <d#, p>= S:<u(x1, 2", 6(xy, ') > dxy for every ¢ in C;°(R").

ReMARK. Since the hyperplane z-9=0 is non-characteristic with respect to
P(z, D), it follows from partial hypoellipticity that a solution # in &'(R.™) belongs
to C*([0, 00); /(R

Next let us prove the energy inequalities. We assume that the coefficients of
P(z, D) are in Cy”(R"). Let E(z, y) be a fundamental solution for P(z, D) with
support in {(z, y)eR?; x—yel' (Pm, 9)*} and set

F(z, y; n)=expl—r@—yD]E®, y).
Define Fi(z, y; 7), 1=0,1,2,-, by
@7 Pu(De— 7 Folz, y5 1) =0(z—1v),
Pu(De—ir9) Fraa (2, y5 1) =—Q(z, Do—ir9) Fu(z, y5 1),

t feC=([0,0); Z/(R*1)) implies that <f(z,, 2'), ¢(2')>4 is in C®([0,)) for each ¢
in G2 (R*™M.

tt fe’/(R.») implies that there exists a ditribution F in &/(Rr) such that Flx,>o=f.
Moreover one can regard C®([0,c0); /(Rn1)) as a subspace of /(RB,n).
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supp Fi(z, v, 1DC{(z, YR, x—yel'(Pn, $)%).

Then by the same method as in Lemma 2.4 we have F(z, y; T):Z;’: Ji@ v
in &/(R?) for sufficiently large 7. Denote by F(§ 75 1) the Fourier transform
of F(z, y,; 7) with respect to (z, ¥).

LeMMA 2.8. Assume that the condition (A) is satisfied and that the gq; are
in Co°(R™). Then we have
Fo@ ns =@ m)Pu(E—ir9)715(6+7),
|Bi&, 75 D1 CQ NI (C(Pry N A=D¥Pr(§—ir9)| 7 <E4+7>7Y,
N=0,1,2,-, [=1,2,---, r=1.

Herve C(Q, N) depends on supp q; and the supremum norms of the derivatives of
gi of order<N+n+1. Furthermore we have

|221ﬁl(‘5y ”; T) 1 SC(-P"!’ Q’ 7» N)IPm(S'—iT&)IH1<E+n>—N1
N=0,1,2,, if 1>C(Pn, Q.

Proor. For [=1,2, - we have

@8 R n PD=Nj (- DRI DPu(E—ir )7
x (da%.c; 18 +9pj, €~ 1= ir®) Pu(e—01—ir9)
X {Sdcz---
R A e A G e
X Pr(§—{lm e = L= i79) 1G5, (G4 — Qe = U71)
X By (== ir9) Pu(—7=ir 91},

where
35,8 )= 40,
T & D=UT~-ul; )4,
1, [C|<s/2(d—D,
w@& =
0, |{|>s/21-D,
Set

r=3;,,..i, +(each term on the right-hand side of (2.8)),

I-=FE np-r.
Then it follows from Lemma 2.2 that
I <C(Q, N)Y(C(Prmy INHPu(E—ir9) |1+ >,
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1< C(Q NY(C(Pr, @M=V Pr(E—ir9) |- +7>N.
In fact, the §j(§) are rapidly decreasing and
[+9—Cl— =LY 21/206 4+ 9] if ¢k |E+9)) #0, 1<k<I—1.
QE.D.

LemMmA 2.9. Let P(z, D) be as described in Lemma 2. 8 and R(©&) a polynomial
such that R<Pn and deg R<m. Then to every real s there are Dositive numbers
C=C(Pn, Q R, 5) and C'(Pn, Q) such that for every f in Cy™(R™)

llexpL =72 1R(D:| B, ) f(w)dylls

<C(Pm @ R, D17 lexpl—r21f@)||s if 1>C (P, Q),
where

l171ls= ([exl7@ fpaye.

Here C(Pn, Q, R, s) depends on Pm, R, s, supp ¢; and the supremum norms of the
derivatives of gj.

REMARK. With a simple modification of Lemma 2.9 we have

|lexpl—7z;] SE(SC, WIWaylls B <C@)|lexpl — 2,1 1@ s
where k€ % and 1<p<oo (see §2.2 in [4]T.

Proor. It is obvious that
(2.9) expl—721R(D) \ECz, 1) f(y)dy
=5 L@ RE—irNEE 05 1), hp Pdal,
where /i(7; 1)=5"ylexp[ ~r¥,1f(y)]1(7). From Lemma 2.8 it follows that
1@ D& RE=irNDEE 75 1), h(ns a1k
<C'(Pm Q R )1 (| [KEAE Pl
+ [ E= =111 G5, <dsh(ys 1)l |LD)
SC(Pr, Q, R, 17 |expl —rz,]f(@)]]s.

Here we have used Hausdorff-Young’s inequality and the inequlity

t k€ 97" means that k is a positive function defined in JR» and that there exist positive numbers
C and N such that k(E+5)<(1+C|E|INE(y) for &, 7 in R». Moreover we denote for ke %~
and 1<p<loo

A pe=11@ )2 pk(E) ()| | 12, fe .
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sy L2 AE— ISl Q.E.D.

THEOREM 2.10. Assume that the condition (A) is satisfied and that the coef-
ficients of P(z, D) are in F(R"). LetRbea polynomial such that R<Pm. Then
for any positive T and any non-negative integer S theve is a positive number C=
C(R, T, s) such that for every ucCo™(R™) with support n {(2,>0}

[|IR(D)u||s, r<C(R, T, $)||P(z, Dyulls, r,
where

2] |25, 7 =33 mxgsgx,grlD“u(x) 12d=.

Proor. Using partition of unity it follows from Theorem 2.5 and Lemma 2.9
that

[|IR(D)u||s,r<C(R, T, )||P(x, D)ulls.

Let f be a function such that P(z, D)u(z) = f(z) when 2;<T and ESF(EeLX(R™).
Then #(z)=w(x) when z;<{T if w(®) is a solution of Plz, D)w=f and suppwC
{05120}. Thus

|R(DY#||s,r < C(R, T, )inf{||f |ls; Pz, Du(z) = f(2) when z;<T}.
This completes the proof. Q.E.D.

THEOREM 2.11. Let P(z, D) be as described in Theovem 2.10 and let u(z) be
a solution of (2.4). Then for any bositive number T and any non-negative integer
s there is a positive number C=C(T,s) such that for every Gi(xHeCy” (B 1),
1<k<m, we have

] lul !(073)7T£ C(T, S)Zzl—_-l I lgkl Is+m——k;
where

| |2} |%cor 89, 7= S:dﬂ«'l Sd§'<5'>zs|fx’ Cu(zy, 2')1ED 2

ReEMARK. From partial hypoellipticity we have some results on the regularity
of solutions (see Theorem 4.3.1 in [4D).

Proor. Assume that the coefficients of P(z, D) are in C;°(R"). #(«x) defined
by (2.6) satisfies the equation
P(z, D)ii(z)=f(z), supp & {z;=>0},

where
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[(@) = D By 710G (2) @030, 7', D) Gi(a’).
Since
& Lexpl—y2:1f(@)]=7(&
=T S o (80, &' D) gi(a’)1(ED,
it follows from (2.9) with R(§)=1 and Lemma 2.8 that
Hexpl—rz;, 1KE(x, ¥), f(y)Dull,»
SO Py Q ) Doy She {77756 = iy — Am(81)) K48
XTI+ |4,EDN)F 2 [6i(0, o', DDga(a)I(ED] |1t
+ |k (E — iy — 2 (81))KEDTIRCE S TIZE L+ (2,800
X (LG =y B+ 22181 {5k 0 [5;(0, &', D) (@'Y Idnl|L)
if 1>C'(Pm, Q),
where
[1117,0= {cen2| Fe e,
Here we have used the fact that

166 — =28 L1+ 4ED ],

where
Pn(§—ir9)=Tje (& —ir—2;(€)).
Since
1+ [N <CA+LE,
EDTIHEE DG ==t ik (>3 < C
and
| le—ir—an(e)aa<Cly
we have
(2.10) llexp[ —rz;JKEC=, ), ¥yl
<C'(Pry Q D er Sy S 1512 | @iy emo
SC(Pm, @ OZFur" || gullssm-t if 7>C'(Pm, Q).
In fact,

118i€0, 2', D" gr(a")|ls < CCbiy | gkl|s+m-i,

99
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|I<E/>—n;<£:/>v+sdo7'x,[b]-(0’ x’r D/)gk(xl)](ef)“Liz’ Scl(ij S)Ilgk”8+v+m—i-

Note that C(Pm, @, s) has the same properties as one in Lemma 2.9. Therefore
(2.10) proves Theorem 2.11, using Theorem 2.5 and partition of unity.
Q.E.D.

3. Wawe front sets of solutions

3.1. Localization theorem. An inner estimate of the wave front set of the
fundamental solution E(z, y) for P(zx, D) can bes given by Localization theorem.
For each & in R* we can write P(z, {£°+&) in the from

Pz, t8+8)=1"¢Po(z, )+ X7 1" Rl (, &),

Rén(x’ 5)50 if j>7’§u,
where 70 is a non-negative integer, P.o(z, &) is the localization of P(z, &) at & and
the Réo (z, &) are polynomials of & Then Pw(z, £) also satisfies the condition (A)
if P(z, &) satisfies the condition (A) (see [1]). Assume without loss of generality

that the coefficients of P(z, D) are in C,”(R"). Define E;j(z, y; &), j=0,1,2, -,
by the equations

Pz, D) Ey(z, y;5 &) =0(x—y),
Py(, D)Ei(z, y; &)=—37 Rb(z, D)Ej_i(s, y; £,
supp EjC {(2, y)eR"; 2—yel'(Ppso, 9%},
where E;j(z, y; £)=0 if j<{0. Then it follows that
Pz, De+t)Gn(x, y; 1, =12 VI FN(z, y; £, 8),
where
GY(x, y; t, ) =1"t exp[ —it(x—y) &) E(2,y) — Si=t 7 Ei(z, y5 €,
Fu(x, 45 t, ) =—37 S iRk (2, D) Enaraioi(a, ¥ £)

and E(z, y) is the fundamental solution for P(z, D). By the same method as in
the proof of Lemma 2.4 (or Lemma 2.8) we have

|- sLexpl—7(z, ¥)1Ei(z, y; € <CG, j, )™ TperD,
7=0,1,2, -, 7> C(Ps).
In fact, deg Rf, (2, §)=m—7rp+k.  Thus we have
| F zlexpl—7(x—y)IFn(z, y;5 1, E)|<CQ, N, £)WN T tm=rp+D,
N=0,1,2,,7>C(P), t=1.
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This implies that
| F slexpl—r(z—y)IGn(z, y; t, €] < C(y, N, &)t~V
X (W m=rw+D, N=0,1,2, -, 7>C(P), t>1.

In fact, this follows from the proof of Lemma 2.4 (or Lemma 2.8) and the fact
that

10 (§+2°—ir9)[Pn(§ + 10— iy )| < C(Pm, P/ if 7>1.
Therefore we have the following
THEOREM 3.1. Assume that the condition (A) is satisfied and cR*. Then
we have
e Gr(x, Y5 | E)—0, as t—oo, in ' (R™), N=0,1,2, .
Moreover we have
U;';o{((x, y), (8, —E))eT*R*™\0; (2, y)e supp E;(+, »; £}
CWF(E(z, y)) for &+0
and

chlsupp E;(-, «; T {(#, y)eR?; x—yeI' (P, 9)*}.

ReMArRK. We can prove by using Seidenberg’s lemma that there is a real
number ¢ such that
| Pn(E 4180 —i79) | 1< C(Pr)E "6~ 9D8 if t>1, r>1.

Therefore we can obtain a more precise result
tNGu(z, y; t, -0, as t—oo, in 2'(R?), N=0,1,2, .

3.2. Outer estimate. We shall prove the following theorem in this section.

THEOREM 3.2. Under the condition (A) we have
WECE(z, y))<{((z, y), (§ MIET*R*\0; ((=, &), (y, —M)eC),
where E(x, y) is the fundamental solution for P(z, D) and
C={((z, &), (¥, MIET*R"x T*R"\0; £=7 and z— yel'(Pmt, 9)%}.

COROLLARY. Assume that the condition (A) is satisfied and let w(z) be a
solution of (2.1). Then we have

t ch[M] denotes the convex hull of M.
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WF(u)CC-WF(f)={(z, eT*R™\0; ((, &), (y, n)eC
for some (y, NeWF(f)}

Let 29, y%eR™ and £eR"\{0}. First we shall prove that ((2% y®), (&, —E))¢WF
(E(z, y)) when 2°— y°&I (P, 9)*. Therefore we assume that 20—yl (P, 9)*.
Then there exist a neighborhood U; of 2% a neighborhood U, of y° and #° in I”
(Pgo, 9) such that

3.1 (x—y)1*<0 for every xelU; and yel.

LEMMA 3.3. Theve are an open convex conic neighborhood I' of & and positive
numbers & and t, such that

Pu(8—i(HEIC+9)) #0 when 0<t<Lty, &el', (eR™ and |{—7°| <4,

Proor. M=ch[{9}U{{eR"; |{—7°<0}] is contained in I'(Pm, 9) if 6 is
sufficiently small. Since M is compact, it follows from Lemma 5.1 in [1] that
there exist a neighborhood V of & and a positive number #; such that

(3.2) Pr(—it0) +0 when &€V, (eM and 0<t<{,.

We can assume without loss of generality that |[£°|=1. Set I'={§; |§|=1, eV and
2>>0}. Then we may assume that I" is an open convex cone. (3.2) implies that
for every positive number f,<[#;

Pu(E—i(tE[C+9))#0 when &I, LeRr, |&|=1/(ti—1y), [E—1°|<d and 0<t<t.

In fact, we have 0<f+|&|"1<ty, #/(E+ 8™ DE+ 18]/t +1€"1)IeM and |]~éeV. Choose
%, so small that (#;—2))9 +#Lel'(Pn, 9) when {eR™ and [{—7°|<d. Then it follows
from hyperbolicity of Pm(&) that Pm(§—i(#|€[C+9))#0 when eI, (eR™, [§[<1/
(ti—1ty), [—7°| <0 and 0Lty Q.E.D.

LEMMA 3.4. Let &eI” and 0<t<t,. Then we have

3.3) Pr(E—i(tE]70+9)) < C|Pn(E—iCH|EI° +9))],
3.4 Pt Y — (P + +714719))
L CIPn(t 17— (P +171E|719))| if ¢€]>0

Proor. Let p be a positive number such that p7°+9€l'(Pm, 9). Since #|&|7°+9
is contained in some compact subset of I'(Pm, 9) if #|£|<p, there is a positive
number ¢ such that d(&) =distance(0, {zeC"; Pn(z+&—i(¢|é]7°+9))=0})>>¢ when
tlé|<p. So (3.3) follows from Lemma 4.1.1 in [4] if ¢|¢|<p. Modifying I'" and
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¢o if necessary, it follows from Lemma 3.3 that
Pn(E+t|ERe L—i(tE]| (P ~Im O +9))#0
when §eI', LeC™, (<0 and 0<t<LY,.

Thus we have d(€§)>¢|€0 if eI” and 0<i<t#, From Lemma 4.1.1 in [4] it follows
that

3.5 |Pm@ (6~ i(£|]7° +9))| < (Crf (£|E]0))'#! | Pr(6— (2 |E]70 +9))]
if &I, 1E]>0 and 0<t<t,.

This proves (3.3) with ¢|€|>p. Multiplying (3.5) by (¢/¢])'*~™ we have (3.4).
Q.E.D.

LeMMA 3.5. Let p be a polynomial such that p<Pm and degp<m. Then we
have

[DE—iCE|E[R° + 1IN Pru(E— it +719)) N < C(Pa, D)1
when &el’, 0<E<ty and y>1.

Proor. Let p be a fixed positive number. If #|§|<p, we have
PE—iCEEl7"+90) < CQ+ ClEE] + 9™ iPr(E— it IE]0 +9))
S CPn(E—i(tlEln+9)),
where degp=7j (see (2.1.10) in [4]). Thus (3.3) implies that
@3.6) [p(E~i(tIE[n°+9))| < CPrmy D) Pm(E~i(EIE|7"+9))]
if &eI', t|§|<p and 0<tLE,,.
If ¢/¢|>p, we have
P E[T =i+ £71E]19))
<CQA+Cly+#71ET1I )™ iPpn(E1) 8|16 — 5 (70 + +71|€]19))
SCPu(tHE| 76— (P + 2718 719)).
Thus (3. 4) implies that
@D (D& E—iCP +271E19))]
S C'(Prmy D) | P71 €76 — (0 +71E]19)) |
if €I, tlé>p and 0<i<t,.

Now we may assume without loss of generality that p is homogeneous (see Lemma
5.5.1 in [4]). Multiplying (3.7) by (#€])™ we have
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@.8 [p(E—i(H|E|7° + IN| L C(Prmy DI Pm(E—i(HIE[°+9))]
if &eI’, t|§]>p and 0<E<L,.
(8.6) and (38.8) imply that if éeI’, 0<i<{, and 7>1,

[p(E—iCE|7° + 79| L CPm, BYY~™|Pu(E— it ||+ 79D,
which proves Lemma 3. 5. Q.ED.

Proof of the theorem, We can asume without loss of generality that the
coefficients of P(z, D) are in C;™. Let Fi(z, y; 1), 1=0,1,2,---, be distributions
defined by (2.7) and ¢;€Co°(Up), j=1,2. Set ¢z, y)=¢(x)¢:(y) and choose a
positive number ¢ and a conic neighborhood I'' of &° such that 1/2&§+Cel’ if §eI™
and |¢|<Ce|€]. Then we have

3.9 F @ wl@F1E D=3, (= DI2 m)~A*bn

x {d006,(1j2 6= IO Pn(1/2 6+ 00— ir )™

x {{d0 305 16D (12 64+ 00— L ir 9 P12 6400 L1 —ir )"

x (-

x (a0 G5 [EDbn (2 6+ 0~ Cim = Limir0)

X Pu(1/2 £+ 00—l = = L= i) 145(1/2 £ 49+ L0 =Ll = = LD} =},
where  ¢5(5 ) =x§(594i(0), 85 (& ) =Q—15(E $)¢i(0) and 255 9)=1 if [{|<
esfl, =0 if [{[>es/l. Set

IF=3,, . ji+ Ceach term on the right-hand side of (3.9)),
=5 @pleF]E n-I.

Then it follows from Lemma 2.2 that

3.10) |17 < C(Q CPm)r N (C(Pry Q1) |$1ln4182l0] @IN441KEN,
N=0,1,2,:, r=1,

where |Q|r=sup;|gi|r and |f|r=sup e <k rs|D?f(2)|. Here C(Q) depends on supp
g; and |Q|zs;. Next let us estimate I*. Let Vi, 0<t<#, be the chain {{’e¢C™;
=C—iv1(0), LeR™), where v:(0)=t|{[@()7® and O()eC®(R™) is positively homo-
geneous of degree 0 in |¢|>1 and #(Z)=1 on a neighborhood of I''N{[{|>1}, supp
o crn{g>1/2), 00 <1. It follows from (3.1) that
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@11 |61(1/2 6~ $2(1[2 &+ 7+ 0= L — - =D | <l wIeoC1/2 €~ L0>7W,
N=0,1,2,--, if {%V:, 0<t<t,.

It is obvious that there is a positive number ¢ such that
(3.12) [1/2 =022 (6124 [C[®) if eI and {P=C—iv;, (0.
Moreover Lemmas 2.2 and 3.5 show that
(3.13) 10;(1/2 6+ 8+ 2—179) Pn(1/2 £+ 0+ 2~ ir9) | < C(Pm, D)7
if eI, zeR™, (%eV:, |2|<lelé|, 0<t<f; and r>1. In fact we have 1/2&+C+zel
and [C|0(D)<[1/286+C+2] if eI, Cel', zeR™ and |z|<(¢|é|, modifying I. From
(38.11), (8.13) and Stokes’ formula it follows that

Ir =S (= D2 7;_-)—(1-1-1)1;8 VfodcogR”d Cl'"SR"dCl"'
Therefore (3.11)—(3.13) give the estimates
(8.14) [ < C(Q) CPm)Y X (C(Prmy @1 f1]Nansfalo<E,

N=0,1,2,---, if &I and r>1.
From (3.10) and (3.14) it follows that
(8.15) |, w[$F1E D <C(Pm, Q 1)(I$l1+1] Qlnsnss +[§|Nans)EN,
N=0,1,2,-, if &I and y>C(Pm, Q),

which implies that ((2° y®), (&, P))¢WF(E(z, y)) when 20— yO4 1" (Ppeo, 9)*. Finally
let us prove that ((2% y%), (&, P))¢WF(E(x, y)) if &+ —yl. Here we do not
suppose that 20— y%¢I' (P, 9)*. Let I" be a conic neighborhood of (&, ) in B2\
{0}. Then there is a positive number ¢ such that |E+7|>2¢](& )| for (& el
Since

3.16) F @wldFJE D=3, i, 1 (D2 2)~+bn

x a0, ¢+ 900 Pu(o— 7~ ir 9y
x {Sdciéfﬁ(cl? (€& MDD (L ~9—T =iy 9) Pu(L0—n— L —ir9)=
x{{at g5 (s 166 MDB1 @ —p=Cm = 0= ir)

X P (Co_,]_cl._...__Cz_;719)—1’52@0_.@_..._.Ct)}...}’
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it follows from the application of the same arguments as in the proof of Lemma
2.8 that

(3.17) |5 @, p[$FIE DL C(Pmy @ D ([Blnsa] Qlwsner+|BlnsnsdE DO,
N=0,1,2,-, if (¢ el and 1>C(Prm, Q).
In fact we have
|$1(&+7—00)o(00—2)| < Clg|namriE+DNELD™,
N=0,1,2, -, if {%¢R" zeR™ and |2|<1/2|¢+7].

(38.17) implies that ((2° y°), (&, )¢ WF(E(z, y)) when &= —yt,  Therefore
Theorem 3.2 has been proved.

4. Some remarks

First we shall consider the wave front sets of solutions with respect to CH(E™)
when the coefficients of P(z, D) are in CE(R™). We assume that there exists a
positive number C such that Ly < CkLny/Nand N>k>0 and that Sipey Y Le<<oo. Let
$i€Co>(UpD N CL(R™), j=1,2, where U; (resp. Us) is a neighborhood of 2° (resp. ¥%).
Assume that the coefficients of Q(z, D) have compact supports. Then we have

4.D | F @, 1(2)g(¥) F(z, y; 1D1E |
SC(CLN>N<<S: 77)>_N, N=07 1’ 2; Tty
if (& ») belongs to some conic neighborhood of (&, 7Y, ((29% &, (y° —7))4C and

1>C(Pnm, @). In fact, we divide the integral on the right-hand side of (3.9) into
two parts:

ﬁﬂ(x,y)[¢l(x)¢2(y)Fl(x9 Y s 7](5» 77)

=Zf1,"~,j1 (_‘1)l<2 n)—(1+l)n<g

[ZH] e+ 10 <ENE)

+SIC‘|+-~~+1Cllzél£l}dcomdclzll+12'
We can estimate I; in the same way as for I*. Since |4;,({)- 4, (DK C(CLMY
&N if L4+ +|L|>¢lé] and N=0,1,2, -, we can estimate ;. Applying the
same argument to (3.16) we have (4.1). Then by Theorem 2.5 and (4.1) we
have the following

THEOREM 4.1. Assume that the condition (A) is satisfied and the coefficients
of P(z, D) are in C-(R™). Then we have

WFL(E(z, ) C{((z, ), (& D)ET*R\0; ((=, §), (y, —mIeC}t
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For hyperbolic systems we can apply the same arguments when every entries
of the operator fcof Pn(D):-Q(#, D) are weaker than det Pn(D) for every fixed
zeR™. In fact,

tcof Pn(D)-P(z, D)=det Pn(D)I, +tcof Pn(D)-Q(x, D)

and ‘cof Pn(D) is a hyperbolic operator with constant coefficients and det(tcof Pn(£))
=(det Pn(8))7", where P(z, &) is an #x 7 matrix (see [3]). However, this condi-
tion is not a necessary condition for hyperbolicity of P(z, D) when 2 is fixed (see

L6D.
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