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Abstract. We prove characterization and resolution theorems for

compact spaces and metrizable spaces with respect to cohomological

dimension modulo p.

1. Introduction and preliminary

In the last ten years, cohomological dimension theory has striking develop-

ment. A motivation of the development is surely the Edwards-Walsh theorem,

[24], as follows:

1.1. Theorem. Every compact metric space X of cohomological dimension

c-dimz X^ n (integer coefficient)is the image of a cell-likemap f: Z^X from a

compact metric space Z of dim Z^n.

Not only the result but also techniques of the proof gave an important in-

fluence to the development. After them, L. R. Rubin and P. J. Schapiro [22]

showed the noncompact version of the Edwards-Walsh theorem and S. Mardesic

and L. R. Rubin [17] gave the nonmetrizable version. On the other hand, A. N.

Dranishnikov, [5] and [6], characterized cohomological dimension with respect

to Zp by the Edwards-Walsh's way and showed the Edwards-Walsh-like theorem :

1.2.Theorem. Every compact metric space X of cohomologicaldimension

with respectto Zp, c-dimZpX^n, is theimage of a map f: Z^X from a com-

pact metric space Z of dim Z^n whose fibersare acyclicmodulo p.
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Motivated above results and Mardesic's characterization of c-dimz X<n, we

will show a characterization of c-dlmZpX^n for both nonmetrizable and non-

compact cases. Using the characterization, we will give the existence of an

acyclic resolution modulo p. In fact, our characterization suggests a dimension -

like function, called approximable dimension, and can obtain the following more

general results.

1.3.Theorem. Let X be a compact Hausdorff space or a metrizablespace

having approximable dimension with respect to an arbitrarycoefficientsG^n.

Then thereexistsa proper map f: Z―>X from a compact Hausdorff space or a

metrizablespace Z, respectively,of dim Z^n and w{Z)^w{X) onto X such that

H*(f~＼x)'G)=0 for all xel

As its consequence, we have both nonmetrizable and noncompact versions

of Theorems 1.1 and 1.2. We may callsuch a mapping / an acyclic resolution

of X (with respect to G), specially, in the case of G ―Zp, an acyclic resolution

of X modulo p. Finally we will note that there exists a compact metric space

X of c-dimQX=l which does not admit an acyclic resolution with respect to Q.

Thereby we can see that approximate dimension is different from cohomo-

logical dimension and Theorem 1.3 is a good property obtained from approxi-

mable dimension.

In this paper, we mean the definitionof cohomological dimension as follows :

the cohomological dimension of a space X with respect to a coefficientgroup G is

less than and equal to n, denoted by c-dimGX^n, provided that every map

/: A―>K(G, n) of a closed subset A of X into an Eilenberg-MacLane space

K(G, n) of typs (G, n) admits a continuous extension over X (c.f. [10]). The

dimension of a space X means the covering dimension of X and denotes by

dimX. Z is the additive group of all integers and for each prime number p,

Zp is the cyclic group of order p.

By a polyhedron we mean the space ＼K＼of a simplicial complex K with

the Whitehead topology. In section 6, the topology of ＼K＼may be generated

by a uniformity [Appendix, 22].

If v is a vertex of a simplicial complex K, let st(u,K) be the open star of

v in ＼K＼and sT(v,K) be the closed star of v in ＼K＼.If A £|K＼, then we de-

fine st(A, K)={J{lnto:oeK, onA^Q] and $t(A, K)= U {a : o^K, ar＼A^&}.

The symbol Sdj K means the j-th barycentric subdivision of K. We define the

symbols Si and Si for a simplicial complex Kt with an index to be the cover

{st(y,Ki):v^Kl0)} and the cover {si(v,AT<):ve/no)}, respectively.
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We use the symbol -< both to mean 'refine'for covers and 'subdivides' for

subdivisions of a complex. The symbol -<* is used for star refines.

Let HJ be an open cover of a space X. Then for U^CU,

st(£7,<V)=st＼U, tV)=＼J{Uf:Uf^HJ, U'nU^},

$tj+＼U,CU)=^J{U/:U'^CU! U'r＼stj(U,<U)=£0}.

By sf'CU) we mean the cover {stj(U, HJ)＼U^V}. If / and g are maps from

a space Z to a space X, (/, g)f^cU means that for each z^Z, there exists

U^IJ with /(z), g(z)<=U. If A" is a metric space with a metric d, we write

(/, g)^s instead of (/, ^r)^<U£, where CUS is the cover whose consists of all

e/2-neighborhoods in X. By the symbol V1(CU)we mean the nerve of the cover

･U. For covers CU, cv, the symbol 17 A^ is used for the following cover

{UAV, U, ViUeiV, Fecy}.

2. Edwards-Walsh complexes

In the latter section, we need Edwards-Walsh complexes for arbitrary sim-

plicialcomplexes.

2.1. Lemma. Let ＼L＼be a simplicial complex with the Whitehead topology,

p be a prime number and n be a natural number. Then there existsa combina-

torial map (i.e. x~il(L')is a subcomplex of EWz (L, n) if L' is a subcomplex of

L) <pL:EWZp(L, w)―>|Z,| such that

(i) for o(eL with dima^n + 1, <l)l＼a)^K{R＼≪Zp, n),

where r^rank xn(oin)),

(ii) for g^L with dim a^n, (pix{a)―(T,

(iii) EWZp(L, n) is a CW-complex,

(iv) <pl＼o)is a subcomplex of EWZp(L, n) with respect to the triangulation

in (iii),

(v) <p2l(ff)(k)is a finite CW-complex for k^tn,

(vi) for any subcomplex U of L and map f: ＼L'＼-*K(ZP, n), there exists

an extension of /°</>l|^-1(iz/i)-

Proof. We shall construct a sequence Ki(L)QK2(L)Q ･･･ of CW-complexes

as follows. To produce KX{L), we shall construct a sequence L(l, O)£L(1, l)c ...

of CW-complexes as follows. If <;gL and dima^n, let Ki(o) = a and put

L(l,O) = VJ{Kl(<j):a^L, dim a£n}.

We shall produce L(l, 1) with L(l, O)^L(1, 1). Suppose <reL with dim a =
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m + 1. Let Ki(a) be a complex obtained from da by attaching an (n + l)-cellby

a map of degree p. Hence we have

K1(a)=da＼Ja Bn+l, where a: dBn+1 ―>da is a map of degree p.

Put L(l, l)=U{/fi(ff):ffeL, dima^n+l}.

Next we shall construct L{1, 2) with L(l, 1)£L(1, 2). Suppose aeL with

dim(r=n+2. Let

U{if,(r):-r<<T} n^2

where for a complex K, A(K) means a complex obtained by attaching finite

collection of 2-celisabelizing the fundamental group x^K). Define L(l, 2) to

be KJiK^a): a^L, <X＼mo^n-＼-2}. This process continues in an obvious way

producing L(l, O)£L(1, l)g ･■･.Let KX(L) be ＼J{L(l,i):0^i< }. Then Kx{L)

has the natural structure of CW-complex in such a way that each L(l, i) is a

subcomplex as is each Kx{a). Further, it is clear that Kl{a)r＼Ki{r)= Ky{ar＼t)

for a, t^L and 7rq(K1(a))=0 (q<n), (&＼aZp (q=n), where r,,=rank xn(o(n)).

To produce K2(L) we are going to attach (n+2)-cells to K^L). To this

end, we shall construct a sequence L{2, 0)gL(2, l)g ･･･ of CW-complexes as

follows. If a<=L and dima^n, let K2(a) = a and put L(2, 0)= ＼J{K2(a): <reL,

dima^w}. If u£L and dim(T = n + l, then 7rn+1(K1((i))is a finitely generated

abelian group. Kill this generating set by attaching finitelymany (n+2)-cells

to form K2(o). Let L(2, l) = ＼J{K2(o):o<=L, dim<T^n + l}. Next let us pro-

duce L(2, 2). Suppose <reL and dim<T = n+2. Let K2(da) = ＼J{K2(t): v<a} ＼J

Ki(a). Then it is clear that 7Tq(K2(da))=0 (q<n), R＼aZp (q=n), where ra=

rank 7rn(<r<n))and 7tn+1(K2(da))is a finitely generated abelian group. Kill this

generating set by attaching finitelymany (n+2)-cells to form K2{a). Let L(2, 2)

= ＼J{K2{a): a^L, dim<7^n+2}. This process continues in an obvious way

producing L(2, 0)gL(2, l)g ･･･. Let K2{L) be ＼J{L{2, i): 0^/<oo}. Then K2(L)

has the natural structure of CW-complex in such a way that each L(2,i) is a

subcomplex as is each K2(a). Further, it is clear that K2(a)r＼K2(r)=K2(ar＼r)

for a, tgL and 7zq(K2(a))=0 (q<n or q=n + l), R＼aZp (q=n), where ra―

rank 7rn(ff(n)).

The construction of Kt(L), K2(L) with /C1(L)£iT2(L) given above indicates

how one may recursively constructed a sequence /Ct(L)£ir2(^)£････ For each

(?eL, let K(o)={J{Ki(o): zeiV}. Then by induction of the dimension of the

skeleton we can construct a combinatorial map if)L:EWZp{L, n)―*＼L＼with the

properties (i)-(vi)as
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(1) ^1(I(B))=i"')and^||iwi=≫(iii(n)i)

(2) <pl＼a)is the mapping cylinder Ma of the embedding /,: (pil{da)C-*K{a),

(3) (Pl＼mois the cone of(p^^ao such that (J)L{K(o))is the barycenter of a.

Hence for each simplex a of dimo-^n + 1, we have the property:

(4) if n^2,

where for each (n + l)-dimensional face Tt of a, at: dBn+1-^dtiX {1} is a map of

degree p,

(5) if n = l,

where for each 2-dimensional face rf of a, a*: dB2―^dTiX {1} is a map

of degree £ and the collection {[/3i],･･･,[ftkal} generates the com-

mutator subgroup of Tt^a^XlO, l]＼Jai52W≪2 ■■■U≪r ^2)- □

3. Characterizations for compact spaces

3.1. Definition. Let G be an abelian group, n be a natural number and

£ be a positive number. A map <p: Q―>P between compact polyhedra is (G, n, s)-

approximable provided that there exists a triangulation L of P such that for

any triangulation M of Q there is a map <p':＼M(n)＼-*＼Lin)＼satisfying the fol-

lowing conditions:

(i) (<pf,<p＼]Mw)<e,

(ii) for any map a: |L(n)＼―>K(G,n), there exists a map /3: Q―>K(G, n)

such that ^＼＼M<.n~>＼=ao(p'.

Here the map <b'is called a (G, n, e)-approximation of d).

Note that it sufficesfor the condition (ii)to see that the map a°<p'admits

a continuous extension over M(n+1) I.

3.2.Definition. A map / : X-+P from a compact space to a compact poly-

hedron is (G, n)-cohomologicalprovided that for every positivenumber e>0,

there existsa compact polyhedron Q and maps ip: X―>Q, <p:Q―*P such that

(i) (<p*<p,f)^e,

(u) <bis (G. n. s)-aooroximable.

3.3. Theorem.

a natural number.

Let X be a compact space, p be a prime number and n be

Then X has cohomologicaldimension with respectto Zp of
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less than and equal to n if and only if every map f of X to a compact polyhedron

P is (Zp, n)-cohomological.

Proof. We establish the reverse implication first. Let A be a closed subset

of X and let h : A-+K(ZP, n) be a map. Because of the compactness of A,

there is a compact subpolyhedron K of K(ZP, n) such that h(A)^K. Let P be

the cone over K. Then there exists a continuous extension /: X-*P of h, and

there is a closed polyhedral neighborhood N of K and a retraction r: N-^K.

Let us take a positive number 8>0 such that

(1) OS(K)= {xeP: dP(x, K)<8} gN,

(2) any two <5-nearmaps of a space into N are homotopic in N,

where dp is a metric for P. By the condition, there exists a polyhedron Q

and maps <p:X->Q, (p: Q-^P such that

(3) (<p°<p,md/3,

(4) (p is (Zp, n, 5/3)-approximable.

By (1) and (3), we have (p((p(A))QOs/3(h(A))QN. Hence, there is a closed poly-

hedral neighborhood G of <p(A)in Q such that

(5) (p{G)QOUf(A))QN.

Let take a triangulation M of Q such that G is the carrier of a subcomplex Mx

of M. Then, by (4), there exists a triangulation L of P and a map 0': lM(n)

-^iL<;i)| satisfying the following conditions:

(6) (</>',0|,*c≫>,)^d/3,

(7) for any map a : |LU) |―>/f(Zp,n) and every (n + l)-simplex a of M, there

exists a continuous extension aa: a->K(Zp, n) of a°(p'＼3a.

Then by (6),(5) and (2), we see that <p'(＼Mxr＼M^ |)gO5/2(0(|M{n) |))gN, and

(8) 0'|iJ/yvtfCTOi0̂1 lAf^AfCTDi in iV .

Since <p＼mh^m^^ has a continuous extension <p＼G:G-*N, by (8), we have a con-

tinuous extension <p*: G＼J＼M(n) |->N＼J＼LCn)|gF of ^' such that

(9) </>*＼g~<P＼ginN.

Considering r as a map into /C(ZP, n), take a continuous extension r* : Nvj |L(n)

―>K(ZP, n) of r. For each (n+l)-simplex <7 of M, by (7), there exists a map

a,: a^K{Zv, n) such that

(10) ala,=r*≫0*U.

Hence we have a continuous extension 0 : GU|M(n+1) |―>K(ZP, n) of r*･></>*

given by
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(11) #jGr=r*°</>*and d ＼a=aa for each (n + l)-simplex a of M.

Therefore we can find a continuous extension d*: Q->K(ZP, n) of d. Then by

(9),(2) and (3), we see that

(12) e*"<p＼A=r*o(}^o<p＼A~r*o(l,o(p＼A~r*of＼A=h in K(ZP, n).

Hence, by the homotopy extension theorem, h has a continuous extension

h*:X->K(Zp, n). Thus, c-dimZpX^n.

Conversely, suppose c-dimZpX^n. Let us take a map /: X^P of X to a

compact polyhedron and a positive number e>0. Then take a triangulation L

of P such that

(13) mesh(L)^e,

and let <pL: EWZ (L, ri)―>P be the map constructed in Lemma 2.1.

First, we show that there exists a map g: X―>EWZp(L, n) such that

(14) <J}l°g＼f-H＼Hn-)＼)= f ＼f-H＼L<.n-)＼),

(15) g(f~＼a))^(pl＼a) for every simplex a of L with dima^n + 1.

Write L as the form

L = L(n)U(7iW ･･■＼Jo,, where n + l^dim a^ ･･･^dim <rs.

By the property (1) in Lemma 2.1, we can define the map

/o=/l/-K1*c≫),,:/-1(|L('l>|)―-> |L<≫>|£EW,p(Z,, n).

By c-dimZp f'Ka^^sC-dimzp X<,n and the property (i) in Lemma 2.1, the map

fo＼f-udai)'f~1(d(T1)-~>fo(f~1(dGl))= d<j1'S:<pl＼a1) has a continuous extension

For each z^2, since 3(7i£L(7l)UaiVJ ･■･WoVi, we can similarly obtain a

map /i:/-1(|L(B)|U/-1(ffi)U-U/-1(<Ti))^"1(l^<B)|U<r1U-WffO such that

(16) fi /-i(lL(re)|W(Tlw...w(7i_1)=r/i_i,

(17) Mf-K<ri))£<l>i＼<ri).

Therefore the map fs is a desired one.

By the compactness of g(X), there exists a compact subpolyhedron /C of

EWZp(L, n) containing g{X). Then by the same as in [15], we can find a map

<p: X-+K such that

(18) (p(X) is a subpolyhedron Q of EWZp(L, n).

Moreover, by the construction and the property (iv) in Lemma 2.1, we may

assume that

(19) (pL°<f＼/-l(li(n)l)= / I /-l(ILCn)i),

(20) (p{f~l{<j))Q(l)il{o)for every simplex a of L with dim<r2>n + l.



254 Akira Koyama and Katsuya Yokoi

Thus, by (18), (20), (19) and (13), we have a compact polyhedron Q and

maps (p＼X-*Q, (p―<pt＼q'.Q-+P such that

(21) <p(X)=Q,

(22) (<l>*<p,f)£e.

Hence, it sufficesto show the following:

Claim. <p is (Zp, n, s)-approximable.

Proof of Claim. Let M be a triangulation of Q. First, we show that

there exists a map 6: ＼M(n+1)＼-*EWZp(L, n)(n+1) satisfying the followings:

(23) 6 |QtSEWz (Z,,n)f≫+l)=^Qr＼EW^ (L,n)(re+D,

(24) d(Qn(pzX<7))Q4>Il((tyn+1) for every simplex a of L with dim<r^≪ + l.

Since |M(re+1)| is compact, there is a finite collection of cells {tu ■■■,tk} in

EWZp(L, n), dimr^ ･･･^dim r*^n+2, such that

(25) ＼Mln+1)＼r＼Tii=Q for each *= 1, ･･■,^,

(26) ＼M(n+l) |£EW^p(L, n)(B+1)UriU ･･･Wr*.

We take a small PL-ball BQz^dti such that dim5=dimri, and consider the

inclusion ix:dBr＼ I Mln+1)＼->dB. By dim (Bn |M(n+1) |)^n + l<dim fi, ^ has a

continuous extension ix: fin|M(n+1) |―>dB. Considering the map t'iand a retrac-

tion from EWZp(L, n)(B+1)U(r!＼Int 5)Ur2U ･･･Ur* onto EWZp(L, n)(IiH)Ur2U

･･･Urt) we have a map 0j: |M(re+1)|-*EWZp(L, n)(B+1)Wr2W ･･･WrA such that

(27) vJq^eW^ (L,n)C7i+l)=Za§nEW^ (L,n)(n+l),

(28) d,{＼Min+l)＼rMpl＼a))Q<j)i＼a) for every simplex <y of L with dim a^

n + 1.

Inductively, for *'=1, ･･･, jfe,we can construct a map ^<: |M<B +1)＼-+EWZp(L, n)(?l+1)

Wri+1U ･■･yjrk satisfying the corresponding to (27) and (28). Therefore 6k is

a required one.

Moreover, taking suitable subdivisions if necessary, we may assume that 6

is simplicial.

Case 1. n>2.

By the properties (1), (4) in Lemma 2.1, we see that

EWZp(L, nyn+1>=＼Lin)＼＼J＼J{dGX[O, l]U≪ff £?+1: <?eL, dim<;=:n+l},

where ≪,: Sn^da is a map of degree p. For each (n + l)-simplex a of L, choose

a point ^e£ffn+:＼(SreW0(|M(n)|)), and take the retraction

r:EWZp(L, nyn+1>＼{za: <reL, dim<r=n+l}―> |L(7i)|

induced by the compositions of the radial projection of BS+1＼{za＼ onto daX {1}

and the natural projection of daX[0, 1] onto daX {0} g |L(7l)I. Now we define
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a map <p': |M(B)|HI(B)I by 0'=ro0|1JfCB)1.

Let z be an (n + l)-simplex of M. If (p'(t)QEWZp(l, n)cn)= ]L(B)], then

(29) 0'|3T=0|at = O in |L(n>|.

Otherwise, there is finite PL (n + l)-balls Du ･･･, Dm in r＼3r such that

(30) Uf=iIntJD^0-1({2(T:dim(T=n + i})nr,

(31) 6(Di)QBai＼Bda. for some (n + l)-simplex <;.;of L.

Then we have that

(32) [0'lar] = [r-0|tol]+---+[ro0|a/,J in 7rn(|L(≫'|).

Since each r°d＼gDi can be factorized through the attaching map aav [r°d＼dD^＼

― p-at for some ai<=7tn{＼L(n) |). Hence, by (32), we have

(33) C0/!sr] = /≫-(ai+-+am) in izn{＼Lw＼).

Therefore, for any map |: |LC'[)|-*/C(Zp, n), t;°<Jj'＼dtcan be extended over r.

Case 2. n = l.

For every simplex a of dim <r1^2, <pl＼om) may be represented as the form

(5) in Lemma 2.1:

0ZV)(2) = tf≪>X[Q, l]U≪x 52Ua2 ･･･U.r, fi'U/., fi'Un, "･ U*4, S2.

Then choose points u＼,■■■,uarg> v＼,■■■,o%a of (pl＼aa))＼(oa)X＼Q, 1]W(9(|M(1) |))

and the retraction r:EWZp(L, n)(2)＼{wf, ･･■,uar<j,v＼,■■■,v%a＼ a^L, dimor^2}-^

L(1)| induced by the compositions of the radial projections of B2＼{ui＼ or

B2＼{vaj} onto S1 and the natural projection of <7(1)X[0, 1] onto <rci)x{0} £ |L(1) .

Now we define a map </>':|M(2) ＼^＼LW ＼by (p'=r°6.

Let r be a 2-simplex of M and let £: |L(1)H^(ZP, 1) be a map. If ^'(r)

QEWZp(L, n)m― | L(1) |, then we have the map $°<p'＼zas an extension of ^^'lar-

Otherwise, we choose finite PL 2-balls Du ■■･,Dm in r＼9r such that

(34) Uf=iIntDi2^"1({^, -,uara,vf[, ■■■,yjff: <re=L, dim <;^2})nr,

(35) diD^QB^daXlO, 1] for some simplex a of dim c?^2.

Considering the map # |rxu7^!(z)j＼3/?j>as a homotopy, we have that

(36)

= [0|az>1]*-*[0|3z>J

= [>-0|3Z>1]*-*[><'0|a/>J

= [0'U] m ^(EW, (L, n)<2>)
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Moreover, by the property (5) in Lemma 2.1, for every i―l, ･■■,m,

(37) [r°d＼dDi)is the p-th.power of an element of nx{＼Lw＼), or

(38) ＼r°0＼dD^＼is a commutator of n^a11*) for some simplex a.

On the other hand, by the property (vi)of Lemma 2.1, there exists a continuous

extension f:EW*p(£, n)(2)->K(Zp, 1) of f Since nx{K{Zv, l))=Zp is abelian,

by (36),(37) and (38), we have

K-0/l*] = [f"0|ar]

(39) = [1^=01^]+･･･+[f°r°0Um]

=0 in 7C1(K(ZP, 1)).

Thus, £-°<p'＼dTcan be extended over t.

Therefore, in any cases, we have the map <p': |M(n) |―>|L(n) ＼such that

(40) for any map $: ＼L1-1^＼^K(Zv, n), $°(p'admits a continuous extension

over |M(n+1)|.

Now, for any point y<=＼M(7l)＼, let take a simplex a of L such that

(41) yEL<pi＼o).

Then, by (23) and (24), we see

(42) ^)eW+l).

Moreover, by the construction in any cases, we have

(43) <p＼y)=rod(y)(EG(n)^G .

Hence, by (13), we obtain that

(44) d(<p(y), ^'(;y))^diam (<r)^e .

Therefore </>'is a (Zp, n, £)-approximation of (p. It completes the proof of

Claim and it follows the implication of the only if. □

4. Characterizations for metrizable spaces

Let us establish definitions. Let K be a simplicial complex and /, g: X―>

＼K＼be maps. We say that g is a K-manification of / if for each ie! and

a^K, /(x)Gff implies g(x)<=o. Let 17 be an open cover of X. Then a map

&:X-H3Z0U)| is called V-normai map if fc-1(st≪t/>,32(cU)))=f/ for each t/e≪U

and 6 is essential on each simplex of TlifU)(i.e. b＼b-na):b~＼o)―>ois a essential

map for each ae 71(11)). Note that if 17 is a locally finite,then 17-normal map

exists.
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4.1. Definition. Let Q, P be polyhedra, G be an abelian group, °U be an

open cover of P and n be a natural number. We say that a map <p: Q-^P is

(G, n, Rjyapproximable if there exists a triangulation L of P such that for any

triangulation M of Q there is a PL-map 0': |M(n)|―>|£<n)lsatisfying the fol-

lowing conditions:

(i) (<j)',̂Ucn),)^,

(ii) for any map a: ＼L(n)＼―>K(G,n), there exists an extension /3: |MU+1)

^K(G, n) of ≪<></>'.

4.2.Definition. Let G be an abelian group and n be a natural number.

A map /: X―>P of a metrizable space X to a polyhedron P is called(G, n)-

cohomologicalif for any open cover HJ of P there exist a polyhedron Q and

maps <p:X->Q, <p:Q->P such that

(i) (.</≫<p,f)^<V,

(ii)(p is (G, n, 17)-approximable.

4.3. Theorem. Let X be a metrizable space, p be a prime number and n be

a natural number. Then X has cohomological dimension with respect to Zv of

less than and equal to n if and only if every map f of X to a polyhedron P is

(Zp, n)-cohomological.

Proof of necessity. Suppose that c-dimZpX£n. Let /: X-*P be a map

of X to a polyhedron P and <U be an open cover of P. Then take a star refine-

ment 1]0 oi V.

First, we show that there exist a simplicial complex K and maps <p:X->

|/C|, 0: ＼K＼^P such that

(1) if oeK, there exists /7e^70 with <p(o)QU,

(2) for each xel if ^(x)elnt a, a^K, there exists U^Vo with 0(<r)V_y

{/(*)}£^,

(3) there exist a triangulation L of P and a PL-map 0': |/f(B)|-^|L<B)

such that

(1) (^', 01 l*Cn),)^^o

(ii) for any map a: ＼Lln)＼-*K(Zp,n) there is an extension/S: ＼K(n+l)

-*K(ZP, n) of a °<p'.

By J.H. C. Whitehead's theorem [25], take a triangulation L of P such that

(4) st{st(v,L):yeL(0)}-<cU0.

We will construct a map c: X^EWZp(L, n) such that

(5) C|/-l(|Z,Cn)|)= /|/-l(|i(re)i),
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(6) c(f~＼a))^l＼a) for ffel, where <pL＼EWZp(L, n)-≫L is the map con-

structed in Lemma 2.1.

We define the map cn=f＼ f-iULcn->≫: f~＼＼L(7l)I)―| L(n) | gEWZp(L, n). Induc-

tively, suppose that for n<Lk we have defined the function ck: /"'(I La> |)->

EWZp(L, n) such that c* |/-i(ff):f~＼ff)―>^Z1(<?)SEWZp(L, n) is continuous and

cA|/-1((7)= c^|/-i(r) on f~l(a)r＼f~1(t)for <r,rGL(i). Now, let ceL with dime;

= & + l. By the construction of ck and EWZp(L, n), ck＼f-ii3a):da-^<pi＼a) is

continuous. Hence by c-dim^ f~1(a)fS,c-dimz X^n and (i) in Lemma 2.1, we

we have an continuous extension ca: f~＼o)-^^)i＼a) of ck＼j-nsa). Define ck+i to

be ca on f~＼a) for seL with dimo- = & + l. Finally, we define c to be U^-n ck-

Then since J%Tis compactly generated, the function c is continuous.

We define an open cover ^B―{Ba: a^L) in the following way:

Ba=EWZp(L, b)＼UWW: <rnr=0}.

Then note that we have

(7) <Pl＼a)QBa

(8) if xgB( and x(E(pz＼v), then <;nr^0.

Since EWZp(L, n) is LC , for a star refinement .Si of <B, there exists an open

refinement S% of ^i such that if K is a simplicial complex of dim/C^n + 1,

then every partial realization of K in EWZp(L, n) relative to -R2 extended to a

full realization relative to $i [2]. Select a star refinement jS3 of ^2.

Then by [21, Lemma 9.6], there exist an open cover <~V of X refining

/■'CUolAc"^,) and maps <p: X-+＼m(cv)＼, <l>:＼m(<V)＼-*P such that

(9) (p is cv-normal,

(10) (p°<pis L-modification of /,

(11) if oem(cv), the exists U^°U0 with f((p-＼a))U(p(a)QU.

Then these ^(°^), ^ and 0 satisfy the conditions (l)-(3).

It is easily seen that (11) implies (1) and (2). It remain to prove that (3)

holds.

We shall construct a map 4>0: ＼m{cvynJrl)＼-*E'SNZp{L, n) in the following

way: note that if (U}tEfn(cvyn+1), there exists Bv<^$z with U^c-＼BV). (p,

on |f72(cv)(O)| is defined by an element <po((Uy)GBv for each <£/>eE3?(q^)(0). Let

<£/,,■･･,Umy^m(cvyn^＼ Then by 0^£/on ･■･num Qc-＼BUo)r＼ ■･■nc-'(^m),

we have

$>({<£/≫>,-, <^m>})gst(5^o, ^)gB for some 5eS2.

It show that 4>0 is a partial realization of
≪77(c^)(n+1)

in EWZp(L, n) relative to

&2. Therefore, by the construction of ^2, we may define <p0 to be a full
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realization relative to &x. Then by the same way in [21, p. 245 (8)] we can

show that

(12) if fe=|3Z(cv)(B+1)| with ^(Oelnt5 and <po(t)EL(pz＼T)for 8, t^L, then

there exist a, X^L such that 8-<C,a and ar＼X^%^Xr＼x.

Now, by the property (v) in Lemma 2.1, we can choose

(13) a cellular map (p,: i^(cV)(B+1)HEWZp(L, n)(re+1) such that for each

f<=|3Z(q>)(B+I)l, if <po{t)tE<pi＼t),then ^(Oe^Cr)"1*1'.

By the simplicial approximation theorem, we assume that <pYis PL.

If n^2, by the properties (4) and (1) in Lemma 2.1, we have

EWZp(L, nyn+1)=＼Hn)＼U＼J{daX[O, l]ua, B%+1: asL, dim<7 = n + l},

where ≪,: dB%+1^da is a map of degree p. For each (n + l)-simplex a of L,

choose a point za<^B2+1＼dB%+1, and take the retraction

r: EWZp(L, n)(n+1)＼{^: (teL, dim<r=n + l} ―> |L(n)|

induced by the compositions of the radial projection of B2+1＼{za} onto daX {1}

and the natural projection of 3(7X[0, 1] onto d#X {0} != i L(re)|-

If n=l, for every simplex a of dim a2^2, <pll(.^(2))may be represented as

the form (5) in Lemma 2.1:

^ZW2) = tf(1)X[0, l]＼Jrtl52U≪2 ･･･＼Jara B*＼Jh B^h ･■･＼Jtka B＼

Then choose points u＼,■･･,Mffr<T,v?, ･･■,v%a of ^(^"^"N^'^xCO, 1] for each B2

and the retraction r: EWZp(L, nY2)＼{uau ■･-,M°r<;,< ･･･, 4ff: ugL, dim<r^2}->

|LU)| induced by the compositions of the radial projections of B2＼{u"j} or

B2＼{vaj} onto S1 and the natural projection of o-(1)X[0, 1] onto #(1)X {0} g [I(1) .

In both cases, we put

^ro^h^cvxro,: |^(cF)(n)| ―> |L(n)|-

Then the map 0' holds the conditions (i),(ii). First, we show the condition (i).

Let t&lJKcvy*)]. By (12), there exist o, X, t^L such that or＼X^^Xr＼t and

(p(t)^a, (})0{t)^(pil{r). Then since (pt(t) is an element of (pix{r)in), we have

(p'(t)^T. Hence, we have <p(t),(p'(t)^$t(X, L)QU for some U^HJ0 (see (4)).

Next, we must show the condition (ii). But, this is similar to the proof of

Theorem 3.3.3. Hence, we omitted it here.

Now, we shall show that / is (Zp, n)-cohomological. By (2), we can easily

see that (<p°<p,f)^cU. So, we show that <p is (Zp, n, 1/)-approximable.

Let M be a triangulation of ＼K＼. Note that fora simplicial approximation

/ of idsM＼'- IMl = ＼K＼―>＼K＼with respect to K, we have that
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/(|M<n+1)|)g|/f(B+1)| and j(＼Mw |)g ＼KW

Then by (1) and (3), we can easily see that the map

<j>≫=<]>'*j: ＼MW＼―>|L(n)|

holds the conditions. □

The reverse implication is proved by the standard way [21]. First, we

need some notations.

We may assume that the Eilenberg-MacLane space K(ZP, n) is a metrizable,

locally compact separable space. Then by the Kuratowski-Wojdyslawski's theo-

rem, we can consider that K{ZP> n) is a closed subset of a convex subset C of

a normed linear space E. Note that C is AR(metrizable spaces). Since K(ZV, n)

is ANR, there exist a closed neighborhood F in C and a retraction r: F―*

K(ZP, n). Further, we can choose an open cover Wo of Intc F such that

(1) for any space Z and any maps a, /3: Z^F with (a, fl)i£W0,the maps

r°a,r°/3:Z-^K(ZP, n) are homotopic in /C(ZP, n).

Then we take an open, convex cover f of C such that

(2) if W^Ef with Wnff(Zp, n)=£0,there exists t/ef, with st(W, W)S£/.

Select a star refinement cy of W.

Let hQ: C―≫|^(cv)| be a Kuratowski's map wUh respect to cv and define a

map hx＼|32(c^)|^C in the following way: a map hl on |^(ci^)(0)|is defined

by an element h^V^^V for each <F><E |3Z(ci;)<0)|. Next, by using the con-

vexity of C, we extend /?!linearly on each simplex 122(^)1. Let a ―(,V0,･･･,Fm>

G|32(cV)|. Then by Vor＼■■■C＼Vm^R.

h,({<V0>, ■■■,<Fm>})gst(F0, <=V)QWa for some Wa&W.

Thus, by the construction of hx, we have hx{a)^Wa.

Let 92x be a subcomplex 3l({VGcy: FnK(^p, n)^0}) of 92(cv). Let Jl0 be

a simplicial neighborhood of 92x in 92(cy) such that if <y0>e920, there exists

<y1>e921 with yonFi^0. Then we can easily see the followings:

(3) for each xgK(Zp, n), there exists W&W with x, hx°h0{x)<=W,

(4) h1{＼m0＼)Qst{K{Zp,n),(W)QF,

(5) ^(^(Z,, n))S|3Zi|£|3Zol.

Proof of sufficiency. Let A be a closedsubsetof X and h : A-*K(ZP, n)

be a map. We consider the above-mentioned nerve 37(cl;)and maps h0,hu

We take an open cover 17 of 132(^)1 such that

(6) st'Cl^l,<u)g|3zo|,
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(7) stXvXhiXwi

and choose a subdivision Jl of Jl{<V) such that if <re3Z there exists £/e<L7 with

oQU.

Since C is AE, there is an extension H: X―>C of h. Then by the assump-

tion, the map ho°H: X-* 1^(^)1 is{Zv, n)-cohomological. Hence, there exist a

polyhedron Q and maps <p:X―>Q, <p; Q->＼32(^)1 such that

(8) (<J>*<p,h0oH)<<V,

(9) <p is (Zp, n, cU)-approximable.

By using the simplicial approximation theorem, we obtain a triangulation M of

Q and a simplicial approximation <p*:M-+JI of 0. Then by (8),(9), we have

(10) (<i>*°y,/iO"//)^stcu,

(11) (p* is (Zp, n, st cL7)-approximable.

Now, by (11) with respect to M, there exist a triangulation L and a PL-map

(p'＼＼Mw＼^＼L{n)＼ such that

(12) (0', 0*|,.vcn>,)^st<U,

(13) for any map a : |LW＼-*K(ZP, n), there exists an extension /3: |M(71+1)|

-K(ZV, n) of ao(h'.

Claim. There exists a map $: Q^K(ZP, n) such that $＼<p*-K,]yo＼)= 'r°hi°

</>*＼</>*-i<.＼mo＼)-

Construction of £. First, we shall see that

(14) for each x(=D=<f>*-＼＼mo＼)r＼＼M(n) |, there exists f/e^ such that

hi°<li*(x),h1o(p'(x)^U.

By (12), there exist Uu U2, U3<=CU such that /71n/72^0^f/2nf/3 and (p*(x)<=Uu

f(x)G[/3. Then by (7), we have W&W with h1(U1VjU2UUs)QW. Since (p*(x)

el^ol, by (4), there exists W'^W such that h1o<p*(x)^W and W'r＼K(Zp, n)

^0. Hence by (2), we obtain U&W* such that h^(p*(x), h1o(P'(x)^st(W'! <W)^U.

Therefore by (14) and (1), we see the followings:

(15) hlo(l>'(D)QF,

(16) r≪./i1o0*|fl=ro/i1≫^|jDin K(Zp, n).

Since D is a subpolyhedron of ＼M(n)＼ and 0' is PL, <])'{D)is subpolyhedron

of ＼L(n)＼. Hence, from 7cq(K(Zp, n))=0 for q<n (if n = l, the path-connected-

ness of K(ZP, n)), there exists an extension

a'. |LCn)| ―>K(ZP, n)

of rohtlty^i^iD^KiZp, n).

Then by (13), we have an extension

B: |M(n+1)! ―>K(ZP, n)
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of a"(])'.

Now, put

R=＼M(n+1)＼＼VJ{lnta: a^M, dima = n + l, aQ<J>*-＼＼m*＼)).

Then since for each x<=DQR we have f}(x)=a°<J)'(x)=r°hi'><p＼x),

(17) Po^r-h^'Wln^roh^^lo in K{ZP, n).

By the homotopy extension theorem, there exists an extension !~R:R-+K(ZP, n)

of r^h^<ji*＼D.

Since for <;gM with dim<; = tt+ l and aQ^'WUlo]), we have ^Ig^

r°hi°(p*＼da,there exists an extension £n+1: |M(n+1) |―>K(ZP, n) of gR such that

Hence, we can define a map £':^^(l^oDWlM^^ ＼^K(ZP> n) by the fol-

lowing :

f=(r≫/li≪0*|^-i(i3;o,))U^B +i .

Therefore from nq(K(Zp, n))=0 for ^>n, we obtain an extension £: Q―->K{ZP, n)

of f such that 6l^*-i(i3?oi)= r°/zic0*l^*-i(i3?oi).It completes the construction.

Now, we put

h'=£o<p'.X―>K(ZP, n).

Then to complete the proof it suffices to prove

(18) h'＼A^h in K{ZP, n).

First, we shall see that

Let qg/1. By (10), there exist Uu U2, UZ^CU such that

(19) U,r＼U2^9^U2r＼U, and ^o^a^Uu ho°H(a)(EU3.

Then since ho°H(a)=ho°h(a)<Bho(K(Zp, n))Q |f7Zi[, we have <p*°<p(a)^＼mo＼ by

(6).

Hence, by Claim, we have for each a^A h/(a)=£°<p(a) = r°h1°<p*°(p(a).

Therefore, by (1), it suffices to see that

(20) there exists U<=W0 such that /ii≪0*≪y)(a),h(a)(EU.

Let Uu UZ) U3^HJ with the property (19). By (7), there exists W<=W such

that U1＼jU2VJU,Qhjl(W)- By (3) we choose W&W such that h{a), h^ha"h{a)

geW. Therefore, since h(a)^K(Zp, n), there exists U^'W0 such that

h1o<p*o<p(a), h(a)e=st(W', HP)QU .

It completes the proof. □
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5. Approximable dimension

5.1.Definition. A space X has approximable dimension with respect to a

coefficientgroup G of less than and equal to n {abbreviated, a-dimGX^n) pro-

vided that for every polyhedron P, map /: X-^P and open cover HJ of P, there

exist a polyhedron Q and maps <p: X-*Q, <p: Q->P such that

(i) (fry, f)^HJ,

(ii) <j)is (G, n, 10-approximable.

If X is compact, we use compact polyhedron and positive number s instead of

above-mentioned polyhedron and open cover, respectively.

First, we state fundamental inequalities of a-dimG.

5.2. Theorem. For a compact Hausdorff or metrizable space X and an

arbitrary abelian group G, we hold the following inequalities:

c-dimGX^a-dlmGX^dimX.

Proof. The second inequality is trivial. We can see the firstinequality

by the strategy similar to the proof of the sufficiencyin Theorem 3.3, 4.3. □

As we will show in latter sections, our approach of a-dimG gives useful

applications. In general, a-dimG is different from c-dimG (see section 8). How-

ever, in special cases of coefficientgroup G, a-dimG coincides with c-dimG.

5.3. Theorem. // G ―Z or Zp, where p is a prime number, for every com-

pact Hausdorff or metrizable space X,

G-dimG X―c-dimG X.

Proof. From Theorem 3.3, 4.3, 5.2, we see the fact. □

We will use the new notion, approximate (inverse) systems and their limits,

instead of usual inverse systems and inverse limits. They were introduced by

S. Mardesic and L. R. Rubin [17] and took an important role in [18]. We quote

their basic,definitions.

5.4. Definition. An approximate {inverse) system of metric compacta DC―

(Xa, so, Pa,a', A) consists of the followings: A directed ordered set (A, ^); a

compact metric space DCa with a metric d and a real number sa>0; for each

pair a^a' from A, a map pa,a'- Xa'-*Xa> satisfying the following conditions:

(Al) d(pa.a9op pa,a.)^ea,, ax^a2^az; paa=idXn,
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(A2) for every ogA and y}>0, there exists a'^a such that dipa^sPa^,

Paa^fj for every a-^a^a',

(A3) for every oeA and 07>0, there exists a'^a such that for every

a"^a' and every pair of points x, x' of Xa≪, if d(x, x')^Lea'',then

d(paa≫(x),Paa>'(x'))^V.

We refer to the number sa as the meshs of the approximate system DC.

If 7ra:Tia&AXa-^Xa, a^A, denote the projections,we define the limit space

=limX and the natural projections pa: X->Xa as follows:

5.5. Definition. A point x―(xa)^Jla^AXa belongs to X=＼im3£ provided

that for every (keA,

xa=l＼mpaai(xai).
ai

The projections pa: X-*Xa are given by pa=na＼x-

Next we quote results from [17] and [18] needed in this note. The proofs

may be found in them.

5.6. Proposition. Let x=(Xa, sa, Paa<, A) be an approximate system. Then

we have the following properties:

(i) if every Xa is non-empty, then X=＼＼m 2C is a non-empty compact Haus-

dorff space,

(ii) for each a<=A, limttl d(pa, />aa1°/>a1)=0, where d(f,g)=sup{d(f(x),

g(x)):x<=X},

(iii) for each open cover CU of X=＼im3C, there is a&A such that for

every a^a, there exists an open cover ^V of Xai for which pl^ifV)

refines HJ,

(iii') if dimXa^n for all a^A, then dimX^n,

(iv) for every s>0, every compact ANR P and every map h:X-*P, there

is a^A such that for every a{^a, there is a map f:Xa-^P which

satisfies d{f°pa,, k)^2s.

5.7.Proposition. Let X―{Xa, sa,paa,,A) be an approximate system. If

for every a^A, every compact ANR P, and every map h:Xai―*P, there ts

a'i2^axsuch thatfor every a2^a{, thereis a'2^a2 such thatfor every a^a'z,

h°Paiaz°Pa2a3-0,

then every map from Z=lim^ to P is null-homotopic.

Namely, under the above assumptson,the setIX, PI is trivial.
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In the proof of our main result we need the following characterization of

a-dimG by approximate systems.

5.8. Theorem. Let 3C=(Xa, ea, paa', A) be an approximate system of com-

pact polyhedra with the limit X―＼＼mI£ and p be a prime number. Then X has

approximate dimension with respect to G^n if and only if for every a^A and

every s>0, there is a'^a such that for every a">,a', the map paa,,'.Xa≫-*Xa is

(G, n, s)-approximable.

Proof. Suppose that a-＼imGX<,n. Take any a<=A and any positive num-

ber s>0. By (A2), there is a{^a such that

(1) d(paa,°pa.a,,, paa≫)^e/7, a^a'^a" .

Specially,

(10 d{paa.opa.a.*pa.,paa.*pa.)^s/7, a^a'^a".

Hence, by Definition 5.5, we have that

(2) d{paa,°pa,, pa)<£/7, a^aa. .

By the assumption, there is a compact polyhedron Q and maps <p:X―>Q,

(p: Q―>Xa such that

(3) dty'<p, pa)£e/7,

(4) <p is (G, n, s/7)-approximable.

Let take a positive number <5>0 such that

(5) if x, x'zlQ and d(x, x')^5, then d{(p{x), <p(x'))^e/7.

By Proposition 5.6 (iv), there exists a'^ax and a map g: Xa―>Q such that

(6) d(<p,gopa,)^d.

Then, (6), (5), (3) and (2), we see

(7) d(<p°g°pa.,Paa'°Pa')^d{(P°g°Pa,, <J)o<p)+d(<l)<><p,pa)+d(pa, paa'°Pa-)

^3s/7.

Hence we have a neighborhood U of pa<{X) in Xa> such that

(8) d((p"g＼Uf paa'＼u)^e/7.

Then there exists a[>,a' such that

(9) pa'a≫(Xa")QU for every a"^a[.

Bv (8) and (I), we have that for everv a"~>a＼.
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Now we show that paa≫is (G, n, £)-approximable. By (4),take a triangula

tion Ta of Xa which realizes the (G, n, s/7)-approximability of <f>.Let us take

triangulations Ta,, of Xa≫ and M of Q with mesh(M)<Ld. Then we have a

subdivision of T'a,,of Ta≫ and a simplicial approximation h: ＼T'a≪＼-*＼M＼of

g°pa'a" such that

(11) d(h, g°pa,a,,)i^mesh(M)^5.

Hence, by (11),(5) and (10), we have

(12) d(<p°h,paa,)^d{(p°h, <I≫gopa-a')+d(<l)°g*pa>a;£aa≫)^6s/7.

On the other hand, by the property of Ta, there exists a map <p':＼Min)＼-^

＼T{an)＼such that

(13) diijy,̂ |,.＼(n),)^£/7,

(14) for every map £:|T^n)H^(G, n), the map £-<p: |M(B) H^(G, n)

admits a continuous extension over Q.

By Zidn'J'Dg/iCKT'C^DglM^M, we can define the composition f≪/i|,rt≫)|:

|T^)|^|T^>|. Then, by (12) and (13), we have that

(15) d(<p'°h＼XTwu/>aa≪lir<≫>i)^e.

Moreover, by (14), for every map $: |T^,ra)!->/C(G, n), the map $°<p'°h＼＼T{aVi'･

T$}＼^>K(G, n) admits a continuous extension over Xa≫. That is, the map paa>'

is (G, n, s)-approximable.

Conversely, we assume that the condition of Theorem 5.8 is satisfied.

Take a map /: X―>P of X to a compact polyhedron P and a positive number

£>0. By Proposition 5.6 (iv), there exists a^A and a map g: Xa^P such

that

(16) d(f, g°pa)£e/2.

Let <5>0 be a positivenumber such that

(17) if x, x'gI, and d(x, x')£d, then d(g(x),g(x'))£e/2.

By the same way in the firstpart of the proof, we can find a'^a such that

(18) d(paa,,°pa,,,pa)^d for every a"^a'.

Then we take a"^a' such that

(19) the map paa≪'-Xa≫-*Xa is (G, n, 5)-approximab!e

By (18),(17) and (16),
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(20) d(f, g°Paa≫°Pa≫)^d{f,go /,o)+ d{g°P a, g -p aa≫°P a")

£e/2+£/2<e.

Hence it suffices to show that g°paa><is (G, n, s)-approximabSe. Let M be a

triangulation of P with mesh(M)^e/2. Let Ta be a triangulation of Za which

realizes the (G, ft,<5)-approximability of £aa≫. Then for any triangulation of

Ta. of Xa,,, there is a map <p: ＼T<aV＼-*＼Tlan>＼such that

(21) d((p,paa*＼Tl$h)^8,

(22) for any map £:IT^^-^^CG, n), the map £°<padmits a continuous

extension over Xa≫.

On the other hand, we have a subdivision T'a of Ta and a simplicial map

h: Xa-+P with respect to T^ and M such that

(23) d(h,g)£s/2.

From paT^I^ITTMSlCW0! and /i(|(T;)<B)|)£|M(B)|, we have the map

<p: ＼TiV＼-+＼Mln>＼defined by <fKz)=h°<p(z).Then by (21),(17) and (23),

(24) d(g°paa,,,<p)<d(g°paa,,,g-<p)+d(go<p, h"(p)^e/2+e/2=e .

For any map £:|M(n) ＼-+K(G, n), consider the map |°/iir^n>i:＼T(an)[―>K(G, n).

Then, by (22), there is a map C: Xa≫―*K(G, n) such that

(25) Clir^)i=^°(^lir<[B)i)1>9>lir^)i･

Namely, the map £≫</>has a continuous extension over Xa≪. It follows that

g°paa" is (G, n, e)-approximable. Therefore, we have a-dimGXf^n. O

5.9.Corollary. Let T = (Xa, ea,paa>,A) be an approximate system of

compact polyhedra with thelimit X=＼＼m2C. Let G ―Z or Zv. Then c-dimGX

^n if and onlyif for every a^A and every e>0, thereexistsa'^a such that

for every a"^a', the map pa'a≫:Xa,,―>Xais (G, n, s)-approximahle.

In the latter we need the following property.

5.10. Theorem. Let X be a compact space of a-dlmG X^n^l. Then there

is an approximate system 3C―{Xa, ea, paa', A) with lim 3C―X such that for every

a^A and every pair a^a' from A,

(1) Xa is a compact polyhedron with a metric d = da^l,

(ii) dim Xa^n,

(iii) paa' ' Xa'―*Xa is a surjective PL-map, and

(iv) card(A)<(o(X).
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Proof. By [18, Theorem 1, Proposition 12], it is known that every com-

pact space X admits an approximate system DC=(Xa, sa, Paa', A) of compact

polyhedra with lim 3£=X satisfying the conditions (i),(iii)and (iv). Suppose

that the subset A0={a^A: dimZa<n} is cofinal in A. Then for any a<EzA,

let take a'^A0 with a'^a. Then for any positive number s>0, the map

paa''.Xa―>Xa is (G, ti―1, s)-approximable. Hence for every a"^a', the map

paa≪-Xa≫―>Xa is (G, n ―1, e)-approximable. By Theorem 5.8, a-dimGX^n ―1.

But it is a contradiction. Thus, tne subset Ao is not cofinal. Therefore it

sufficesto consider the subsystem of T. which is indexed by the set A＼A0. O

6. Resolutions for compact spaces

We quote our main theorem as follows:

6.1. Theorem. Let X be a compact space having approximate dimension

with respect to G of less than and equal ton. Then there exists a compact space

Z of dim Z^n and w(Z)^w(X), and a surjective UVn~1-map f: Z^X such that

for every xel, the set ＼_f~＼x),K(G, ≪)] of homotopy classesis trivial.

Our proof essentially depends on Mardesic-Rubin's way [18]. First, we in-

troduce the notion of the n-dimensional core Zh and the stacked n-dimensional

core of a complex L from [18]. The detail is omitted here.

Let L be a finite complex and let n be a nonnegative integer. Let L, U,

L", ･･･, Lk, ･･･ be the iterated subdivisions of L. For each k^Q, choose a sim-

plicial approximation qkk+i'- ＼Lk+1＼^＼Lk＼ of the identity idL: ＼L＼― ＼Lk+l＼-^＼Lk＼,

and let qkk+j=qkk +i°･･･°qk+j-ik+j'-＼Lk+j＼->＼Lk＼. Then qkk+j is also a simplicial

approximation of idL. Hence we have

(1) d(qkk+j, idL)£mesh(Lk) for /^l,

(2) qkk+j((Lk+iyn>mLkyn> for 7>1.

Therefore we have an inverse sequence of polyhedra

X=(＼(Lkyn>＼, qkk +l).

Then n-dimensional core of L is defined as the inverse limit

(3) Zi=lim X .

Clearly, we have

(4) dim ZL^n.

Let qk: ZL―>|(Lfe)(re)| be the projections. They by the Sperner's lemma
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each qkk
+i is surjective, and

thereby, all of qkk+j and qk are surjective. More-

over, by (1),

(5) d(qk, qk+j)^mesh(Lk) for ;2>1 in | L .

Hence {qk＼
kil

is a Cauchy sequence of map from ZL to |L|, because of

lim mesh(Lk)=0. Therefore we have the map fL: ZL-^＼L＼ given by

(6) /i=lim qk .

Then by (3), we see

(7) d(fL, qk)^mesh(Lk).

Moreover, qk is surjective and lim mesh(Lk)=0. Hence /i(Zl) is dense in ＼L＼,

and thereby //, is surjective.

Next, in order to describe the stacked n-dimensional core of L, we define

a new inverse sequence as follows: for each & = 0, 1, 2, ･･･,

(8)

Hence

(9)

The bonding maps qfk

L** = L(B)c(L')(n)c ■･･c(£*)(n)

+ 1

(10)

|L**+1! = |L**|c!(Z-*+1)(n)|.

L** +1|―>|L**| are given by

f x if x(E＼L*k＼,

qkh +l{X)[
qkkAx) if xe|(L*+I)(n)

We define the stacked n-dimensional core Z* as the inverse limit of the inverse

sequence X*=(＼L*k＼, qtb+i),

(11) Zl=YimX*=(R＼{Lk)^＼)＼JZL

and denote the natural projections by qf: Z*―>|L**|. Then

(12) dim Zf^n .

Moreover we note the following properties:

(13) ZL^Zf and ＼L*k＼<^Zffor every k>0,

(14) qf＼＼(Lk+j)(n)＼=qkk+jfor j^>l,

(15) qt＼zL=qk.

By (15),(5) and the definitionof qfk+1,

(16) d(qt, qf+j)^mesh(Lk) for /^l in |L ＼

Hence {of} k>i is a Cauchy sequence of maps from Z* to ＼L＼,and therefore we
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have the map ft' Z*-≫IL | definedby

(17) /2=lim qt.

Then we know that

(18) d(ft,qf)£mesh(Lk),

(19) ft＼＼iLh>wlis the inclusionof ＼(Lk)ln)＼into ＼L＼,

(20) ft＼zL=fL.

We note thatif we have a metric rfon ＼L＼such that diam(|L|)^l, then

we can choose metrics d* on Zf and dk in ＼L*k＼such that diam(ZJ)^l,

diam(|L**|)^l and

(21) dHqfix), n*(x'))<d*(x,x') for x, x'<=Zt, k^O.

Proof of Theorem 6.1. Let take an approximate system 2£=(Xa, ea,paa', A)

with the limit lim T.―X which satisfiesthe conditions (i)-(iv)in Theorem 5.10.

Moreover, for each a^A, we may choose a triangulation La of Xa such that

(v) 6-mesh(La)^sa.

As the proof as in [18], we will define a new ordering <' in A. We con-

sider the following three conditions for ax<a2 and any integer kl>0:

(1) d(paia.°pa,a,,,paia,,)£mesh(Lkai)for a2£a'^a≫, .

(2) if d{x, x')^sa,, for x, x'eXa,,, then for a2^a", d(paia*(x),paia*(x'))^

mesh(Lkai)

(3) the map paia≫is (G, n, mes/iCL^-approximable for a2^a".

Now we put <2i<'a2 provided that ax<a2 and the conditions (l)-(3)hold for

k=0. Then the ordering <' on A satisfiesthe following conditions:

(4) if <31</a2, then ax<a2,

(5) if a1</a2 and a.2^a3, then ai<'a3,

(6) for any asA, there is c'gA such that a<'a'.

Hence A'=(A, <') is a directed set with no maximal element. We note that

by Theorem 5.8, for any a^A and integer ^^0, there exists a2 '>di such that

the conditions (l)-(3)hold. Moreover,

(7) if a1<'a2, then the set of allintegers k^O, which satisfy the condition

(2), is finite.

Hence, for each pair a1</a2, by (7), there is a maximal integer such that the

conditions (l)-(3) hold. We denote the integer by k(au o2). Clearly we have

the following properties:

(8) if ax<'a2, d{paia.°pa.,pai)^mesh(Lka＼a^a^) for a'^a2,

(9) if a,<'az and a2<a3, k(au a2)£k(au a3),
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(10) for any a^A and integer &2>0, there is a2 '>fli such that k(au a?)~^k.

For each pair a1</a2, by (6) and the definition of k(au a2), we have a map

gaia2: ＼L<a＼)＼^＼(Lkaiyn)＼,where k = k(au a2), such that

(11) d(gaia2, paia2＼＼(Lkai)Wi)<2-mesh(Lkai),

(12) for any map £: |(L*ai)(n)|-≫/f(G, n), the map £o£0la8 admits a con-

tinuous extension over ＼La2＼=Xaz-

Now, for each a<=A', we define

(13) Zt=Zta ■

For ai<a2, the maps raia2' Zt2-^Zt1 are given by

V^iJ ^0^2 ―§ala,2°Qoa.2>

where <?fa2:ZJa^ [Z,^> | is the map qt: Zf
02-^

|L^} |. Note that

(15) raia2(Z*2)g|(L*air>|, ^ = ^(a1; a2).

By the same way as in [18, Lemma 7], we have that

(16) Z=(Z%, ea, raa', A') is approximate system of non-empty metric com-

pacta Z% of dimZJfSn.

Therefore, by Proposition 5.6 (i), (iii'),the limit Z=lim Z is a non-empty com-

pact space of dimZ^n and of G)(Z)^card(y4)^o;(J^). Let ra: Z-~>Zt be the

projections.

For each a^A, by ft, we denote the map fta ･ Zt―Zta―>＼La＼―Xa. Then

by the same way as in [18], we can find the map /: Z-^X such that

(17) ftara-pa°f for each ae.4.

Next we show that the map / satisfies the required condition. Let take a

given point xgZ. For each a^A, put

(18) xa = pa(x)

(19) Na = Na(x)={yGXa: d(xa, y)£ea},

(20) Ma=Ma(x)=fr＼Na).

Then, by [18, Lemma 12 and 14], we can see that

(21) tn(x)=(Na, sa, Paa', A') is an approximate system of non-empty com-

pact spaces with the limit {x), and

(22)
<3H(x)=(Ma,

sa, raa>, A') is an approximate system of non-empty com-

pact spaces with the limit f~＼x).

Claim 1. f is a UVn-1-map.

Proof of Claim 1. For any a1} let take a2 r>ax. Since Na is a neighbor
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hood of xa2 in the polyhedron Xa2, there is a closed polyhedral neighborhood U

of xa2 in Na2 such that

(23) U is contractible.

Hence we may assume that

(24) U=＼T＼, where T is a subcomplex of the ;-th barycentric subdivision

Li2 of La2 for sufficientlylarge /.

Then, by the proof of [18, Lemma 17], there is a3 '>a2 such that

(25) ratat(Mat)£＼T＼.

By (9), taking a sufficientlylarge az if necessary, we may assume that for some

/^Q, the l-th barycentric subdivision Tl of T is a subcomplex of L^(2a2'as＼

Hence,

(26) IK'InKU^'^rNKTTl for every m^O.

Moreover, by (23) and (24),

(27)

For any map

(28)

By (27),

(29)

tfm(ICri)CB)|)=?rm(|r|)=O if m<n.

a: Sm^Mas, l^m^n-1, by (25), (14) and (26),

≪(Sm)g |r |n ＼{Lka{^-a^)w | g(TJ)cn) I g IT | QNa.,

r≪,.,-a = O in ＼(T1)

Considering ＼(Tl)w＼g |(L*a<8°*as>)CB)|gZ*2, by [18, Lemma 17],

(30) raia2(＼(Tir'mMai.

By (29) and (30), we have that

(31) raia2°ra2a&°a^Q in Mai .

It follows that f~＼x)is UVm-connected for mfSn ―1. We complete the proof

of Claim 1.

Claim 2. The set [_f~l(x),K{G, n)] fs trivialfor every jcgX.

Proof of Claim 2. By Proposition 5.7, it sufficesto show that for every

a^A' and every map £:Mai-^K(G, n),

(32) |°raia2°ra2(l3=;0.

Here we use the same notation as in the proof of Claim 1, so indexes a2 and

a
3 are taken as

in the proof of Claim 1.
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By (12), we can find a continuous extension £: ＼Laj＼-*K{G, n) of £°gaia2-

Since qoa2＼HLk(a2,aS)^n^ is the restriction of a simplicial approximation <$.u2,a3>:

＼Lka^-a^＼^＼Laz＼ of id＼La ,, by the homotopy extension theorem, the restriction

%°ra1az＼＼<.Ti)(nh:=£°ga1a2aq*a2＼＼(Th(n)＼admits a continuous extension rj:＼(Tl)＼=

U-~>K(G, n). Then by (23), we have ^0. Particularly, since by the same

way as in (28), we can see that ra2H(Ma;)Q ＼(Tl)w＼, by (34), we have that

(32) £-rOlBt.raie, = 0.

It complete the proof of Claim 2 and it follows Theorem. □

7. Resolutions for metrizable spaces

By a polyhedron we mean the space ＼K＼of a simplicial complex K with

the Whitehead topology (denoted by ＼K＼W). We may define a topology for ＼K＼

by means of a uniformity in [Appendix, 221 (denoted by ＼K＼U).

7.1. Theorem. Let X be a metrizable space having approximate dimension

with respect to an abelian group G of less than and equal to n. Then there exist

an n-dimensional metrizable space Z and a perfect UV "1 -surjectionit: Z^X

such thatfor x<=X, the set [n~＼x),K(G, n)] of homotopy classesis trivial.

Proof. The strategy is like the construction of Walsh-Rubin-Schapiro [24,

22].

Let d be a metric for X and let {IJi'.z'eiVw{0}} be a sequence of open

covers of X, where each HJi consists of all l/(z+ l)-neighborhoods.

First, we shall construct the followings:

Open covers ^Vi of X whose nerves JlifVi) are locally finite dimensional,

maps bt: X^>＼m(<=Vt)＼for *^0, ft, /il^C^I-H^W-i)! for^l and sequences

mi ]<=Nu{0} of subdivisions of m(<Vd for i^O such that

(1) Si+1<*Si for ;^0,

(2) bt is normal with respect to b^(si) and m{ for ;^0,

(3) /f: 3Z?-*3Zi_iis simplicial for i^l,

(4) fi'bt is .^Li-modification of bt.u 0<j^3 for i^l,

(5) fi maps each compact set in ＼cJli＼uonto a compact set in ＼'Jli_l＼uwhich

is contained in a finite union of simplexes of cJli-lt

(6) Sl<f-t＼SU) for i^l,

(7) Skt<fi＼Skt±X)for k^l and JKyTW!) for ^^4,

(8) cvKVtAbTlyiS'i^AbTltiSLJA - A^1^?'),

where we regard l37i|M as the uniform space with the uniform topology induced
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by the uniform base {S{}f^0.

Further, we shall construct continuous (w. r.t. the Whitehead topology), uni-

formly continuous (w. r. t. the uniform topology) PL-maps gt: ＼(3lf)in)|―H(3?Li)(n)

such that

(9) for each fe|(32?)(B)|, there exist a, re37?_! such that ft(t)^a, gi(t)<Ez

and am^R,

(10) for any map a: ＼{Jl＼_l)<-n)＼w-^K(G,n), there exists an extension

j8: ＼myn+1>＼w^K(G, n) of a°gi: IOz?)(B)U^I(^-i)(B)L-*-^(G, n),

(11) for each xe|3Zt|, gt(st(x, S＼)r＼＼(m＼Yn)＼)is a Whitehead (i.e. finite;

compact polyhedral subset of !.72i_i|.

Let us start the construction. We take an open refinement ^o of 1/0 in A

whose nerve m(pso) is locally finite dimensional and ^-normal map b0: X―>

72(q/0)|. We define 3*£to be a subdivision of Sd2^(<^0) for ;=0, 1, 2 with

.S^^o"1. By using [22, Proposition A.3], for the cover eo= {st(x, SI): ig

[^(^o)!}, we obtain an open cover ^0 of ＼Jl(cV0)＼and a PL, 7Zo-modification

r0: | ?Z^!-> 1ml | of the identity such that

(12)0 ro(C＼B) is compact for Be50)

(13)0 Cl B＼Jro(C＼B)^E for some E(E£0.

Since b0 is (G, w)-cohomological, from the similar argument to the proof of

the necessity in Theorem 4.3 we can take the followings:

Subdivision Jl＼ of Sd2 Jit, locally finite open cover cvv of X and maps

br- X― ＼JlifVi)|,/f: 13Z(cVi)H!^oI such that

(14), SK*S2oA4o,

(15)! cvK^iA^o1^),

(16)i bx is ci/i-normal,

(17)t f*°bx is f77o-modification of 60,

(18)i for each a^JK^-Vx), there exists U<=$tSl such that bo{b＼＼a))＼Jff(o)

(19)i for any triangulation M of 132(^01, there exists a PL-map //: ＼Min)＼

＼(m3oyn)＼such that

(i) (Pf, /f!,M(n),)^{sTU, 32§):^e32g},

(ii) for any map a: ＼(JllYn)＼-*K(G, n), there exists an extension

jS: |M(n+1)H/iC(G, n) of ≪≫/,'.

Let mi+1 denote a subdivision of Sd2 mi with ^+I<**So for ;>3.

Now, let |!^g|m denote |S^| with the metric topology [19, p. 301]. Then

there is a ftg-modification /,: I^olm-^I^SU of the identity function [19, p. 302].

By the simplicial approximation theorem, we obtain a subdivision !/2x of 7l(fVx)

and a simplicial approximation fx: Jlx~+7llof />/*. Let 32? denote m^ Then
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by the simpliciality of fx and (17)x, we have

(20) S＼<f-x＼S%),

(21) fxabx is ^-modification of b0.

We take a subdivisions Jl{+1 of cJl＼for /=0, 1 such that

(22) S{+l<*S{ for ; = 0, 1,

(23) .SK/lW8) for ; = 1, 2,

(24) .TZKSd^/Z? for y=l, 2.

By using Lemma [22, Proposition A.3], for the cover ei={sX{x, S＼)＼xe

Vlx＼), we obtain an open cover &x of ^JlifV^ and a PL, ^^-modification

rx: |32?|―>|3Z?| of the identity map such that

(12)! rx{Z＼B) is compact for fles,,

(13)! ClfiWr^Cl^gE for some ££5,.

Since 6X is (G, n)-cohomological, from the similar argument to the proof of

the necessity in Theorem 4.3 we can take the followings:

Subdivision -Jl＼of Sd2 Jl＼,locally finite open cover cv2 of X and maps

b2: X^ 127(cv2)|, f% : |m(<V2) ＼-> ＼cJl＼＼such that

(14)2 S＼<*SlA<BiAf-i＼Sl),

(15)2 cV^VzAb-^SDAb-oKSt),

(16)2 &2 is cVa-normal,

(17)2 f*°b2 is ^f-modification of bu

(18)2 for each <re32(cv2), there exists f/estJ? such that b^b^a))^fi{a)

(19)2 for any triangulation M of |3?(cl;2)|, there exists a PL-map />':|M(7l)

^|(^D(n)l such that

(i) (/>',/?li*cn)i)^{sE(^ ^!):^e^g},

(ii) for any map a: |(?2?)c )＼-+K(G, n), there exists an extension

/3: |M(n+1)H^(G, ≪) of aop'.

Now, by using (19)x about the triangulation 7l＼of j^cTA)!, we obtain a

PL-map gf: |(3l!)""hl(3lS)tIl)| such that

(25)x (g% tf＼um＼^^{m, mD'.X^ml),

(26)x for any map a: ＼{ml){n)＼―>/C(G, n), there exists an extension

]8: |(^!)(B+1)|―/T(G, n) of ≪.^f.

Consider the inclusion map ?0:(y?o)(n)i^l^ol and the composition

/V*>£?: IW)WH>|(^)(re)|c^->|^! = !^(ci/0)|-^|^(q;0)|.

The image /I of the PL-map ro^'o0^* has dimension <Ln. Then we can take a

^^-modification s0: ^-^|(^^)(n)| of the inclusion map Ac^＼ml＼. Let gt: |(^D(n)l

―>|(f7Zo)(7l)I denote the composition map so°ro°to°g*.
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Then this has the following properties:

Claim 1.

(9)i for each fe |(3??)(B>|, there exist a, t^ml such that /i(()6≪r, gi(f)Gr

aud ar＼T^9,

(10)! for any map a: ＼(ml)(n)＼^K(G, n) there exist an extension /3: ＼(mlYn+1)＼

~^K{G, n) of a°gu

(ll)i for each jte|9Zi|, ^i(st(x,
<5f)n|(3Z5)(n)|) ≪

a Whitehead {i.e. finite)

compact polyhedral subset of ＼Ulo＼.

Proof of Claim 1. We show the property(9)i. LeUe |(32f)(n)|.

there exist a, X, r^Jll such that ff(t)^a, g%t)<Et and ar＼^^lC＼t

assume that X=＼v0,vx＼,vo^a and ^gt.

By (25)!,

We may

Since /, is ^-modification of the identity function, we have ja°f^(t)^a.

Since fx is simplicial approximation of jo°f*, we have f^t^a.

Select z^Jlt with rEr. Since r0 is ^-modification of the identity map, we

have r0<>io0g*(t)<=T. Further since s0 is ^-modification of Ac^＼7ll＼ and 31l-^cJl%,

we have £i(0=Soor0≫*>£*(Oer.

Case 1. Vl^(miy°> (i.e. ^ef'01).

By 3ZJKSdB37§, we have vo(£(cJl2o)w.Hence, there exists y^ml such that

|fo, vx＼^j and voelnt?'. Then if a^Tll with <rgff, we have J<.a. Therefore

we have ar＼z^9, fi(t)^a and g^t)^?.

Case 2. v1^(m2oyo).

If i;oe(^g)(O), the proof is similar to Case 1. Let vo<£(Wl)w. By ml<$d2ml

there exist y0, jx^Jll such that yoeInt^O) fielnt^i and ro^i or T^To- Then

if cre^o with <7?=cf, we have 70-<cf. Similarly, we have ji-Kz. Therefore we

have dn?^0, /i(f)Gff and g^t)^?.

By gf^gi, we can see the property (10)i by the homotopy extension theo-

rem and (26)!.

We show the property (ll)i. First, we shall see that

(27) £?(st(x,Sf)r＼＼(m＼yni＼)QB for some SeSSo.

Let st(x, SI) be represented by ＼J{sE(va,9?!):≪e^L}. There exists ax^m＼

with x sinter*.

For each asA, we choose aa^3ll such that ffx<>≪ and yae<ra. Further

we select minimum and maximal dimensional simplexes rx, Ta^3fi with tx^Ta

respectively such that ax^tx and aaQra.

If (T^glntrx, we have si(va, m＼)^za from yffelntr≪. Then there exists a
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vertex v<=cJl＼such that ＼JaTa^st(v, mf). Since fx is the simplicial map from

ml to ml, we have /i(Ua r≪)g/1(st(y, m^Qs^f^v), 32g). By the nearness be-

tween /j and gf (see proof of (9)0 and (14)x, we obtain

(28) £?(st(x, ^nKW'D^stCsECACi;), 328),Sl)QB for some 5gJ0.

If axr＼dtx^ and a^nlnt r^^0, we choose a face tx with rj^Tj such that

Gxr＼dTx^Tx. Then there exists a vertex i;g?, such that ＼Jast(y≪,32f)^st(t.',???).

Hence we have (28) in the same way.

Since st(x, Sf)r＼＼(tn＼Yn)＼is a subpolyhedron of ＼J11＼and gf is a PL-map,

we see that g?(st(x, S＼)r＼＼{m＼Yn)＼)is a subpolyhedron of |3ZOI- Then by (27)

and (12)0, ro°io°g*(st(x,Si)r＼＼(miyn)|) is a subpolyhedron of |370] and a compact

set of |320|u>. Since s0 is a PL-map, we have see the property (ll)x.

Now, we shall take a base for a uniformity for |32i|. We choose a sub-

divisions Vl{ for y^4 of VIi such that

(29) 32{+1<Sd2 mj for y^3?

(30) ^i'+K*^i for 7^3,

(31) #+1</lW4)A/rW4)A£r{+< for j>3,

where 3{+i is defined as follows. gl＼Si+ir＼＼(V2lYn)|) is the open cover of

I(3Z?)(b)I≪m Extend it to an open cover <3{+i of |9Zi|≪,. Then clearly the uni-

formity make fu /* and gt uniformly continuous.

We shall show that fx holds the property (5). First, note that the com-

position

Jo°lU°J ! '. VJi＼u > |VIo u > |3^0 m > ^0 w ;

where /rf: |VUI
≪~^

I^01 m is the identity map, is continuous.

Let K be a compact set of ＼Vli＼u- There exist au ■■■, at^Vl0 such that

Jo°f*(K)=:Jo°id°f:f(K)t^o1＼J ■■･Wo-;. Since fx is a simplicial approximation of

/o°/T> we have f1(K)^a1＼J ■■■＼Jat. By the continuity of fu fi(K) is a compact

set of | Vl01,.

As we proceed in this work, we have Q7U /f, fu Jl{ and ^f with the pro-

perties (l)-(ll).

From now on, we consider X to be the uniform space with the uniformity

generated by the sequence {q/J^Lo of open covers of X and |3Zj| to be the

uniform space with the uniformity generated by the sequence {S{}J=0. Then by

the construction, the topology induced by {^iJT^o and the original metric topo-

logy are identical.

We shall construct the resolution of X. The construction essentially de-

pends on Rubin-Schapiro's way [221. Hence, the detail is omitted here.
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For ys^O, let fj,j denote the identity on 71j and let fitj denote the com-

position fJ+lo ■■■≫ft:|3Zi|-≫|^| for z>/.

The functions

bt:(X, {^}?=o)―*(l^il, {Si}7=o)

and

fui.i- (l^uil, {<S*+1}"=o)―-*(|3Zil,{$}?=o)

are uniformly continuous for z"2sO. Then since the sequence {fi,j°bi}T=jis

Cauchy in the uniform space C(X, ＼71j|u) with the uniformity of uniform con-

vergence, we have a uniformly continuous, limit map

/,.j= Urn /,.jobq:(X, {<Vi)?≪o)―> (ItnjI,{cS}}r=o),

such that

(32) fo°,jis ^-modification of 6,-,

(33) (f*.j, b,)£S),

(34) /Mii is a topological irreducible (i.e. surjective) map relative to VI),

(35) /1+1.io/eo.i+1= /≪,.tfor ^0.

We consider n"=o 13211≪to be the uniform space by the product uniformity.

Note that ＼jm{＼Vlj＼u,fi+ui} is a non-empty subspace by the property (34).

Then by (35), there exist a uniformly continuous map fw: X-+＼jm＼7li＼u

with /M,i―pri'>f'wand especially the map fw is a uniformly embedding onto a

dense subset f
W(X)

in Hm|^jU, where prx: IIf=ol^^|≪->|37i|, is the natural

projection.

Let Z denote the limit of the inverse sequence {|(^D(n)L, £1+1,J- Then

we consider Z to be the sub-uniform space of the uniform space ITiUl^iL-

Note that Z has dimension <^n.

We begin with a description of the map tt. For /2:0, a uniformly con-

tinuous map tcj＼Z―>n<°=o|3ZiLis defined by

Xj(z)=(fj,o(Zj),fj.i(zj),■･■,fj.j-i(zf),zjt zj+i,･･･)

for :=(zj)gZ and let 7r0be the inclusion map. Then since the sequence {^^}JL0

is Cauchy in C(Z, JlT=o＼71i＼u), there is a uniformly continuous, limit map

■k: Z―>n?=o132<Iu- Then the map tt is proper from Z into 14m{|32f|u, fi+i,i}

([22, p. 239]). We must show that n~＼x)is a UV^^set and the set [tc-＼x),

K(G, ri)]is trivialfor x<=:＼＼m{＼7li＼,, /i+1,i}.

For x=(xi)el<im{|5'2i|u, /i+1,i},let 8N{xt) and sN{xt) denote st(Xj,.s?)and

st(Xj,cSf),respectively. Then we have the following properties [22] : for x=

(xi)el<im{|.7Zi|≪,fui,i),

(36) 5-i,i_1(5Mxi)n|(.7??)(n)|)g£iV(xi_1),
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(37) Um{eM*≪)n|(32?)(ll>l, gi,i-iU=n-＼x)=^m{dN(xi)n＼(m＼)w＼, gt.^L}.

By Sl^Sl, there exists F<e<Sj such that st(*<,S＼)^Fi. Further, by S＼<,Su

there is a S<=S＼ such that F^S. Hence we have the contractible set Ft such

that

(38) eMxjQFiQdNCxt).

Claim 2. x-＼x) is a UV^'-set for for x=(xi)elim{|.72i| u> fi+lii}

Proof of Claim 2. It sufficesto show that the map

gi+ui I...:SN(mi+1)n Im+1yn) I ―> dN(xt)n Im)(n)!

induces a zero homomorphism of homotopy group of dimension less than n. By

(36) and (38), we have

Si+i.i(8N(x+1)n I(mUYn) 1)SF,n I(^f)cn)IQdN(xt)r＼ I(^?)(n)I･

Since F; is contractible, we have

?r*(Fin|OZi)(B)|)=0 for ^<n.

Therefore ^r≪+i,*I...induces a zero homomorphism of homotopy group of dimen-

oinn Iaoc than n

Claim 3. [ff'X*), K(G, n)]≪//n(^-1(^); G) is trivial for x<Eljm{|3Z;|u, fi+i,t}.

Proof of Claim 3. By (11), (36), (37) and the continuity of Cech cohomo-

logy, we have

H＼tc-＼x); G)≪lji5{//B(^,i_1(eN(x()n|(^)(B)U); G), #,.<_!|*}.

Hence it suffices to show that

is the zero homomorphism.

Let Gt.i-i denotes gi.i-i(eN(xt)r＼＼(m＼yn)＼u). Then by (11) the subspace

Gi.t-i of |(9Z?_i)(B)l≪and the subspace G<.i_iOf |(3Z?_i)(B)L is identical. Hence

from now on, we may consider that GiA^ is the subspace of |(32?_i)(")I u>-

Let [a]G[Gi,j_i, /C(G, ≪)]. Then from Tcq(K(G, n))=0 for q<n, there exists

an extension ≪: |(^Z|_i)(7i)|
^―>/T(G,

n) of a. By (10), we have an extension

j8: |(W+1>L-tf(G, n) of do^.^Jc^..

Since Ft is the contractible set, Ftr＼＼(m＼)in)＼wis contractible in Ftr＼

I(W+1)U. Hence, there exists a homotopy H: (Fir＼＼(JllYn)＼w)Xl―Fir＼

|(!T/|)(n+1)| w such that i/0 is the inclusion map and Hx is a constant map. Since
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Gi+l,iQ£N(Xi)r＼＼(miyn)＼w^Fin＼(mlYn) ＼
W)

we can define the following composi-

tions:

&=P*iioH'h: Gi+1,iX/<=-*(FfPi|O2?)<B)U)X/-^Fin|(32?)(B+1)U

(=-―>!W+1)U―>K(G, n),

where ix and i% are the inclusion maps.

Then we have #o=j8|G<+1.t=≪0£i.i-ilGi+1.<and -^i=a constant. It completes

the proof of Claim 3. Then the map

is a desired one for Theorem. □

8. Summary

From Theorem 6.1,7.1,we have the followingtheorem.

8.1. Theorem. Let X be a compact Hausdorff or metrizable space and n be

a natural number. Then the following conditions are equivalent,respectively:

(i) X has cohomological dimension with respect to Zp of less than and equal

to n,

(ii) X is a continuous or perfect image of an n-dimensional compact Haus-

dorff or metrizable space Z under an acyclic map n in the sense of

cohomology with coefficientin Zp>

(iii) there exists an n-dimensional compact Hausdorff or metrizavle space Z

and a continuous or perfect XJVn~i-surjectioni:: Z-+X such that for

x(EX, Hn(n-＼x)',Zp) is trivial.

Proof. We can easily see the implication (iii)=Xii). The implication (ii)=?

(i)is a corollary to the classicalVietoris-Begle's theorem. We have the impli-

cation (i)=Xiii)from Theorem 6.1, 7.1. D

Although cohomological dimension with respect to Z or Zp is characterized

by the existence of acyclic resolutions, we have an unexpected fact about co-

homological dimension with respect to Q.

8.2. Theorem (Shchepin). Let X be a compact space of c-dimQX£l. If X

admits an acyclic resolution,that is, there existsa compact space Z of dimZ^l

and a map /: Z-^X such that H*(f~＼x);Q)=0 for all x^X, then dimZ^l.

PROOF. By dim/-1(^)^dimZ<l, H＼f'＼x)＼Z) is torsion free. Hence, by
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the universal coefficient theorem for Cech cohomology groups, we have that

H＼f-＼x); Z)=0. Therefore we have H*(f~＼x); Z)=0 for all x(=X. It follows

that c-dimzX^c-dimz Z=dim Z ―＼. Particularly, we have dimX=l. D

8.3. Corollary. For each n=2, 3, ･･･,°o,there existsan n-dimensional com-

pact metric space X(n) such that

l = c-dimQ X(n)<a-dimQ X{n).

Proof. For each n=2, 3,■･･,oo, by [6, Theorem 2.1], there exists an n-

dimensional compact metric space Xin) of c-dimQ^(n)=l. If a-dimQX(n)^l,

by Theorem 6.1, there exists a compact metric space Z of dimZ^l and a map

/: Z->X such that H*(f-＼x); Q)=0 for all xel Then by Theorem 8.2, we

have dim^Y(w)^l. But it is a contradiction. Therefore a-dimQZ(n)>l. D

L
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