# A UNIFIED APPROACH OF CHARACTERIZATIONS AND RESOLUTIONS FOR COHOMOLOGICAL DIMENSION MODULO $p$ 

Dedicated to Professor Akihiro Okuyama on his 60th birthday

## By

## Akira Koyama and Katsuya Yokoi


#### Abstract

We prove characterization and resolution theorems for compact spaces and metrizable spaces with respect to cohomological dimension modulo $p$.


## 1. Introduction and preliminary

In the last ten years, cohomological dimension theory has striking development. A motivation of the development is surely the Edwards-Walsh theorem, [24], as follows:
1.1. Theorem. Every compact metric space $X$ of cohomological dimension $c$ - $\operatorname{dim}_{Z} X \leqq n$ (integer coefficient) is the image of a cell-like map $f: Z \rightarrow X$ from a compact metric space $Z$ of $\operatorname{dim} Z \leqq n$.

Not only the result but also techniques of the proof gave an important influence to the development. After them, L. R. Rubin and P. J. Schapiro [22] showed the noncompact version of the Edwards-Walsh theorem and S. Mardešic and L. R. Rubin [17] gave the nonmetrizable version. On the other hand, A.N. Dranishnikov, [5] and [6], characterized cohomological dimension with respect to $Z_{p}$ by the Edwards-Walsh's way and showed the Edwards-Walsh-like theorem :
1.2. Theorem. Every compact metric space $X$ of cohomological dimension with respect to $\boldsymbol{Z}_{p}, c-\operatorname{dim}_{z_{p}} X \leqq n$, is the image of a map $f: Z \rightarrow X$ from a compact metric space $Z$ of $\operatorname{dim} Z \leqq n$ whose fibers are acyclic modulo $p$.

[^0]Motivated above results and Mardešić's characterization of $c$ - $\operatorname{dim}_{Z} X \leqq n$, we will show a characterization of $c-\operatorname{dim}_{z_{p}} X \leqq n$ for both nonmetrizable and noncompact cases. Using the characterization, we will give the existence of an acyclic resolution modulo $p$. In fact, our characterization suggests a dimensionlike function, called approximable dimension, and can obtain the following more general results.
1.3. Theorem. Let $X$ be a compact Hausdorff space or a metrizable space having approximable dimension with respect to an arbitrary coefficients $G \leqq n$. Then there exists a proper map $f: Z \rightarrow X$ from a compact Hausdorff space or a metrizable space $Z$, respectively, of $\operatorname{dim} Z \leqq n$ and $w(Z) \leqq w(X)$ onto $X$ such that $H^{*}\left(f^{-1}(x) ; G\right)=0$ for all $x \in X$.

As its consequence, we have both nonmetrizable and noncompact versions of Theorems 1.1 and 1.2. We may call such a mapping $f$ an acyclic resolution of $X$ (with respect to $G$ ), specially, in the case of $G=\boldsymbol{Z}_{p}$, an acyclic resolution of $X$ modulo $p$. Finally we will note that there exists a compact metric space $X$ of $c-\operatorname{dim}_{Q} X=1$ which does not admit an acyclic resolution with respect to $\boldsymbol{Q}$. Thereby we can see that approximable dimension is different from cohomological dimension and Theorem 1.3 is a good property obtained from approximable dimension.

In this paper, we mean the definition of cohomological dimension as follows: the cohomological dimension of a space $X$ with respect to a coefficient group $G$ is less than and equal to $n$, denoted by $c-\operatorname{dim}_{G} X \leqq n$, provided that every map $f: A \rightarrow K(G, n)$ of a closed subset $A$ of $X$ into an Eilenberg-MacLane space $K(G, n)$ of type ( $G, n$ ) admits a continuous extension over $X$ (c.f. [10]). The dimension of a space $X$ means the covering dimension of $X$ and denotes by $\operatorname{dim} X . Z$ is the additive group of all integers and for each prime number $p$, $Z_{p}$ is the cyclic group of order $p$.

By a polyhedron we mean the space $|K|$ of a simplicial complex $K$ with the Whitehead topology. In section 6, the topology of $|K|$ may be generated by a uniformity [Appendix, 22].

If $v$ is a vertex of a simplicial complex $K$, let $\operatorname{st}(v, K)$ be the open star of $v$ in $|K|$ and $\overline{\operatorname{st}}(v, K)$ be the closed star of $v$ in $|K|$. If $A \subseteq|K|$, then we define $\operatorname{st}(A, K)=\bigcup\{\operatorname{Int} \sigma: \sigma \in K, \sigma \cap A \neq \emptyset\}$ and $\operatorname{st}(A, K)=\cup\{\sigma: \sigma \in K, \sigma \cap A \neq \emptyset\}$. The symbol $\mathrm{Sd}_{j} K$ means the $j$-th barycentric subdivision of $K$. We define the symbols $\mathcal{S}_{i}$ and $\overline{\mathcal{S}}_{i}$ for a simplicial complex $K_{i}$ with an index to be the cover $\left\{\operatorname{st}\left(v, K_{i}\right): v \in K_{i}^{(0)}\right\}$ and the cover $\left\{\operatorname{st}\left(v, K_{i}\right): v \in K_{i}^{(0)}\right\}$, respectively.

We use the symbol $<$ both to mean 'refine' for covers and 'subdivides' for subdivisions of a complex. The symbol $<^{*}$ is used for star refines.

Let $\mathcal{U}$ be an open cover of a space $X$. Then for $U \in \mathcal{U}$,

$$
\begin{aligned}
& \operatorname{st}(U, \mathcal{U})=\operatorname{st}^{1}(U, \mathcal{U})=\cup\left\{U^{\prime}: U^{\prime} \in \mathcal{U}, U^{\prime} \cap U \neq \emptyset\right\}, \\
& \operatorname{st}^{j+1}(U, \mathscr{U})=\cup\left\{U^{\prime}: U^{\prime} \in \mathcal{U}, U^{\prime} \cap \operatorname{st}^{j}(U, \mathcal{U}) \neq \emptyset\right\} .
\end{aligned}
$$

$B y \operatorname{st}^{j}(\mathcal{O})$ we mean the cover $\left\{\mathrm{st}^{j}(U, \mathcal{U}): U \in \mathcal{U}\right\}$. If $f$ and $g$ are maps from a space $Z$ to a space $X,(f, g) \leqq \mathcal{U}$ means that for each $z \in Z$, there exists $U \in \mathcal{G}$ with $f(z), g(z) \in U$. If $X$ is a metric space with a metric $d$, we write $(f, g) \leqq \varepsilon$ instead of $(f, g) \leqq U_{\varepsilon}$, where $U_{\varepsilon}$ is the cover whose consists of all $\varepsilon / 2$-neighborhoods in $X$. By the symbol $\Upsilon(\mathcal{Q})$ we mean the nerve of the cover $\mathcal{Q}$. For covers $\mathcal{U}, \mathcal{Q}$, the symbol $\mathcal{U \wedge Q}$ is used for the following cover $\{U \wedge V, U, V: U \in \mathscr{Q}, V \in C \mathcal{O}\}$.

## 2. Edwards-Walsh complexes

In the latter section, we need Edwards-Walsh complexes for arbitrary simplicial complexes.
2.1. Lemma. Let $|L|$ be a simplicial complex with the Whitehead topology, $p$ be a prime number and $n$ be a natural number. Then there exists a combinatorial map (i.e. $\pi_{L}^{-1}\left(L^{\prime}\right)$ is a subcomplex of $\mathrm{EW}_{\boldsymbol{z}_{p}}(L, n)$ if $L^{\prime}$ is a subcomplex of L) $\phi_{L}: \mathrm{EW}_{z_{p}}(L, n) \rightarrow|L|$ such that
(i) for $\sigma \in L$ with $\operatorname{dim} \sigma \geqq n+1, \psi_{L}^{-1}(\sigma) \in K\left(\oplus_{1}^{r} \sigma Z_{p}, n\right)$, where $r_{\sigma}=\operatorname{rank} \pi_{n}\left(\sigma^{(n)}\right)$,
(ii) for $\sigma \in L$ with $\operatorname{dim} \sigma \leqq n, \psi_{L}^{-1}(\sigma)=\sigma$,
(iii) $\mathrm{EW}_{z_{p}}(L, n)$ is a CW-complex,
(iv) $\psi_{\bar{L}}^{\mathbf{L}^{1}}(\sigma)$ is a subcomplex of $\mathrm{EW}_{Z_{p}}(L, n)$ with respect to the triangulation in (iii),
(v) $\phi_{L}^{-1}(\sigma)^{(k)}$ is a finite $C W$-complex for $k \geqq n$,
(vi) for any subcomplex $L^{\prime}$ of $L$ and map $f:\left|L^{\prime}\right| \rightarrow K\left(\boldsymbol{Z}_{p}, n\right)$, there exists an extension of $\left.f \circ \phi_{L}\right|_{\psi_{L}^{-1}\left(1 L^{\prime}\right)}$.

Proof. We shall construct a sequence $K_{1}(L) \subseteq K_{2}(L) \subseteq \cdots$ of CW-complexes as follows. To produce $K_{1}(L)$, we shall construct a sequence $L(1,0) \subseteq L(1,1) \subseteq \ldots$ of CW-complexes as follows. If $\sigma \in L$ and $\operatorname{dim} \sigma \leqq n$, let $K_{1}(\sigma) \equiv \sigma$ and put $L(1,0) \equiv \cup\left\{K_{1}(\sigma): \sigma \in L, \operatorname{dim} \sigma \leqq n\right\}$.

We shall produce $L(1,1)$ with $L(1,0) \cong L(1,1)$. Suppose $\sigma \in L$ with $\operatorname{dim} \sigma=$
$n+1$. Let $K_{1}(\sigma)$ be a complex obtained from $\partial \sigma$ by attaching an $(n+1)$-cell by a map of degree $p$. Hence we have

$$
K_{1}(\sigma)=\partial \sigma \cup_{\alpha} B^{n+1}, \quad \text { where } \alpha: \partial B^{n+1} \rightarrow \partial \sigma \text { is a map of degree } p .
$$

Put $L(1,1) \equiv \cup\left\{K_{1}(\sigma): \sigma \in L, \operatorname{dim} \sigma \leqq n+1\right\}$.
Next we shall construct $L(1,2)$ with $L(1,1) \subseteq L(1,2)$. Suppose $\sigma \in L$ with $\operatorname{dim} \sigma=n+2$. Let

$$
K_{1}(\sigma) \equiv \begin{cases}\cup\left\{K_{1}(\tau): \tau \supseteqq \sigma\right\} & n \geqq 2 \\ A\left(\cup\left\{K_{1}(\tau): \tau \supseteqq \sigma\right\}\right) & n=1,\end{cases}
$$

where for a complex $K, A(K)$ means a complex obtained by attaching finite collection of 2-cells abelizing the fundamental group $\pi_{1}(K)$. Define $L(1,2)$ to be $\cup\left\{K_{1}(\sigma): \sigma \in L, \operatorname{dim} \sigma \leqq n+2\right\}$. This process continues in an obvious way producing $L(1,0) \subseteq L(1,1) \subseteq \cdots$. Let $K_{1}(L)$ be $\cup\{L(1, i): 0 \leqq i<\infty\}$. Then $K_{1}(L)$ has the natural structure of CW-complex in such a way that each $L(1, i)$ is a subcomplex as is each $K_{1}(\sigma)$. Further, it is clear that $K_{1}(\sigma) \cap K_{1}(\tau)=K_{1}(\sigma \cap \tau)$ for $\sigma, \tau \in L$ and $\pi_{q}\left(K_{1}(\sigma)\right)=0(q<n)$, $\oplus_{1}^{r} \sigma Z_{p}(q=n)$, where $r_{\sigma}=\operatorname{rank} \pi_{n}\left(\sigma^{(n)}\right)$.

To produce $K_{2}(L)$ we are go:ng to attach ( $n+2$ )-cells to $K_{1}(L)$. To this end, we shall construct a sequence $L(2,0) \subseteq L(2,1) \subseteq \cdots$ of CW -complexes as follows. If $\sigma \in L$ and $\operatorname{dim} \sigma \leqq n$, let $K_{2}(\sigma) \equiv \sigma$ and put $L(2,0) \equiv \cup\left\{K_{2}(\sigma): \sigma \in L\right.$, $\operatorname{dim} \sigma \leqq n\}$. If $\sigma \in L$ and $\operatorname{dim} \sigma=n+1$, then $\pi_{n+1}\left(K_{1}(\sigma)\right)$ is a finitely generated abelian group. Kill this generating set by attaching finitely many ( $n+2$ )-cells to form $K_{2}(\sigma)$. Let $L(2,1) \equiv \cup\left\{K_{2}(\sigma): \sigma \in L\right.$, $\left.\operatorname{dim} \sigma \leqq n+1\right\}$. Next let us produce $L(2,2)$. Suppose $\sigma \in L$ and $\operatorname{dim} \sigma=n+2$. Let $K_{2}(\partial \sigma) \equiv \cup\left\{K_{2}(\tau): \tau \ngtr \sigma\right\} \cup$ $K_{1}(\sigma)$. Then it is clear that $\pi_{q}\left(K_{2}(\partial \sigma)\right)=0(q<n), \oplus_{1} r_{\sigma} \boldsymbol{Z}_{p}(q=n)$, where $r_{\sigma}=$ rank $\pi_{n}\left(\sigma^{(n)}\right)$ and $\pi_{n+1}\left(K_{2}(\partial \sigma)\right)$ is a finitely generated abelian group. Kill this generating set by attaching finitely many ( $n+2$ )-cells to form $K_{2}(\sigma)$. Let $L(2,2)$ $\equiv \bigcup\left\{K_{2}(\sigma): \sigma \in L, \operatorname{dim} \sigma \leqq n+2\right\}$. This process continues in an obvious way producing $L(2,0) \subseteq L(2,1) \cong \cdots$. Let $K_{2}(L)$ be $\cup\{L(2, i): 0 \leqq i<\infty\}$. Then $K_{2}(L)$ has the natural structure of CW-complex in such a way that each $L(2, i)$ is a subcomplex as is each $K_{2}(\boldsymbol{\sigma})$. Further, it is clear that $K_{2}(\sigma) \cap K_{2}(\tau)=K_{2}(\boldsymbol{\sigma} \cap \tau)$ for $\sigma, \tau \in L$ and $\pi_{q}\left(K_{2}(\sigma)\right)=0(q<n$ or $q=n+1)$, $\oplus_{1}^{r} \sigma Z_{p}(q=n)$, where $r_{\sigma}=$ rank $\pi_{n}\left(\sigma^{(n)}\right)$.

The construction of $K_{1}(L), K_{2}(L)$ with $K_{1}(L) \cong K_{2}(L)$ given above indicates how one may recursively constructed a sequence $K_{1}(L) \subseteq K_{2}(L) \subseteq \cdots$. For each $\sigma \in L$, let $K(\sigma)=\bigcup\left\{K_{i}(\sigma): i \in \boldsymbol{N}\right\}$. Then by induction of the dimension of the skeleton we can construct a combinatorial map $\psi_{L}: \mathrm{EW}_{z_{p}}(L, n) \rightarrow|L|$ with the properties (i)-(vi) as
(1) $\phi_{L}^{-1}\left(L^{(n)}\right)=L^{(n)}$ and $\left.\psi_{L}\right|_{1 L^{(n)} \mid}=i d_{\mid L^{(n) \mid}}$,
(2) $\psi_{L}^{-1}(\sigma)$ is the mapping cylinder $M_{\sigma}$ of the embedding $j_{\sigma}: \psi_{L}^{-1}(\partial \sigma) \hookrightarrow_{\hookrightarrow} K(\sigma)$,
(3) $\left.\psi_{L}\right|_{M_{\sigma}}$ is the cone of $\left.\psi_{L}\right|_{\left.\psi_{L}^{(1) \sigma \sigma}\right)}$ such that $\psi_{L}(K(\sigma))$ is the barycenter of $\sigma$. Hence for each simplex $\sigma$ of $\operatorname{dim} \sigma \geqq n+1$, we have the property :
(4) if $n \geqq 2$,

$$
\phi_{L}^{-1}(\sigma)^{(n+1)}=\sigma^{(n)} \times[0,1] \cup_{\alpha_{1}} B^{n+1} \cup_{\alpha_{2}} \cdots \cup_{\alpha_{r_{\sigma}}} B^{n+1},
$$

where for each ( $n+1$ )-dimensional face $\tau_{i}$ of $\sigma, \alpha_{i}: \partial B^{n+1} \rightarrow \partial \tau_{i} \times\{1\}$ is a map of degree $p$,
(5) if $n=1$,

$$
\phi_{\bar{L}}^{\bar{L}^{1}(\sigma)^{(2)}}=\sigma^{(1)} \times[0,1] \cup_{\alpha_{1}} B^{2} \cup_{\alpha_{2}} \cdots \cup_{\alpha_{r_{\sigma}}} B^{2} \cup_{\beta_{1}} B^{2} \cup_{\beta_{2}} \cdots \cup_{\beta_{k_{\sigma}}} B^{2},
$$

where for each 2-dimensional face $\tau_{i}$ of $\sigma, \alpha_{i}: \partial B^{2} \rightarrow \partial \tau_{i} \times\{1\}$ is a map of degree $p$ and the collection $\left\{\left[\beta_{1}\right], \cdots,\left[\beta_{k_{\sigma}}\right]\right\}$ generates the commutator subgroup of $\pi_{1}\left(\sigma^{(1)} \times[0,1] \cup_{\alpha_{1}} B^{2} \cup_{\alpha_{2}} \cdots \cup_{\alpha_{r_{\sigma}}} B^{2}\right)$.

## 3. Characterizations for compact spaces

3.1. Definition. Let $G$ be an abelian group, $n$ be a natural number and $\varepsilon$ be a positive number. A map $\psi: Q \rightarrow P$ between compact polyhedra is $(G, n, \varepsilon)$ approximable provided that there exists a triangulation $L$ of $P$ such that for any triangulation $M$ of $Q$ there is a map $\psi^{\prime}:\left|M^{(n)}\right| \rightarrow\left|L^{(n)}\right|$ satisfying the following conditions:
(i) $\left(\psi^{\prime},\left.\psi\right|_{|M(n)|}\right) \leqq \varepsilon$,
(ii) for any map $\alpha:\left|L^{(n)}\right| \rightarrow K(G, n)$, there exists a map $\beta: Q \rightarrow K(G, n)$ such that $\left.\beta\right|_{|M(n)|}=\alpha^{\circ} \psi^{\prime}$.
Here the map $\psi^{\prime}$ is called a $(G, n, \varepsilon)$-approximation of $\psi$.
Note that it suffices for the condition (ii) to see that the map $\alpha{ }^{\circ} \psi^{\prime}$ admits a continuous extension over $\left|M^{(n+1)}\right|$.
3.2. Definition. A map $f: X \rightarrow P$ from a compact space to a compact polyhedron is $(G, n)$-cohomological provided that for every positive number $\varepsilon>0$, there exists a compact polyhedron $Q$ and maps $\varphi: X \rightarrow Q, \phi: Q \rightarrow P$ such that
(i) $\left(\psi^{\circ} \circ \varphi, f\right) \leqq \varepsilon$,
(ii) $\psi$ is $(G, n, \varepsilon)$-approximable.
3.3. Theorem. Let $X$ be a compact space, $p$ be a prime number and $n$ be a natural number. Then $X$ has cohomological dimension with respect to $Z_{p}$ of
less than and equal to $n$ if and only if every map $f$ of $X$ to a compact polyhedron $P$ is $\left(\boldsymbol{Z}_{p}, n\right)$-cohomological.

Proof. We establish the reverse implication first. Let $A$ be a closed subset of $X$ and let $h: A \rightarrow K\left(\boldsymbol{Z}_{p}, n\right)$ be a map. Because of the compactness of $A$, there is a compact subpolyhedron $K$ of $K\left(\boldsymbol{Z}_{p}, n\right)$ such that $h(A) \subseteq K$. Let $P$ be the cone over $K$. Then there exists a continuous extension $f: X \rightarrow P$ of $h$, and there is a closed polyhedral neighborhood $N$ of $K$ and a retraction $r: N \rightarrow K$. Let us take a positive number $\delta>0$ such that
(1) $O_{\hat{\delta}}(K)=\left\{x \in P: d_{P}(x, K)<\delta\right\} \subseteq N$,
(2) any two $\delta$-near maps of a space into $N$ are homotopic in $N$,
where $d_{P}$ is a metric for $P$. By the condition, there exists a polyhedron $Q$ and maps $\varphi: X \rightarrow Q, \psi: Q \rightarrow P$ such that
(3) $(\psi \circ \varphi, f) \leqq \delta / 3$,
(4) $\psi$ is ( $\boldsymbol{Z}_{p}, n, \delta / 3$ )-approximable.

By (1) and (3), we have $\psi(\varphi(A)) \subseteq O_{\delta / 3}(h(A)) \subseteq N$. Hence, there is a closed polyhedral neighborhood $G$ of $\varphi(A)$ in $Q$ such that

$$
\begin{equation*}
\psi(G) \cong O_{\partial / 2}(f(A)) \cong N . \tag{5}
\end{equation*}
$$

Let take a triangulation $M$ of $Q$ such that $G$ is the carrier of a subcomplex $M_{1}$ of $M$. Then, by (4), there exists a triangulation $L$ of $P$ and a map $\psi^{\prime}:\left|M^{(n)}\right|$ $\rightarrow\left|L^{(n)}\right|$ satisfying the following conditions:
(6) $\left(\psi^{\prime},\left.\psi\right|_{|M(n)|}\right) \leqq \delta / 3$,
(7) for any $\operatorname{map} \alpha:\left|L^{(n)}\right| \rightarrow K\left(\boldsymbol{Z}_{p}, n\right)$ and every ( $n+1$ )-simplex $\sigma$ of $M$, there exists a continuous extension $\alpha_{\sigma}: \sigma \rightarrow K\left(\boldsymbol{Z}_{p}, n\right)$ of $\left.\alpha^{\circ} \psi^{\prime}\right|_{\partial \sigma}$.
Then by (6), (5) and (2), we see that $\psi^{\prime}\left(\left|M_{1} \cap M^{(n)}\right|\right) \subseteq O_{\partial / 2}\left(\boldsymbol{\psi}\left(\left|M_{1}^{(n)}\right|\right)\right) \subseteq N$, and

$$
\begin{equation*}
\left.\left.\phi^{\prime}\right|_{M_{1} \cap \mathcal{M}(n) \mid} \simeq \psi\right|_{\left|M_{1} \cap M(n)\right|} \quad \text { in } N \tag{8}
\end{equation*}
$$

Since $\left.\psi\right|_{M_{1} \cap \boldsymbol{M}(n) \mid}$ has a continuous extension $\left.\psi\right|_{G}: G \rightarrow N$, by (8), we have a continuous extension $\phi^{*}: G \cup\left|M^{(n)}\right| \rightarrow N \cup\left|L^{(n)}\right| \cong P$ of $\psi^{\prime}$ such that

$$
\begin{equation*}
\left.\left.\phi^{*}\right|_{G} \simeq \phi\right|_{G} \quad \text { in } N . \tag{9}
\end{equation*}
$$

Considering $r$ as a map into $K\left(\boldsymbol{Z}_{p}, n\right)$, take a continuous extension $r^{*}: N \cup\left|L^{(n)}\right|$ $\rightarrow K\left(\boldsymbol{Z}_{p}, n\right)$ of $r$. For each $(n+1)$-simplex $\sigma$ of $M$, by (7), there exists a map $\alpha_{\sigma}: \sigma \rightarrow K\left(\boldsymbol{Z}_{p}, n\right)$ such that

$$
\begin{equation*}
\left.\alpha\right|_{\partial \sigma}=\left.r^{*}{ }^{\circ} \psi^{*}\right|_{\partial \sigma} \tag{10}
\end{equation*}
$$

Hence we have a continuous extension $\theta: G \cup\left|M^{(n+1)}\right| \rightarrow K\left(\boldsymbol{Z}_{p}, n\right)$ of $r^{*} \circ \phi^{*}$ given by

$$
\begin{equation*}
\left.\theta\right|_{G}=r^{*} \circ \psi^{*} \text { and }\left.\theta\right|_{\sigma}=\alpha_{\sigma} \quad \text { for each }(n+1) \text {-simplex } \sigma \text { of } M \text {. } \tag{11}
\end{equation*}
$$

Therefore we can find a continuous extension $\theta^{*}: Q \rightarrow K\left(\boldsymbol{Z}_{p}, n\right)$ of $\theta$. Then by (9), (2) and (3), we see that

$$
\begin{equation*}
\left.\theta^{*} \circ \varphi\right|_{A}=\left.\left.\left.r^{*} \circ \psi^{*} \circ \varphi\right|_{A} \simeq r^{*} \circ \psi^{\circ} \cdot \varphi\right|_{A} \simeq r^{*} \circ f\right|_{A}=h \quad \text { in } K\left(\boldsymbol{Z}_{p}, n\right) . \tag{12}
\end{equation*}
$$

Hence, by the homotopy extension theorem, $h$ has a continuous extension $h^{*}: X \rightarrow K\left(Z_{p}, n\right)$. Thus, $c-\operatorname{dim}_{z_{p}} X \leqq n$.

Conversely, suppose $c-\operatorname{dim}_{z_{p}} X \leqq n$. Let us take a map $f: X \rightarrow P$ of $X$ to a compact polyhedron and a positive number $\varepsilon>0$. Then take a triangulation $L$ of $P$ such that

$$
\begin{equation*}
\operatorname{mesh}(L) \leqq \varepsilon \tag{13}
\end{equation*}
$$

and let $\psi_{L}: \mathrm{EW}_{Z_{p}}(L, n) \rightarrow P$ be the map constructed in Lemma 2.1.
First, we show that there exists a map $g: X \rightarrow \mathrm{EW}_{z_{p}}(L, n)$ such that
(14) $\left.\psi_{L^{\circ}} g\right|_{f-1(|L(n)|)}=\left.f\right|_{f^{-1(|L(n)|)}}$,
(15) $g\left(f^{-1}(\sigma)\right) \subseteq \phi_{L}^{-1}(\sigma)$ for every simplex $\sigma$ of $L$ with $\operatorname{dim} \sigma \geqq n+1$.

Write $L$ as the form

$$
L=L^{(n)} \cup \sigma_{1} \cup \cdots \cup \sigma_{s}, \quad \text { where } n+1 \leqq \operatorname{dim} \sigma_{1} \leqq \cdots \leqq \operatorname{dim} \sigma_{s} .
$$

By the property (1) in Lemma 2.1, we can define the map

$$
\left.f_{0} \equiv f\right|_{f-1\left(1 L^{(n) \mid}\right)}: f^{-1}\left(\left|L^{(n)}\right|\right) \longrightarrow\left|L^{(n)}\right| \cong \mathrm{EW}_{z_{p}}(L, n) .
$$

By $c-\operatorname{dim}_{Z_{p}} f^{-1}\left(\sigma_{1}\right) \leqq c-\operatorname{dim}_{Z_{p}} X \leqq n$ and the property (i) in Lemma 2.1, the map $\left.f_{0}\right|_{f^{-1}\left(\hat{\sigma} \sigma_{1}\right)}: f^{-1}\left(\partial \sigma_{1}\right) \rightarrow f_{0}\left(f^{-1}\left(\partial \sigma_{1}\right)\right)=\partial \sigma_{1} \cong \phi_{L}^{-1}\left(\sigma_{1}\right)$ has a continuous extension $f_{\sigma_{1}}: f^{-1}\left(\sigma_{1}\right) \rightarrow \psi_{L}^{-1}\left(\sigma_{1}\right)$.

For each $i \geqq 2$, since $\partial \sigma_{i} \cong L^{(n)} \cup \sigma_{1} \cup \cdots \cup \sigma_{i-1}$, we can similarly obtain a map $f_{i}: f^{-1}\left(\left|L^{(n)}\right| \cup f^{-1}\left(\sigma_{1}\right) \cup \cdots \cup f^{-1}\left(\sigma_{i}\right)\right) \rightarrow \psi^{-1}\left(\left|L^{(n)}\right| \cup \sigma_{1} \cup \cdots \cup \sigma_{i}\right)$ such that
(16) $\left.f_{i}\right|_{f-1\left(1 L^{(n)} \mid \cup \sigma_{1} \cup . .\left(\sigma_{i-1}\right)\right.}=f_{i-1}$,
(17) $f_{i}\left(f^{-1}\left(\sigma_{i}\right)\right) \cong \psi_{L}^{-1}\left(\sigma_{i}\right)$.

Therefore the map $f_{s}$ is a desired one.
By the compactness of $g(X)$, there exists a compact subpolyhedron $K$ of $\mathrm{EW}_{z_{p}}(L, n)$ containing $g(X)$. Then by the same as in [15], we can find a map $\varphi: X \rightarrow K$ such that

$$
\begin{equation*}
\varphi(X) \text { is a subpolyhedron } Q \text { of } \mathrm{EW}_{z_{p}}(L, n) . \tag{18}
\end{equation*}
$$

Moreover, by the construction and the property (iv) in Lemma 2.1, we may assume that

(20) $\varphi\left(f^{-1}(\sigma)\right) \subseteq \psi_{L}^{-1}(\sigma)$ for every simplex $\sigma$ of $L$ with $\operatorname{dim} \sigma \geqq n+1$.

Thus, by (18), (20), (19) and (13), we have a compact polyhedron $Q$ and maps $\varphi: X \rightarrow Q, \phi=\left.\psi_{L}\right|_{Q}: Q \rightarrow P$ such that
(21) $\varphi(X)=Q$,
(22) $(\psi \circ \varphi, f) \leqq \varepsilon$.

Hence, it suffices to show the following:
Claim. $\psi$ is $\left(\boldsymbol{Z}_{p}, n, \varepsilon\right)$-approximable.
Proof of Claim. Let $M$ be a triangulation of $Q$. First, we show that there exists a map $\theta:\left|M^{(n+1)}\right| \rightarrow \mathrm{EW}_{z_{p}}(L, n)^{(n+1)}$ satisfying the followings:
(23) $\left.\theta\right|_{Q \cap \mathrm{EW}_{Z_{p}}(L, n)(n+1)}=i d_{Q \cap \mathrm{EW}}^{Z_{p}}{ }^{(L, n)(n+1)}$,
(24) $\theta\left(Q \cap \phi_{L}^{-1}(\sigma)\right) \subseteq \phi_{L}^{-1}(\sigma)^{(n+1)}$ for every simplex $\sigma$ of $L$ with $\operatorname{dim} \sigma \geqq n+1$. Since $\left|M^{(n+1)}\right|$ is compact, there is a finite collection of cells $\left\{\tau_{1}, \cdots, \tau_{k}\right\}$ in $\mathrm{EW}_{Z_{p}}(L, n), \operatorname{dim} \tau_{1} \geqq \cdots \geqq \operatorname{dim} \tau_{k} \geqq n+2$, such that
(25) $\left|M^{(n+1)}\right| \cap \tau_{i} \neq \emptyset$ for each $i=1, \cdots, k$,
(26) $\left|M^{(n+1)}\right| \subseteq \mathrm{EW}_{Z_{p}}(L, n)^{(n+1)} \cup \tau_{1} \cup \cdots \cup \tau_{k}$.

We take a small PL-ball $B \subseteq \tau_{1} \backslash \partial \tau_{1}$ such that $\operatorname{dim} B=\operatorname{dim} \tau_{1}$, and consider the inclusion $i_{1}: \partial B \cap\left|M^{(n+1)}\right| \rightarrow \partial B$. By $\operatorname{dim}\left(B \cap\left|M^{(n+1)}\right|\right) \leqq n+1<\operatorname{dim} B$, $i_{1}$ has a continuous extension $\bar{i}_{1}: B \cap\left|M^{(n+1)}\right| \rightarrow \partial B$. Considering the map $\bar{i}_{1}$ and a retraction from $\mathrm{EW}_{\boldsymbol{z}_{p}}(L, n)^{(n+1)} \cup\left(\tau_{1} \backslash \operatorname{Int} B\right) \cup \tau_{2} \cup \cdots \cup \tau_{k}$ onto $\mathrm{EW}_{Z_{p}}(L, n)^{(n+1)} \cup \tau_{2} \cup$ $\cdots \cup \tau_{k}$, we have a map $\theta_{1}:\left|M^{(n+1)}\right| \rightarrow \mathrm{EW}_{Z_{p}}(L, n)^{(n+1)} \cup \tau_{2} \cup \cdots \cup \tau_{k}$ such that
(27) $\left.\theta_{1}\right|_{Q \cap \mathrm{EW}_{Z_{p}}(L, n)(n+1)}=i d_{Q_{\cap \mathrm{EW}}^{Z_{p}(L, n)(n+1)}}$,
(28) $\quad \theta_{1}\left(\left|M^{(n+1)}\right| \cap \psi_{\bar{L}}{ }^{-1}(\sigma)\right) \subseteq \phi_{\bar{L}}^{-1}(\sigma)$ for every simplex $\sigma$ of $L$ with $\operatorname{dim} \sigma \geqq$ $n+1$.
Inductively, for $i=1, \cdots, k$, we can construct a map $\theta_{i}:\left|M^{(n+1)}\right| \rightarrow \mathrm{EW}_{z_{p}}(L, n)^{(n+1)}$ $\cup \tau_{i+1} \cup \cdots \cup \tau_{k}$ satisfying the corresponding to (27) and (28). Therefore $\theta_{k}$ is a required one.

Moreover, taking suitable subdivisions if necessary, we may assume that $\theta$ is simplicial.

CASE 1. $n \geqq 2$.
By the properties (1), (4) in Lemma 2.1, we see that

$$
\mathrm{EW}_{Z_{p}}(L, n)^{(n+1)}=\left|L^{(n)}\right| \cup \cup\left\{\partial \sigma \times[0,1] \cup_{\alpha_{\sigma}} B_{\sigma}^{n+1}: \sigma \in L, \operatorname{dim} \sigma=n+1\right\},
$$

where $\alpha_{\sigma}: S^{n} \rightarrow \partial \sigma$ is a map of degree $p$. For each $(n+1)$-simplex $\sigma$ of $L$, choose a point $z_{\sigma} \in B_{\sigma}^{n+1} \backslash\left(S^{n} \cup \theta\left(\left|M^{(n)}\right|\right)\right)$, and take the retraction

$$
r: \mathrm{EW}_{z_{p}}(L, n)^{(n+1)} \backslash\left\{z_{\sigma}: \sigma \in L, \operatorname{dim} \sigma=n+1\right\} \longrightarrow\left|L^{(n)}\right|
$$

induced by the compositions of the radial projection of $B_{\sigma}^{n+1} \backslash\left\{z_{\sigma}\right\}$ onto $\partial \sigma \times\{1\}$ and the natural projection of $\partial \sigma \times[0,1]$ onto $\partial \sigma \times\{0\} \subseteq\left|L^{(n)}\right|$. Now we define
a map $\phi^{\prime}:\left|M^{(n)}\right| \rightarrow\left|L^{(n)}\right|$ by $\psi^{\prime}=\left.r \circ \theta\right|_{|M(n)|}$.
Let $\tau$ be an $(n+1)$-simplex of $M$. If $\phi^{\prime}(\tau) \cong \mathrm{EW}_{z_{p}}(l, n)^{(n)}=\left|L^{(n)}\right|$, then

$$
\begin{equation*}
\left.\phi^{\prime}\right|_{\partial \tau}=\left.\theta\right|_{\partial_{\tau}} \simeq 0 \quad \text { in }\left|L^{(n)}\right| . \tag{29}
\end{equation*}
$$

Otherwise, there is finite PL $(n+1)$-balls $D_{1}, \cdots, D_{m}$ in $\tau \backslash \partial \tau$ such that
(30) $\bigcup_{i=1}^{n} \operatorname{Int} D_{i} \supseteqq \theta^{-1}\left(\left\{z_{\sigma}: \operatorname{dim} \sigma=n+1\right\}\right) \cap \tau$,
(31) $\theta\left(D_{i}\right) \cong B_{\sigma_{i}} \backslash B_{\partial \sigma_{i}}$ for some $(n+1)$-simplex $\sigma_{i}$ of $L$.

Then we have that

$$
\begin{equation*}
\left[\left.\phi^{\prime}\right|_{\partial \tau}\right]=\left[\left.r \circ \theta\right|_{\partial D_{1}}\right]+\cdots+\left[\left.r \circ \theta\right|_{\partial D_{m}}\right] \quad \text { in } \pi_{n}\left(\left|L^{(n)}\right|\right) . \tag{32}
\end{equation*}
$$

Since each $\left.r \circ \theta\right|_{\partial D_{i}}$ can be factorized through the attaching map $\alpha_{\sigma_{i}},\left[\left.r \circ \theta\right|_{\partial D_{i}}\right]$ $=p \cdot a_{i}$ for some $a_{i} \in \pi_{n}\left(\left|L^{(n)}\right|\right)$. Hence, by (32), we have

$$
\begin{equation*}
\left[\left.\psi^{\prime}\right|_{\partial z}\right]=p \cdot\left(a_{1}+\cdots+a_{m}\right) \quad \text { in } \pi_{n}\left(\left|L^{(n)}\right|\right) . \tag{33}
\end{equation*}
$$

Therefore, for any map $\xi:\left|L^{(n)}\right| \rightarrow K\left(\boldsymbol{Z}_{p}, n\right),\left.\xi^{\circ} \psi^{\prime}\right|_{\partial \tau}$ can be extended over $r$.
Case 2. $n=1$.
For every simplex $\sigma$ of $\operatorname{dim} \sigma \geqq 2, \psi_{L}^{-1}\left(\sigma^{(2)}\right)$ may be represented as the form (5) in Lemma 2.1:

$$
\phi_{L}^{-1}(\sigma)^{(2)}=\sigma^{(1)} \times[0,1] \cup_{\alpha_{1}} B^{2} \cup_{\alpha_{2}} \cdots \cup_{\alpha_{r_{\sigma}}} B^{2} \cup_{\beta_{1}} B^{2} \cup_{\beta_{2}} \cdots \cup_{\beta_{k_{\sigma}}} B^{2}
$$

Then choose points $u_{1}^{\sigma}, \cdots, u_{r_{\sigma}}^{\sigma}, v_{1}^{\sigma}, \cdots, v_{k_{\sigma}}^{\sigma}$ of $\psi_{L}^{-1}\left(\sigma^{(1)}\right) \backslash\left(\sigma^{(1)} \times[0,1] \cup \theta\left(\left|M^{(1)}\right|\right)\right)$ and the retraction $r: \mathrm{EW}_{z_{p}}(L, n)^{(2)} \backslash\left\{u_{1}^{\sigma}, \cdots, u_{r_{\sigma}}^{\sigma}, v_{1}^{\sigma}, \cdots, v_{k_{\sigma}}^{\sigma}: \sigma \in L, \operatorname{dim} \sigma \geqq 2\right\} \rightarrow$ $\left|L^{(1)}\right|$ induced by the compositions of the radial projections of $B^{2} \backslash\left\{u_{i}^{o}\right\}$ or $B^{2} \backslash\left\{v_{j}^{\sigma}\right\}$ onto $S^{1}$ and the natural projection of $\sigma^{(1)} \times[0,1]$ onto $\sigma^{(1)} \times\{0\} \subseteq\left|L^{(1)}\right|$. Now we define a map $\phi^{\prime}:\left|M^{(2)}\right| \rightarrow\left|L^{(1)}\right|$ by $\phi^{\prime} \equiv r \circ \theta$.

Let $\tau$ be a 2 -simplex of $M$ and let $\xi:\left|L^{(1)}\right| \rightarrow K\left(\boldsymbol{Z}_{p}, 1\right)$ be a map. If $\psi^{\prime}(\tau)$ $\subseteq \mathrm{EW}_{z_{p}}(L, n)^{(2)}=\left|L^{(1)}\right|$, then we have the map $\left.\xi^{\circ} \psi^{\prime}\right|_{\tau}$ as an extension of $\left.\xi^{\circ} \psi^{\prime}\right|_{\partial \tau}$.

Otherwise, we choose finite PL 2-balls $D_{1}, \cdots, D_{m}$ in $\tau \backslash \partial \tau$ such that
(34) $\bigcup_{i=1}^{m} \operatorname{Int} D_{i} \supseteqq \theta^{-1}\left(\left\{u_{1}^{\sigma}, \cdots, u_{r_{\sigma}}^{\sigma}, v_{1}^{\sigma}, \cdots, v_{k_{\sigma}}^{\sigma}: \sigma \in L\right.\right.$, $\left.\left.\operatorname{dim} \sigma \geqq 2\right\}\right) \cap \tau$,
(35) $\theta\left(D_{i}\right) \cong B^{2} \backslash \partial \sigma \times[0,1]$ for some simplex $\sigma$ of $\operatorname{dim} \sigma \geqq 2$.

Considering the map $\left.\theta\right|_{\pi \cup_{i=1}^{m}\left(D_{i} \backslash D_{i}\right)}$ as a homotopy, we have that

$$
\begin{align*}
{\left[\left.\theta\right|_{\grave{\partial} \tau}\right] } & =\left[\left.\theta\right|_{\cup_{i=1}^{m} \partial D_{i}} ^{m}\right]  \tag{36}\\
& =\left[\left.\theta\right|_{\partial D_{1}}\right] * \cdots *\left[\left.\theta\right|_{\partial D_{m}}\right] \\
& =\left[\left.r \circ \theta\right|_{\partial D_{1}}\right] * \cdots *\left[\left.r \circ \theta\right|_{\partial D_{m}}\right] \\
& =\left[\left.r \circ \theta\right|_{\cup_{i=1}^{m}} ^{m} D_{i}\right] \\
& =\left[\left.r \circ \theta\right|_{\partial z}\right] \\
& =\left[\left.\phi^{\prime}\right|_{\partial_{\tau}}\right] \quad \text { in } \pi_{1}\left(\mathrm{EW}_{z_{p}}(L, n)^{(2)}\right) .
\end{align*}
$$

Moreover, by the property (5) in Lemma 2.1, for every $i=1, \cdots, m$,
(37) $\left[\left.r \circ \theta\right|_{\partial D_{i}}\right]$ is the $p$-th power of an element of $\pi_{1}\left(\left|L^{(1)}\right|\right)$, or
(38) $\left[\left.r \circ \theta\right|_{\partial D_{i}}\right]$ is a commutator of $\pi_{1}\left(\sigma^{(1)}\right)$ for some simplex $\sigma$.

On the other hand, by the property (vi) of Lemma 2.1, there exists a continuous extension $\bar{\xi}: \mathrm{EW}_{\boldsymbol{Z}_{p}}(L, n)^{(2)} \rightarrow K\left(\boldsymbol{Z}_{p}, 1\right)$ of $\xi$. Since $\pi_{1}\left(K\left(\boldsymbol{Z}_{p}, 1\right)\right)=\boldsymbol{Z}_{p}$ is abelian, by (36), (37) and (38), we have

$$
\begin{align*}
{\left[\left.\xi^{\circ} \psi^{\prime}\right|_{\partial \tau}\right] } & =\left[\left.\overline{\xi^{\prime}} \circ \theta\right|_{\partial \tau}\right] \\
& =\left[\left.\overline{\xi^{\prime}} \circ \gamma \circ \theta\right|_{\partial D_{1}}\right]+\cdots+\left[\left.\bar{\xi} \circ r \circ \theta\right|_{\partial D_{m}}\right]  \tag{39}\\
& =0 \quad \text { in } \pi_{1}\left(K\left(\boldsymbol{Z}_{p}, 1\right)\right) .
\end{align*}
$$

Thus, $\left.\xi^{\circ} \psi^{\prime}\right|_{\partial \tau}$ can be extended over $\tau$.
Therefore, in any cases, we have the map $\psi^{\prime}:\left|M^{(n)}\right| \rightarrow\left|L^{(n)}\right|$ such that
(40) for any map $\xi:\left|L^{(n)}\right| \rightarrow K\left(\boldsymbol{Z}_{p}, n\right), \xi^{\circ} \psi^{\prime}$ admits a continuous extension over $\left|M^{(n+1)}\right|$.
Now, for any point $y \in\left|M^{(n)}\right|$, let take a simplex $\sigma$ of $L$ such that

$$
\begin{equation*}
y \in \psi_{\bar{L}} \bar{L}^{1}(\sigma) \tag{41}
\end{equation*}
$$

Then, by (23) and (24), we see

$$
\begin{equation*}
\theta(y) \in \psi_{L}^{-1}(\sigma)^{(n+1)} . \tag{42}
\end{equation*}
$$

Moreover, by the construction in any cases, we have

$$
\begin{equation*}
\phi^{\prime}(y)=r \circ \theta(y) \in \sigma^{(n)} \cong \sigma . \tag{43}
\end{equation*}
$$

Hence, by (13), we obtain that

$$
\begin{equation*}
d\left(\psi(y), \psi^{\prime}(y)\right) \leqq \operatorname{diam}(\sigma) \leqq \varepsilon \tag{44}
\end{equation*}
$$

Therefore $\psi^{\prime}$ is a ( $\boldsymbol{Z}_{p}, n, \varepsilon$ )-approximation of $\psi$. It completes the proof of Claim and it follows the implication of the only if.

## 4. Characterizations for metrizable spaces

Let us establish definitions. Let $K$ be a simplicial complex and $f, g: X \rightarrow$ $|K|$ be maps. We say that $g$ is a K-manification of $f$ if for each $x \in X$ and $\sigma \in K, f(x) \in \sigma$ implies $g(x) \in \sigma$. Let $\mathcal{U}$ be an open cover of $X$. Then a map $b: X \rightarrow|\Re(\mathcal{U})|$ is called $\mathcal{U}$-normal map if $b^{-1}(\operatorname{st}(\langle U\rangle, \mathfrak{n}(\mathcal{U})))=U$ for each $U \in \mathcal{U}$ and $b$ is essential on each simplex of $\boldsymbol{N ( q )}$ (i. e. $\left.b\right|_{b^{-1(\sigma)}}: b^{-1}(\sigma) \rightarrow \sigma$ is a essential map for each $\sigma \in \mathscr{N}(\mathcal{U})$ ). Note that if $\mathcal{U}$ is a locally finite, then $\mathcal{U}$-normal map exists.
4.1. Definition. Let $Q, P$ be polyhedra, $G$ be an abelian group, $\mathcal{U}$ be an open cover of $P$ and $n$ be a natural number. We say that a map $\psi: Q \rightarrow P$ is $(G, n, U)$-approximable if there exists a triangulation $L$ of $P$ such that for any triangulation $M$ of $Q$ there is a PL-map $\psi^{\prime}:\left|M^{(n)}\right| \rightarrow\left|L^{(n)}\right|$ satisfying the following conditions:
(i) $\left(\psi^{\prime},\left.\phi\right|_{|M(n)|}\right) \leqq \mathcal{U}$,
(ii) for any map $\alpha:\left|L^{(n)}\right| \rightarrow K(G, n)$, there exists an extension $\beta:\left|M^{(n+1)}\right|$ $\rightarrow K(G, n)$ of $\alpha \circ \psi^{\prime}$.
4.2. Definition. Let $G$ be an abelian group and $n$ be a natural number. A map $f: X \rightarrow P$ of a metrizable space $X$ to a polyhedron $P$ is called $(G, n)$ cohomological if for any open cover $Q$ of $P$ there exist a polyhedron $Q$ and maps $\varphi: X \rightarrow Q, \phi: Q \rightarrow P$ such that
(i) $(\psi \circ \varphi, f) \leqq \mathcal{U}$,
(ii) $\psi$ is $(G, n, U)$-approximable.
4.3. Theorem. Let $X$ be a metrizable space, $p$ be a prime number and $n$ be a natural number. Then $X$ has cohomological dimension with respect to $\boldsymbol{Z}_{p}$ of less than and equal to $n$ if and only if every map $f$ of $X$ to a polyhedron $P$ is ( $\boldsymbol{Z}_{p}, n$ )-cohomological.

Proof of necessity. Suppose that $c-\operatorname{dim}_{z_{p}} X \leqq n$. Let $f: X \rightarrow P$ be a map of $X$ to a polyhedron $P$ and $U$ be an open cover of $P$. Then take a star refinement $Q_{0}$ of $Q$.

First, we show that there exist a simplicial complex $K$ and maps $\varphi: X \rightarrow$ $|K|, \psi:|K| \rightarrow P$ such that
(1) if $\sigma \in K$, there exists $U \in \mathcal{U}_{0}$ with $\phi(\sigma) \cong U$,
(2) for each $x \in X$ if $\varphi(x) \in \operatorname{Int} \sigma, \sigma \in K$, there exists $U \in \mathcal{U}_{0}$ with $\psi(\sigma) \cup$ $\{f(x)\} \cong U$,
(3) there exist a triangulation $L$ of $P$ and a PL-map $\psi^{\prime}:\left|K^{(n)}\right| \rightarrow\left|L^{(n)}\right|$ such that
(i) $\left(\psi^{\prime},\left.\psi\right|_{|K(n)|}\right) \leqq U_{0}$
(ii) for any map $\alpha:\left|L^{(n)}\right| \rightarrow K\left(\boldsymbol{Z}_{p}, n\right)$ there is an extension $\beta:\left|K^{(n+1)}\right|$ $\rightarrow K\left(\boldsymbol{Z}_{p}, n\right)$ of $\alpha{ }^{\circ} \psi^{\prime}$.
By J.H.C. Whitehead's theorem [25], take a triangulation $L$ of $P$ such that
(4) st $\left\{\overline{\operatorname{st}}(v, L): v \in L^{(0)}\right\}<\mathcal{U}_{0}$.

We will construct a map $c: X \rightarrow \mathrm{EW}_{z_{p}}(L, n)$ such that
(5) $\left.c\right|_{f-1(|L(n)|)}=\left.f\right|_{f^{-1(|L(n)|!)}}$,
(6) $c\left(f^{-1}(\sigma)\right) \subseteq \phi_{L}^{-1}(\sigma)$ for $\sigma \in L$, where $\psi_{L}: \mathrm{EW}_{z_{p}}(L, n) \rightarrow L$ is the map constructed in Lemma 2.1.
We define the map $\left.c_{n} \equiv f\right|_{f^{-1\left(1 L^{(n))}\right)}}: f^{-1}\left(\left|L^{(n)}\right|\right) \rightarrow\left|L^{(n)}\right| \subseteq \mathrm{EW}_{\boldsymbol{z}_{p}}(L, n)$. Inductively, suppose that for $n \leqq k$ we have defined the function $c_{k}: f^{-1}\left(\left|L^{(k)}\right|\right) \rightarrow$ $\mathrm{EW}_{Z_{p}}(L, n)$ such that $\left.c_{k}\right|_{f^{-1(\sigma)}}: f^{-1}(\boldsymbol{\sigma}) \rightarrow \boldsymbol{\phi}_{L}^{-1}(\sigma) \cong \mathrm{EW}_{\boldsymbol{Z}_{p}}(L, n)$ is continuous and $\left.c_{k}\right|_{f^{-1(\sigma)}}=\left.c_{k}\right|_{f^{-1(z)}}$ on $f^{-1}(\sigma) \cap f^{-1}(\tau)$ for $\sigma, \tau \in L^{(k)}$. Now, let $\sigma \in L$ with $\operatorname{dim} \sigma$ $=k+1$. By the construction of $c_{k}$ and $\mathrm{EW}_{z_{p}}(L, n),\left.c_{k}\right|_{f^{-1}(\hat{\sigma})}: \partial \sigma \rightarrow \psi_{L}^{-1}(\sigma)$ is continuous. Hence by $c-\operatorname{dim}_{z_{p}} f^{-1}(\sigma) \leqq c-\operatorname{dim}_{z_{p}} X \leqq n$ and (i) in Lemma 2.1, we we have an continuous extension $c_{\sigma}: f^{-1}(\sigma) \rightarrow \psi_{L}^{-1}(\sigma)$ of $\left.c_{k}\right|_{f-1(\partial \sigma)}$. Define $c_{k+1}$ to be $c_{\sigma}$ on $f^{-1}(\sigma)$ for $\sigma \in L$ with $\operatorname{dim} \sigma=k+1$. Finally, we define $c$ to be $\bigcup_{k=n}^{\infty} c_{k}$. Then since $X$ is compactly generated, the function $c$ is continuous.

We define an open cover $\mathscr{B}=\left\{B_{\sigma}: \sigma \in L\right\}$ in the following way:

$$
B_{\sigma} \equiv \mathrm{EW}_{z_{p}}(L, n) \backslash \cup\left\{\psi_{L}^{-1}(\tau): \sigma \cap \tau=0\right\} .
$$

Then note that we have
(7) $\phi_{L}^{-1}(\sigma) \cong B_{\sigma}$
(8) if $x \in B_{\sigma}$ and $x \in \psi_{\bar{L}}{ }^{1}(\tau)$, then $\sigma \cap \tau \neq 0$.

Since $\mathrm{EW}_{\boldsymbol{Z}_{p}}(L, n)$ is $\mathrm{LC}^{n}$, for a star refinement $\mathscr{B}_{1}$ of $\mathscr{B}$, there exists an open refinement $\mathscr{B}_{2}$ of $\mathscr{B}_{1}$ such that if $K$ is a simplicial complex of $\operatorname{dim} K \leqq n+1$, then every partial realization of $K$ in $\mathrm{EW}_{\boldsymbol{Z}_{p}}(L, n)$ relative to $\mathscr{B}_{2}$ extended to a full realization relative to $\mathscr{B}_{1}$ [2]. Select a star refinement $\mathscr{B}_{3}$ of $\mathscr{B}_{2}$.

Then by [21, Lemma 9.6], there exist an open cover $\sigma$ of $X$ refining $f^{-1}\left(\mathscr{U}_{0}\right) \wedge c^{-1}\left(\mathscr{B}_{3}\right)$ and maps $\varphi: X \rightarrow|\mathscr{N}(\mathcal{V})|, \psi:|\Re(\mathcal{V})| \rightarrow P$ such that
(9) $\varphi$ is $Q$-normal,
(10) $\psi \circ \varphi$ is $L$-modification of $f$,
(11) if $\sigma \in \mathscr{H}(\mathcal{V})$, the exists $U \in \mathcal{U}_{0}$ with $f\left(\varphi^{-1}(\sigma)\right) \cup \psi(\sigma) \subseteq U$.

Then these $\Re(\mathcal{V}), \varphi$ and $\psi$ satisfy the conditions (1)-(3).
It is easily seen that (11) implies (1) and (2). It remain to prove that (3) holds.

We shall construct a map $\psi_{0}:\left|\mathscr{N}(\mathcal{C})^{(n+1)}\right| \rightarrow \mathrm{EW}_{z_{p}}(L, n)$ in the following way: note that if $\langle U\rangle \in \mathscr{M}(\mathcal{C})^{(n+1)}$, there exists $B_{U} \in \mathscr{B}_{3}$ with $U \subseteq c^{-1}\left(B_{U}\right)$. $\psi_{0}$ on $\left|\mathscr{n}(\mathcal{C V})^{(0)}\right|$ is defined by an element $\psi_{0}(\langle U\rangle) \in B_{U}$ for each $\langle U\rangle \in \mathscr{M}(\mathcal{V})^{(0)}$. Let $\left\langle U_{0}, \cdots, U_{m}\right\rangle \in \mathscr{N}(q)^{(n+1)}$. Then by $\emptyset \neq U_{0} \cap \cdots \cap U_{m} \subseteq c^{-1}\left(B_{U_{0}}\right) \cap \cdots \cap c^{-1}\left(B_{U_{m}}\right)$, we have

$$
\psi_{0}\left(\left\{\left\langle U_{0}\right\rangle, \cdots,\left\langle U_{m}\right\rangle\right\}\right) \subseteq \operatorname{st}\left(B_{U_{0}}, \mathscr{B}\right) \subseteq B \quad \text { for some } B \in \mathscr{G}_{2} .
$$

It show that $\psi_{0}$ is a partial realization of $\mathscr{n}(\mathcal{D})^{(n+1)}$ in $\mathrm{EW}_{Z_{p}}(L, n)$ relative to $\mathscr{B}_{2}$. Therefore, by the construction of $\mathcal{B}_{2}$, we may define $\phi_{0}$ to be a full
realization relative to $\mathscr{B}_{1}$. Then by the same way in [21, p. 245 (8)] we can show that
(12) if $t \in \mid\left\{(\sim V)^{(n+1)} \mid\right.$ with $\psi(t) \in \operatorname{Int} \delta$ and $\psi_{0}(t) \in \phi_{L}^{-1}(\tau)$ for $\delta, \tau \in L$, then there exist $\sigma, \lambda \in L$ such that $\delta<\sigma$ and $\sigma \cap \lambda \neq \emptyset \neq \lambda \cap \tau$.
Now, by the property (v) in Lemma 2.1, we can choose
 $t \in\left|\eta(\sim)^{(n+1)}\right|$, if $\phi_{0}(t) \in \psi_{\bar{L}}^{-1}(\tau)$, then $\psi_{1}(t) \in \phi_{L}^{-1}(\tau)^{(n+1)}$.
By the simplicial approximation theorem, we assume that $\psi_{1}$ is PL.
If $n \geqq 2$, by the properties (4) and (1) in Lemma 2.1, we have

$$
\mathrm{EW}_{z_{p}}(L, n)^{(n+1)}=\left|L^{(n)}\right| \cup \cup\left\{\partial \sigma \times[0,1] \cup_{\alpha_{\sigma}} B_{\sigma}^{n+1}: \sigma \in L, \operatorname{dim} \sigma=n+1\right\}
$$

where $\alpha_{\sigma}: \partial B_{\sigma}^{n+1} \rightarrow \partial \sigma$ is a map of degree $p$. For each ( $n+1$ )-simplex $\sigma$ of $L$, choose a point $z_{\sigma} \in B_{\sigma}^{n+1} \backslash \partial B_{\sigma}^{n+1}$, and take the retraction

$$
r: \mathrm{EW}_{z_{p}}(L, n)^{(n+1)} \backslash\left\{z_{\sigma}: \sigma \in L, \operatorname{dim} \sigma=n+1\right\} \longrightarrow\left|L^{(n)}\right|
$$

induced by the compositions of the radial projection of $B_{\sigma}^{n+1} \backslash\left\{z_{\sigma}\right\}$ onto $\partial \sigma \times\{1\}$ and the natural projection of $\partial \sigma \times[0,1]$ onto $\partial \sigma \times\{0\} \cong\left|L^{(n)}\right|$.

If $n=1$, for every simplex $\sigma$ of $\operatorname{dim} \sigma \geqq 2, \psi_{L}^{-1}\left(\sigma^{(2)}\right)$ may be represented as the form (5) in Lemma 2.1:

$$
\phi_{\bar{L}}^{-1}(\sigma)^{(2)}=\sigma^{(1)} \times[0,1] \cup_{r_{1}} B^{2} \cup_{r_{2}} \cdots \cup_{\alpha_{r_{\sigma}}} B^{2} \cup_{\beta_{1}} B^{2} \cup_{\beta_{2}} \cdots \cup_{\beta_{k_{\sigma}}} B^{2} .
$$

Then choose points $u_{1}^{\sigma}, \cdots, u_{r_{\sigma}}^{\sigma}, v_{1}^{\sigma}, \cdots, v_{k_{\sigma}}^{\sigma}$ of $\psi_{L}^{-1}\left(\sigma^{(1)}\right)^{(2)} \backslash \sigma^{(1)} \times[0,1]$ for each $B^{2}$ and the retraction $r: \mathrm{EW}_{z_{p}}(L, n)^{(2)} \backslash\left\{u_{1}^{\sigma}, \cdots, u_{r_{\sigma}}^{\sigma}, v_{1}^{\sigma}, \cdots, v_{k_{\sigma}}^{\sigma}: \sigma \in L\right.$, $\left.\operatorname{dim} \sigma \geqq 2\right\} \rightarrow$ $\left|L^{(1)}\right|$ induced by the compositions of the radial projections of $B^{2} \backslash\left\{u_{j}^{\sigma}\right\}$ or $B^{2} \backslash\left\{v_{j}^{\sigma}\right\}$ onto $S^{1}$ and the natural projection of $\sigma^{(1)} \times[0,1]$ onto $\sigma^{(1)} \times\{0\} \subseteq\left|L^{(1)}\right|$.

In both cases, we put

$$
\psi^{\prime} \equiv r \circ \phi_{1}| | n(Q)(n)\left|:\left|n(Q)^{(n)}\right| \longrightarrow\right| L^{(n)} \mid .
$$

Then the map $\psi^{\prime}$ holds the conditions (i), (ii). First, we show the condition (i). Let $t \in\left|\mathscr{N}(\mathcal{V})^{(n)}\right|$. By (12), there exist $\sigma, \lambda, \tau \in L$ such that $\sigma \cap \lambda \neq 0 \neq \lambda \cap \tau$ and $\psi(t) \in \sigma, \psi_{0}(t) \in \phi_{L}^{-1}(\tau)$. Then since $\phi_{1}(t)$ is an element of $\phi_{L}^{-1}(\tau)^{(n)}$, we have $\psi^{\prime}(t) \in \tau$. Hence, we have $\psi(t), \phi^{\prime}(t) \in \overline{\operatorname{st}}(\lambda, L) \subseteq U$ for some $U \in \mathcal{U}_{0}$ (see (4)). Next, we must show the condition (ii). But, this is similar to the proof of Theorem 3.3.3. Hence, we omitted it here.

Now, we shall show that $f$ is $\left(\boldsymbol{Z}_{p}, n\right)$-cohomological. By (2), we can easily see that $(\psi \circ \varphi, f) \leqq q$. So, we show that $\psi$ is $\left(Z_{p}, n, U\right)$-approximable.

Let $M$ be a triangulation of $|K|$. Note that for a simplicial approximation $j$ of $i d_{|M|}:|M|=|K| \rightarrow|K|$ with respect to $K$, we have that

$$
j\left(\left|M^{(n+1)}\right|\right) \subseteq\left|K^{(n+1)}\right| \quad \text { and } \quad j\left(\left|M^{(n)}\right|\right) \subseteq\left|K^{(n)}\right|
$$

Then by (1) and (3), we can easily see that the map

$$
\psi^{\prime \prime} \equiv \psi^{\prime} \circ j:\left|M^{(n)}\right| \longrightarrow\left|L^{(n)}\right|
$$

holds the conditions.
The reverse implication is proved by the standard way [21]. First, we need some notations.

We may assume that the Eilenberg-MacLane space $K\left(\boldsymbol{Z}_{p}, n\right)$ is a metrizable, locally compact separable space. Then by the Kuratowski-Wojdyslawski's theorem, we can consider that $K\left(\boldsymbol{Z}_{p}, n\right)$ is a closed subset of a convex subset $C$ of a normed linear space $E$. Note that $C$ is AR (metrizable spaces). Since $K\left(\boldsymbol{Z}_{p}, n\right)$ is ANR, there exist a closed neighborhood $F$ in $C$ and a retraction $r: F \rightarrow$ $K\left(\boldsymbol{Z}_{p}, n\right)$. Further, we can choose an open cover $\mathscr{W}_{0}$ of $\operatorname{Int}_{C} F$ such that
(1) for any space $Z$ and any maps $\alpha, \beta: Z \rightarrow F$ with $(\alpha, \beta) \leqq \mathscr{W}_{0}$, the maps $r \circ \alpha, \gamma \circ \beta: Z \rightarrow K\left(\boldsymbol{Z}_{p}, n\right)$ are homotopic in $K\left(\boldsymbol{Z}_{p}, n\right)$.
Then we take an open, convex cover $\mathscr{W}$ of $C$ such that
(2) if $W \in \mathscr{W}$ with $W \cap K\left(\boldsymbol{Z}_{p}, n\right) \neq \emptyset$, there exists $U \in \mathscr{W}_{0}$ with $\operatorname{st}(W, \mathscr{W}) \subseteq U$. Select a star refinement $\mathbb{Q}$ of $\mathscr{W}$.

Let $h_{0}: C \rightarrow|\mathscr{\varkappa}(\mathcal{V})|$ be a Kuratowski's map with respect to $Q V$ and define a map $h_{1}:|\mathscr{n}(\mathcal{Q})| \rightarrow C$ in the following way: a map $h_{1}$ on $\left|\mathscr{N}(\mathcal{D})^{(0)}\right|$ is defined by an element $h_{1}(\langle V\rangle) \in V$ for each $\langle V\rangle \in\left|\Re(\mathcal{C V})^{(0)}\right|$. Next, by using the convexity of $C$, we extend $h_{1}$ linearly on each simplex $|\Re(\checkmark)|$. Let $\sigma=\left\langle V_{0}, \cdots, V_{m}\right\rangle$ $\in|\Re(C D)|$. Then by $V_{0} \cap \cdots \cap V_{m} \neq \emptyset$.

$$
h_{1}\left(\left\{\left\langle V_{0}\right\rangle, \cdots,\left\langle V_{m}\right\rangle\right\}\right) \cong \operatorname{st}\left(V_{0}, C D\right) \cong W_{\sigma} \quad \text { for some } W_{\sigma} \in \mathscr{W} .
$$

Thus, by the construction of $h_{1}$, we have $h_{1}(\sigma) \subseteq W_{\sigma}$.
Let $\Omega_{1}$ be a subcomplex $\mathscr{N}\left(\left\{V \in C V: V \cap K\left(\boldsymbol{Z}_{p}, n\right) \neq \emptyset\right\}\right)$ of $\mathscr{N}(\mathbb{V})$. Let $\Re_{0}$ be a simplicial neighborhood of $n_{1}$ in $\cap(Q)$ such that if $\left\langle V_{0}\right\rangle \in n_{0}$, there exists $\left\langle V_{1}\right\rangle \in \mathscr{n}_{1}$ with $V_{0} \cap V_{1} \neq \emptyset$. Then we can easily see the followings:
(3) for each $x \in K\left(\boldsymbol{Z}_{p}, n\right)$, there exists $W \in \mathscr{W}$ with $x, h_{1} \circ h_{0}(x) \in W$,
(4) $h_{1}\left(\left|\mathscr{I}_{0}\right|\right) \cong \operatorname{st}\left(K\left(\boldsymbol{Z}_{p}, n\right), \mathscr{W}\right) \cong F$,
(5) $h_{0}\left(K\left(\mathbb{Z}_{p}, n\right)\right) \subseteq\left|\Re_{1}\right| \subseteq\left|\Re_{0}\right|$.

Proof of sufficiency. Let $A$ be a closed subset of $X$ and $h: A \rightarrow K\left(\boldsymbol{Z}_{p}, n\right)$ be a map. We consider the above-mentioned nerve $\mathscr{N}(\mathcal{V})$ and maps $h_{0}, h_{1}$. We take an open cover $U$ of $|\mathscr{N}(\mathcal{C V})|$ such that
(6) $\mathrm{st}^{3}\left(\left|\Re_{1}\right|, U\right) \cong\left|\Re_{0}\right|$,
(7) $\mathrm{st}^{3}\left(\right.$ (U) $<h_{1}^{-1}(\mathscr{W})$,
and choose a subdivision $\mathscr{N}$ of $\mathscr{N}(\mathcal{V})$ such that if $\sigma \in \mathscr{N}$ there exists $U \in \mathcal{U}$ with $\sigma \cong U$.

Since $C$ is AE, there is an extension $H: X \rightarrow C$ of $h$. Then by the assumption, the map $h_{0} \circ H: X \rightarrow|\mathscr{N}(\mathcal{V})|$ is $\left(Z_{p}, n\right)$-cohomological. Hence, there exist a polyhedron $Q$ and maps $\varphi: X \rightarrow Q, \phi: Q \rightarrow|n(Q)|$ such that
(8) $\left(\psi^{\circ} \circ \varphi, h_{0} \circ H\right) \leqq$,
(9) $\psi$ is $\left(\boldsymbol{Z}_{p}, n, \mathcal{U}\right)$-approximable.

By using the simplicial approximation theorem, we obtain a triangulation $M$ of $Q$ and a simplicial approximation $\psi^{*}: M \rightarrow \eta$ of $\psi$. Then by (8), (9), we have
(10) $\left(\psi^{*} \circ \varphi, h_{0} \circ H\right) \leqq$ st $\mathcal{Q}$,
(11) $\psi^{*}$ is $\left(\boldsymbol{Z}_{p}, n\right.$, st $\left.\mathcal{U}\right)$-approximable.

Now, by (11) with respect to $M$, there exist a triangulation $L$ and a PL-map $\psi^{\prime}:\left|M^{(n)}\right| \rightarrow\left|L^{(n)}\right|$ such that
(12) $\left(\psi^{\prime},\left.\psi^{*}\right|_{|M(n)|}\right) \leqq$ st $q$,
(13) for any map $\alpha:\left|L^{(n)}\right| \rightarrow K\left(\boldsymbol{Z}_{p}, n\right)$, there exists an extension $\beta:\left|M^{(n+1)}\right|$ $\rightarrow K\left(\boldsymbol{Z}_{p}, n\right)$ of $\alpha{ }^{\circ} \psi^{\prime}$.

Claim. There exists a map $\xi: Q \rightarrow K\left(\boldsymbol{Z}_{p}, n\right)$ such that $\left.\xi\right|_{\psi^{*-1}\left(\mid \Re_{0}\right)}=r \circ h_{1} \circ$ $\left.\psi^{*}\right|_{\psi^{*-1}\left(1 \Omega_{0}\right)}$.

Construction of $\xi$. First, we shall see that
(14) for each $x \in D \equiv \phi^{*-1}\left(\left|\mathscr{N}_{0}\right|\right) \cap\left|M^{(n)}\right|$, there exists $U \in \mathscr{W}_{0}$ such that $h_{1}{ }^{\circ} \psi^{*}(x), h_{1}{ }^{\circ} \psi^{\prime}(x) \in U$.
By (12), there exist $U_{1}, U_{2}, U_{3} \in \mathcal{U}$ such that $U_{1} \cap U_{2} \neq \emptyset \neq U_{2} \cap U_{3}$ and $\psi^{*}(x) \in U_{1}$, $\psi^{\prime}(x) \in U_{3}$. Then by (7), we have $W \in \mathscr{W}$ with $h_{1}\left(U_{1} \cup U_{2} \cup U_{3}\right) \subseteq W$. Since $\psi^{*}(x)$ $\in\left|\Re_{0}\right|$, by (4), there exists $W^{\prime} \in \mathscr{W}$ such that $h_{1} \circ \psi^{*}(x) \in W$ and $W^{\prime} \cap K\left(\mathbb{Z}_{p}, n\right)$ $\neq 0$. Hence by (2), we obtain $U \in \mathscr{W}_{0}$ such that $h_{1}{ }^{\circ} \psi^{*}(x), h_{1} \circ \psi^{\prime}(x) \subseteq \operatorname{st}\left(W^{\prime}, \mathscr{W}\right) \subseteq U$.

Therefore by (14) and (1), we see the followings:
(15) $h_{1} \circ \phi^{\prime}(D) \subseteq F$,
(16) $\left.\left.r \circ h_{1} \circ \psi^{*}\right|_{D} \simeq r \circ h_{1} \circ \psi^{\prime}\right|_{D}$ in $K\left(\boldsymbol{Z}_{p}, n\right)$.

Since $D$ is a subpolyhedron of $\left|M^{(n)}\right|$ and $\phi^{\prime}$ is PL, $\psi^{\prime}(D)$ is subpolyhedron of $\left|L^{(n)}\right|$. Hence, from $\pi_{q}\left(K\left(\boldsymbol{Z}_{p}, n\right)\right)=0$ for $q<n$ (if $n=1$, the path-connectedness of $K\left(\boldsymbol{Z}_{p}, n\right)$ ), there exists an extension

$$
\alpha:\left|L^{(n)}\right| \longrightarrow K\left(\boldsymbol{Z}_{p}, n\right)
$$

of $\left.r \circ h_{1}\right|_{\psi^{\prime}(D)}: \psi^{\prime}(D) \rightarrow K\left(\boldsymbol{Z}_{p}, n\right)$.
Then by (13), we have an extension

$$
\beta:\left|M^{(n+1)}\right| \longrightarrow K\left(Z_{p}, n\right)
$$

of $\alpha \circ \psi^{\prime}$.
Now, put

$$
R \equiv\left|M^{(n+1)}\right| \backslash \cup\left\{\operatorname{lnt} \sigma: \sigma \in M, \operatorname{dim} \sigma=n+1, \sigma \subseteq \psi^{*-1}\left(\left|\eta_{0}\right|\right)\right\} .
$$

Then since for each $x \in D \subseteq R$ we have $\beta(x)=\alpha \circ \psi^{\prime}(x)=r \circ h_{1} \circ \psi^{\prime}(x)$,

$$
\begin{equation*}
\left.\left.\beta_{D} \simeq r \circ h_{1} \circ \psi^{\prime}(x)\right|_{D} \simeq r \circ h_{1} \circ \phi^{*}\right|_{D} \quad \text { in } K\left(\boldsymbol{Z}_{p}, n\right) . \tag{17}
\end{equation*}
$$

By the homotopy extension theorem, there exists an extension $\xi_{R}: R \rightarrow K\left(\boldsymbol{Z}_{p}, n\right)$ of $\left.r \circ h_{1} \circ \psi^{*}\right|_{D}$.

Since for $\sigma \in M$ with $\operatorname{dim} \sigma=n+1$ and $\sigma \subseteq \psi^{*-1}\left(\left|\Re_{0}\right|\right)$, we have $\left.\xi_{R}\right|_{\partial \sigma}=$ $\left.r \circ h_{1} \circ \psi^{*}\right|_{\partial \sigma}$, there exists an extension $\xi_{n+1}:\left|M^{(n+1)}\right| \rightarrow K\left(\boldsymbol{Z}_{p}, n\right)$ of $\xi_{R}$ such that $\left.\xi_{n+1}\right|_{\psi^{*-1}\left(| | \eta_{0}\right) \cap \mid M(n+1)}=\left.r \circ h_{1}{ }^{\circ} \psi^{*}\right|_{\phi^{*}-1\left(1\left|n_{0}\right|\right) \cap|M(n+1)|}$.

Hence, we can define a map $\xi^{\prime}: \psi^{*-1}\left(\left|\Omega_{0}\right|\right) \cup\left|M^{(n+1)}\right| \rightarrow K\left(Z_{p}, n\right)$ by the following :

$$
\xi^{\prime} \equiv\left(\left.r \circ h_{1} \circ \psi^{*}\right|_{\left.\psi^{*-1}\left(\mid \eta_{0}\right)\right)}\right) \cup \xi_{n+1} .
$$

Therefore from $\pi_{q}\left(K\left(\boldsymbol{Z}_{p}, n\right)\right)=0$ for $q>n$, we obtain an extension $\xi: Q \rightarrow K\left(\boldsymbol{Z}_{p}, n\right)$ of $\xi^{\prime}$ such that $\left.\xi\right|_{\psi^{*-1}\left(\left|I_{0}\right|\right)}=\left.r \circ h_{1} \circ \psi^{*}\right|_{\psi^{*-1}\left(\mid \mathscr{I}_{0}\right)}$. It completes the construction.

Now, we put

$$
h^{\prime} \equiv \xi \circ \varphi: X \longrightarrow K\left(\boldsymbol{Z}_{p}, n\right) .
$$

Then to complete the proof it suffices to prove

$$
\begin{equation*}
\left.h^{\prime}\right|_{A} \simeq h \quad \text { in } K\left(\boldsymbol{Z}_{p}, n\right) \tag{18}
\end{equation*}
$$

First, we shall see that

$$
\psi^{*} \circ \varphi(A) \subseteq\left|\mathcal{I}_{0}\right|
$$

Let $a \in A$. By (10), there exist $U_{1}, U_{2}, U_{3} \in Q$ such that
(19) $U_{1} \cap U_{2} \neq \emptyset \neq U_{2} \cap U_{3}$ and $\psi^{*} \circ \varphi(a) \in U_{1}, h_{0} \circ H(a) \in U_{3}$.

Then since $h_{0} \circ H(a)=h_{0} \circ h(a) \in h_{0}\left(K\left(\boldsymbol{Z}_{p}, n\right)\right) \subseteq\left|\Re_{1}\right|$, we have $\psi^{*} \circ \varphi(a) \in\left|\Re_{0}\right|$ by (6).

Hence, by Claim, we have for each $a \in A \quad h^{\prime}(a)=\xi \circ \varphi(a)=r \circ h_{1} \circ \psi^{*} \circ \varphi(a)$. Therefore, by (1), it suffices to see that
(20) there exists $U \in \mathscr{W}_{0}$ such that $h_{1} \circ \psi^{*} \circ \varphi(a), h(a) \in U$.

Let $U_{1}, U_{2}, U_{3} \in \mathcal{U}$ with the property (19). By (7), there exists $W \in \mathscr{W}$ such that $U_{1} \cup U_{2} \cup U_{3} \cong h_{1}^{-1}(W)$. By (3) we choose $W^{\prime} \in \mathscr{W}$ such that $h(a), h_{1} \circ h_{0} \circ h(a)$ $\in W^{\prime}$. Therefore, since $h(a) \in K\left(\boldsymbol{Z}_{p}, n\right)$, there exists $U \in \mathscr{W}_{0}$ such that

$$
h_{1} \circ \psi^{*} \circ \varphi(a), h(a) \in \operatorname{st}\left(W^{\prime}, \mathscr{W}\right) \subseteq U .
$$

It completes the proof.

## 5. Approximable dimension

5.1. Definition. A space $X$ has approximable dimension with respect to a coefficient group $G$ of less than and equal to $n$ (abbreviated, $a-\operatorname{dim}_{G} X \leqq n$ ) provided that for every polyhedron $P$, map $f: X \rightarrow P$ and open cover $Q$ of $P$, there exist a polyhedron $Q$ and maps $\varphi: X \rightarrow Q, \psi: Q \rightarrow P$ such that
(i) $(\psi \circ \varphi, f) \leqq \mathcal{Q}$,
(ii) $\psi$ is $(G, n, \mathcal{U})$-approximable.

If $X$ is compact, we use compact polyhedron and positive number $\varepsilon$ instead of above-mentioned polyhedron and open cover, respectively.

First, we state fundamental inequalities of $a$ - $\operatorname{dim}_{G}$.
5.2. Theorem. For a compact Hausdorff or metrizable space $X$ and an arbitrary abelian group $G$, we hold the following inequalities:

$$
c-\operatorname{dim}_{G} X \leqq a-\operatorname{dim}_{G} X \leqq \operatorname{dim} X .
$$

Proof. The second inequality is trivial. We can see the first inequality by the strategy similar to the proof of the sufficiency in Theorem 3.3, 4.3.

As we will show in latter sections, our approach of $a$ - $\operatorname{dim}_{G}$ gives useful applications. In general, $a$ - $\operatorname{dim}_{G}$ is different from $c-\operatorname{dim}_{G}$ (see section 8 ). However, in special cases of coefficient group $G, a$ - $\operatorname{dim}_{G}$ coincides with $c$ - $\operatorname{dim}_{G}$.
5.3. ThEOREM. If $G=\boldsymbol{Z}$ or $\boldsymbol{Z}_{p}$, where $p$ is a prime number, for every compact Hausdorff or metrizable space $X$,

$$
a-\operatorname{dim}_{G} X=c-\operatorname{dim}_{G} X .
$$

Proof. From Theorem 3.3, 4.3, 5.2, we see the fact.
We will use the new notion, approximate (inverse) systems and their limits, instead of usual inverse systems and inverse limits. They were introduced by S. Mardešić and L. R. Rubin [17] and took an important role in [18]. We quote their basic definitions.
5.4. Definition. An approximate (inverse) system of metric compacta $\mathfrak{X}=$ ( $X_{a}, \varepsilon_{a}, p_{a, a^{\prime}}, A$ ) consists of the followings: A directed ordered set $(A, \leqq$ ) ; a compact metric space $\mathscr{X}_{a}$ with a metric $d$ and a real number $\varepsilon_{a}>0$; for each pair $a \leqq a^{\prime}$ from $A$, a map $p_{a, a^{\prime}}: X_{a^{\prime} \rightarrow X_{a}}$, satisfying the following conditions:
(A1) $d\left(p_{a_{1}, a_{2}} \circ p_{a_{2} a_{3}}, p_{a_{1} a_{3}}\right) \leqq \varepsilon_{a_{1}}, a_{1} \leqq a_{2} \leqq a_{3} ; p_{a a}=i d_{X_{a}}$,
(A2) for every $a \in A$ and $\eta>0$, there exists $a^{\prime} \geqq a$ such that $d\left(p_{a, a_{1}}{ }^{\circ} p_{a_{1} a_{2}}\right.$, $\left.p_{a a_{2}}\right) \leqq \eta$ for every $a_{2} \geqq a_{1} \geqq a^{\prime}$,
(A3) for every $a \in A$ and $\eta>0$, there exists $a^{\prime} \geqq a$ such that for every $a^{\prime \prime} \geqq a^{\prime}$ and every pair of points $x, x^{\prime}$ of $X_{a^{\prime \prime}}$, if $d\left(x, x^{\prime}\right) \leqq \varepsilon_{a^{\prime \prime}}$, then $d\left(p_{a a^{\prime \prime}}(x), p_{a a^{\prime \prime}}\left(x^{\prime}\right)\right) \leqq \eta$.

We refer to the number $\varepsilon_{a}$ as the meshs of the approximate system $\mathscr{X}$.
If $\pi_{a}: \prod_{a \in A} X_{a} \rightarrow X_{a}, a \in A$, denote the projections, we define the limit space $X=\lim \mathscr{X}$ and the natural projections $p_{a}: X \rightarrow X_{a}$ as follows:
5.5. Definition. A point $\boldsymbol{x}=\left(x_{a}\right) \in \prod_{a \in A} X_{a}$ belongs to $X=\lim \mathscr{X}$ provided that for every $a \in A$,

$$
x_{a}=\lim _{a_{1}} p_{a a_{1}}\left(x_{a_{1}}\right)
$$

The projections $p_{a}: X \rightarrow X_{a}$ are given by $p_{a}=\left.\pi_{a}\right|_{x}$.
Next we quote results from [17] and [18] needed in this note. The proofs may be found in them.
5.6. Proposition. Let $\mathfrak{X}=\left(X_{a}, \varepsilon_{a}, p_{a a^{\prime}}, A\right)$ be an approximate system. Then we have the following properties:
(i) if every $X_{a}$ is non-empty, then $X=\lim \mathfrak{X}$ is a non-empty compact Hausdorff space,
(ii) for each $a \in A, \lim _{a_{1}} d\left(p_{a}, p_{a a_{1}}{ }^{\circ} p_{a_{1}}\right)=0$, where $d(f, g)=\sup \{d(f(x)$, $g(x)): x \in X\}$,
(iii) for each open cover $\mathcal{U}$ of $X=\lim \mathscr{X}$, there is $a \in A$ such that for every $a_{1} \geqq a$, there exists an open cover $\mathbb{V}$ of $X_{a_{1}}$ for which $p_{a_{1}}^{-1}(\mathcal{V})$ refines $\cup$,
(iii') if $\operatorname{dim} X_{a} \leqq n$ for all $a \in A$, then $\operatorname{dim} X \leqq n$,
(iv) for every $\varepsilon>0$, every compact ANR $P$ and every map $h: X \rightarrow P$, there is $a \in A$ such that for every $a_{1} \geqq a$, there is a map $f: X_{a} \rightarrow P$ which satisfies $d\left(f \circ p_{a_{1}}, k\right) \leqq 2 \varepsilon$.
5.7. Proposition. Let $\mathfrak{X}=\left(X_{a}, \varepsilon_{a}, p_{a a^{\prime}}, A\right)$ be an approximate system. If for every $a_{1} \in A$, every compact ANR $P$, and every map $h: X_{a_{1}} \rightarrow P$, there ts $a_{1}^{\prime} \geqq a_{1}$ such that for every $a_{2} \geqq a_{1}^{\prime}$, there is $a_{2}^{\prime} \geqq a_{2}$ such that for every $a_{3} \geqq a_{2}^{\prime}$,

$$
h \circ p_{a_{1} a_{2}} \circ p_{a_{2} a_{3}} \simeq 0
$$

then every map from $X=\lim X$ to $P$ is null-homotopic.
Namely, under the above assumptson, the set $[X, P]$ is trivial.

In the proof of our main result we need the following characterization of $a-\mathrm{dim}_{G}$ by approximate systems.
5.8. Theorem. Let $\mathfrak{X}=\left(X_{a}, \varepsilon_{a}, p_{a a^{\prime}}, A\right)$ be an approximate system of compact polyhedra with the limit $X=\lim \mathfrak{X}$ and $p$ be a prime number. Then $X$ has approximable dimension with respect to $G \leqq n$ if and only if for every $a \in A$ and every $\varepsilon>0$, there is $a^{\prime} \geqq a$ such that for every $a^{\prime \prime} \geqq a^{\prime}$, the map $p_{a a^{\prime \prime}}: X_{a^{\prime \prime}} \rightarrow X_{a}$ is ( $G, n, \varepsilon$ )-approximable.

Proof. Suppose that $a$ - $\lim _{G} X \leqq n$. Take any $a \in A$ and any positive number $\varepsilon>0$. By (A2), there is $a_{1} \geqq a$ such that

$$
\begin{equation*}
d\left(p_{a a^{\prime}} \circ p_{a^{\prime} a^{\prime \prime},}, p_{a a^{\prime \prime}}\right) \leqq \varepsilon / 7, \quad a_{1} \leqq a^{\prime} \leqq a^{\prime \prime} . \tag{1}
\end{equation*}
$$

Specially,

$$
d\left(p_{a a^{\prime} \circ} \circ p_{a^{\prime} a^{\prime \prime}} \circ p_{a^{\prime \prime}}, p_{a a^{\prime \prime}} \circ p_{a^{\prime \prime}}\right) \leqq \varepsilon / 7, \quad a_{1} \leqq a^{\prime} \leqq a^{\prime \prime}
$$

Hence, by Definition 5.5, we have that

$$
\begin{equation*}
d\left(p_{a a^{\prime}} \circ p_{a^{\prime}}, p_{a}\right) \leqq \varepsilon / 7, \quad a_{1} \leqq a_{a^{\prime}} . \tag{2}
\end{equation*}
$$

By the assumption, there is a compact polyhedron $Q$ and maps $\varphi: X \rightarrow Q$, $\phi: Q \rightarrow X_{a}$ such that
(3) $d\left(\psi \circ \varphi, p_{a}\right) \leqq \varepsilon / 7$,
(4) $\psi$ is ( $G, n, \varepsilon / 7$ )-approximable.

Let take a positive number $\delta>0$ such that

$$
\begin{equation*}
\text { if } x, x^{\prime} \in Q \quad \text { and } \quad d\left(x, x^{\prime}\right) \leqq \delta, \quad \text { then } d\left(\psi(x), \psi\left(x^{\prime}\right)\right) \leqq \varepsilon / 7 . \tag{5}
\end{equation*}
$$

By Proposition 5.6 (iv), there exists $a^{\prime} \geqq a_{1}$ and a map $g: X_{a^{\prime}} \rightarrow Q$ such that

$$
\begin{equation*}
d\left(\varphi, g \circ p_{a^{\prime}}\right) \leqq \delta \tag{6}
\end{equation*}
$$

Then, (6), (5), (3) and (2), we see

$$
\begin{align*}
d\left(\psi \circ g \circ p_{a^{\prime}}, p_{a a^{\prime}} \circ p_{a^{\prime}}\right) & \leqq d\left(\psi \circ g \circ p_{a^{\prime}}, \psi \circ \varphi\right)+d\left(\psi \circ \varphi, p_{a}\right)+d\left(p_{a}, p_{a a^{\prime}} \circ p_{a^{\prime}}\right)  \tag{7}\\
& \leqq 3 \varepsilon / 7
\end{align*}
$$

Hence we have a neighborhood $U$ of $p_{a^{\prime}}(X)$ in $X_{a^{\prime}}$ such that

$$
\begin{equation*}
d\left(\left.\psi \circ g\right|_{U},\left.p_{a a^{\prime}}\right|_{U}\right) \leqq 4 \varepsilon / 7 \tag{8}
\end{equation*}
$$

Then there exists $a_{1}^{\prime} \geqq a^{\prime}$ such that

$$
\begin{equation*}
p_{a^{\prime} a^{\prime \prime}}\left(X_{a^{\prime \prime}}\right) \cong U \quad \text { for every } a^{\prime \prime} \geqq a_{1}^{\prime} . \tag{9}
\end{equation*}
$$

By (8) and (1), we have that for every $a^{\prime \prime} \geqq a_{1}^{\prime}$,

$$
\begin{equation*}
d\left(\psi^{\prime} \circ g \circ p_{a^{\prime} a^{\prime \prime}}, p_{a a^{\prime \prime}} \leqq 5 \varepsilon / 7\right. \tag{10}
\end{equation*}
$$

Now we show that $p_{a a^{\prime \prime}}$ is ( $G, n, \varepsilon$ )-approximable. By (4), take a triangulation $T_{a}$ of $X_{a}$ which realizes the ( $G, n, \varepsilon / 7$ )-approximability of $\psi$. Let us take triangulations $T_{a^{\prime \prime}}$ of $X_{a^{\prime \prime}}$ and $M$ of $Q$ with $m e s h(M) \leqq \delta$. Then we have a subdivision of $T_{a^{\prime \prime}}^{\prime}$ of $T_{a^{\prime \prime}}$ and a simplicial approximation $h:\left|T_{a^{\prime \prime}}^{\prime}\right| \rightarrow|M|$ of $g \circ p_{a^{\prime} a^{\prime \prime}}$ such that

$$
\begin{equation*}
d\left(h, g \circ p_{a^{\prime} a^{\prime \prime}}\right) \leqq m e s h(M) \leqq \delta . \tag{11}
\end{equation*}
$$

Hence, by (11), (5) and (10), we have

$$
\begin{equation*}
d\left(\psi \circ h, p_{a a^{\prime \prime}} \leqq d\left(\psi \circ h, \psi \circ g \circ p_{a^{\prime} a^{\prime \prime}}\right)+d\left(\psi \circ g \circ p_{a^{\prime} a^{\prime \prime}}, p_{a a^{\prime \prime}} \leqq 6 \varepsilon / 7\right.\right. \tag{12}
\end{equation*}
$$

On the other hand, by the property of $T_{a}$, there exists a map $\psi^{\prime}:\left|M^{(n)}\right| \rightarrow$ $\left|T_{a}^{(n)}\right|$ such that
(13) $d\left(\psi^{\prime},\left.\phi\right|_{|M(n)|} \leqq \varepsilon / 7\right.$,
(14) for every map $\xi:\left|T_{a}^{(n)}\right| \rightarrow K(G, n)$, the map $\xi^{\circ} \psi^{\prime}:\left|M^{(n)}\right| \rightarrow K(G, n)$ admits a continuous extension over $Q$.
By $h\left(\left|T_{a^{\prime \prime}}^{(n)}\right|\right) \subseteq h\left(\left\lvert\,\left(T^{\prime}\binom{(n)}{u^{\prime \prime}} \subseteq\left|M^{(n)}\right|\right.\right.$, we can define the composition $\left.\psi^{\prime} \circ h\right|_{\left|T_{a^{\prime \prime}}^{(n)}\right|}$ : \right. $\left|T_{a^{\prime}}^{(n)}\right| \rightarrow\left|T_{a}^{(n)}\right|$. Then, by (12) and (13), we have that

$$
\begin{equation*}
d\left(\left.\psi^{\prime} \circ h\right|_{\mid T_{a,}^{(n)},},\left.p_{a a^{\prime \prime}}\right|_{\left.T_{a_{n}^{\prime \prime}}^{(n)}\right)} \leqq \varepsilon .\right. \tag{15}
\end{equation*}
$$

Moreover, by (14), for every map $\xi:\left|T_{a}^{(n)}\right| \rightarrow K(G, n)$, the map $\left.\xi^{\circ} \psi^{\prime} \circ h\right|_{\left|T_{a^{n}}^{(n)}\right|}$ : $\left|T_{a^{\prime \prime}}^{(n)}\right| \rightarrow K(G, n)$ admits a continuous extension over $X_{a^{\prime \prime}}$. That is, the map $p_{a a^{\prime \prime}}$ is ( $G, n, \varepsilon$ )-approximable.

Conversely, we assume that the condition of Theorem 5.8 is satisfied. Take a map $f: X \rightarrow P$ of $X$ to a compact polyhedron $P$ and a positive number $\varepsilon>0$. By Proposition 5.6 (iv), there exists $a \in A$ and a map $g: X_{a} \rightarrow P$ such that

$$
\begin{equation*}
d\left(f, g \circ p_{a}\right) \leqq \varepsilon / 2 \tag{16}
\end{equation*}
$$

Let $\delta>0$ be a positive number such that

$$
\begin{equation*}
\text { if } x, x^{\prime} \in X_{a} \quad \text { and } \quad d\left(x, x^{\prime}\right) \leqq \delta, \quad \text { then } d\left(g(x), g\left(x^{\prime}\right)\right) \leqq \varepsilon / 2 \tag{17}
\end{equation*}
$$

By the same way in the first part of the proof, we can find $a^{\prime} \geqq a$ such that

$$
\begin{equation*}
d\left(p_{a a^{\prime \prime}} \circ p_{a^{\prime \prime}}, p_{a}\right) \leqq \delta \quad \text { for every } a^{\prime \prime} \geqq a^{\prime} . \tag{18}
\end{equation*}
$$

Then we take $a^{\prime \prime} \geqq a^{\prime}$ such that

$$
\begin{equation*}
\text { the map } p_{a a^{\prime \prime}}: X_{a^{\prime \prime}} \rightarrow X_{a} \text { is }(G, n, \delta) \text {-approximable } \tag{19}
\end{equation*}
$$

By (18), (17) and (16),

$$
\begin{align*}
d\left(f, g \circ p_{a a^{\prime \prime}} p_{a^{\prime \prime}}\right) & \leqq d\left(f, g \circ p_{a}\right)+d\left(g \circ p_{a}, g \circ p_{a a^{\prime \prime}} p_{a^{\prime \prime}}\right)  \tag{20}\\
& \leqq \varepsilon / 2+\varepsilon / 2<\varepsilon .
\end{align*}
$$

Hence it suffices to show that $g \circ p_{a a^{\prime \prime}}$ is ( $G, n, \varepsilon$ )-approximable. Let $M$ be a triangulation of $P$ with mesh $(M) \leqq \varepsilon / 2$. Let $T_{a}$ be a triangulation of $X_{a}$ which realizes the ( $G, n, \delta)$-approximability of $p_{a a^{\prime \prime}}$. Then for any triangulation of $T_{a^{\prime \prime}}$ of $X_{a^{\prime \prime}}$, there is a map $\varphi:\left|T_{a^{\prime \prime}}^{(n)}\right| \rightarrow\left|T_{a}^{(n)}\right|$ such that
(21) $d\left(\varphi,\left.p_{a a^{\prime \prime}}\right|_{T_{a^{\prime \prime}}^{(n)} \mid}\right) \leqq \delta$,
(22) for any map $\xi:\left|T_{a}^{(n)}\right| \rightarrow K(G, n)$, the map $\xi^{\circ} \varphi$ admits a continuous extension over $X_{a^{\prime \prime}}$.
On the other hand, we have a subdivision $T_{a}^{\prime}$ of $T_{a}$ and a simplicial map $h: X_{a} \rightarrow P$ with respect to $T_{a}^{\prime}$ and $M$ such that

$$
\begin{equation*}
d(h, g) \leqq \varepsilon / 2 \tag{23}
\end{equation*}
$$

From $\varphi\left(\left|T_{a a^{\prime}}^{(n)}\right|\right) \subseteq\left|T_{a}^{(n)}\right| \subseteq\left|\left(T_{a}^{\prime}\right)^{(n)}\right|$ and $h\left(\left|\left(T_{a}^{\prime}\right)^{(n)}\right|\right) \cong\left|M^{(n)}\right|$, we have the map $\phi:\left|T_{a^{\prime \prime}}^{(n)}\right| \rightarrow\left|M^{(n)}\right|$ defined by $\psi(z)=h \circ \varphi(z)$. Then by (21), (17) and (23),

$$
\begin{equation*}
d\left(g \circ p_{a a^{\prime \prime}}, \psi\right) \leqq d\left(g \circ p_{a a^{\prime \prime}}, g \circ \varphi\right)+d(g \circ \varphi, h \circ \varphi) \leqq \varepsilon / 2+\varepsilon / 2=\varepsilon \tag{24}
\end{equation*}
$$

For any map $\xi:\left|M^{(n)}\right| \rightarrow K(G, n)$, consider the map $\hat{\xi}^{\circ} h_{\left|T_{a}^{(n)}\right|}:\left|T_{a}^{(n)}\right| \rightarrow K(G, n)$. Then, by (22), there is a map $\zeta: X_{a^{\prime \prime}} \rightarrow K(G, n)$ such that

$$
\begin{equation*}
\left.\zeta\right|_{T_{a^{\prime \prime}}^{(n)}}=\left.\xi^{\circ}\left(\left.h\right|_{\left|T_{a}^{(n)}\right|}\right) \circ \varphi\right|_{: T_{a^{\prime \prime}}^{(n)} \mid} \tag{25}
\end{equation*}
$$

Namely, the map $\xi \circ \psi$ has a continuous extension over $X_{a^{\prime \prime}}$. It follows that $g \circ p_{a a^{\prime \prime}}$ is ( $G, n, \varepsilon$ )-approximable. Therefore, we have $a$ - $\operatorname{dim}_{G} X \leqq n$.
5.9. Corollary. Let $\mathfrak{X}=\left(X_{a}, \varepsilon_{a}, p_{a a^{\prime}}, A\right)$ be an approximate system of compact polyhedra with the limit $X=\lim \mathscr{X}$. Let $G=\mathbb{Z}$ or $\mathbb{Z}_{p}$. Then $c-\operatorname{dim}_{G} X$ $\leqq n$ if and only if for every $a \in A$ and every $\varepsilon>0$, there exists $a^{\prime} \geqq a$ such that for every $a^{\prime \prime} \geqq a^{\prime}$, the map $p_{a^{\prime} a^{\prime \prime}}: X_{a^{\prime \prime}} \rightarrow X_{a}$ is ( $G, n, \varepsilon$ )-approximable.

In the latter we need the following property.
5.10. Theorem. Let $X$ be a compact space of $a-\operatorname{dim}_{G} X \geqq n \geqq 1$. Then there is an approximate system $\mathfrak{X}=\left(X_{a}, \varepsilon_{a}, p_{a a^{\prime}}, A\right)$ with $\lim \mathfrak{X}=X$ such that for every $a \in A$ and every pair $a \leqq a^{\prime}$ from $A$,
(i) $X_{a}$ is a compact polyhedron with a metric $d=d_{a} \leqq 1$,
(ii) $\operatorname{dim} X_{a} \geqq n$,
(iii) $p_{a a^{\prime}}: X_{a^{\prime}} \rightarrow X_{a}$ is a surjective PL-map, and
(iv) $\operatorname{card}(A) \leqq \omega(X)$.

Proof. By [18, Theorem 1, Proposition 12], it is known that every compact space $X$ admits an approximate system $\mathfrak{X}=\left(X_{a}, \varepsilon_{a}, p_{a a^{\prime}}, A\right)$ of compact polyhedra with $\lim \mathscr{X}=X$ satisfying the conditions (i), (iii) and (iv). Suppose that the subset $A_{0}=\left\{a \in A: \operatorname{dim} X_{a}<n\right\}$ is cofinal in $A$. Then for any $a \in A$, let take $a^{\prime} \in A_{0}$ with $a^{\prime} \geqq a$. Then for any positive number $\varepsilon>0$, the map $p_{a a^{\prime}}: X_{a^{\prime}} \rightarrow X_{a}$ is $(G, n-1, \varepsilon)$-approximable. Hence for every $a^{\prime \prime} \geqq a^{\prime}$, the map $p_{a a^{\prime \prime}}: X_{a^{\prime \prime}} \rightarrow X_{a}$ is ( $G, n-1, \varepsilon$ )-approximable. By Theorem $5.8, a-\operatorname{dim}_{G} X \leqq n-1$. But it is a contradiction. Thus, the subset $A_{0}$ is not cofinal. Therefore it suffices to consider the subsystem of $\mathscr{X}$ which is indexed by the set $A \backslash A_{0}$.

## 6. Resolutions for compact spaces

We quote our main theorem as follows:
6.1. Theorem. Let $X$ be a compact space having approximable dimension with respect to $G$ of less than and equal to $n$. Then there exists a compact space $Z$ of $\operatorname{dim} Z \leqq n$ and $w(Z) \leqq w(X)$, and a surjective $\mathrm{UV}^{n-1}$-map $f: Z \rightarrow X$ such that for every $x \in X$, the set $\left[f^{-1}(x), K(G, n)\right]$ of homotopy classes is trivial.

Our proof essentially depends on Mardešić-Rubin's way [18]. First, we introduce the notion of the $n$-dimensional core $Z_{L}$ and the stacked $n$-dimensional core of a complex $L$ from [18]. The detail is omitted here.

Let $L$ be a finite complex and let $n$ be a nonnegative integer. Let $L, L^{\prime}$, $L^{\prime \prime}, \cdots, L^{k}, \cdots$ be the iterated subdivisions of $L$. For each $k \geqq 0$, choose a simplicial approximation $q_{k+1}:\left|L^{k+1}\right| \rightarrow\left|L^{k}\right|$ of the identity $i d_{L}:|L|=\left|L^{k+1}\right| \rightarrow\left|L^{k}\right|$, and let $q_{k k+j} \equiv q_{k k+1} \cdots \circ q_{k+j-1 k+j}:\left|L^{k+j}\right| \rightarrow\left|L^{k}\right|$. Then $q_{k k+j}$ is also a simplicial approximation of $i d_{L}$. Hence we have
(1) $d\left(q_{k++j}, i d_{L}\right) \leqq m e s h\left(L^{k}\right)$ for $j \geqq 1$,
(2) $q_{k k+j}\left(\left(L^{k+j}\right)^{(n)}\right) \cong\left(L^{k}\right)^{(n)}$ for $j \geqq 1$.

Therefore we have an inverse sequence of polyhedra

$$
\mathcal{L}=\left(\left|\left(L^{k}\right)^{(n)}\right|, q_{k k+1}\right) .
$$

Then $n$-dimensional core of $L$ is defined as the inverse limit

$$
\begin{equation*}
Z_{L}=\lim \mathcal{L} . \tag{3}
\end{equation*}
$$

Clearly, we have

$$
\begin{equation*}
\operatorname{dim} Z_{L} \leqq n \tag{4}
\end{equation*}
$$

Let $q_{k}: Z_{L} \rightarrow\left|\left(L^{k}\right)^{(n)}\right|$ be the projections. They by the Sperner's lemma,
each $q_{k k+1}$ is surjective, and thereby, all of $q_{k k+j}$ and $q_{k}$ are surjective. Moreover, by (1),

$$
\begin{equation*}
d\left(q_{k}, q_{k+j}\right) \leqq \operatorname{mesh}\left(L^{k}\right) \quad \text { for } j \geqq 1 \text { in }|L| . \tag{5}
\end{equation*}
$$

Hence $\left\{q_{k}\right\}_{k \geq 1}$ is a Cauchy sequence of map from $Z_{L}$ to $|L|$, because of $\lim \operatorname{mesh}\left(L^{k}\right)=0$. Therefore we have the map $f_{L}: Z_{L} \rightarrow|L|$ given by

$$
\begin{equation*}
f_{L}=\lim q_{k} . \tag{6}
\end{equation*}
$$

Then by (3), we see

$$
\begin{equation*}
d\left(f_{L}, q_{k}\right) \leqq \operatorname{mesh}\left(L^{k}\right) \tag{7}
\end{equation*}
$$

Moreover, $q_{k}$ is surjective and $\lim \operatorname{mesh}\left(L^{k}\right)=0$. Hence $f_{L}\left(Z_{L}\right)$ is dense in $|L|$, and thereby $f_{L}$ is surjective.

Next, in order to describe the stacked $n$-dimensional core of $L$, we define a new inverse sequence as follows: for each $k=0,1,2, \cdots$,

$$
\begin{equation*}
L^{* k}=L^{(n)} \oplus\left(L^{\prime}\right)^{(n)} \oplus \cdots \oplus\left(L^{k}\right)^{(n)} \tag{8}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left|L^{* k+1}\right|=\left|L^{* k}\right| \oplus\left|\left(L^{k+1}\right)^{(n)}\right| \tag{9}
\end{equation*}
$$

The bonding maps $q_{k k+1}^{*}:\left|L^{* k+1}\right| \rightarrow\left|L^{* k}\right|$ are given by

$$
q_{k k+1}(x)= \begin{cases}x & \text { if } x \in\left|L^{* k}\right|  \tag{10}\\ q_{k k+1}(x) & \text { if } x \in\left|\left(L^{k+1}\right)^{(n)}\right| .\end{cases}
$$

We define the stacked $n$-dimensional core $Z_{L}^{*}$ as the inverse limit of the inverse sequence $\mathcal{L}^{*}=\left(\left|L^{* k}\right|, q_{k k+1}^{*}\right)$,

$$
\begin{equation*}
Z_{L}^{*}=\lim \mathcal{L}^{*}=\left(\oplus_{k \geq 0}\left|\left(L^{k}\right)^{(n)}\right|\right) \cup Z_{L} \tag{11}
\end{equation*}
$$

and denote the natural projections by $q_{k}^{*}: Z_{L}^{*} \rightarrow\left|L^{* k}\right|$. Then

$$
\begin{equation*}
\operatorname{dim} Z_{L}^{*} \leqq n \tag{12}
\end{equation*}
$$

Moreover we note the following properties:
(13) $Z_{L} \subseteq Z_{L}^{*}$ and $\left|L^{* k}\right| \subseteq Z_{L}^{*}$ for every $k \geqq 0$,
(14) $\left.q_{k}^{*}\right|_{\left(L L^{k}+j\right)(n) \mid}=q_{k k+j}$ for $j \geqq 1$,
(15) $\left.q_{k}^{*}\right|_{z_{L}}=q_{k}$.

By (15), (5) and the definition of $q_{k k+1}^{*}$,

$$
\begin{equation*}
d\left(q_{k}^{*}, q_{k+j}^{*}\right) \leqq m e s h\left(L^{k}\right) \quad \text { for } j \geqq 1 \text { in }|L| . \tag{16}
\end{equation*}
$$

Hence $\left\{q_{k}^{*}\right\}_{k=1}$ is a Cauchy sequence of maps from $Z_{L}^{*}$ to $|L|$, and therefore we
have the map $f_{\mathcal{L}}^{*}: Z_{L}^{*} \rightarrow|L|$ defined by

$$
\begin{equation*}
f_{L}^{*}=\lim q_{k}^{*} . \tag{17}
\end{equation*}
$$

Then we know that
(18) $d\left(f_{\mathcal{L}}^{*}, q_{k}^{*}\right) \leqq m e s h\left(L^{k}\right)$,
(19) $\left.f_{\mathrm{L}}^{\frac{*}{\mid}}\right|_{\left(L^{k}\right)(n) \mid}$ is the inclusion of $\left|\left(L^{k}\right)^{(n)}\right|$ into $|L|$,
(20) $\left.f_{L}^{*}\right|_{z_{L}}=f_{L}$.

We note that if we have a metric $d$ on $|L|$ such that diam $(|L|) \leqq 1$, then we can choose metrics $d^{*}$ on $Z_{L}^{*}$ and $d^{k}$ in $\left|L^{* k}\right|$ such that $\operatorname{diam}\left(Z_{L}^{*}\right) \leqq 1$, $\operatorname{diam}\left(\left|L^{* k}\right|\right) \leqq 1$ and

$$
\begin{equation*}
d^{k}\left(q_{k}^{*}(x), q_{k}^{*}\left(x^{\prime}\right)\right) \leqq d^{*}\left(x, x^{\prime}\right) \quad \text { for } x, x^{\prime} \in Z_{L}^{*}, k \geqq 0 . \tag{21}
\end{equation*}
$$

Proof of Theorem 6.1. Let take an approximate system $\mathfrak{X}=\left(X_{a}, \varepsilon_{a}, p_{a a^{\prime}}, A\right)$ with the limit $\lim \mathscr{X}=X$ which satisfies the conditions (i)-(iv) in Theorem 5.10. Moreover, for each $a \in A$, we may choose a triangulation $L_{a}$ of $X_{a}$ such that

$$
\begin{equation*}
6 \cdot m e s h\left(L_{a}\right) \leqq \varepsilon_{a} . \tag{v}
\end{equation*}
$$

As the proof as in [18], we will define a new ordering $<^{\prime}$ in $A$. We consider the following three conditions for $a_{1}<a_{2}$ and any integer $k \geqq 0$ :
(1) $d\left(p_{a_{1} a^{\prime} \circ} p_{a^{\prime} a^{\prime \prime}}, p_{a_{1} a^{\prime \prime}}\right) \leqq \operatorname{mesh}\left(L_{a_{1}}^{k}\right)$ for $a_{2} \leqq a^{\prime} \leqq a^{\prime \prime}$,
(2) if $d\left(x, x^{\prime}\right) \leqq \varepsilon_{a^{\prime \prime}}$ for $x, x^{\prime} \in X_{a^{\prime \prime}}$, then for $a_{2} \leqq a^{\prime \prime}, d\left(p_{a_{1} a^{\prime \prime}}(x), p_{a_{1} a^{\prime \prime}}\left(x^{\prime}\right)\right) \leqq$ $\operatorname{mesh}\left(L_{a_{1}}^{k}\right)$
(3) the map $p_{a_{1} a^{\prime \prime}}$ is ( $G, n, \operatorname{mesh}\left(L_{a_{1}}^{k}\right)$ )-approximable for $a_{2} \leqq a^{\prime \prime}$.

Now we put $a_{1}<^{\prime} a_{2}$ provided that $a_{1}<a_{2}$ and the conditions (1)-(3) hold for $k=0$. Then the ordering $<^{\prime}$ on $A$ satisfies the following conditions:
(4) if $a_{1}<^{\prime} a_{2}$, then $a_{1}<a_{2}$,
(5) if $a_{1}<^{\prime} a_{2}$ and $a_{2} \leqq a_{3}$, then $a_{1}<^{\prime} a_{3}$,
(6) for any $a \in A$, there is $a^{\prime} \in A$ such that $a<^{\prime} a^{\prime}$.

Hence $A^{\prime}=\left(A,<^{\prime}\right)$ is a directed set with no maximal element. We note that by Theorem 5.8 , for any $a_{1} \in A$ and integer $k \geqq 0$, there exists $a_{2}{ }^{\prime}>a_{1}$ such that the conditions (1)-(3) hold. Moreover,
(7) if $a_{1}<^{\prime} a_{2}$, then the set of all integers $k \geqq 0$, which satisfy the condition (2), is finite.

Hence, for each pair $a_{1}<^{\prime} a_{2}$, by (7), there is a maximal integer such that the conditions (1)-(3) hold. We denote the integer by $k\left(a_{1}, a_{2}\right)$. Clearly we have the following properties:
(8) if $a_{1}<^{\prime} a_{2}, d\left(p_{a_{1} a^{\prime} \circ} p_{a^{\prime}}, p_{a_{1}}\right) \leqq m e s h\left(L_{a_{1}}^{k\left(a_{1}, a_{2}\right)}\right)$ for $a^{\prime} \geqq a_{2}$,
(9) if $a_{1}<^{\prime} a_{2}$ and $a_{2}<a_{3}, k\left(a_{1}, a_{2}\right) \leqq k\left(a_{1}, a_{3}\right)$,
(10) for any $a_{1} \in A$ and integer $k \geqq 0$, there is $a_{2}{ }^{\prime}>a_{1}$ such that $k\left(a_{1}, a_{2}\right) \geqq k$. For each pair $a_{1}<^{\prime} a_{2}$, by (6) and the definition of $k\left(a_{1}, a_{2}\right)$, we have a map $g_{a_{1} a_{2}}:\left|L_{a_{2}}^{(n)}\right| \rightarrow\left|\left(L_{a_{1}}^{k}\right)^{(n)}\right|$, where $k=k\left(a_{1}, a_{2}\right)$, such that
(11) $d\left(g_{a_{1} a_{2}},\left.p_{a_{1} a_{2}}\right|_{\left|\left(L_{a_{1}}^{k}\right)(n)\right|}\right) \leqq 2 \cdot \operatorname{mesh}\left(L_{a_{1}}^{k}\right)$,
(12) for any map $\xi:\left|\left(L_{a_{1}}^{k}\right)^{(n)}\right| \rightarrow K(G, n)$, the map $\xi \bullet g_{a_{1} a_{2}}$ admits a continuous extension over $\left|L_{a_{2}}\right|=X_{a_{2}}$.
Now, for each $a \in A^{\prime}$, we define

$$
\begin{equation*}
Z_{a}^{*}=Z_{L_{a}}^{*} . \tag{13}
\end{equation*}
$$

For $a_{1}<a_{2}$, the maps $r_{a_{1} a_{2}}: Z_{a_{2}}^{*} \rightarrow Z_{a_{1}}^{*}$ are given by

$$
\begin{equation*}
r_{a_{1} a_{2}}=g_{a_{1} a_{2}}{ }^{\circ} q_{0 a_{2}}^{*}, \tag{14}
\end{equation*}
$$

where $q_{0}^{*} a_{2}: Z_{{\stackrel{L}{a_{2}}}^{*}}^{*} \rightarrow\left|L_{a_{2}}^{(n)}\right|$ is the map $q_{0}^{*}: Z_{\mathcal{L}_{a_{2}}}^{*} \rightarrow\left|L_{a_{2}}^{(n)}\right|$. Note that

$$
\begin{equation*}
r_{a_{1} a_{2}}\left(Z_{a_{2}}^{*}\right) \subseteq\left|\left(L_{a_{1}}^{k}\right)^{(n)}\right|, \quad k=k\left(a_{1}, a_{2}\right) . \tag{15}
\end{equation*}
$$

By the same way as in [18, Lemma 7], we have that
(16) $\mathscr{Z}=\left(Z_{a}^{*}, \varepsilon_{a}, r_{a a^{\prime}}, A^{\prime}\right)$ is approximate system of non-empty metric compacta $Z_{a}^{*}$ of $\operatorname{dim} Z_{a}^{*} \leqq n$.
Therefore, by Proposition 5.6 (i), (iii'), the limit $Z=\lim \mathcal{Z}$ is a non-empty compact space of $\operatorname{dim} Z \leqq n$ and of $\omega(Z) \leqq \operatorname{card}(A) \leqq \omega(X)$. Let $r_{a}: Z \rightarrow Z_{a}^{*}$ be the projections.

For each $a \in A$, by $f_{a}^{*}$, we denote the map $f_{\mathcal{L}_{a}}^{*}: Z_{a}^{*}=Z_{L_{a}}^{*} \rightarrow\left|L_{a}\right|=X_{a}$. Then by the same way as in [18], we can find the map $f: Z \rightarrow X$ such that

$$
\begin{equation*}
f_{a}^{*} \circ r_{a}=p_{a} \circ f \quad \text { for each } a \in A . \tag{17}
\end{equation*}
$$

Next we show that the map $f$ satisfies the required condition. Let take a given point $x \in X$. For each $a \in A$, put
(18) $x_{a}=p_{a}(x)$
(19) $N_{a}=N_{a}(x)=\left\{y \in X_{a}: d\left(x_{a}, y\right) \leqq \varepsilon_{a}\right\}$,
(20) $M_{a}=M_{a}(x)=f_{a}^{*-1}\left(N_{a}\right)$.

Then, by [18, Lemma 12 and 14], we can see that
(21) $\pi(x)=\left(N_{a}, \varepsilon_{a}, p_{a a^{\prime}}, A^{\prime}\right)$ is an approximate system of non-empty compact spaces with the limit $\{x\}$, and
(22) $\mathscr{M}(x)=\left(M_{a}, \varepsilon_{a}, r_{a a^{\prime}}, A^{\prime}\right)$ is an approximate system of non-empty compact spaces with the limit $f^{-1}(x)$.

Claim 1. $f$ is a $\mathrm{UV}^{n-1}$-map.
Proof of Claim 1. For any $a_{1}$, let take $a_{2}{ }^{\prime}>a_{1}$. Since $N_{a_{2}}$ is a neighbor-
hood of $x_{a_{2}}$ in the polyhedron $X_{a_{2}}$, there is a closed polyhedral neighborhood $U$ of $x_{a_{2}}$ in $N_{a_{2}}$ such that
$U$ is contractible.
Hence we may assume that
(24) $U=|T|$, where $T$ is a subcomplex of the $j$-th barycentric subdivision $L_{a_{2}}^{j}$ of $L_{a_{2}}$ for sufficiently large $j$.
Then, by the proof of [18, Lemma 17], there is $a_{3}{ }^{\prime}>a_{2}$ such that

$$
\begin{equation*}
r_{a_{2} a_{3}}\left(M_{a_{3}}\right) \cong|T| \tag{25}
\end{equation*}
$$

By (9), taking a sufficiently large $a_{3}$ if necessary, we may assume that for some $l \geqq 0$, the $l$-th barycentric subdivision $T^{l}$ of $T$ is a subcomplex of $L_{a_{2}}^{k\left(a_{2}, a_{3}\right)}$. Hence,

$$
\begin{equation*}
\left|Y^{l}\right| \cap\left|\left(L_{a_{2}}^{k\left(a_{2}, a_{3}\right)}\right)^{(m)}\right|=\left|\left(T^{l}\right)^{(m)}\right| \quad \text { for every } m \geqq 0 \tag{26}
\end{equation*}
$$

Moreover, by (23) and (24),

$$
\begin{equation*}
\pi_{m}\left(\left|\left(T^{l}\right)^{(n)}\right|\right)=\pi_{m}(|T|)=0 \quad \text { if } m<n . \tag{27}
\end{equation*}
$$

For any map $\alpha: S^{m} \rightarrow M_{a_{3}}, 1 \leqq m \leqq n-1$, by (25), (14) and (26),

$$
\begin{equation*}
\alpha\left(S^{m}\right) \subseteq|T| \cap\left|\left(L_{a_{2}}^{k\left(a_{2} \cdot a_{3}\right.}\right)^{(n)}\right| \subseteq\left(T^{l}\right)^{(n)}|\subseteq| T \mid \subseteq N_{a_{2}} . \tag{28}
\end{equation*}
$$

By (27),

$$
\begin{equation*}
r_{a_{2} a_{8}}{ }^{\circ} \alpha \simeq 0 \quad \text { in }\left|\left(T^{l}\right)^{(n)}\right| \tag{29}
\end{equation*}
$$

Considering $\left|\left(T^{l}\right)^{(n)}\right| \subseteq\left|\left(L_{a_{2}}^{k\left(a_{2}, a_{3}\right)}\right)^{(n)}\right| \subseteq Z_{a_{2}}^{*}$, by [18, Lemma 17],

$$
\begin{equation*}
r_{a_{1} a_{2}}\left(\left|\left(T^{l}\right)^{(n)}\right|\right) \subseteq M_{a_{1}} \tag{30}
\end{equation*}
$$

By (29) and (30), we have that

$$
\begin{equation*}
r_{a_{1} a_{2}} \circ r_{a_{2} a_{3}} \circ \alpha \simeq 0 \quad \text { in } M_{a_{1}} \tag{31}
\end{equation*}
$$

It follows that $f^{-1}(x)$ is $\mathrm{UV}^{m}$-connected for $m \leqq n-1$. We complete the proof of Claim 1.

Claim 2. The set $\left[f^{-1}(x), K(G, n)\right]$ is trivial for every $x \in X$.
Proof of Claim 2. By Proposition 5.7, it suffices to show that for every $a_{1} \in A^{\prime}$ and every map $\xi: M_{a_{1}} \rightarrow K(G, n)$,

$$
\begin{equation*}
\xi \circ r_{a_{1} a_{2}} \circ r_{a_{2} a_{3}} \simeq 0 . \tag{32}
\end{equation*}
$$

Here we use the same notation as in the proof of Claim 1, so indexes $a_{2}$ and $a_{3}$ are taken as in the proof of Claim 1.

By (12), we can find a continuous extension $\zeta:\left|L_{a_{2}}\right| \rightarrow K(G, n)$ of $\xi^{\circ} g_{a_{1} a_{2}}$. Since $\left.q_{0 a_{2}}\right|_{\left(L_{a_{2}}^{k\left(a_{2}, a_{3}\right),(n) \mid} \mid\right.}$ is the restriction of a simplicial approximation $q_{0 k\left(a_{2}, a_{3}\right)}^{*}$ : $\left|L_{a_{2}}^{k\left(a_{2}, a_{3}\right)}\right| \rightarrow\left|L_{a_{2}}\right|$ of $i d_{1 L_{a_{2}}}$, by the homotopy extension theorem, the restriction $\left.\xi \circ \gamma_{a_{1} a_{2}}\right|_{1(T l)(n) \mid}=\left.\xi \circ g_{a_{1} a_{2} \circ} \circ q_{0 a_{2}}^{*}\right|_{|(T l)(n)|}$ admits a continuous extension $\eta:\left|\left(T^{l}\right)\right|=$ $U \rightarrow K(G, n)$. Then by (23), we have $\eta \simeq 0$. Particularly, since by the same way as in (28), we can see that $r_{a_{2} a_{3}}\left(M_{a_{3}} \subseteq\left|\left(T^{l}\right)^{(n)}\right|\right.$, by (34), we have that

$$
\begin{equation*}
\xi \circ r_{a_{1} a_{2}} \circ r_{a_{2} a_{3}} \simeq 0 \tag{32}
\end{equation*}
$$

It complete the proof of Claim 2 and it follows Theorem.

## 7. Resolutions for metrizable spaces

By a polyhedron we mean the space $|K|$ of a simplicial complex $K$ with the Whitehead topology (denoted by $|K|_{w}$ ). We may define a topology for $|K|$ by means of a uniformity in [Appendix, 22] (denoted by $\left.|K|_{u}\right)$.
7.1. Theorem. Let $X$ be a metrizable space having approximable dimension with respect to an abelian group $G$ of less than and equal to $n$. Then there exist an $n$-dimensional metrizable space $Z$ and a perfect $\mathrm{UV}^{n-1}$-surjection $\pi: Z \rightarrow X$ such that for $x \in X$, the set $\left[\pi^{-1}(x), K(G, n)\right]$ of homotopy classes is trivial.

Proof. The strategy is like the construction of Walsh-Rubin-Schapiro [24, 22].

Let $d$ be a metric for $X$ and let $\left\{\mathscr{U}_{i}: i \in N \cup\{0\}\right\}$ be a sequence of open covers of $X$, where each $\mathcal{U}_{i}$ consists of all $1 /(i+1)$-neighborhoods.

First, we shall construct the followings:
Open covers $\mathcal{V}_{i}$ of $X$ whose nerves $\Re\left(Q_{i}\right)$ are locally finite dimensional, maps $b_{i}: X \rightarrow\left|\mathscr{M}\left(V_{i}\right)\right|$ for $i \geqq 0, f_{i}^{*}, f_{i}\left|\mathscr{N}\left(\mathcal{V}_{i}\right)\right| \rightarrow\left|\Re\left(V_{i-1}\right)\right|$ for $i \geqq 1$ and sequences $n_{i}^{j}, j \in \boldsymbol{N} \cup\{0\}$ of subdivisions of $\eta\left(V_{i}\right)$ for $i \geqq 0$ such that
(1) $\overline{\mathcal{S}}_{i}^{j+1}<* S_{i}^{j}$ for $j \geqq 0$,
(2) $b_{i}$ is normal with respect to $b_{i}^{-1}\left(\mathcal{S}_{i}^{j}\right)$ and $\mathscr{n}_{i}^{j}$ for $j \geqq 0$,
(3) $f_{i}: n_{i}^{0} \rightarrow n_{i-1}^{3}$ is simplicial for $i \geqq 1$,
(4) $f_{i} \circ b_{i}$ is $n_{i-1}^{j}$-modification of $b_{i-1}, 0 \leqq j \leqq 3$ for $i \geqq 1$,
(5) $f_{i}$ maps each compact set in $\left|\pi_{i}\right|_{u}$ onto a compact set in $\left|\eta_{i-1}\right|_{u}$ which is contained in a finite union of simplexes of $\pi_{i-1}$,
(6) $\mathcal{S}_{i}^{0}<f_{i}^{-1}\left(\mathcal{S}_{i-1}^{3}\right)$ for $i \geqq 1$,
(7) $\overline{\mathcal{S}}_{i}^{k}<f_{i}^{-1}\left(\mathcal{S}_{i-1}^{k+3}\right)$ for $k \geqq 1$ and $\bar{S}_{i}^{k}<f_{i}^{*-1}\left(\mathcal{S}_{i-1}^{k+3}\right)$ for $k \geqq 4$,
(8) $\subset \cup_{i}<\mathcal{U}_{i} \wedge b_{i-1}^{-1}\left(S_{i-1}^{3}\right) \wedge b_{i-2}^{-1}\left(\mathcal{S}_{i-2}^{6}\right) \wedge \cdots \wedge b_{0}^{-1}\left(\mathcal{S}_{0}^{3 i}\right)$,
where we regard $\left|\Re_{i}\right|_{u}$ as the uniform space with the uniform topology induced
by the uniform base $\left\{\mathcal{S}_{i}^{j}\right\}_{j=0}^{\infty}$.
Further, we shall construct continuous (w.r.t. the Whitehead topology), uniformly continuous (w. r.t. the uniform topology) PL-maps $g_{i}:\left|\left(n_{i}^{3}\right)^{(n)}\right| \rightarrow\left|\left(n_{i-1}^{3}\right)^{(n)}\right|$ such that
(9) for each $t \in\left|\left(\mathfrak{N}_{i}^{3}\right)^{(n)}\right|$, there exist $\sigma, \tau \in \mathfrak{N}_{i-1}^{2}$ such that $f_{i}(t) \in \sigma, g_{i}(t) \in \tau$ and $\sigma \cap \tau \neq \emptyset$,
(10) for any map $\alpha:\left|\left(\mathscr{n}_{i-1}^{3}\right)^{\langle n)}\right|_{w} \rightarrow K(G, n)$, there exists an extension $\beta:\left|\left(\eta_{i}^{3}\right)^{(n+1)}\right|_{w} \rightarrow K(G, n)$ of $\alpha \circ g_{i}:\left|\left(n_{i}^{3}\right)^{(n)}\right|_{w} \rightarrow\left|\left(\eta_{i-1}^{3}\right)^{(n)}\right|_{w} \rightarrow K(G, n)$,
(11) for each $x \in\left|\eta_{i}\right|, g_{i}\left(\operatorname{st}\left(x, \bar{s}_{i}^{2}\right) \cap\left|\left(n_{i}^{3}\right)^{(n)}\right|\right)$ is a Whitehead (i.e. finite) compact polyhedral subset of $\left|\cap_{i-1}\right|$.
Let us start the construction. We take an open refinement $\mathcal{V}_{0}$ of $\mathcal{U}_{0}$ in $X$ whose nerve $\eta\left(\mathcal{V}_{0}\right)$ is locally finite dimensional and $\mathcal{V}_{0}$-normal map $b_{0}: X \rightarrow$ $\left|\Re\left(\cup_{0}\right)\right|$. We define $n_{0}^{j}$ to be a subdivision of $\mathrm{Sd}_{2 j} \cap\left(\cup_{0}\right)$ for $j=0,1,2$ with $\overline{\mathcal{S}}_{0}^{j}<\mathcal{S}_{0}^{j-1}$. By using [22, Proposition A.3], for the cover $\mathcal{E}_{0} \equiv\left\{\mathrm{st}\left(x, \overline{\mathcal{S}}_{0}^{2}\right): x \in\right.$ $\left.\left|\Re\left(\mathcal{V}_{0}\right)\right|\right\}$, we obtain an open cover $\mathscr{B}_{0}$ of $\left|\mathscr{N}\left(\mathcal{V}_{0}\right)\right|$ and a PL, $\Re_{0}^{2}$-modification $r_{0}:\left|\Re_{0}^{2}\right| \rightarrow\left|\eta_{0}^{2}\right|$ of the identity such that
(12) $r_{0}(\mathrm{Cl} B)$ is compact for $B \in \mathscr{B}_{0}$,
(13) ${ }_{0} \mathrm{Cl} B \cup r_{0}(\mathrm{Cl} B) \cong E$ for some $E \in \mathcal{E}_{0}$.

Since $b_{0}$ is ( $G, n$ )-cohomological, from the similar argument to the proof of the necessity in Theorem 4.3 we can take the followings:

Subdivision $\Re_{0}^{3}$ of $\mathrm{Sd}_{2} \mathscr{N}_{0}^{2}$, locally finite open cover $\mathscr{V}_{1}$ of $X$ and maps $b_{1}: X \rightarrow\left|\Re\left(\mathcal{V}_{1}\right)\right|, f_{1}^{*}:\left|\Re\left(\mathcal{V}_{1}\right)\right| \rightarrow\left|\eta_{0}^{3}\right|$ such that
(14) ${ }_{1} \quad \bar{S}_{0}^{3}<* S_{0}^{2} \wedge \mathscr{B}_{0}$,
(15) ${ }_{1} \quad V_{1}<* \mathcal{G}_{1} \wedge b_{0}^{-1}\left(S_{0}^{3}\right)$,
(16) $b_{1} \quad b_{1}$ is $\mathscr{V}_{1}$-normal,
(17) $f_{1}^{*} \circ b_{1}$ is $n_{0}^{3}$-modification of $b_{0}$,
$(18)_{1}$ for each $\sigma \in \mathcal{H}\left(\mathcal{C} \nu_{1}\right)$, there exists $U \in \operatorname{st} \mathcal{S}_{0}^{3}$ such that $b_{0}\left(b_{1}^{-1}(\sigma)\right) \cup f_{1}^{*}(\sigma)$ $\subseteq U$,
(19) $)_{1}$ for any triangulation $M$ of $\left|\Re\left(\mathcal{V}_{1}\right)\right|$, there exists a PL-map $p^{\prime}:\left|M^{(n)}\right|$ $\left|\left(\cap_{0}^{3}\right)^{(n)}\right|$ such that
(i) $\left(p^{\prime},\left.f_{1}^{*}\right|_{|M(n)|}\right) \leqq\left\{\overline{\operatorname{St}}\left(\lambda, \operatorname{Hn}_{0}^{3}\right): \lambda \in \mathscr{H}_{0}^{3}\right\}$,
(ii) for any map $\alpha:\left|\left(\Omega_{0}^{3}\right)^{(n)}\right| \rightarrow K(G, n)$, there exists an extension $\beta:\left|M^{(n+1)}\right| \rightarrow K(G, n)$ of $\alpha \circ p^{\prime}$.
Let $\Re_{0}^{j+1}$ denote a subdivision of $\mathrm{Sd}_{2} \Re_{0}^{j}$ with $\overline{\mathcal{S}}_{0}^{j+1}<* \mathcal{S}_{0}^{j}$ for $j \geqq 3$.
Now, let $\left|\Re_{0}^{3}\right|_{m}$ denote $\left|\Re_{0}^{3}\right|$ with the metric topology [19, p. 301]. Then there is a $\eta_{0}^{3}$-modification $j_{11}:\left|\eta_{0}^{3}\right|_{m} \rightarrow\left|\eta_{0}^{3}\right|_{\ldots}$ of the identity function [19, p.302]. By the simplicial approximation theorem, we obtain a subdivision $n_{1}$ of $\mathscr{n}\left(\mathrm{CV}_{1}\right)$ and a simplicial approximation $f_{1}: n_{1} \rightarrow n_{0}^{3}$ of $j_{0} \circ f_{1}^{*}$. Let $n_{1}^{0}$ denote $n_{1}$. Then
by the simpliciality of $f_{1}$ and $(17)_{1}$, we have
(20) $S_{1}^{0}<f_{1}^{-1}\left(S_{0}^{3}\right)$,
(21) $f_{1} \circ b_{1}$ is $\mathscr{I}_{0}^{3}$-modification of $b_{0}$ 。

We take a subdivisions $n_{1}^{j+1}$ of $n_{1}^{0}$ for $j=0,1$ such that
(22) $\bar{S}_{1}^{j+1}<* S_{1}^{j}$ for $j=0,1$,
(23) $\bar{S}_{1}^{j}<f_{1}^{-1}\left(\mathcal{S}_{0}^{j+3}\right)$ for $j=1,2$,
(24) $n_{1}^{j}<\operatorname{Sd}_{2 j} n_{1}^{0}$ for $j=1,2$.

By using Lemma [22, Proposition A.3], for the cover $\mathcal{E}_{1} \equiv\left\{\operatorname{st}\left(x, \overline{\mathcal{S}}_{1}^{2}\right): x \in\right.$ $\left.\left|\mathscr{N}_{1}\right|\right\}$, we obtain an open cover $\mathscr{B}_{1}$ of $\left|\mathscr{n}\left(\mathcal{V}_{0}\right)\right|$ and a PL, $\mathscr{N}_{1}^{2}$-modification $r_{1}:\left|\Re_{1}^{2}\right| \rightarrow\left|\Re_{1}^{2}\right|$ of the identity map such that
$(12)_{1} \quad r_{1}(\mathrm{Cl} B)$ is compact for $B \in \mathscr{B}_{1}$,
$(13)_{1} \mathrm{Cl} B \cup r_{1}(\mathrm{Cl} B) \subseteq E$ for some $E \in \mathcal{E}_{1}$.
Since $b_{1}$ is ( $G, n$ )-cohomological, from the similar argument to the proof of the necessity in Theorem 4.3 we can take the followings:

Subdivision $n_{1}^{3}$ of $\mathrm{Sd}_{2} \Re_{1}^{2}$, locally finite open cover $\mathscr{V}_{2}$ of $X$ and maps $b_{2}: X \rightarrow\left|\mathscr{N}\left(\mathcal{V}_{2}\right)\right|, f_{2}^{*}:\left|\mathscr{N l}\left(\mathcal{C}_{2}\right)\right| \rightarrow\left|n_{1}^{3}\right|$ such that
$(14)_{2} \quad \bar{S}_{1}^{3}<* S_{1}^{2} \wedge \mathscr{B}_{1} \wedge f_{1}^{-1}\left(S_{0}^{6}\right)$,
$(15)_{2} \quad \mathcal{V}_{2}<^{*} \mathcal{q}_{2} \wedge b_{1}^{-1}\left(\mathcal{S}_{1}^{3}\right) \wedge b_{0}^{-1}\left(\mathcal{S}_{0}^{6}\right)$,
(16) $)_{2} \quad b_{2}$ is $C_{2}$-normal,
(17) $)_{2} f_{2}^{*} \circ b_{2}$ is $\Re_{1}^{3}$-modification of $b_{1}$,
(18) $)_{2}$ for each $\sigma \in \mathscr{N}\left(\mathcal{V}_{2}\right)$, there exists $U \in$ st $\mathcal{S}_{1}^{3}$ such that $b_{1}\left(b_{2}^{-1}(\sigma)\right) \cup f_{2}^{*}(\sigma)$ $\cong U$,
(19) $)_{2}$ for any triangulation $M$ of $\left|\Re\left(\mathcal{V}_{2}\right)\right|$, there exists a PL-map $p^{\prime}:\left|M^{(n)}\right|$ $\rightarrow\left|\left(n_{1}^{3}\right)^{(n)}\right|$ such that
(i) $\left(p^{\prime},\left.f_{2}^{\frac{1}{2}}\right|_{M(n)}\right) \leqq\left\{\overline{\operatorname{st}}\left(\lambda, n_{1}^{3}\right): \lambda \in \eta_{0}^{3}\right\}$,
(ii) for any map $\alpha:\left|\left(\eta_{1}^{3}\right)^{(n)}\right| \rightarrow K(G, n)$, there exists an extension $\beta:\left|M^{(n+1)}\right| \rightarrow K(G, n)$ of $\alpha \circ p^{\prime}$.
Now, by using (19) about the triangulation $\Re_{1}^{3}$ of $\left|\mathscr{l}\left(\mathcal{V}_{1}\right)\right|$, we obtain a PL-map $g_{1}^{*}:\left|\left(\cap_{1}^{3}\right)^{(n)}\right| \rightarrow\left|\left(\Re_{0}^{3}\right)^{(n)}\right|$ such that
$\left.(25)_{1} \quad\left(g_{1}^{*},\left.f_{1}^{*}\right|_{1\left(n_{1}^{3}\right)}\right)(n) \mid\right) \leqq\left\{\overline{\operatorname{st}}\left(\lambda, n_{0}^{3}\right): \lambda \in n_{0}^{3}\right\}$,
(26) for any map $\alpha:\left|\left(n_{0}^{3}\right)^{(n)}\right| \rightarrow K(G, n)$, there exists an extension $\beta:\left|\left(\Omega_{1}^{3}\right)^{(n+1)}\right| \rightarrow K(G, n)$ of $\alpha \circ g_{1}^{*}$.
Consider the inclusion map $i_{0}:\left(\Omega_{0}^{3}\right)^{(n)}|\varsigma| \Omega_{0}^{3} \mid$ and the composition

$$
r_{0} \circ i_{0} \circ g_{1}^{*}:\left|\left(\cap_{1}^{3}\right)^{(n)}\right| \longrightarrow\left|\left(n_{0}^{3}\right)^{(n)}\right| \hookrightarrow\left|\cap_{0}^{3}\right|=\left|\Re\left(\Upsilon_{0}\right)\right| \longrightarrow\left|\Re\left(\mathcal{V}_{0}\right)\right| .
$$

The image $A$ of the PL-map $r_{0} \circ i_{0} \circ g_{1}^{*}$ has dimension $\leqq n$. Then we can take a $n_{0}^{3}$-modification $s_{0}: A \rightarrow\left|\left(n_{0}^{3}\right)^{(n)}\right|$ of the inclusion map $A \hookrightarrow\left|\Re_{0}^{3}\right|$. Let $g_{1}:\left|\left(\Re_{1}^{3}\right)^{(n)}\right|$ $\rightarrow\left|\left(\Re_{0}^{3}\right)^{(n)}\right|$ denote the composition map $s_{0} \circ r_{0} \circ \circ_{0} \circ g_{1}^{*}$.

Then this has the following properties:

## Claim 1.

(9) for each $t \in\left|\left(n_{1}^{3}\right)^{(n)}\right|$, there exist $\sigma, \tau \in \mathscr{n}_{0}^{2}$ such that $f_{1}(t) \in \sigma, g_{1}(t) \in \tau$ aud $\sigma \cap \tau \neq \emptyset$,
$(10)_{1}$ for any map $\alpha:\left|\left(n_{0}^{3}\right)^{(n)}\right| \rightarrow K(G, n)$ there exist an extension $\beta:\left|\left(n_{1}^{3}\right)^{(n+1)}\right|$ $\rightarrow K(G, n)$ of $\alpha \circ g_{1}$,
(11) for each $x \in\left|\eta_{1}\right|, g_{1}\left(\operatorname{st}\left(x, \bar{S}_{1}^{2}\right) \cap\left|\left(\Re_{1}^{3}\right)^{(n)}\right|\right)$ is a Whitehead (i.e. finite) compact polyhedral subset of $\left|\mathscr{I}_{0}\right|$.

Proof of Claim 1. We show the property (9). Let $t \in\left|\left(\cap_{1}^{3}\right)^{(n)}\right|$. By (25) ${ }_{1}$, there exist $\sigma, \lambda, \tau \in \mathcal{n}_{0}^{3}$ such that $f_{1}^{*}(t) \in \sigma, g_{1}^{*}(t) \in \tau$ and $\sigma \cap \lambda \neq \emptyset \neq \lambda \cap \tau$. We may assume that $\lambda=\left|v_{0}, v_{1}\right|, v_{0} \in \sigma$ and $v_{1} \in \tau$.

Since $j_{0}$ is $n_{0}^{3}$-modification of the identity function, we have $j_{0} \circ f_{1}^{*}(t) \in \sigma$. Since $f_{1}$ is simplicial approximation of $j_{0} \circ f_{1}^{*}$, we have $f_{1}(t) \in \sigma$.

Select $\tilde{\tau} \in \Re_{0}^{2}$ with $\tau \subseteq \tilde{\tau}$. Since $r_{0}$ is $\mathscr{n}_{0}^{2}$-modification of the identity map, we have $r_{0} \circ i_{0} \circ g_{1}^{*}(t) \in \tilde{\tau}$. Further since $s_{0}$ is $\Re_{0}^{3}$-modification of $A C\left|\Re_{0}^{3}\right|$ and $\Re_{0}^{3}<\Re_{0}^{2}$, we have $g_{1}(t)=S_{0} \circ r_{0} \circ i_{0} \circ g_{1}^{*}(t) \in \tilde{\tau}$.

CASE 1. $v_{1} \in\left(\mathscr{H}_{0}^{2}\right)^{(0)}$ (i. e. $\left.v_{1} \in \tilde{\tau}^{(0)}\right)$.
By $\Re_{0}^{3}<\mathrm{Sd}_{2} \Re_{0}^{2}$, we have $v_{0} \notin\left(\Omega_{0}^{2}\right)^{(0)}$. Hence, there exists $\gamma \in \Re_{0}^{2}$ such that $\left|v_{0}, v_{1}\right| \subseteq \gamma$ and $v_{0} \in \operatorname{Int} \gamma$. Then if $\tilde{\sigma} \in \mathscr{n}_{0}^{2}$ with $\sigma \subseteq \tilde{\sigma}$, we have $\gamma<\tilde{\sigma}$. Therefore we have $\tilde{\sigma} \cap \tilde{\tau} \neq \emptyset, f_{1}(t) \in \tilde{\sigma}$ and $g_{1}(t) \in \tilde{\tau}$.

CASE 2. $v_{1} \notin\left(\Upsilon_{0}^{2}\right)^{(0)}$.
If $v_{0} \in\left(\mathscr{n}_{0}^{2}\right)^{(0)}$, the proof is similar to Case 1. Let $v_{0} \notin\left(\Omega_{0}^{2}\right)^{(0)}$. By $\Re_{0}^{3}<\operatorname{Sd}_{2} \mathscr{n}_{0}^{2}$, there exist $\gamma_{0}, \gamma_{1} \in n_{0}^{2}$ such that $v_{0} \in \operatorname{Int} \gamma_{0}, v_{1} \in \operatorname{Int} \gamma_{1}$ and $\gamma_{0}<\gamma_{1}$ or $\gamma_{1}<\gamma_{0}$. Then if $\tilde{\sigma} \in \mathscr{N}_{0}^{2}$ with $\sigma \subseteq \tilde{\sigma}$, we have $\gamma_{0}<\tilde{\sigma}$. Similarly, we have $\gamma_{1}<\tilde{\tau}$. Therefore we have $\tilde{\sigma} \cap \tilde{\tau} \neq \emptyset, f_{1}(t) \in \tilde{\sigma}$ and $g_{1}(t) \in \tilde{\tau}$.

By $g_{1}^{*} \simeq g_{1}$, we can see the property $(10)_{1}$ by the homotopy extension theorem and (26).

We show the property (11). First, we shall see that

$$
\begin{equation*}
g_{1}^{*}\left(\operatorname{st}\left(x, \bar{S}_{1}^{2}\right) \cap\left|\left(n_{1}^{3}\right)^{(n)}\right|\right) \cong B \quad \text { for some } B \in \mathfrak{B}_{0} \tag{27}
\end{equation*}
$$

Let $\operatorname{st}\left(x, \overline{\mathcal{S}}_{1}^{2}\right)$ be represented by $\cup\left\{\overline{\operatorname{st}}\left(v_{\alpha}, \mathscr{I}_{1}^{2}\right): \alpha \in A\right\}$. There exists $\sigma_{x} \in \mathscr{N}_{1}^{2}$ with $x \in \operatorname{Int} \sigma_{x}$.

For each $\alpha \in A$, we choose $\sigma_{\alpha} \in \mathscr{H}_{1}^{2}$ such that $\sigma_{x} \preccurlyeq \sigma_{\alpha}$ and $v_{\alpha} \in \sigma_{\alpha}$. Further we select minimum and maximal dimensional simplexes $\tau_{x}, \tau_{\alpha} \in \mathscr{I} \eta_{1}^{0}$ with $\tau_{x} \preccurlyeq \tau_{\alpha}$ respectively such that $\sigma_{x} \subseteq \tau_{x}$ and $\sigma_{\alpha} \cong \tau_{\alpha}$.

If $\sigma_{x} \subseteq \operatorname{Int} \tau_{x}$, we have $\overline{\operatorname{st}}\left(v_{\alpha}, \bigcap_{1}^{2}\right) \subseteq \tau_{\alpha}$ from $v_{\alpha} \in \operatorname{Int} \tau_{\alpha}$. Then there exists a
vertex $v \in \Re_{1}^{2}$ such that $\bigcup_{\alpha} \tau_{\alpha} \subseteq \overline{\operatorname{st}}\left(v, \Re_{1}^{0}\right)$. Since $f_{1}$ is the simplicial map from $\eta_{1}^{0}$ to $\Re_{0}^{3}$, we have $f_{1}\left(\cup_{\alpha} \tau_{\alpha}\right) \cong f_{1}\left(\overline{\operatorname{st}}\left(v, \eta_{1}^{0}\right)\right) \subseteq \overline{\operatorname{st}}\left(f_{1}(v), \Re_{0}^{3}\right)$. By the nearness between $f_{1}$ and $g_{1}^{*}$ (see proof of $(9)_{1}$ ) and (14) $)_{1}$, we obtain

$$
\begin{equation*}
g_{1}^{*}\left(\operatorname{st}\left(x, \overline{\mathcal{S}}_{1}^{2}\right) \cap\left|\left(\Re_{1}^{3}\right)^{(n)}\right|\right) \subseteq \operatorname{st}\left(\overline{\operatorname{stt}}\left(f_{1}(v), \Re_{0}^{3}\right), \overline{\mathcal{S}}_{0}^{3}\right) \subseteq B \quad \text { for some } B \in \mathscr{B}_{0} \text {. } \tag{28}
\end{equation*}
$$

If $\sigma_{x} \cap \partial \tau_{x} \neq \emptyset$ and $\sigma_{x} \cap \operatorname{Int} \tau_{x} \neq \emptyset$, we choose a face $\tilde{\tau}_{x}$ with $\tilde{\tau}_{x} \ngtr \tau_{x}$ such that $\sigma_{x} \cap \partial \tau_{x} \cong \tilde{\tau}_{x}$. Then there exists a vertex $v \in \tilde{\tau}_{x}$ such that $\cup_{\alpha} \overline{\operatorname{st}}\left(v_{\alpha}, n_{1}^{2}\right) \cong \overline{\operatorname{St}}\left(v, \Omega_{1}^{0}\right)$. Hence we have (28) in the same way.

Since $\operatorname{st}\left(x, \vec{S}_{1}^{2}\right) \cap\left|\left(\eta_{1}^{3}\right)^{(n)}\right|$ is a subpolyhedron of $\left|\Re_{1}\right|$ and $g_{1}^{*}$ is a PL-map, we see that $g_{1}^{*}\left(\operatorname{st}\left(x, \tilde{S}_{1}^{2}\right) \cap\left|\left(\Omega_{1}^{3}\right)^{(n)}\right|\right)$ is a subpolyhedron of $\left|\mathscr{I}_{0}\right|$. Then by (27) and $(12)_{0}, r_{0} \circ i_{0} \circ g_{1}^{*}\left(\operatorname{st}\left(x, \vec{S}_{1}^{2}\right) \cap\left|\left(\eta_{1}^{3}\right)^{(n)}\right|\right)$ is a subpolyhedron of $\left|\eta_{0}\right|$ and a compact set of $\left|\mathscr{I}_{0}\right|_{w}$. Since $s_{0}$ is a PL-map, we have see the property (11) .

Now, we shall take a base for a uniformity for $\left|\mathscr{n}_{1}\right|$. We choose a subdivisions $n_{1}^{j}$ for $j \geqq 4$ of $\eta_{1}$ such that
(29) $n_{1}^{j+1}<\mathrm{Sd}_{2} n_{1}^{j}$ for $j \geqq 3$,
(30) $\overline{\mathcal{S}}_{1}^{j+1}<* \mathcal{S}_{1}^{j}$ for $j \geqq 3$,
(31) $\overline{\mathcal{S}}_{1}^{j+1}<f_{1}^{-1}\left(\mathcal{S}_{0}^{j+4}\right) \wedge f_{1}^{*-1}\left(\mathcal{S}_{0}^{j+4}\right) \wedge \subseteq_{1}^{j+4}$ for $j \geqq 3$,
where $\mathscr{I}_{1}^{j+4}$ is defined as follows. $g_{1}^{-1}\left(\mathcal{S}_{0}^{j+4} \cap\left|\left(\mathscr{N}_{0}^{3}\right)^{(n)}\right|\right)$ is the open cover of $\left|\left(\mathscr{I}_{1}^{3}\right)^{(n)}\right|_{w}$. Extend it to an open cover $\mathscr{T}_{1}^{j+4}$ of $\left|\mathscr{I}_{1}\right|_{w}$. Then clearly the uniformity make $f_{1}, f_{1}^{*}$ and $g_{1}$ uniformly continuous.

We shall show that $f_{1}$ holds the property (5). First, note that the composition

$$
j_{0} \circ i d \circ f_{1}^{*}:\left|\Re_{1}\right|_{u} \longrightarrow\left|\Re_{0}\right|_{u} \longrightarrow \mid{\left.n_{0}\right|_{m} \longrightarrow\left|\Pi_{0}\right|_{w}, ~}_{\text {, }}
$$

where $i d:\left|\mathscr{I}_{0}\right|_{u} \rightarrow\left|\mathscr{I}_{0}\right|_{m}$ is the identity map, is continuous.
Let $K$ be a compact set of $\left|\Re_{1}\right|_{u}$. There exist $\sigma_{1}, \cdots, \sigma_{l} \in \eta_{0}$ such that $j_{0} \circ f_{1}^{*}(K)=j_{0} \circ i d \circ f_{1}^{*}(K) \subseteq \sigma_{1} \cup \cdots \cup \sigma_{l}$. Since $f_{1}$ is a simplicial approximation of $j_{0} \circ f_{1}^{*}$, we have $f_{1}(K) \subseteq \sigma_{1} \cup \cdots \cup \sigma_{l}$. By the continuity of $f_{1}, f_{1}(K)$ is a compact set of $\left|\mathscr{I}_{0}\right|_{u}$.

As we proceed in this work, we have $\mathscr{V}_{i}, f_{i}^{*}, f_{i}, \pi_{i}^{j}$ and $g_{i}$ with the properties (1)-(11).

From now on, we consider $X$ to be the uniform space with the uniformity generated by the sequence $\left\{\mathscr{V}_{i}\right\}_{i=0}^{\infty}$ of open covers of $X$ and $\left|\mathscr{I}_{i}\right|$ to be the uniform space with the uniformity generated by the sequence $\left\{\mathcal{S}_{i}^{j}\right\}_{j=0}^{\infty}$. Then by the construction, the topology induced by $\left\{\subset V_{i}\right\}_{i=0}^{\infty}$ and the original metric topology are identical.

We shall construct the resolution of $X$. The construction essentially depends on Rubin-Schapiro's way [22]. Hence, the detail is omitted here.

For $j \geqq 0$, let $f_{j, j}$ denote the identity on $\pi_{j}$ and let $f_{i, j}$ denote the composition $f_{j+1} \circ \cdots \circ f_{i}:\left|\eta_{i}\right| \rightarrow\left|\eta_{j}\right|$ for $i>j$.

The functions

$$
b_{i}:\left(X,\left\{V_{i}\right\}_{i=0}^{\infty}\right) \longrightarrow\left(\left|\Re_{i}\right|,\left\{\mathcal{S}_{i}^{j}\right\}_{j=0}^{\infty}\right)
$$

and

$$
f_{i+1, i}:\left(\left|\mathcal{N}_{i+1}\right|,\left\{\mathcal{S}_{i+1}^{j}\right\}_{j=0}^{\infty}\right) \longrightarrow\left(\left|\mathcal{I l}_{i}\right|,\left\{\mathcal{S}_{i}^{j}\right\}_{j=0}^{\infty}\right)
$$

are uniformly continuous for $i \geqq 0$. Then since the sequence $\left\{f_{i, j}{ }^{\circ} b_{i}\right\}_{i=j}^{\infty}$ is Cauchy in the uniform space $C\left(X,\left|\Re_{j}\right|_{u}\right)$ with the uniformity of uniform convergence, we have a uniformly continuous, limit map

$$
f_{\infty, j} \equiv \lim _{q \rightarrow \infty} f_{q, j^{\circ}} b_{q}:\left(X,\left\{\mathcal{V}_{i}\right\}_{i=0}^{\infty}\right) \longrightarrow\left(\left|\Re_{j}\right|,\left\{\mathcal{S}_{j}^{i}\right\}_{i=0}^{\infty}\right),
$$

such that
(32) $f_{\infty, j}$ is $\eta_{j}^{3}$-modification of $b_{j}$,
(33) $\left(f_{\infty, j}, b_{j}\right) \leqq \mathcal{S}_{j}^{1}$,
(34) $f_{\infty, j}$ is a topological irreducible (i.e. surjective) map relative to $\Re_{j}^{3}$,
(35) $f_{i+1, i} \circ f_{\infty, i+1}=f_{\infty, i}$ for $i \geqq 0$.

We consider $\prod_{i=0}^{\infty}\left|\mathscr{I}_{i}\right|_{u}$ to be the uniform space by the product uniformity. Note that $\varliminf_{\underline{m}}\left\{\left|\mathscr{l}_{j}\right|_{u}, f_{i+1, i}\right\}$ is a non-empty subspace by the property (34).

Then by (35), there exist a uniformly continuous map $f_{w}: X \rightarrow\left\lfloor\varliminf_{\lfloor }\left|\mathscr{I}_{i}\right|_{u}\right.$ with $f_{\infty, i}=p r_{i}{ }^{\circ} f_{w}$ and especially the map $f_{w}$ is a uniformly embedding onto a dense subset $f_{w}(X)$ in $\varliminf_{\lfloor }\left|\eta_{i}\right|_{u}$, where $p r_{i}: \prod_{j=0}^{\infty}\left|\Re_{j}\right|_{u} \rightarrow\left|n_{i}\right|_{u}$ is the natural projection.

Let $Z$ denote the limit of the inverse sequence $\left\{\left|\left(\operatorname{In}_{i}^{3}\right)^{(n)}\right|_{u}, g_{i+1, i}\right\}$. Then we consider $Z$ to be the sub-uniform space of the uniform space $\prod_{i=0}^{\infty}\left|\mathscr{l}_{i}\right|_{u}$. Note that $Z$ has dimension $\leqq n$.

We begin with a description of the map $\pi$. For $j \geqq 0$, a uniformly continuous map $\pi_{j}: Z \rightarrow \prod_{i=0}^{\infty}\left|\eta_{i}\right|_{u}$ is defined by

$$
\pi_{j}(\boldsymbol{z}) \equiv\left(f_{j, 0}\left(z_{j}\right), f_{j, 1}\left(z_{j}\right), \cdots, f_{j, j-1}\left(z_{j}\right), z_{j}, z_{j+1}, \cdots\right)
$$

for $z=\left(z_{j}\right) \in Z$ and let $\pi_{0}$ be the inclusion map. Then since the sequence $\left\{\pi_{j}\right\}_{j=0}^{\infty}$ is Cauchy in $C\left(Z, \prod_{i=0}^{\infty}\left|\mathscr{n}_{i}\right|_{u}\right)$, there is a uniformly continuous, limit map $\pi: Z \rightarrow \prod_{i=0}^{\infty}\left|\mathscr{I}_{i}\right|_{u}$. Then the map $\pi$ is proper from $Z$ into $\varliminf_{i m}\left\{\left|भ_{i}\right|_{u}, f_{i+1, i}\right\}$ ([22, p. 239]). We must show that $\pi^{-1}(\boldsymbol{x})$ is a $\mathrm{UV}^{n-1}$-set and the set $\left[\pi^{-1}(\boldsymbol{x})\right.$, $K(G, n)]$ is trivial for $\boldsymbol{x} \in \varliminf_{\measuredangle}\left\{\left|\mathscr{N}_{i}\right|_{u}, f_{i+1, i}\right\}$.

For $\boldsymbol{x}=\left(x_{i}\right) \in \lim \left\{\left|\mathscr{N}_{i}\right|_{u}, f_{i+1, i}\right\}$, let $\delta N\left(x_{i}\right)$ and $\varepsilon N\left(x_{i}\right)$ denote $\operatorname{st}\left(x_{i}, \overline{\mathcal{S}}_{i}^{0}\right)$ and $\operatorname{st}\left(x_{i}, \overline{\mathcal{S}}_{i}^{2}\right)$, respectively. Then we have the following properties [22]: for $\boldsymbol{x}=$ $\left(x_{i}\right) \in \varliminf_{\check{L}}\left\{\left|\mathscr{N}_{i}\right|_{u}, f_{i+1, i}\right\}$,
(36) $\quad g_{i, i-1}\left(\delta N\left(x_{i}\right) \cap\left|\left(\Omega_{i}^{3}\right)^{(n)}\right|\right) \subseteq \varepsilon N\left(x_{i-1}\right)$,
(37) $\left.\varliminf \ll \varepsilon N\left(x_{i}\right) \cap\left|\left(\Omega_{i}^{3}\right)^{(n)}\right|, g_{i, i-1} \mid \ldots\right\}=\pi^{-1}(\boldsymbol{x})=\lim _{幺}\left\{\delta N\left(x_{i}\right) \cap\left|\left(\Omega_{i}^{3}\right)^{(n)}\right|, g_{i, i-1} \mid \ldots\right\}$.

By $\overline{\mathcal{S}}_{i}^{2}<\mathcal{S}_{i}^{1}$, there exists $F_{i} \in \mathcal{S}_{i}^{\frac{1}{i}}$ such that st $\left(x_{i}, \bar{S}_{i}^{2}\right) \subseteq F_{i}$. Further, by $\mathcal{S}_{i}^{1}<\mathcal{S}_{i}^{0}$, there is a $S \in \mathcal{S}_{i}^{0}$ such that $F_{i} \subseteq S$. Hence we have the contractible set $F_{i}$ such that

$$
\begin{equation*}
\varepsilon N\left(x_{i}\right) \subseteq F_{i} \subseteq \delta N\left(x_{i}\right) . \tag{38}
\end{equation*}
$$

Claim 2. $\pi^{-1}(\boldsymbol{x})$ is a $\mathrm{UV}^{n-1}$-set for for $\boldsymbol{x}=\left(x_{i}\right) \in \lim ^{\operatorname{m}}\left\{\left|\mathscr{I}_{i}\right|_{u}, f_{i+1, i}\right\}$.
Proof of Claim 2. It suffices to show that the map

$$
g_{i+1, i}\left|\ldots: \delta N\left(\mathscr{n}_{i+1}\right) \cap\right|\left(\Omega_{i+1}^{3}\right)^{(n)}\left|\longrightarrow \delta N\left(x_{i}\right) \cap\right|\left(\Re_{i}^{3}\right)^{(n)} \mid
$$

induces a zero homomorphism of homotopy group of dimension less than $n$. By (36) and (38), we have

$$
g_{i+1, i}\left(\delta N\left(x_{+1}\right) \cap\left|\left(\Re_{i+1}^{3}\right)^{(n)}\right|\right) \cong F_{i} \cap\left|\left(\eta_{i}^{3}\right)^{(n)}\right| \subseteq \delta N\left(x_{i}\right) \cap\left|\left(\Re_{i}^{3}\right)^{(n)}\right| .
$$

Since $F_{i}$ is contractible, we have

$$
\pi_{k}\left(F_{i} \cap\left|\left(n_{i}^{3}\right)^{(n)}\right|\right)=0 \quad \text { for } k<n .
$$

Therefore $g_{i+1, i} \mid . .$. induces a zero homomorphism of homotopy group of dimension less than $n$.

Claim 3. $\left[\pi^{-1}(\boldsymbol{x}), K(G, n)\right] \approx \check{H}^{n}\left(\pi^{-1}(\boldsymbol{x}) ; G\right)$ is trivial for $\boldsymbol{x} \in \varliminf_{¿}\left\{\left|\operatorname{ll}_{i}\right|_{u}, f_{i+1, i}\right\}$.
Proof of Claim 3. By (11), (36), (37) and the continuity of Čech cohomology, we have

$$
\check{H}^{n}\left(\pi^{-1}(\boldsymbol{x}) ; G\right) \approx \underline{\lim }\left\{H^{n}\left(g_{i, i-1}\left(\varepsilon N\left(x_{i}\right) \cap\left|\left(\mathcal{H}_{i}^{3}\right)^{(n)}\right|_{u}\right) ; G\right),\left.g_{i, i-1}\right|_{\ldots} ^{*}\right\} .
$$

Hence it suffices to show that

$$
g_{i, i-1} \mid *: H^{n}\left(g_{i, i-1}\left(\varepsilon N\left(x_{i}\right) \cap\left|\left(n_{i}^{3}\right)^{(n)}\right|\right) ; G\right) \rightarrow H^{n}\left(g_{i+1, i}\left(\varepsilon N\left(x_{i+1}\right) \cap \mid\left(n_{i+1}^{3}\right)^{(n) \mid}\right) ; G\right)
$$

is the zero homomorphism.
Let $G_{i, i-1}$ denotes $g_{i, i-1}\left(\varepsilon N\left(x_{i}\right) \cap\left|\left(I_{i}^{3}\right)^{(n)}\right|_{u}\right)$. Then by (11) the subspace $G_{i, i-1}$ of $\left|\left(n_{i-1}^{3}\right)^{(n)}\right|_{u}$ and the subspace $G_{i, i-1}$ of $\left|\left(n_{i-1}^{3}\right)^{(n)}\right|_{w}$ is identical. Hence from now on, we may consider that $G_{i, i-1}$ is the subspace of $\left|\left(\Omega_{i-1}^{3}\right)^{(n)}\right|_{w}$.

Let $[\alpha] \in\left[G_{i, i-1}, K(G, n)\right]$. Then from $\pi_{q}(K(G, n))=0$ for $q<n$, there exists an extension $\tilde{\alpha}:\left|\left(\cap_{i-1}^{3}\right)^{(n)}\right|_{w} \rightarrow K(G, n)$ of $\alpha$. By (10), we have an extension $\beta:\left|\left(\Re_{i}^{3}\right)^{(n+1)}\right|_{w} \rightarrow K(G, n)$ of $\tilde{\alpha} \circ g_{i, i-1} \mid G_{i+1, i}$.

Since $F_{i}$ is the contractible set, $F_{i} \cap\left|\left(\eta_{i}^{3}\right)^{(n)}\right|_{w}$ is contractible in $F_{i} \cap$ $\left|\left(\eta_{i}^{3}\right)^{(n+1)}\right|_{w}$. Hence, there exists a homotopy $H:\left(F_{i} \cap\left|\left(\Re_{i}^{3}\right)^{(n)}\right|_{w}\right) \times I \rightarrow F_{i} \cap$ $\left|\left(\mathscr{H}_{i}^{3}\right)^{(n+1)}\right|_{w}$ such that $H_{0}$ is the inclusion map and $H_{1}$ is a constant map. Since
$G_{i+1, i} \subseteq \varepsilon N\left(x_{i}\right) \cap\left|\left(\cap_{i}^{3}\right)^{(n)}\right|_{w} \subseteq F_{i} \cap\left|\left(n_{i}^{3}\right)^{(n)}\right|_{w}$, we can define the following compositions:

$$
\begin{aligned}
\tilde{H} \equiv \beta \circ i_{2} \circ H \circ i_{1}: G_{i+1, i} \times I \subset\left(F_{i} \cap\left|\left(\Re_{i}^{3}\right)^{(n)}\right|_{w}\right) \times I & \longrightarrow F_{i} \cap\left|\left(\Re_{i}^{3}\right)^{(n+1)}\right|_{w} \\
& \longrightarrow\left|\left(\Re_{i}^{3}\right)^{(n+1)}\right|_{w} \longrightarrow K(G, n),
\end{aligned}
$$

where $i_{1}$ and $i_{2}$ are the inclusion maps.
Then we have $\widetilde{H}_{0}=\left.\beta\right|_{G_{i+1, i}}=\left.\alpha \circ g_{i, i-1}\right|_{G_{i+1, i}}$ and $\widetilde{H}_{1}=$ a constant. It completes the proof of Claim 3. Then the map

$$
\left.\pi_{X} \equiv \pi\right|_{\pi^{-1(X)}}: \pi^{-1}(X) \longrightarrow X
$$

is a desired one for Theorem.

## 8. Summary

From Theorem 6.1, 7.1, we have the following theorem.
8.1. Theorem. Let $X$ be a compact Hausdorff or metrizable space and $n$ be a natural number. Then the following conditions are equivalent, respectively:
(i) $X$ has cohomological dimension with respect to $\boldsymbol{Z}_{p}$ of less than and equal to $n$,
(ii) $X$ is a continuous or perfect image of an $n$-dimensional compact Hausdorff or metrizable space $Z$ under an acyclic map $\pi$ in the sense of cohomology with coefficient in $\boldsymbol{Z}_{p}$,
(iii) there exists an n-dimensional compact Hausdorff or metrizavle space $Z$ and a continuous or perfect $\mathrm{UV}^{n-1}$-surjection $\pi: Z \rightarrow X$ such that for $x \in X, \check{H}^{n}\left(\pi^{-1}(x) ; \boldsymbol{Z}_{p}\right)$ is trivial.

Proof. We can easily see the implication (iii) $\Rightarrow$ (ii). The implication (ii) $\Rightarrow$ (i) is a corollary to the classical Vietoris-Begle's theorem. We have the implication (i) $\Rightarrow$ (iii) from Theorem 6.1, 7.1.

Although cohomological dimension with respect to $Z$ or $Z_{p}$ is characterized by the existence of acyclic resolutions, we have an unexpected fact about cohomological dimension with respect to $\boldsymbol{Q}$.
8.2. Theorem (Shcherin). Let $X$ be a compact space of $c-\operatorname{dim}_{Q} X \leqq 1$. If $X$ admits an acyclic resolution, that is, there exists a compact space $Z$ of $\operatorname{dim} Z \leqq 1$ and a map $f: Z \rightarrow X$ such that $\check{H}^{*}\left(f^{-1}(x) ; \boldsymbol{Q}\right)=0$ for all $x \in X$, then $\operatorname{dim} X \leqq 1$.

Proof. By $\operatorname{dim} f^{-1}(x) \leqq \operatorname{dim} Z \leqq 1, \check{H}^{1}\left(f^{-1}(x) ; \boldsymbol{Z}\right)$ is torsion free. Hence, by
the universal coefficient theorem for Čech cohomology groups, we have that $\check{H}^{1}\left(f^{-1}(x) ; \boldsymbol{Z}\right)=0$. Therefore we have $\check{H}^{*}\left(f^{-1}(x) ; \boldsymbol{Z}\right)=0$ for all $x \in X$. It follows that $c-\operatorname{dim}_{Z} X \leqq c-\operatorname{dim}_{Z} Z=\operatorname{dim} Z=1$. Particularly, we have $\operatorname{dim} X=1$.
8.3. Corollary. For each $n=2,3, \cdots, \infty$, there exists an $n$-dimensional compact metric space $X(n)$ such that

$$
1=c-\operatorname{dim}_{Q} X(n)<a-\operatorname{dim}_{Q} X(n) .
$$

Proof. For each $n=2,3, \cdots, \infty$, by [6, Theorem 2.1], there exists an $n$ dimensional compact metric space $X(n)$ of $c-\operatorname{dim}_{\boldsymbol{Q}} X(n)=1$. If $a-\operatorname{dim}_{\boldsymbol{Q}} X(n) \leqq 1$, by Theorem 6.1, there exists a compact metric space $Z$ of $\operatorname{dim} Z \leqq 1$ and a map $f: Z \rightarrow X$ such that $\check{H}^{*}\left(f^{-1}(x) ; \boldsymbol{Q}\right)=0$ for all $x \in X$. Then by Theorem 8.2, we have $\operatorname{dim} X(n) \leqq 1$. But it is a contradiction. Therefore $a-\operatorname{dim}_{Q} X(n)>1$.

## References

[1] P.S. Alexandrov and P.S. Pasynkov, Introduction to Dimension Theory, Moscow, 1973.
[2] K. Borsuk, Theory of retract, PWN, Warszawa, 1967.
[3] M. Brown, Some applications of an approximation theorem for inverse limits, Proc. Amer. Math. Soc. 11 (1960), 478-483.
[4] C.H. Dowker, Mapping theorems for non-compact spaces, Amer. J. Math. 69 (1947), 200-242.
[5] A. N. Dranishnikov, On homological dimension modulo $p$, Math. USSR-Sb. 60(2) (1988), 413-425.
[6] -, Homological dimension theory, Russian Math. Surveys 43(4) (1988), 11-63.
[7] and E.V. Shchepin, Cell-like maps. The problem of raising dimension, Russian Math. Surveys 41 (6) (1986), 59-111.
[8] J. Dydak, Cohomological dimension and metrizable spaces, preprint.
[9] -- and J. J. Walsh, Aspects of cohomological dimension for principal ideal domains, preprint.
[10] Y. Kodama, Appendix to K. Nagami, Dimension theory, Academic Press, New York, 1970.
[11] A. Koyama, Approximable dimension and acyclic resolutions, preprint (1989).
[12] -, Approximable dimension and factorization theorems, preprint (1989).
[13] and T. Watanabe, Notes on cohomological dimension modulo $p$-nonmetrizable version, Kyoto Mathematical Science Research Institute Kōkyūroku 659 (1988), 1-24.
[14] V.I. Kuz'minov, Homological dimension theory, Russian Math. Surveys 23 (1968), 1-45.
[15] S. Mardešić, On covering dimension and inverse limits of compact spaces, Illinois J. Math. 4 (1960), 278-291.
[16] -, Factorization theorems for cohomological dimension, Topology Appl. 30 (1988), 291-306.
[17] and L.R. Rubin, Approximate inverse systems of compacta and covering dimension, Pacific J. Math. 183 (1989), 129-144.
[18] Cell-like maps and non-metrizable compacta of finite covering dimension, Trans. Amer. Math. Soc. 313 (1989), 53-79.
[19] S. Mardešić and J. Segal, Shape Theory, North-Holland, Amsterdam, 1982.
[20] L. R. Rubin, Irreducible representations of normal spaces, Proc. Amer. Math. Soc. 107(1) (1989), 277-283.
[21] -- Characterizing cohomological dimension: The cohomological dimension of $A \cup B$, Topology Appl. 40 (1991), 233-263.
$[22] \quad$ and P.J. Schapiro, Cell-like maps onto non-compact spaces of finite cohomological dimension, Topology Appl. 27 (1987), 211-244.
[23] E. Spanier, Algebraic topology, Springer-Verlag, New York, 1989.
[24] J. J. Walsh, Dimension, cohomological dimension, and cell-like mappings, Lecture Note in Math., vol. 870, 1981, pp. 105-118.
[25] J.H.C. Whitehead, Simplicial spaces, nuclei, and $m$-groups, Proc. London Math. Soc. 45 (1939), 243-327.

Division of Mathematical Sciences
Osaka Kyoiku University
Kashiwara, Osaka
582, Japan
Institute of Mathematics
University of Tsukuba
Tsukuba-shi, Ibaraki
305, Japan


[^0]:    1991 Mathematics Subject Classification. 55M10.
    Key words and phrases. Dimension, cohomological dimension, approximable dimension, Eilenberg-MacLane space.

    Received October 13, 1992, Revised August 23, 1993.

