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A QUADRIC REPRESENTATION OF

PSEUDO-RIEMANNIAN PRODUCT IMMERSIONS

By

Angel Ferrandez, Pascual Lucas and Miguel A. Merono

Abstract. In this paper we introduce a quadric representation (p

of the product of two pseudo-Riemannian isometric immersions. We

characterize the product of submanifolds whose quadric represen-

tation satisfies AH = XH9, for a real constant A, where H is the

mean curvature vector field of (p. As for hypersurfaces, we prove

that the only ones satisfying that equation are minimal products as

well as products of a minimal hypersurface and another one which

has constant mean and constant scalar curvatures with an appropriate

relation between them. In particular, the family of these surfaces

consists of H2(-l)and S'(2/3)xiJ'(-2) in S,3(l)and Sf(l),Hl{(-2/

3) x S1(2), S,1(2) xHl (-2/'3) and a ^-scroll over a null Frenet curve

with torsion ±4l in ^f,3(-l).

0. Introduction

Let R +] be the pseudo-Euclidean space endowed with the standard inner

product of index t given by (a,b) = a'Gb , where G - diag[-1,･･･,-!,1,--,1] stands

/ m-t+i

for the matrix of the metric with respect to the usual rectangular coordinates. Let

us now denote by M'"{k) a pseudo-Riemannian manifold of dimension m, index

fi and constant curvature k and SA(m + l,t) the set of selfadjointendomorphisms

of R"'+] equipped with the metric g(A,B) = (k12) trace(Afi). Let/: M"(k) ->

SA(m + l,t) be the map defined by f(p) = pp'G. Then given an isometric

immersion x:M{ ―>M (k) the map (p:MJc ―>SA(m + l,t) defined by (p = fox is

also an isometric immersion which will be called the quadric representation of

M[. Then in [16] we have classifiedpseudo-Riemannian surfaces whose quadric
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representation satisfies a characteristic differential equation involving the

Laplacian. Since that Laplacian equation yields isoparametric surfaces, we

showed that family is made up by pseudo-Riemannian standard products and

totally geodesic surfaces. We were able to distinguish the products

Hl(2k)xH＼2k)(zHi(k),k<0,2Lnd St(2k)xSl(2k)<zS*(k),k>0, as the only

minimal not totallygeodesic surfaces into H*(k) and S^(k), respectively, whose

quadric representation satisfiesthat Laplacian equation. Then we extended the

characterization of the Clifford torus given by Barros and Garay ([4],[5]).

As standard products play a chief role in that classificationproblem, we are

going to find a quadric representation for pseudo-Riemannian product sub-

manifolds into indefinite space forms.

Let S (k)(k>0) and H"(k)(k<0) be the pseudo-Euclidean hypersurfaces

of constant curvature k given by

and

s;(k) ={≪≪,-■=<*･'>=ij

Hnv(k)=
{xeR$:(x,x)

= j^,

respectively.We willrefer them as the hyperquadrics of constant curvature k.

We consider a map/from the pseudo-Riemannian product M'"(k)x N"(k) of two

hyperquadrics of constant curvature k into the space of real (m + l)x(n + l)

matrices SM which is an isometric immersion. General properties of this map are

obtained, for instance, / is an isometric immersion of 1-type (in the sense of

B.Y. Chen) and the associated eigenvalue is k(m + n) (see Section 1).

Let us recall Chen's definition of type (see [7]). Let MJ. be a pseudo-

Riemannian submanifold of R'"+i and A the Laplacian on M[. . Then M[ is said

to be of finitetype if the position vector X of Mi in J?,m+1has the following form

x = xQ +
£xi,

i=＼

AX,=A,X,

where Xo is a constant map and A,-is an eigenvalue of A . If all eigenvalues are

mutually different M/ is said to be of r-type. If M'c is of r-type and one of the A,.

is zero, Mjc will be said of null r-type. Mjc is said to be of infinite type if it is not

of finite type.

Given isometric immersions x: M! ―>M'" (k) and y: N', ―>N"(k), we define

a new isometric immersion q>:MJC x N'd ―>sJJiby f = f(x, y). Throughout this

paper the immersion (p will be called the quadric representation of the product

immersion (x,y).
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In a series of early papers ([2], [3], [14], [15]) we have pointed out

substantialdifferences between definite and indefinite Riemannian submanifolds

with regard to the spectral behaviour of the mean curvature vector field.We have

shown indeed many examples of submanifolds into indefinite space forms without

counterparts into definite space forms. The key point concerns to the

diagonalizabilityof the shape operator. Now, in dealing with cp, we state the

following problem:

Could you determine the shape of Mjc and Nrd into the corresponding

hyperquadrics via the quadric representation of the product MJc x Nd ?

In trying to solve this question, we will study the spectral behaviour of the

mean curvature vector field H of (P. Actually we wish to know what kind of. . _ . .
" w *"■ f ' *≫~>-""*J1.7 " *■>"ion iu ivnu vv w ucii JVinu ＼J1

geometric information about MJC and N'd could arise from the Laplacian equation

AH =
XHy. We guess this condition will

play a chief role in solving that problem,

because we already know the characterization of hypersurfaces satisfying that

equation into indefinite space forms (see [14], [15]). As for the Chen-type of a

submanifold, it is well known that a equation like AH - AH allows to reach only

up to submanifolds of 2-type with a zero eigenvalue (the so called null 2-type)

(see [2]). However, for our quadric representation (p, the corresponding equation

AH
9

= XHy yields 2-type immersions (see Theorem 5).

Some interesting consequences can be mentioned. Let (x,y) be a pseudo-

Riemannian product of hypersurfaces. Then AH^ = XHV if and only if one of them

is minimal and the other one has constant mean and constant scalar curvature with

an appropriate relation between them. However the case A = 0 deserves a special

attention. In fact, from the Beltrami equation Ax = -nH, we get A2x = -nAH, so

that the mean curvature vector field is harmonic, that is, AH = 0 if and only if

Ax2 = 0. Then B.Y. Chen called such submanifolds biharmonic submanifolds

and stated the following conjecture [8]: The only biharmonic submanifolds in

Euclidean spaces are the minimal ones. In early papers [3, 14, 15] we have found

that, among others, the flat totally umbilic hypersurfaces are counterexamples to

that conjecture into indefinite ambient spaces. However, the products of two flat

totally umbilic hypersurfaces via the quadric representation are not biharmonic.

In fact, we have shown that those products are the only ones satisfying the

equation AHV = C, C being a nonzero constant vector in the normal bundle.

Finally, by using the quadric representation of a pseudo-Riemannian product, we

are able to give a new non-existence result: There is no pseudo-Riemanniar>

product of surfaces with biharmonic quadric representation.
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1. General properties of a product Immersion

Let M (k) and N"(k) be two hyperquadrics of non-zero constant curvature

k standardly embedded in R'"+l and R"+i, respectively. We can define an

immersion / from the pseudo-Riemannian product M'u"(k) x N" (k) into the space

of real (m + l)x(n + l) matrices Wl by

f:M (k)xNll(k)^m

(p,q) -*pRq

where R : R'"+i x j?"+1 ―> sJJiis given by u R v = Gluv'G2,Gi and G2 standing for the

matrices of the standard metrics on R'"+l and R"+＼ respectively. We abbreviate

M'^ik) and N"{k) as M;j and N".

To study general properties of /, we proceed as follows. Given

(p, q) e M x N" and (Xp ,Yq)e T(pq)(M x N"), there are curves a:I<zR^>M

and p:JcR->N" such that a(0) = p,a'(0) = Xp,p(0) = q and P'(O) = Yq. To

compute the differential of/we have

4flM)(xptxq) = f(a(t),(3(t)) = a(t)RB(t)

4
a(0R/3(0) + a(0)R-f

at 1=0 dt

= XpRq + pRYq

Therefore, for short, we write down

df(X,Y) = XRq + pRY.

Pit)

t=0

Let V be the usual flatconnection on Wl. Let (V,W) be a vector field on

M x N" and take a point (p,q) e M x /V", a tangent vector (Xp,Yq) and curves

a(t) and j8(f)as before. Then for the covariant derivative we have

Vtf(x,.v4f(v,iy) =
d_

dt 1=0

"/(a(t)i(Ol' ≪(')'
%(/>)

4-
(V(a(t))Rp(t) + a(t)RW(a(t)))

at ;=o

^|

o
V(a(t)) R 0(0) + V(a(O)) R

^

+
4- a(t)RW(p(0)) + a(0)R4-

dt t=o at

Pit)

/=0

W(B(t))
r=0

1 VRq + VpRYq+XpRWq+pRV2YqW
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where V and V2 are the usual flatconnections on R't"+]and R"+l, respectively.

By using now the Gauss equation

vl v

Xn

V2 W =

Kv-k{xp,vp)P,

y2
YqW-k{Yq,Wq)q,

V and V2 being the Levi-Civita connections on

have

Mm and N", respectively,we

-k{(X,V) + (Y,W)}f,

(1.1)

where, as usually, (,) denotes the metric.

Let g be the metric in Wl defined by g(A, B) = ktr (GiAG2Bl), for A, B e Wl,

then/ becomes an isometric immersion. Notice that Wl, endowed with g, is

isometric to a pseudo- Euclidean space of index t{n +1 - s) + s(m +1 -1) or (m +1)

(n +1) - s(m + 1) - t(n +1) + 2 st, provided that k > 0 or k < 0 , respectively. Then it

is easy to see that

g(XRV,YRW) = k(X,Y)(V,W). (1.2)

Now, a straightforward computation from (1.1) allows us to obtain the second

fundamental form O" of /

&((X,Y),(V,W)) = VRY + XRW-k{(X,V) + (Y,W)}f. (1.3)

We are going to get the mean curvature vector field Hf of/. To do that, let

{£,,...,£■,,}and {fj,...,/^} be local orthonormal frames of M and j＼",

respectively. Then {(Ei,0),...,(Em,0),(0,Fl),...,(0,Fn)} is a local orthonormal

frame of M;n x N". From (1.3) we find

<7((£,.,Q),(£,.,Q))= -fe,./,

<7((0,F.),(0,F.)) = -*ji./,

where e te.3>

Hf

and

(m
1

V'=i

= (Fj,Fj). Therefore

e,<7((£,,0),(£,,0)) + X7?/7((0,/=;.),(Q,f;.))
j

(1.4)
1

m + n

=-kf.

From here and the Beltrami equation Af = -(m + n)Hf we obtain the following

interestingresult.
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PROPOSITION 1. The isometric immersion f : M xN" ->sJJl is of l-type

with associated eigenvalue k(m + n), thatis, Af = k(m + n)f.

As a consequence of pseudo-Riemannian versionof Takahashi's theorem ([7]

and [201)we have thefollowing.

COROLLARY 2. The isometric immersion f is minimal in the hyperquadric of

W given by {AeW: g(A, A) = k~~i).

2. The quadric representation

Let x : Mjc -≫M* c J?,m+1 and y: N'd ^ N" c If"+l be two isometric

immersions and let <p: M{ xNl ―>$Jl be the isometric immersion defined by

(p(p,q) = f(x(p),y(q)). From now on, (p will be called the quadric representation

of the pseudo-Riemannian product immersion (x,y).

We are going to get properties of x and y coming from those of (p. To do that,

let Hx and //y be the mean curvature vector fields of x and y, respectively. Let

Hx and Hy be the mean curvature vector fields in the corresponding pseudo-

Euclidean ambient spaces. Since the hyperquadrics are totally umbilic we have

Hx = Hx - kx, Hx = Hy - ky.

Let Gx and O"y be the second fundamental forms associated to x and y,

respectively. Then the second fundamental form of (p can be written as

O(p=df(Gx,Gy) + &.

Our first goal is to characterize the product immersions (x,y) whose quadric

representation q> is of 1-type. Bearing in mind the above relation among the

second fundamental forms, we have

tr≪7,) = 4r(tr(ffJt), O)-kj(p + df(O, ti{Gy))-M(p

= df(tr(Gx), tr(Gy))-k(j + £)q>.

Then by letting H^the mean curvature vector field associated to (p we obtain

(j + OH=df(jHxJHv)-k(j + i)(p. (2.1)

PROPOSITION 3. The quadric representation(p of a pseudo-Riemannian

product immersion (x,y) is of l-type if and only if x and y are minimal

immersions. Moreover, theassociatedeigenvalueis given by k(j+ £).
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Proof. First,if x and y are minimal, from (2.1) and the Beltrami equation

Af = -(j + (.)H9 we easily deduce that Aq> = k(j + i)(p.

Assume now that(p satisfiesthe equation

A(p - X(q>- (p0), Aeif,

where q>0<=SJRis a constant matrix. By using again Beltrami equation and (2.1)

X(po=df(jHx, lHy) + {X-k(j + O}(p- (2.2)

Now, let V e 36(Mi), take covariant derivative in (2.2) and use (1.1) to obtain

o =
vmvJa)4f(jHx,

■
my) + {A - k(j + i)}VdfiVfi)(p

= df(jV[Hx, O) + lVRHy+{X-k(j + £)}VRy

= jVlvHxRy + eVRHv+{A-k(j + £)}VRy.

(2.3)

Since thiscan be viewed as an endomorphism on R"+i,we apply it to y to get

0 = k~＼jG,(VlHr) + k~x{A - k(j + i)}G,V and then

V1 H -v vnx ~
k(j+ *)-*.

j
v,

because G, is invertible. Bringing this to (2.3) we deduce that IVRHV=Q,

which implies that Hv=0. A similar reasoning, by taking in (2.2) covariant

derivative with respect to a vector field We3c(Nfd), leads to Hx=0 and the

proof finishes.

From now on, we will pay attention to the equation

AH9=AH9, XgR. (2.4)

Let (p,q) be a point in M'xNj and choose local orthonormal frames

{£,,...,Ej]and {F],...,FI}on MJC and Nrd, respectively, such that VxEaEa(p) = 0,

for all a = l,...,y,and V}Ffj,Fp(q)= 0, for all p = 1,...,/,where Vv and Vv are the

Levi-Civita connections on MJc and Nd, respectively. From (2.1) we easily get

U + l)H,=jHxRy+txRHy.

Taking covariant derivative here we obtain at (p, q)

^,0,^,0,0- + £)H9
= j KaKaH,- Ry + lKaR Hy
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V V

^0.^,0"
+ OH, = j Hx R ay(Fp,Fp) + ?xR V＼V2FHy

where ox and o＼,are the second fundamental forms of M'c and N'd in jR,'"+iand

R"+], respectively. Therefore we have

(j + £)AH(p = jAHxRy + lxR AHy - 2jtHx R Hv

By assuming thatAH - XH ,we obtain from (2.5) that

j AHX Ry + ?xR AH - 2jlHx R Hx = HjH, Ry + ?xR Hy),

which we apply to y to get

jk-{G{AHx + £(AHy,y)GlX - 2ji{Hy,y)GlHx = Xjk-XG,HX + Xi(Hv,y)Glx

As (Hy,y) = -1 and G, is invertible,the above equation writes as

jk~lAHX + j(2£- AiT1)HX + t(X + (AHv,y))x = 0.

A similar reasoning by applying to x' leads to

tk~xAHX + £(2j - ?Jc~])HY + j(X + (AHx,x))y = 0.

By multiplying now the above equation by y we find

k-l(j(AHx,x) + £(AHy,y)) + Ak-l(£ + j)-2tj = 0

From (2.9), the following useful lemma can be easily obtained.

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

LEMMA 4. If the quadric representation(p of a pseudo-Riemannian product

immersion (x,y) satisfiesthe equation AH^ = XH^, then the functions cx =

(AHx,x) and cv = (AHv,y) are both constantand relatedby (2.9).

Now next theorem can be proved

THEOREM 5. Let (p:M^.xNj―>sM be the quadric representation of a

pseudo-Riemannian product (x,y), where x:Mf.―>Mft and y:Ned―>N" are

isometric immersions. Then A Hv = XH^ for nonzero constant real number X //

and only if one of the following statements holds:

(1) Both x and y are minimal and X = k(j + £);

(2) x is minimal and y is of I-type with associate eigenvalue -kj or 1-type

with associated eigenvalues X - kj and -kj, that is, y - yx + y2(y＼,y2 ^ 0) such t^iat

4v, = -kjyx and Ay2 =(X- kj)y2;

(3) y is minimal and x is of l-type with associate eigenvalue ―ki or 1-type
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with associated eigenvalues X-kl and -kl, that is, x = x, + x2(xi,x2 ■£0) such

that Ax, = -k£x{and Ax2 - (A - k£)x2.

Proof. If Hx=0 and Hv = 0 then we have AH(p=-k2ij +£)xRy and

//^ = -fccR y. Therefore we get AH^ = XH^, with A = k(j + £).

If M'c is minimal in M and y = y, + y2(y,,y2 * 0) such that Ay, = -kjy{ and

Ay2 = (A - */)y2 then

A2y + (2kj - X)Ay - kj(X - kj)y = 0,

which is the same as (2.8). Then (2.5) implies that AH^ = AH^.

A similar reasoning applies if N'dis minimal in TV" and MJC is of 1-type with

associate eigenvalue -k£ or 2-type with associated eigenvalues -k£ and X-U .

To prove the converse, bring (2.7) and (2.8) to AHV = XHV. Bearing in mind

Lemma 4 and jcx +£cy = 2kj£-X{j + £) we obtain HxRHy=0. This equation

yields Hx=0 or HY=0 or both simultaneously. Now if, for instance,

Hx * 0 then AHV = -k2£y and cy = -kl. Therefore, (2.7) can be rewritten as

A2x + (2k£- A)Ax - k£(X- k£)x= 0.

Let pit) be the polynomial p(t) = r +(2k£- X)t - kl(X - kl), whose discriminant

is X2 ^0. Then p(A)x = 0 and using [11, Proposition 4.3] we have x is of finite

type less than or equal to two. If x is of 1-type, then it is totally umbilical and so

with associated eigenvalue ―kl.If x is of 2-type, then the associated eigenvalues

are the roots of p(t), thatis, X ―kl and ―kl. That completes of proof.

Now we are going to analyze when the quadric representation is biharmonic,

that is, AH(p=0. Then we also have that Hx=0 or H = 0, but not

simultaneously according to Theorem 5. Suppose N'd is minimal in Nl, then

p(A)x-0 where pit) = it + kl)2. Hence x should be, according to [11,

Proposition 4.2], of infinitetype or of 1-type with associated eigenvalue -kl. But

Theorem 5 implies that x should be of infinite type. So the following result has

been shown.

PROPOSITION 6. Let (p:MJcxN'd-)M be the quadric representation of a

pseudo-Riemannian product (x,y), where x: M'c ―*M and y:N'd―*Nv are

isometric immersions. Then (p is biharmonic if and only if one of the following

statements holds:

(1) x is minimal and y is of infinitetype with A2y + 2kjAy + k2j2y ―0;

(2) v is minimal and x is of infinitetype with A2x + 2k£Ax + k2i2x = 0.
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3. The quadrlc representation of a product of hyperserfaces

Thissectionis devotedtoprovethefollowingmajorresult.

THEOREM 7. Letx:M'" ' -≫Af and y.Nj ' -≫#" be hypersurfaces. The

quadric representation (p of the pseudo-Riemannian product (x,y) satisfiesthe

equation AHV = A// , Xe R, if and only if one of the following statements holds:

(1) Both x and y are minimal and A = k(m + n ―2).

(2) x is minimal and y has nonzero constant mean curvature a. and constant

scalar curvature t

Tv

such that

1

m + n ―2
{(n-l)2(m + n-3)(k + £

X = k{m + n-2) +
(n l＼eya;

m + n-2

X) + Hm-l)2}

(3) y is minimal and x has nonzero constantmean curvature ax and constant

scalarcurvature X such that

T,
1

m + n-2
{(m -1)2 (m + n - 3)(k + exa] ) + k(n-1)2}

X = k(m + n-2) +
(m-1)2

m + n-2
ea]

Proof. From [7,Lemma 3] we can easilycompute the constants cx and cv

givenin Lemma 4 as

cx=-(m-l)(k + exa2x), cv=-(n-l)(k +£ya2), (3.1)

where ex and ax (resp. ey and ay) are the sign and mean curvature of M'" ' in

M (resp. N"d~xin N"). It follows the constancy of the mean curvatures, and one

of them vanishes according to Theorem 5 and Proposition 6. Assume now that ax

is a non vanishing constant, then from (2.7) we have

(m - l)AHx + k(m - l)(2(n -1) - Ak'])HX + k(n - 1)(A - k(n - l))x = 0.

By using again [7, Lemma 3] we get

tr(S2X)= A - k(m -1) - 2k(n -1),

where Sx stands for the shape operator of M'"~x in

component we obtain

m; . Equating the x

0 = -k(m -1)2 (k + ea]) - 2k2 (m - l)(n -1) - k2 (n - I)2 + Xk(m + n - 2),
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X = k(m + n-2)+ (m 1)2

Now the Gauss equation implies that

m + n ―2
f n

Tx=(m-l)2(Hx,Hx)-k(m-l)-tr(S2x)

= (m-l)2(k + era2r)+ 2k(n-l)-X,

and so x＼is also constant. Moreover, by substituting A in the above equation we

deduce

(m + n- 2)TV = (m - I)2(m + n - 3)(k+ ea] )+ k(n- I)2.

The same computation works if we assume that a is a nonzero constant.

To prove the converse, it suffices to consider case (2) or (3). Let us assume

that y: Nnd~x―≫N"(k) is minimal and x :M'"~l―>M"(k) has nonzero constant

mean curvature ar and constant scalar curvature t such that

1

m + n-2
{(m-l)2(m + n-3)(k + £xa2r)+ k(n-l)2}

= k(m + n-2)+ {m l)＼exa2
m + n-2

By using [7, Lemma 31 we deduce

A// = (tr(S2X ) + k(m-1))// - k(m - ＼){ea] + k)x.

From the Gauss equation jointly with the formulae for A and x. we get

k{m-＼){£xa]+k) =

tr(S2X) +k(m -1) = X

(im + n- 2U - kin -1)2 - 2k(m -l)in -1))
k

m-＼

2k(n-＼).

The last three equations lead to

A2x + (2k(n -1) - X)Ax - k(n - 1)(A - k(n - l))x = 0,

and reasoning as in Theorem 5 we obtain AH^ = AB^.

The above theorem contains the characterization of products of hypersurfaces

whose quadric representation is biharmonic (A = 0). In the following result we

extend the harmonicity condition and study the equation AHV -C, where C is a

constant vector in the normal bundle. First of all, we will show a class of

hypersurfaces whose products satisfy the asked equation with C^Q. The

classificationof totallyumbilic hypersurfaces x: M ~x―>M (k) is given in [18,
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Theorem 1.4], and we know that such a hypersurface is an open piece of either a

pseudo-sphere S(m~'(l/r2),or a pseudo-hyperbolic space ^""'(-1/r2) or R'"~],

according to (HX,HX) is positive, negative or zero, respectively. In the last case,

the isometric immersion x : R ' -> M (fc) c J?f"I+lis given by * = / - xo,xo being

a fixed vector in R"+i and /: R'"~l-≫fl,1"*1 the function defined by

/(≪,,･･･,≪,,_,)= (q(u),ui,---,um_],q(u)), where g(w) = a(w,u) + (u, v) + c, where a

and c are constant real numbers, especially a ^ 0 and v is a vector in J?tw+I.We

will refer this example as aflat totally umhilic hyper surf ace. It is not difficult to

see that Ax = -2a(m-l)(l,(),･･･,0,1) and so AHX = 0. Therefore, if

x:M ~[->M"{k) and y: Nf1 ->N"(k) are two flat totally umbilic

hypersurfaces, there exist two non-zero constants a and b such that AHV = /?A,A

being the following nonzero matrix in Tt:

(l

0

0

,-1

0 ･･･

0 ･･･

0 ･･･

0 ･■･

where R -%ab(m - l)(n -1) /(m + n - 2).

0

0

0

0

0

0

THEOREM 8. Let x:M'c" '―≫M andy:Nnd '―>N" be hypersurfaces.The

quadric representation(p of the pseudo-Riemannian product (x,y) satisfiesthe

equation AH^ =C,C being a constantvectorin the normal bundle,if and only if

one of thefollowing statementsholds:

(1) x is minimal and y has nonzero constantmean curvature or and constant

scalar curvature Tv such that

I
ty=k(m-l)(5-2n-m),

≪; =
~£y

(m + B 2)2

(n-1)2

and C = 0.

(2) y is minimal and x has nonzero constantmean curvature ax and constant

scalarcurvature tr such that

Tx = k{n

a]

l)(5-2m-n),

-^-imf^^

andC = O.
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(3) Both x and y are flat totallyumhilic hypersurfaces and C

R^O, where A is the matrix given in the above.

= RA, for any

Proof. The sufficiencyis a consequence of Theorem 7 and example

exhibitedbefore thistheorem.

By using(2.5), A/7 = C can be rewrittenas

(m + n-2)C = (m-＼)AHX Ry +(n-l)xR AHV -2(m-l)(n-＼)HX R Hy. (3.2)

Then apply (3.2) to y and Wg X(N" ') to obtain

(m + n- 2)Cy = k~{(m - 1)G,AHX +(n- l)(AHv,y)G{x

+ 2{m-l){n-＼)GxHx,

{m + n- 2)CW = (n- 1)(AHv,W)G1x.

From' here, as g(C,xR W) = 0, we deduce that AHV

(3.3)

(3.4)

is normal to A^'~'.

Therefore,from (3.4), we get G＼Cy= A, A being a constant.Then (3.3) writes

as follows

(m - I)AH = k(m + n-2)A- k(n - l)cx - 2k(m - l)(n - l)Hx, (3.5)

where c is the function on N",' givenin Lemma 4, from which we get c is

constant.

A similar reasoning with x and V e3c(M'"~l),leads AHX to be normal to

M;""1 and then

in - l)AHy =k(m + n- 2)B - k(m - ＼)cxy- 2k(m - l)(/i- l)//v
(3.6)

where B-G2C'x and cx is constant.

From the above equations the followingrelationbetween cx and cy can be

easilyobtained

{m + n- 2)(A, x) = k~x(m - ＼)cx+ JT'(n - l)cv - 2(m -1)0 -1) = (m + n-2)(B,y)

From here, jointly with (3.5) and (3.6), we can rewrite (3.2) as follows

C = k(A R y + x R B) - k2(A, x)x R y - 2
(m ~l^n ~1^

H RH .
m+n-2 x }

Taking the covariant derivative along xR W here we deduce that

0 = kARW-k2(A,x)xRW-2(m l)(H l)
m + n-2

HRVlHv

(3.7)

(3.8)

If Hx = 0 ,an easy argument from (3.7) and the above equation yields C = 0, then

from Theorem 7 we get (1). If HY =0, then as above we obtain (2). So we can
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assume that Hx * 0 and Hy * 0 .

Let t, be a vector fieldnormal to Mf"1 in M^" such that{%,Hx)*0. From

(3.8) we have (£,Hx)V2wHv =k(m + n-2)/(2(m-l)(/i- 1))(A,|)W, and so

(^/fx)Mfv =-km±2*^l(A,Z)Hy. (3.9)

Now, multiplying the above equationby y we get k(m + n-2)/(2(m-l))(A,^} =

{£,Hx )(cv+ ik(/i-1)),(3.9)brings us

AHv=-cyHy. (3.10)

A similarreasoning yieldsto

AHx = ~cxHx (3.11)

By combining these two equations with (3.5) and (3.6) we deduce

(cx - 2k(n - l))Ax + k(n - l)cyx -k(m + n- 2) A = 0,

(cv -2k(m- I))Ay + k(m- l)cxy-k(m + n-T)B = 0.

If cy = 2k(m -1), then cx = 0 and B = 0. Therefore we obtain that AHX =

k(m ―＼)Hx, which is a contradiction. Assume now that cx^2k{n ―1) and

c

v &2k(m
―l), then x and y satisfy Ax = ax + b and Ay ―cy + d, where

a,cGR,bGR +land d e R"+l are constant. From (3.10) and (3.11) we easily get

a = ― c x and c = -cY

From (3.2)

(m + n-2)C = (m- 1)AHX Ry + (n-l)xR AHy -2(m-l)(n-1 )HX RH

= -(m-＼)cxHx Ry-(n- l)cvx <8>Hy -2(m- l)(/i- 1)//,R Hy

= cxAx Ry + cvx (8)Ay- 2 Ar <8>Ay

= (acx + ccx-2ac)xRy +{cx-2c)bRy + (cv -2a)xRd-2bRd.

Take the covariant derivative of C

0 = (m + n-2)VxgwC

then we get

= (acx + cc - 2ac)x RW + (cx - 2c)b <8>W,

Similarly

So

(cx-2c)b = -(a + 2c)b = 0

(cY-2a)d = -(2a + c)d = 0.
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(m + n-2)C = -2hRd.

Since Hx*0 and //v*0,C*0 and hence b*0 and d*0. From (3.12) and

(3.13), a = 0 and c = 0. Therefore the mean curvature vector fields of M "1 and

A^'~'in the corresponding pseudo-Euclidean spaces are constant.

On the other hand, by using the Beltrami equation we find <Ax,jc)= -(m-l)

(Hx,x) = (m-l)and so (m-l) = (b,x). This shows that M."'~'is contained in a

hyperplane and therefore M'"~]is totallyumbilic in M (k). The same is valid for

N"d~x.Now from [18, Theorem 1.4] we know that M'"~]is an open piece of a

pseudo-sphere $ ~＼llr2),a pseudo-hyperbolic space H"'~＼l/r2) or a flattotally

umbilic hypersurface, but only the latterhas constant mean curvature vector field.

The same occurs for N'd'~]and so we get (3).

It is worth noticing that this theorem gives a characterization of the products

of two flattotallyumbilic hypersurfaces as the only ones satisfying the equation

AHm =C, where C*0.

4. The quadrlc representation of a product of surfaces

We startthis section by providing some examples of surfaces,in the De Sitter

space Sf(l) and in the anti-De Sitter space Hf(-l), such that the quadric

representation of their product with a minimal surface satisfies the equation

Affm = XH,n.

Example 9. Let TV2,be a minimal surface in M＼(k). Let M2 be a non flat

totally umbilic surface in M^{k),k2 = 1, such that efc= -l,£ being the sign of

Ml inM,3(&). Then M(2 is an open piece of JJ2(-l/r2) c #,3(-l),S,2(l/r2)c

Jfl3(-l),M2(-l/r2)cSl3(l),orS2(l/r2)cSl3(l).Then AH^ = XH^ if and only if

M2 is an open piece of #,2(-l) c M3(-1),S2(1) c S,3(1),S,2(1)c H,3(-l) or ^2(-l)

(z S,3(l),where the constant A is given by -4, 4, -2 and 2, respectively.

Example 10. The families of standard products in M^{k) are given by

(i) S'(l/r2)xS'(l/(l-r2))cS,3(l)J-r2 > 0,
(

(

ii) Hl(-l/r2)xHl(-l/(-l + r2))<zHf(-l),-l+ r2 >0

iii)Sl(l/r2)xHl(U(l-r2))^Shl),l-r2 < 0,

(iv) Slu(Ur2)xHlu(-＼/(＼ + r2))cHf(-＼).

Unless r2 -1/2 in the families (i) and (ii),those surfaces are of 2-type with

eigenvalues {l/r2,l/(l- r2)},{-!/ r2,-l/(-I + r2)},{l/r2,1/(1- r2)} and {1/r2,-!/

(1 + r2)},respectively. Let N] be a minimal surface in M{"(k) and M2 a standard

product. Then the quadric representation q> satisfiesthe equation A/7 = AH if
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and only if M; isS'(2)xS,'(2)c S,3(l),Hl(-2)xH'(-2) c H,3(-l),S'(2/3)xfl'

(-2)cS,3(l),Sl1(2)x≫1(-2/3)cff13(-l)orSl(2)xM11(-2/3)cMl3(-i), where the

constant A is given by 4,-4, 8/3,-8/3 and -8/3,respectively.

Example 11. B-scroll over a null curve. Let c(s)

H,3(-l)c/?2 with an associated Cartan frame {A,B, C},

pseudo-orthonormal frame of vector fieldsalong c(s),

(A,A) = (B,B) = 0, (A,B) = -l,

(A.C) = (B.C) = 0. (C.C) = ＼.

be a null curve in

i.e., {A,B,Q is a

satisfying c(s) = A(s) and C(s) ――aA(s) - k(s)B(s) , where a is a nonzero constant

and k(s)*0 for all s. Then the map x:(s,u)―>c(s) + uB(s) parametrizes a

Lorentzian surface M,2 in fff(-l) called a fi-scroll. The B-scroll has non-

diagonalizable shape operator with minimal polynomial q{t)-(t-a)2 and so it

has constant mean curvature (X = a and constant Gauss curvature G = a2.

Therefore if N] is a minimal surface in Hf(-l) and (p is que quadric

representationof M2 x N], the equation AH^ = XH^ holdsif and only if a2 - 2

and X = -2.

THEOREM 12. Let M^ and N2d be two surfaces in the De Sitter space

$3=M,3(1), and cp:Mc2 xTVJ -^sJJl= R]66 the quadric representation of their

product. Then (p satisfies the equation AH^ = XH^ if and only if one of the

following statements holds:

(1) Both Ml and N2d are minimal in S,3,where A = 4;

(2) One surface is minimal in S3 and the other one is an open piece of the

totallyumbilic surface H2(-l), where A = 2;

(3) One surface is minimal in Sj5 and the other one is an open piece of the

standard product surface Sl(2/3)xHl(-2), where A = 8/3.

THEOREM 13. Let M2C and N] be two surfaces in the anti-De Sitter space

Hf = M,3(-l), and q>: M] x N] ―≫M = ^6 the quadric representation of their

product. Then <p satisfiesthe equation AH^ = AH^ if and only if one of the

following statements holds:

(1) Both Ml and N^ are minimal in H*, where A = -4;

(2) One surface is minimal in Hf and the other one is an open piece of the

totallyumbilic surface S,2(l),where A = -2;

(3) One surface is minimal in Hf and the other one is an open piece of the

standard product surface M,'(-2/3)xS1(2) or S,'(2)x #'(-2/3), where A = -8/3;

(4) One surface is minimal in H,3 and the other one is an open piece of a B-
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scroll over a null-Frenet curve with torsion ±a/2 , where X = -2

Proof of Theorems 12 and 13. In view of Theorem 7, we can assume that

M2 x/V2 is not minimal. Then either Mc2 or N] has to be minimal, so we can

suppose N] is minimal. Therefore Theorem 7 yields M2 is an isoparametric

surface. Hence M2 is totallyumbilical, a fi-scroll,a pseudo-Riemannian product

or a complex circle (see the Appendix for the complete description of

isoparametric surfaces in Lorentzian 3-space forms). From the above examples

we see that M2 is an open piece of totally umbilic surfaces $2(1) c Hf,H2(-l)

cS,3or a B-scroll in H* with a2 =2. As for product surfaces, we get M2 is an

open piece of one the products given in this theorem. Finally, we are going to

show that the last case that M2 is a complex circle can not be given. In fact,

since a
x and tx are related by xx =-4 + 3exa;, which can be rewritten by using

the shape operator SK as

(tr(5,))2-4tr(Sv2)+ 8ev=0,

a straightforwardcomputation shows thata complex circlecan not satisfythat

equation.

As a consequence of thattheorems we obtain the following.

COROLLARY 14. There is no pseudo-Riemannian product of surfaces with

hihnrmnnir nundrir rpnrpvpntntinn

5. A few more examples

This sectionis devoted to show a few more examples of hypersurfacessuch

thatthe quadricrepresentationsatisfiestheequation AH = XH .

Example 15. Let x:M ' -^M (k)czR'" ' be a hypersurface whose shape

operator has a characteristic polynomial given by q(t)= (t-a)m~],ae R, and let

y: N'J~]->iV"(^)ci?""' be a minimal hypersurface. Then by the Jordan normal

form we get tr(Sx) = (m ―l)a and ti{S2X)= (m - l)a2. Since the mean curvature

a=a and the scalar curvature t = (m-l)(n-l)(k + £ra2), it follows from

Theorem 8 that AH9 = XH^ if and only if a2 = -exk(m + n-2)/(m-1),exk < 0, and

in this case X = k(n -1).

Let M'"~l be non-flat totally umbilic in M (k) and A^'~'minimal in N"(k).

Since £xk < 0, we only have the following possibilities for M'"~] and

M;{k):H;-＼-iir2)<zH;{k＼s;-＼＼ir2)<zH;{k),H;:l{-iir)c:s;{k),s;:l(＼i

r2)czS"!(k). In all cases the shape operator is S=al, where a2 is given
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by (-1 -kr2)/r2, (1 -kr2)/r2, (1 + kr2)/r2,(-l + kr2)/r2, respectively. Then Atf_

if and only if M "1is HmA (k) <=Hm(k), S'^ (k) c S;(k), S;""1(-/:(n -1) l{m

l))c#"(fc),#"r/(-*(/i-l)/(ro-l))cS (*). Note that the two first ones are

minimal hypersurfaces, in fact,they are totallygeodesic.

To find new examples, we recall the construction of some hypersurfaces we

have used in early papers.

Generalized umhilic hypersurface of degree 1 [(3,19]). Let c:IdR-^

H {k) c:J^"+lbe a null curve with an associated pseudo-orthonormal frame {A,B,

Z,,-",Zm_3,C}along c(s) such that c - A(s) and C = -aA(s)- k(s)B(s) ,where k(s)

* 0 and a is a nonzero constant. Then the map x: IxRxR'"'3 -^ H"'(k) <zR +i

defined by

x(s,u,z) = (l + f(z))c(s) + uB(s) +

where f(z) and g(z) are solutions of

m-3

a

ZjZj(s) +
(^

+ g(z))c(s),

kg2+f2=kP-＼z＼2y

parametrizes, in a neighborhood of the origin,a Lorentzian hypersurface M,m ' of

H (k). The mean curvature (X is the nonzero constant a and the minimal

polynomial of its shape operator is q{t)= (t - a)2.

Generalized umbilic hypersurface of degree 3 ([3, 19]). Let c:/cU^

H (k) a /?^+1 be a null curve with an associated pseudo-orthonormal frame

{A,SJ,Z,,-,Zm_4,C} such that c = A(s) and C = -aA(s) + K(s)Y(s),with k(s)*Q

and a a nonzero constant. Then the map x: IxRxRxR""4 -> B (k) c J?2m+1

defined by

x(s,u,y,z) = (＼+ f(z))c(s) + uB(s) + yY(s)+ X zJZJ(s) + [- +g(z)f(s)

where f(z) and g(z) are solutions of

kg + af =

kg2+f2=kl

a )

parametrizes, in a neighborhood of the origin,a Lorentzian hypersurface M,m ' in

H'"(k). Then M'"~lhas constant mean curvature a-a^O and the minimal

polynomial of its shape operator is given by q{t)= (t - of .
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Then by taking M'"~la M as a generalized umbilic hypersurface of degree

two or three and N'J'1 minimal in N"(k), the quadric representation of the

product Mc'"~'x/VJ~'satisfiesAHV -XH^ if and only if a1 =-{£xk){m + n-2)l{m

-n

Example 16. Let A^'"1 be minimal in N"(k) and M'"~l= Sp(l/r2)x

C-7"'(k/(l-kr2))into S"'+l(k),k>0 and 1 -kr2 < 0, withr2 =(m +n-p-2)/

k(n ―l). Then it is well known (see [7]) that M'"~l is of 2-type with associated

eigenvalues A, = pir2 = kp(n-1)/(m + n-p ―2) and A2 = &(m - p ―1) /(I- kr2) =

-£(n ―1). It is easy to see that A, =X ―k(n ―l), where A = k(n- ＼){m + n ―2)1

(m + n -p- 2). Therefore, by applying Theorems, AH(p= XH^.

Now, let N'd'~lbe minimal in N"(k) and M'"~l= Spu{llr2)xH'":up~＼kl(l-kr2))

c i^"!(&), it< 0 and 1 - >tr2 > 0, with r2 = -p/k(n -1). Then as M'"~lis of 2-type

with associated eigenvalues A, =p/r2 =-k(n-l) and A2 = k(m-/?-!)/(! -kr2),

it is easy to see that A2=A-£(n-l), where X-k(n-l)(m + n-2)/(n +p-l).

Therefore, by applying Theorem 5, AH = A// .

Any other choices of radii r produce examples of hypersurfaces M ~1 with

both constant mean and scalar curvatures such that, for any minimal hypersurface

A^"1, the quadric representation does not satisfy the condition AH^ = AH9.

As for remaining products M "1 = S^l/r2)xS"'Sup~＼k/(l-kr2)) c S (k), k

> 0 and 1 - kr2 > 0, and AC"1 = Hpu (-1 / r2) x M^"/"1 (ife/(I + kr2)) c Mcm+1(k), k<0

and l + /:r2>0, they are minimal when r2=p/k(m-l) and so the equation

AHy = AHy holds. Otherwise, they are of 2-type with associate eigenvalues

{pi' r2 ,k(m- p-＼)l(l-kr2)} and {-p I r2 ,k(m -p-l) 1(1 + kr2)}, respectively.

Therefore there is no r accomplishing Theorem 5. Indeed, in the former case both

eigenvalues are positive and, in order to apply Theorem 5, one of them should be

negative; in the latter, just the contrary occurs.

Note that in this example the minimal hypersurface N']~lin N"(k) can be

replaced by a minimal submanifold Nfd and everything works fine. We must only

change (n-l)hv P..

6. Appendix; Isoparametric surfaces In Lorentzlan 3-space

forms

Let M,3(&) be a 3-space form of constant curvature keR. A model for

Mf{k) is the Lorentz-Minkowski space L3 if k = 0, the De Sitter space Sf(k) if

k>0 and the anti De Sitter space Hf(k) if k<0. Let M2s be a (spacelike or

Lorentzian) surface in M?(k) and denote by S the Weingarten endomorphism
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associated to a unit normal vector field.If the minimal polynomial of the shape

operator is independent of each point of M2s,M2s is said to be isoparametric. The

possibly complex roots of thatpolynomial are called the principal curvatures.

The selfadjointendomorphism S on a tangent space of M2S has a matrix of

exactly one of the following three types:

I -(
x o＼ a o

II. S ~
0 pi {-I X) ■■･≪

In types I and III, S is relative to an orthonormal basis while in case II the basis

is pseudo-orthonormal, that is, a basis {X,Y} such that (X,X) = 0 = (Y,Y) and

{X,Y) = -l.Thus the classification of isoparametric surfaces in M,3(&) should be

done by distinguishing three cases, according to the canonical form of the shape

operator S.

Type I: S is diagonalizable. If A = /i then M2 is nothing but an open piece of

a totally umbilical surface. Otherwise, following K. Nomizu, [22], and N. Abe-

N. Koike-S. Yamaguchi, [1], we get that M2 is an open piece of one of the

following products:

(i) H＼-＼l r2)xR,S＼(＼l r2)xR or LxS'(l/r2) if k = 0.

(ii) Hl(-l/r2)xS＼k/(l + kr2)) or Sl(＼/r2)xSl(k/(l-kr2)), l-kr2 > 0,

if k > 0.

(iii) ^/ (-1 / r2) x S1 (A: /(I + *:r2)), 1 + itr2 < 0, £f'(-1 / r2) x 5,1(Jk /(I + A:r2)), 1 + A:r2

<0, or H＼-l/r2)xHl(k/(l + kr2)),l + kr2>0,if k<0.

Type II: S has a double real eigenvalue. In this case, following L. Graves,

[17], and M. Magid, [19], if k = 0, and L.J. Alias-A. Ferrandez-P. Lucas, [2],

and M. Dajczer-K. Nomizu, [12], if k*Q, we deduce that M2 is locally an open

piece of a fi-scroll. This surface has been described in Example 11.

Type III: S has complex eigenvalues. Then from Codazzi's equations we can

easily deduce that X and Y induce parallel vector fields on M2 and therefore M2

is a flat Lorentzian surface with parallel second fundamental form in the pseudo-

Euclidean space where M^(k) is lying. Then by using [18, Theorem 1.15 and

1.17] we obtain M2 is congruent to a complex circle in Hf(k). Let a + bi be a

non-zero complex number such that a2-b2=l/k. The following map

x = (jc',x2,x?',x4): Rf ―> H*(k)a i?94 describes a Lorentzian surface:

xl {u{, u2) = b cosh u2 cos w, - a sinh a2 sin w,,

j:2(m, , u2) = a sinh u2 cos m, + b cosh w2 sin a,,
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x3(≪,,≪.,)= a cosh u-,cos ux + b sinh u2 sinux,

x4(m,,m2) = a cosh w2sen m, - ^ sinhu2 cos m,,

where (m,,m2) is the usual coordinate system in J^,2with the Lorentz metric

ds2 =-(Jm,)2 +(du2)2 and /?2 is equipped with the metric ds2=-(dxx)2 -(dx2)2 +

(dx*)2 +(dx4)2. The shape operator S is given by

s = r A =
k(a2+b2y ^ a2+h2'

with respect to the usual frame {dxIdux,dxIdu2]. This surface is called a

complex circle of radius a + bi by Magid, [18].

Note added. We would like to point out that some time after this paper

was written we have met a series of papers by B.Y. Chen ([6], [9], [10]) where

a quadric representation for Riemannian product immersions is considered as a

tensor product immersions (see also [13], [21]).
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