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ON CURVES AND SUBMANIFOLDS IN AN

INDEFINITE-RIEMANNIAN MANIFOLD

By

Toshihiko Ikawa

§0. Introduction.

In a Riemannian manifold, a curve is described by the Frenet formula. For

example, if all curvatures of a curve are identically zero, then the curve is a

geodesic. If only the firstcurvature is a non-zero constant and others are all

identicallyzero, then the curve is called a circle. If the firstand second curva-

tures are non-zero constants and others are all identicallyzero, then the curve is

called a helix. For the circle,the following theorem is well known [13].

Theorem A. Let M be a connected submanifold of a Riemannian manifold M.

Every circlein M is a circlein M if and only if M is totallyumbilical and has

the parallel mean curvature vector in M.

For curves and submanifolds in a Riemannian manifold, see also [15].

In this paper, we shall be concerned with curves in an indefinite-Riemannian

manifold. If a manifold M has an indefinite metric g, there exist null vectors

in M. This situation causes a difference in the Frenet formula of curves. The

purpose of thispaper is to study "circle" and "helix" in an indefinite-Riemannian

(especiallyLorentzian) manifold and prove results similar to Theorem A.

The author would like to express his hearty thanks to Prof. S. Yamaguchi

for his encouragement during the preparation of this paper and also wishes to

thank the referee for his various suggestions.

§I. Preliminaries.

Let Rfj be an n dimensionalaffinespace with an inner product g whose

canonicalform is
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where It is the ixi identity matrix and Oj is the jxj 0 matrix. We call(/,;)

a signature of R2j. The metric g is non-degenerate if and only if j=0, in

which case we denote by R＼ and say that the signature of R＼ is i.

Let M be an n-dimensional smooth manifold equipped with a metric g, where

the metric g means a symmetric non-degenerate (0, 2)-tensor field on M with

constant signature. A tangent space TP(M) at a point p<=M is furnished with

the canonical inner product. If the signature of the metric g is /, then we call

M an indefinite-Riemannian manifold of signature / and denote by. Mt. If g is

positive definite,then Mis a Riemannian manifold. Especially if i=l, then M

is called a Lorentzian manifold. A tangent vector x of Mt is said to be spacelike

if g(x, x)>0 or x~Q, timelike if g(x, x)<Q and null if g{x, x)=0 and x^O. In

particular, on the Lorentzian manifold, null vectors are also said to be lightlike.

This terminology derives from the relativity theory. Let xu ･■･,xu xi+1,･■･,xn

be tangent vectors of Mi(dimM=n). Assume that they satisfy g{xA, xB)=sAdAB,

where sA=g(xA, xA)=+l (resp. ―1) if xA is spacelike (resp. timelike) then {xA,

.Ae[l, n]} is called an orthonormal basis of Mt.

In a Lorentzian manifold Mlt timelike vectors and null vectors are called

causal vectors. There are no non-zero cusal vectors orthogonal to a timelike

vector. In a Lorentzian manifold, a null vector nt is orthogonal to a null vector

n2 if and only if nx is linearly dependent to n2.

A pseudosphere 5" of radius 1 in i??+1 is defined by

Snt= {x<=R1+1: g(x,x)=l};

then Si is a complete n-dimensional indefinite-Riemannian manifold of signature i

and of constant sectional curvature 1. Similarly we define a pseudohyperbolic

space H7? of radius 1 in R&? by

then Hi is a complete n-dimensional mdefininte-Riemannian manifold of signature

/ and of constant sectional curvature ―1. i?? is a complete n-dimensional in-

definite-Riemannian manifold of signature i and of constant sectionalcurvature 0.

By N*l, we denote one of S?, Ent or R＼ to simplify the presentation. N＼ are

called an indefinite-Riemannian space form.

Next, we recall the general theory of indefinite-Riemannian submanifolds im-

mersed into an indefinite-Riemannian manifold (cf. [9], [16]) and show some

lemmas which are subsequently useful. Let /: Mi~-*Mj be an isometric immer-

sion of an n-dimensional indefinite-Riemannian manifold Mi of signature i into an

(n+/>)-dimensional indefinete-Riamannian manifold Mj of signature j. For all
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local formulas we may consider / as an imbedding and thus identify p^Mt with

f(p)^Mj. The tangent space Tp{Mt) is identified with a subspace of TP{M}).

Denote by T(Mt) the tangent bundle. The normal space Tp is the subspace of

Tp(Mj) consisting of vectors which are orthogonal to Tp{Mt) with respect to the

metric g of Mj. By V (resp. 7) we denote the covariant differentiation of Mt

(resp. Mj). Then we have the Gauss' formula

(1.1) VXY=VXY+B(X,Y),

where X and Y are tangent vector fieldsof Mi and B(X, Y) is calledthe second

fundamental form of the immersion. The formula of Weingarten is given by

(1.2) 1XN=- AN{X)+1XN,

where X (resp. N) is a tangent (resp. normal) vector fieldof Mt and and V1 is

the covariant differentiationwith respect to the induced connection in the normal

bundle N(Mi). AN is called the shape operator of Mt and satisfiesthe relation

g(A≪(X),Y)=g{B(X, Y), N).

For an orthonormal basis {Nlf ･･･,Np} of N{Mt) we write AN*= A1, to simplify

the notation.

We next define the covariant differentiationV induced on the Whitney sum

T{Mi)RN(Mi) as follows: For any N(Mf)-valued tensor field T of type (0, k).

we define

(SlxTWu .≫, Yk): =Dc{T{Yu - , r^-SWXK!, - , 7xYr, - , Yk)

and IT is also defined by ($tT)(Yu ･･･, Yk, X):=($XT)(YU ･■■,Yk) which is an

AWJ-valued tensor fieldof type (0, k+1). We denote by V2T the covariant

derivative of IT. In particular,for the second fundamental form B, it follows

that

(1.3) {1B)(X, Y, Z)=1&B{X, Y))-B{1ZX, Y)-B(X, 1ZY),

(1.4) {1ZB)(X, Y, Z, W)=1MS$IB)(X, Y, Z))-{1B){1XX, Y, Z)

-<$B)(X, VrF? Z)-(1B){X, Y, 1WZ),

For the shape operator ^ we define its covariant differentiationbyjsetting

($xA")(y) :=^x(AN(Y))-A'7xN(Y)~AN(lxY).

Then we have the relation g<J$xB){Y, Z), N)=g((lxAN){Y), Z).

The mean curvature vector field H of the immersion is defined by

H:=a/nW=i*jB(Ej,Ej),
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where {Elf ･■･,En) is a frame of Mt and s*=±l. If the second fundamental

form B(X, Y) satisfies

B(X, Y)=g(X, Y)H

for all vector field X, Y of Mif then Mi is called a totallyumbilical suhmanifold.

If the second fundamental form vanishes identically on Mu then Mt is said to

be totally geodesic. The mean curvature vector fieldH is said to be parallelif

Viff=0.

Since the second fundamental form B is a bilinear symmetric function on

Tp(Mi), using results of [4], we have following lemmas.

Lemma 1.1. For any point p of Mu we assume that B satisfiesB(t, s)=0,

where t^Tp(Mi) is a unit timelike vector and s^Tp(Mi) is a unit spacelikevector

such that g(t,s)=0. Then Mi is a totallyumbilical submanifold.

Lemma 1.2. Let B be the second fundamental form of a Lorentzian submani-

fold Mx. If B satisfiesB(n, n)=0, for any null vector n at any point in Mu then

Mx is a totallyumbilical submanifold.

Lemma 1.3. // B satisfiesB(nls n2)=0 for any null vectors nx and az such

that g(nlf n2)= ―1 at any point of Mu then Mx is a totallygeodesic submanifold.

Lemma 1.4. For any point p of Mu if B satisfies

2B(t, t)=-B(s, s)

for any unit timelike vector t and unit spacelike vectors such thai g{t,s)=0 then

Mi is a totallygeodesic submanifold.

Lemma 1.5. Let H be the mean curvature vector field of a Lorentzian sub-

manifold Mj. For any point p of Mu we assume that H satisfiesVj-i/=O, for any

spacelike vector se Tp(Mi). Then H is parallel.

Proof. A spacelike vector s can be put as s―rix―t,where nx is a null

vector and t a unit timelike vector, respectively. Hence we have

(1.5) Vs1//=7i1i/-7,x//=0.

On the other hand, we can put s――n2+t, where g(nu n2)=―l. Then it follows

that

(1.6) V£H= - V£2//+V^//=0.

Combining (1.5) and (1.6), we get
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(1.7) 7i1ff=7i2tf.

Changing nx (resp. n2) into 2n (resp. n2/2) in (1.7), we obtain 4V£1//=7£2//.

From this equation and (1.7),it follows that 7£1//=7£2//=0, which together with

(1.6) implies VIH=O. Therefore we conclude that 7£//=0, for any tangent

vector x.

Similarily we have

Lemma 1.6. // H satisfies Vj-i/^O for any timelike vector, then H is parallel.

§2. Curves.

A curve in an indefinite-Riemannian manifold Mt is a smooth mapping

c:I―>Mi, where / is an open interval in the real line R1. As an open submani-

fold of R1, I has a coordinate system consisting of the identity map u of /.

The velocity vector of c at t^I is

c'(O:=dc(d/dM|t)eTc(t)(M<).

A curve c(t)is said to be regular if c'(t)is not equal to zero for any t. A curve

c(t)in an indefinite-Riemannian manifold Mt is said to be spacelike if all of its

velocity vectors c'{t) are spacelike; similarly for timelike and null. If c(t)is a

spacelike or timelike curve, we can reparameterize it such that g(c'(t),c'(t))=e

(where e=+l if c is spacelike and e=―1 if c is timelike, respectively). In this

case c{t)is said to be unit speed or arc lenght parametrization. Here and in the

sequel, we assume that the spacelike or timelike curve c(t)has an arc length

parametrization.

We define here a circle and a helix in an indefinite-Riemannian manifold Mt

(cf. [1], [5], [15], [18]). Let c=c(t) be a timelike curve in Mt. By kj(t), we

denote the j-th curvature of c(t). If kj(t)=O for j>2 and if the principalvector

field Y and the binormal vector fieldZ are spacelike, then we have the follow-

ing Frenet formulas along c(t):

(2.1)

I

I

c＼t)=:X,

lxX=Ut)Y,

ixY=kmx+ut)z,

lxZ=-Ut)Y,

where 7 denotes the covariant differentiation in Mt. A curve c = c(t) is called a

circle if kz(t)=O and kx(t) is a positive constant along c{t). If both ki(t) and &2U)

are positive constants alone c(t), then c(t) is called a helix. Let c(7) be a circle.
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Then the components satisfy a system of differentialequations, because of the

Frenet formulas for c(t). According to the fundamental theory of differential

equations, we see that there exists a unique solution satisfying the given initial

condition in a sufficientlysmall interval of t―0. Namely, for any point p of Mt

and any orthonormal vecters x and y at p (where x is timelike and y is spacelike,

respectively), there exists locally a circle passing through p with a tangent

vector x, which satisfiescertain conditions. A similar phenomenon holds also

on the helix.

We remark that if the principal vector field Y of a spacelike curve c(t)is

timelike and the binormal vector fieldZ is spacelike, then we have the following

Frenet formula along c(t):

<c'{t)='.X,

VxX=k1(t)Y,

(2.1)'
＼lxY=Ut)X+Ut)Z,

[lxZ=Ut)Y.

Next we consider a null curve in a Lorentzian manifold (cf. [1], [2], [5],

[6], [7]). By a Carton frame (X, Y, Z) of a nullcurve c=c{t) we mean a family

of vector fieldsX=X(t), Y=(t), Z=Z(t) along the curve c(t)satisfying the fol-

lowing conditions:

(2.2)

c'(t)=:X, g(X,X)=g{Y,Y)=O,

g(X, Y)=-l, g{X, Z)=g(Y, Z)=0, g{Z, Z)=l

lxX=k1{t)Z, lxY=k2{t)Z, VxZ^kMX+ktfW

where ki(t) and kt.it)are functions defined along the curve c(t). Especially if

ki.{f)and k2it)are positive constant along c(t),then we call the curve c―cit) a

Cartan framed null curve with constantcurvatures. On the definitionof the Cartan

frame of a null curve xit),if &2(0=0 then c=cit) is called a generalized null

cubic. Moreover if k is constant, then cit)is called a generalized null cubic with

constant curvature. For any point p of a Lorentzian manifold, any constnats kx

and k%, and any Cartan frame iX, Y, Z) at />, there exists locally a Cartan

framed null curve cit)with constant curvatures passing through p with velocity

vector cfip)=Xip), which satisfiescertain conditions. A similar situation holds

also on the generalized null cubic with constant iurvature.

§3. Circles.

Let c=c(t) be a regular timelike curve in a Lorentzian manifold Mi. In this



On Curves and Submanifolds 359

section, we assume that c(t)is a circle,that is, c(t)satisfies

'c'(0= : X

(3.1) - VxX=kY,

yxY=kX

along the curve c(t), where Y is a spacelike vector fieldand k a positive con-

stant, respectively.

Proposition 3.1 (cf. [15]). Let c(t) be a timelike curve in a Lorentzian

manifold Mx. If c(t) is a circle, then the velocity vector field X of c(t) satisfies

(3.2) lxlxX-g{lxX, 7XX)X=Q.

Conversely, if the velocity vector field of a timelike curve cif) satisfies(3.2), then

c(t) is either a geodesic or a circle.

Proof. If c(t)is a circle,we have (3.2) from (3.1). Conversely, we assume

(3.2). Since g(X, VXX)=O, it follows that

d{g{lxX, !xX))/dt=2g{lxlxX, 1XX)

=2g{lxX, lxX)g{X, VXX)=O,

by virtue of (3.2). Hence g(VzX, 1ZX) is constant along c{t). If it is 0, c(t)is

a geodesic. We assume that g(SxX, 1XX) is non zero constant. Since Mx is

the Lorentzian manifold, there is no non-zero causal vector which is orthogonal

to a timelike vector. Therefore from g(X, VxX)~0, we see that V^X is a

spacelike vector fieldalong c(t)and we can put

gilxX, lxX)=k＼ !xX=kY,

where Y is a unit spacelike vector fieldalong c(t)and k is a positive constant.

Then we have

!xY={l!k?JxlxX^{l/k){k>X)=kX,

by virtue of (3.2). Thus c(t)is a circle.

Theorem 3.2. Let Mx (dim Mi>2) be a connected Lorentzian submanifold of

anindefinite-Riemannian manifold Mt. If, for some k>0, every timelike circle

with curvature k in Mx is a timelike circlein Mif then Ma is totallyumbilical and

has parallel mean curvature vector in Mt. Conversely, if Mx is totallyumbilical

and has the parallel mean curvature vector, then every timelike circlein Mx is a

timelike circlein Mi.
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Proof. For an arbitrary point p of Mu we consider orthonormal vectors x

and y in TP(Mx) such that x is timelike and y is spacelike,respectively. Let＼(f

be a circlein Mx such that

c(0)=/>, *(/>)=*, WxX)(p) = ky,

where V is the covariant differentiationon Mi and X is the velocity vector fielc

of c(t). X satisfies

(3.3) WxX-gtfxX, VXX)X=Q,

on Mj. By assumption, c(t)is a circlein Mt. Then it follows that

(3.4) VxlxX-g&xX, 1XX)X=O,

where 1 is the covariant differentiationon M*. Substituting (1.1) and (1.2)intc

(3.4), and taking the normal part of it, we get

(3.5) B(X} ＼1XX)+VXB(X, X)=0,

by virtue of (3.3). Hence, by means of (1.3), we have

$B)(x,x,x)=-3kB(x,y),

at p. This shows that, given a unit timelike vector xgTp(Mi), B{x, y) is in-

dependent of a unit spacelike vector y provided y is orthogonal to x. Changing

y into ―y, we have B(x, y)―0, where x and y are orthonormal vectors such that

x is timelike and y is spacelike, respectively. Since p is arbitrary, we have,

from Lemma 1.1, that Mx is totallyumbilical. Henc it follows that B(X, Y)=

g{X, Y)H, for any orthonormal vector fieldsX and Y. Substituting this equa-

tion into (3.5), we get 1XH=Q, for any timelike vector field X. From Lemma

1.6,it follows that the mean curvature vector is parallel.

Next we consider the converse. Let c(t)be a timelike circlein Mx. So the

velocity vector field X of c(t)satisfies(3.3). Since Mx is totally umbilical and

has the parallelmean curvature vector, it follows that

B(X, X)= -H, B{1XX, X)=g{lxX, X)H=Q ,

ABiX'x＼X)=-g{H, H)X, 11XB{X, X)=llxH=0

for a timelike vector field. Substituting these equations into (1.1), we have

(3.6) lxlxX=lxlxX-g{H, H)X.

On the other hand, using (1.1), B{X, X)=g(X, X)H=-H yield

(3.7) g&xX, !xX)=g{lxX, !xX)+g{H, H).

From (3.3),(3.6) and (3.7)it follows that
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Hence c(t)is a tlmelikecirclein M,.
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If a spacellke circle c(t)has a timelike principal vector, the velocity vector

fieldX:=c'(t) satisfies

VxlxX+g{lxX, !XX)X=R.

From this equation we have following

COROLLARY 3.3. Let Mi be a Lorentzaian submanifold in an indefinite-

Riemannian manifold Mf. // every spacelike circle with a timelike principal

vector fieldin Mx is a circle in Mi, then Mx is totally umbilical and has the

parallel mean curvature vector. The converse is also true.

§4. Helices.

Next we consider helicesin a Lorentzian maifold Mu Let c=c{t) be a re-

gular timelike helix in a Lorentzian manifold Mi. Then we have

rc'(f)=:*f
＼vxX=kxY,

(4.1)
VxY = klX+kiZ,

.!xZ=-kzY

along the curve c{t),where Y, Z are spacelike vector fieldsand ku k2 are positive

constants, respectively.

Proposition 4.1. Let c(t)be a timelike curve in a Lorentzian manifold M±

(dim M^3). // c(t)is a helix, then the velocityvector field X of c(t)satisfies

(4.2) 7a-VxVx^-A'7xZ=0,

where K is a constant. Conversely, if the velocity vector field of a timelik curve

c(t)satisfies(4.2), then c{t)is one of a geodesic, a circleand a helix.

Proof. Suppose that c(t)Is a timeiike helix, Then, from (4.1),it is easily

seen that the velocity vector fieldX satisfies(4.2) with K―k＼―k＼.

Conversely, we assume that the timeiike curve c(t)satisfies(4.2). Differentiat-

ing g{X, VXX)=Q in the direction of X, we have

gWxVxX, X)+g(VxX, VXX)=O.

Moreover, differentiatingthis equation in the direction of X, we obtain
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(4.3) gWxWxX, X)+3g{lxlxX, 7xA-)=0.

Substituting (4.2) into (4.3), we get g(Vxr7xX, 1XX)=O. This implies that

g(VxX, ixX) is constant along c(t). If it is 0, then c(t) is a geodesic. If

g(VxX, VXX)^Q, then there exists a unit spacelike vector field Y along c(t)and

a positive constant kx such that

(4.4) VxX=ktY.

Since Mi (dim M! 2^3) is the Lorentzian manifold, we can put

(4.5) !xY=klX+bZ,

where Z is a unit spacelike vector fieldwhich is orthogonal to both X and Y,

and & is a function, respectively. If 6=0, then c(t)is a circle. Hence we may

assume that b is a positive function. By means of (4.2) we have

d{g{lxlxX, lxX))/dt=Q=g&xlxlxX, VxX)+g(VxVxX, VxVxX)

= Kg(lxX, lxX)+g(lxlxX, 1X1XX).

Substituting (4.4) and (4.5)into this equation, we get

k＼b*=k＼-Kk＼.

Since &i~=£0and b is positive, it follows that b=y/k＼―K, i.e.,b is a positive

constant. We put b=k2. Hence (4.5)is reduced to

(4.6) lxY^kxX+k2Z.

Differentiating(4.6)in the direction of X, we have

(4.7) lxlxY=k＼Y+UVxZ).

On the other hand, it follows that

(4.8) lx^xY={l/kx)lxlxlxX^{llk^k＼-k＼)^xX={k＼-k＼)Yt

by virtue of (4.2) and (4.4). Making use of (4.7) and (4.8), we obtain

(4.9) !xZ=-k2Y.

From (4.4),(4.6) and (4.9), we conclude that c(t)is a helix.

Next we prove the following

Theorem 4.2. Let Mx (dimMj^3) be a connected Lorentzian submanifold of

an indefinite-Riemannian manifold Mt. If, for some klf k2>0, every timelike helix

with curvatures kx and k2 in Mx is a timelike helix in Mif then Mx is a totally

geodesic submanifold in Mi.
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PROOF. For any point p of Mu let x, y and z are three orthonormal vectors

in TpiMi) such that x is timelike, and y and z are spacelike, respectively. Let

c(t)be a helix in Ma such that

c(0)=/>, c'{t)=:X, X{p)=x, Y{p)=y, Z(p)=z,

(VxX)(p)=kiy, (VxYXp)=klX + k^, {lxZ)(p)^-k,y,

where Y (resp, Z) is the principal (resp. binormal) vector fieldof c(t). From

Proposition 4.1, X satisfies

(4.10) V xlxl xX- klxX= 0, k = k
2~b2
1 #2

Since c(t)is a helix in Mi} we have

1X1X1XX-K1XX^,

where K is a constant. Substituting (1.1),(1.2) and (4.10) into thisequation, we

obtain for normal part of Mx

(4.11) B(X, 1x1xX)-{-1xB{X, !XX)-B(X, Amx-x＼X))

+1X(1XB{X, X))-KB(X, X)=0,

for tangent part of Mx

(4.12) -Amx-"xx＼X)-lx{Amx-x＼X))-AvxB<x-x＼X)+{k--K)lxX^.

From (4.11) it follows that

(4.13) Ak＼B{x, x)+4k1k2B(x, z)+5k1(^B(x, y, x)

+?,k＼B{y, y)-B{x, AB<*-x>(x))+(^B)(x, x, x, x)

+ k1($B)(x, x, y)-KB(x, x)=0

at a point p, by virtue of (1.3) and (1.4). Changing z into ―z in (4.13) we have

that B(x, z)=0, where x and z are orthonormal vectors of TP(MX) such that x is

timelike and y is spacelike, respectively. Since p is an arbitrary point of Mu we

see that Mx is totallyumbilical by virtue of Lemma 1.1. Changing y into ―y in

(4.13) and using the fact that M is totallyumbilical we obtain lyH=Q, where y

is a unit spacelike vector. Hence from Lemma 1.5, we see that the mean

curvature vector fieldis parallel. Therefore it follows that (VJ3)(x,x, x)=0 and

(725)(x, x, x, x)―0 for a timelike vector x, which imply that (4.13) is reduced to

(4.14) (-kl+K-g{H, H))H=0.

On the other hand, the inner product of (4.12) with Y implies

gWxAmx'X)){X), Y)+klg(B(X, X), B(Y, YV-kM-kl-KMY, K)=0.
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Since M1 Is totallyumbilical with parallel mean curvature vector, this equation

is reduced to

g(H, H)=-kl+kl+K.

Combining this equation together with (4.14), we have //=0. This means that

Mi is a totallygeodesic submanifold of Ml

§5. Cartan framed null curves.

In this section we consider the Cartan framed nullcurves. Let Mx (dimMs^3)

be a Lorentzian manifold. By c―c(t) we denote a Cartan framed null curve with

constant curvatures kx and k2 in Mx. That is, there are vector fieldsX, Y and

Z along the curve c(t)and they satisfy

■c'(t)=:X, g(X,X)=g(y,Y)=0, g(X,Y)=-l,

(5.1) ■g(X, Z)=g(Y, Z)=0, g(Z,Z)=l,

ixX^k.Z, lxY=k2Z, ixZ^kzX+k.Y,

where V is the covariant differentiationin Mu

By a straightforward calculation,we have the following

PROPOSITION 5.1. A Cartan framed null curve c(t)with constant curvatures

kx and k2 satisfiesfollowing equation:

VxVxVxX=2k1ktVxX.

We consider the converse of this propositon.

Proposition 5.2. Let c=c(t) be a null curve of a Lorentzian manifold Mt,

Suppose the velocityvector field X＼―c{t)of the null curve c{t)and a null vector

field Y defined alone: c(t)satisfy the followinss:

(5.2)

Then c

■ VxVxVxX=2£(VxX, VzXYVgWxY, 7XY)^7XX,

g(VxX,VxX)>0, g&xY,VxY)>0, g(X,Y) = -l.

=c(t) is a Car tan framed null curve with constant curvatures.

Proof. Differentiating g(X, X)~0 in the direction of X, we have

(5.3) g{lxX, AT)=O.

Differentiating(5.3) twice in the direction of X, we obtain

(5.4) eWxVxVxX, X)+3gCVxVxX, 7,^=0.
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Substituting(5.2) into (5.4) and making use of (5.3), we get

(5.5) *(Vx7xX,Vx*)=0.

This equation shows that g(VxX, 1XX) is constant along the curve. Hence, by

assumption, we may put

(5.6) kZ:=lxX.

where Z is a unit spacelike vector fieldand k is a positive constant. From

(5.3) it follows that

(5.7) g(X, Z)=0.

Differentiating(5.5)in the direction of X, we have

(5.8) 2kg{lxY, !xY)^+g{lxZ, VXZ)=O,

by virtue of (5.2). From this equation it follows that

(5.9) 4Jfe≪*(VxVxrfVxr)=*CVxVxZ, ^xZ).

On the other hand, from 1 x^ xZ={l/ k)l xl xl XX, we obtain

g^x^xZ, lxZ)=g(lxlxX, VxX)-0

by virtue of (5.2) and (5.5). Hence (5.9), reduces to g(lxlxY, 7xY)=0 and it

implies that g(VxF, VXY) is constant along the curve c(t). Therefore we can

put g(?7xY, yxY)=w2, where w is a positive constant along the curve. Sub-

stituting this equation into (5.8), we have

(5.10) g{VxZ,VxZ)=-2kw.

This means that 1XZ is a timelike vector field. Since Mi is the Lorentzian

manifold, we may put

(5.11) VxZ=aX+bY,

where a and b are functions. Hence we get

gtfxVxX,X)=-bk.

On the other hand, from (5.3) it follows that

gWxVxX, X)=-g(VxX, lxX)=-k＼

From these two equations, we obtain b―k (=constant). Therefore (5.11)implies

that !xZ=aX+ kY, from which it follows that

g^xZ, lxZ)=~2ak^-2kw,

by virtue of (5.10). Hence we have a=w (=constant) and
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(5.12) VxZ=wX+kY.

Differentiating(5.12) in the direction of X, we get

(5.13) lxlxZ=wlxX+klxY.

On the other hand, by virtue of (5.2) and (5.6),it follows that

(5.14) VxlxZ={l/k)!xlx!xX={l/k)2kwlxX=2wlxX.

Combining (5.13) and (5.14),and using (5.6), we obtain

(5.15) VxY=wZ.

Differentiating g(X, 10=―1 in the direction of X, we have g(VxX, Y)

+g(X, 7*10=0. Together with (5.15),it implies

(5.16) g(Z, Y)=0.

From (5.6),(5.7),(5.12),(5.15) and (5.16),we obtain the conclusion.

Next we shall prove the following theorem.

Theorem 5.3. Let Mi be a Lorentzian submanifold of an indefinite-Rieman-

nian manifold Mt. If every Cartan framed null curve with constant curvatures

in Mi is also a Cartan framed null curve with constant curvatures in Miy then Mx

is a totallygeodesic submanifold in Mt.

Proof. For an arbitrary point p of Mu let x, y and z be three vectors in

Tp(Mi) such that x and y are null vectors and z is a spacelike unit vector, re-

spectively. We assume that they satisfy g(x, y)=―1 and g(x, z)―g(y, z)=0.

Let c=c(t) be a Cartan framed null curve with a Cartan frame (X, Y, Z) and

constant curvatures ku k2, such that

c(Q)=p, c'(t)=:X, X(p)=x, Y(p)=y, Z(p)=z,

(5.17)
(lxX){p)=klZ, C7xY)(p)=kzz, VrzZ){p) = k%x + kiy,

where 7 is the covariant differentiationon Mx. From Proposition 5.1,X satisfies

(5.18) VxVxVxX=2k1kJIxX,

on Mx. By assumption, c(t)is a Cartan framed null curve in Mt. Hence, from

Proposition 5.1, we have

(5.19) 1x1x1xX=2KiKz1xX,

where 7 is the covariant derivative of Mt and Ku Kz are positive constants.

Combining (1.1), (1.2), (5.16) and (5.17),and taking the normal part of it, we

obtain



On Curves and Submanifolds

AB(X, VxV.rX)+5(7£)(X51XX, X)+W(!XX, 1XX)

-B(X, AB<x>X)(X))+tf2B)(X, X, X} X)

+{1B)(X, X, !xX)-2KiKiB{X> X)=0.

Consequently, by virtue of (5.17), the above equation gives

(5.20) Ak1k2B(x} x)+4klB(x, y)+5k1(VB)(x, z, x)

+Zk＼B(z, z)-B(x, ABU-x＼x))+(V2B)(x, x, x, x)

+ k1(VB)(x, x, z)-2k1k2B(x, x)=0,

at p. Changing z into ―z in this equation we obtain

(5.21) 2(2k1kz-K1K2)B(x, x)+Ak＼B{x, y)+Zk＼B(z, z)

-B(x, ABix'x)(x))+(VB){x, x, x, x)=0.
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We remark that x and y are null vectors such that g(x, y)=―l. Changing x

into 2x and y into (l/2)y in (5.21),we obtain

?>{2k1ki-K1Kt)B{x, x)+4k＼B(x, y)+3klB(z, z)

-16fl(*, ABU'x)(x))+16($2B)(xf x, x, jc)=O.

From (5.21) and this equation, it follows that

2{2klk2-K1K2)B(x, x)-5B(x, Amx-x)(x))+5(V2B)(x, x, x, x)=0.

Substituting this equation into (5.21),we have

(5.22) AB{x, ABU-x＼x))-4(72B)(x, x, x, x)+4k＼B{x, y)+3k2B(z, z)=0.

Changing x into 2x and y into (1/2)jyin (5.22), we obtain

(5.23) 4B(x, y)=-3B(z, z),

by virtue of (5.22). Since z is a unit spacelike vector, and x and y are null

vectors such that g{x, z)―g{y, z)―Q and g(x, y)―0, we can put x=z+t and y―

(l/2)(t―z),where Ms a unit timelike vector having the property that g(z, t)=Q.

Hence (5.23) is reduced to

4B(z+t, (t-z)/2)=-3B(z, z),

from which it follows that

2B(t,t)=-B{z,z).

Therefore from Lemma 1.3, we conclude that M± is a totallygeodesic submani-

fold of Mt.

For the generalized null cubic, we have the following results similar to the
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Cartan framed null curve.

Proposition 5.4. The generalized null cubic c=c(t) satisfies^x^x^x^―O,

where V is the covariant derivative along the curve.

Theorem 5.5. // a null curve c~c{t)satisfies

X＼=c＼t), ixlxlxX^, g(lxX,lxX)>Q,

then c{t)is a generalized null cubic with constant curvature.

Theorem 5.6. Let Ma be a Lorentzian submanifold of an indefinite-Rieman-

nian manifold Mi. If every generalized null cubic in Mt is also a generalized

null cubic in Mit then Mi is totallygeodesic in Mi.

§ 6. Examples.

In this section we give examples of curves mentioned in the previous sections.

Circles [11].

On two-dimensional flat spaces, we have circles as follows:

c(t)=(a cos (t/a), asm(t/a)),

c(t)={b sinh (t/b), b cosh (t/b)),

c(t)=(b cosh (t/h), 6 sinh (*/&)).

The first is on S'ClR2 or H＼dR＼, the second on S＼dRl and the third on H'CZRl

Spacelike helix on H＼.

By x={xu x2, x3i x4), we denote a point in R＼. In R＼ we define a surface

V＼a) by

act
2.,

.. o o * o ^^
Aj X3 LUb ,, X2 A 4― Sill ,

.

Then F2(≪) can be expressed as an isometric immersion

/: V＼a)―>H＼

as follows

(6.1) X!=^sinh^, x2―//sinh^, x3=^cosh0, x4―j≪cosh^

where ^=cosa/2, /*=sina/2. Then we have

X:=f*{d/dO)=(X cosh 6, 0, X sinh 0, 0)

F :=/+(S/3rf)=(0, ≪cosh 0, 0, m sinh ^)
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and the line element of V＼a) is given by

For the tangent vectors X and Y of V2(a), we have the normal vector N of

V＼a) as follows

jV= (fisinh ds ―2.sinh 0, /*cosh 0,-2. cosh 0).

It follows that

lgN=dN/dd-g(dN/d6, x)x

=(ft cosh 0, 0, ftsinh #, 0),

V<pN=dN/d$~g(dN/d$> x)x

= (0, ―JJcosh^, 0, ―/Isinh^),

where 7 is the covariant derivatve on H＼. Hence the eigenvalues tcxand k2 of

the shape operator A of thisimmersion satisfy

Ki―ft/X, Ki=―X/ft.

Remark. If a―itj2, then X=ft=l. Therefore the mean curvature vector

of V＼izJ2)is zero. This coresponds to the Clifford surface of the Riemannian

space form (cf. [17]).

We construct a curve c=c(a, m) on V2(a) as follows

(6.2) Xt=― sinh(I/k), x2= sinh (mt/k),

Xi=-cosh(t/k), x t=-cosh (mt/k), Jfe=W2+Ju8m2)1/a,

Then c(t)is a helix on H＼ with curvatures

k^Xfta-m^/k2, kz=m/k＼

Remark. We can construct a helix on //?. It is a helix on H＼ in H＼.

This result is given by the reduction of the normal bundle of submanifolds in

an indefinite-Riemannian space form [5].

Timelike helix on H＼.

We construct a curve c(t)on H＼ as follows

c(t)=(fisin(mt/k), p.cos(jnt/k), Xsin(t/k), Xcos(t/k)),

kMXt-tfm*)1'*,

where X and p. satisfy ―Xi+ft2=―l. Then c(t)is a timelike helix on HI with

curvatures

k1=Xu(l-mt)/ks> kz=m/k＼
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Spacelike helix on S＼,

We define a curve c(t)on S? as follows

c(t)=(q cos(t/k), q$m{t/k), rs'mh(t/k), r cosh(*/£)),

where q2―r2=l. This curve c(t)is a spacelike helix on SI with the curvatures

k1=2rVI+r2Jk＼ k2=l/k＼

Timelike helix on S＼.

We give a curve c(t)on S＼ as follows

c(t)=([icos(t/k), ftsin(t/k), Xcosh(t/k), ksinh(t/k)),

where 2.2+a2=1. Then c{t)is a timelike helix on S＼with the curvatures

k1=2Xft/k＼ kz=l/k2.

Carton framed null curve on R＼.

We consider a curve c(t)on R＼, as follows

c(t)―(acosh t, at, a sinh t).

This curve is a Cartan framed null curve on R＼. We can easily see that the

curvatures kx and kz, and the triple(X, Y, Z) are given as follows

kx―a, ki―llla,

X

Y

Z

=(a, a sinh t, a cosh t)

=(―l/2o, (sinhf)/2a, (coshf)/2a)

=(0, coshL sinhf),

respectively.

Carton framed null curve on H＼.

A Cartan framed null curve on H＼ is defined as follows

c(t)=(coshVYt, VTsinhf, sinhVlf*, vTcoshf).

The curvatures kx and k2, and the triple(X, Y, Z) of c(t)are given as follows

kx=VY, kz=3/2VY,

Z=(VTsinhVTf, VTcosh^, VTcoshVT"^, VTsinhO,

1

2VY
(―sinhVlll, cosh£,―coshV2L sinh£),
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Z=(V~2coshV~2l,sinhf,VTsinhVTf, coshf),

respectively.

Generalized null cubic on R＼[1], [7].

On Rl, the curve

is an example of the generalized null cubic.

3
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