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ON CURVES AND SUBMANIFOLDS IN AN
INDEFINITE-RIEMANNIAN MANIFOLD

By

Toshihiko IKAWA

§0. Introduction.

In a Riemannian manifold, a curve is described by the Frenet formula. For
example, if all curvatures of a curve are identically zero, then the curve is a
geodesic. If only the first curvature is a non-zero constant and others are all
identically zero, then the curve is called a circle. If the first and second curva-
tures are non-zero constants and others are all identically zero, then the curve is
called a helix. For the circle, the following theorem is well known [13].

THEOREM A. Let M be a connected submanifold of a Riemannian manifold M.
Every circle in M is a circle in M if and only if M is totally umbilical and has

the parallel mean curvature vector in M.

For curves and submanifolds in a Riemannian manifold, see also [15].

In this paper, we shall be concerned with curves in an indefinite-Riemannian
manifold. If a manifold M has an indefinite metric g, there exist null vectors
in M. This situation causes a difference in the Frenet formula of curves. The
purpose of this paper is to study “circle” and “helix” in an indefinite-Riemannian
(especially Lorentzian) manifold and prove results similar to Theorem A.

The author would like to express his hearty thanks to Prof. S. Yamaguchi
for his encouragement during the preparation of this paper and also wishes to
thank the referee for his various suggestions.

§1. Preliminaries.

Let R?; be an n dimensional affine space with an inner product g whose
canonical form is
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where I; is the X7 identity matrix and 0; is the jxj 0 matrix. We call (7, j)
a signature of R} ; The metric g is non-degenerate if and only if j=0, in
which case we denote by R? and say that the signature of R7 is 7.

Let M be an n-dimensional smooth manifold equipped with a metric g, where
the metric g means a symmetric non-degenerate (0, 2)-tensor field on M with
constant signature, A tangent space T,(M) at a point p=M is furnished with
the canonical inner product. If the signature of the metric g is 7, then we call
M an indefinite-Riemannian manifold of signature 7 and denote by M;. If g is
positive definite, then M is a Riemannian manifold. Especially if /=1, then M
is called a Lorentzian manifold. A tangent vector x of M, is said to be spacelike
if glx, x)>0 or x=0, timelike if g(x, x)<0 and null if g(x, x)=0 and xx0. In
particular, on the Lorentzian manifold, null vectors are also said to be lightlike.
This terminology derives from the relativity theory. Let xi, -+, x;, X441, =, Xn
be tangent vectors of M;(dim M=n). Assume that they satisfy g(x., x5)=¢.045,
where ¢,=g(x,, x4)=-+1 (resp. —1) if x, is spacelike (resp. timelike) then {x,,
Ae[1, n]} is called an orthonormal basis of M,.

In a Lorentzian manifold M,, timelike vectors and null vectors are called
causal vectors. There are no non-zero cusal vectors orthogonal to a timelike
vector. In a Lorentzian manifold, a null vector n, is orthogonal to a null vector
n, if and only if n, is linearly dependent to n,.

A pseudosphere ST of radius 1 in R?*! is defined by

St={xeR": gz, x)=1};

then S7? is a complete n-dimensional indefinite-Riemannian manifold of signature ¢
and of constant sectional curvature 1. Similarly we define a pseudohyperbolic
space H? of radius 1 in R%{! by

Hi={xeR}: glx, x)=—1};

then H? is a complete n-dimensional indefininte-Riemannian manifold of signature
7 and of constant sectional curvature —1. R7? is a complete n-dimensional in-
definite-Riemannian manifold of signature ; and of constant sectional curvature 0.
By N7, we denote one of S?, H? or R* to simplify the presentation. N7? are
called an indefinite-Riemannian space form.

Next, we recall the general theory of indefinite-Riemannian submanifolds im-
mersed into an indefinite-Riemannian manifold (cf. [9], [16]) and show some
lemmas which are subsequently useful. Let f:M;—M; be an isometric immer-
sion of an n-dimensional indefinite-Riemannian manifold M, of signature 7 into an
(n-+p)-dimensional indefinete-Rismannian manifold M; of signature j. For all



On Curves and Submanifolds 355

local formulas we may consider f as an imbedding and thus identify p= M, with
f(pyeM, The tangent space T,(M,) is identified with a subspace of T,(M,).
Denote by T(M,) the tangent bundle. The normal space T; is the subspace of
T,(M,) consisting of vectors which are orthogonal to T,(M;) with respect to the
metric g of 1\7,. By V (resp. V) we denote the covariant differentiation of M;
(resp. 1\7,). Then we have the Gauss’ formula

(1.1) VsY=V;Y+B(X,Y),

where X and Y are tangent vector fields of M, and B(X, Y) is called the second
Sfundamental form of the immersion. The formula of Weingarten is given by

(1.2) VxN=—AY(X)+ViN,

where X (resp. N) is a tangent (resp. normal) vector field of M; and and V* is

the covariant differentiation with respect to the induced connection in the normal

bundle N(M;). AY is called the shape operator of M, and satisfies the relation
g(AM(X), Y)=g(B(X, Y), N).

For an orthonormal basis {Ny, ---, Np} of N(M;) we write A¥7=A!, to simplify
the notation. ,

We next define the covariant differentiation V induced on the Whitney sum
T(M)BNM,) as follows: For any N(M;)-valued tensor field T of type (0, k).
we define

VxTYYy, o, V) : =Ty, -, Y= T (Y, o, ViV, oo, Y)

and V7 is also defined by (WT)Y,, -, Y&, X): =(NgT)Yy, -, Y,) which is an
N(M,)-valued tensor field of type (0, k+1). We denote by V*T the covariant
derivative of V7. In particular, for the second fundamental form B, it follows
that '

(1.3) (VUB)XX, Y, Z)=V4B(X, Y)—B(NzX, Y)—-B(X, V;Y),
(L4) (VBYX, Y, Z, W)=VH((VB)X, Y, 2))—(VB)(Vx X, Y, Z)
—(VBXX, VY, Z)—(UB)X, Y, WwZ).
For the shape operator AY we define its covariant differentiation bygsetting
(Vx AN)Y) :=V(AM(Y)— A7XN(Y)—AY(VxY).

Then we have the relation g(VxB)Y, Z), N)=g(NxAYXY), Z).
The mean curvature vector field H of the immersion is defined by

H:=(1/n)27-5;B(E;, Ej),
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where {E,, ---, E,} is a frame of M; and ¢;==+1. If the second fundamental
form B(X, Y) satisfies
B(X, V)=g(X, Y)H
for all vector field X, Y of M;, then M, is called a ifotally umbilical submanifold.
If the second fundamental form vanishes identically on M,, then M; is said to
be totally geodesic. The mean curvature vector field H is said to be parallel if
+H=0.

Since the second fundamental form B is a bilinear symmetric function on

T,(M,), using results of [4], we have following lemmas.

LEMMA 1.1. For any point p of M,, we assume that B satisfies B(t, s)=0,
where 1€ Tp(M,) is a unit timelike vector and s€Ty(M,) is a unit spacelike vector
such that g(t, s)=0. Then M, is a totally wmbilical submanifold.

LEMMA 1.2. Let B be the second fundamental form of a Lorentzian submani-
fold M,. If B satisfies B(n, n)=0, for any null vector n at any point in M,, then
M, is a totally umbilical submanifold.

LEMMA 1.3. If B satisfies B(ny, n,)=0 for any null vectors n, and a, such
that g(n,, n,)=—1 at any point of M,, then M, is a totally geodesic submanifold.
LEMMA 1.4, For any point p of M,, if B satisfies
2B(t, t)=—B(s, s)
for any unit timelike vector t and unit spacelike vectors such that g(t, s)=0 then

M, is a totally geodesic submanifold.

LEMMA 1.5. Let H be the mean curvature vector field of a Lorentzian sub-
manifold M. For any point p of M,, we assume that H satisfies Y+ H=0, for any
spacelike vector s€Ty(M,). Then H is parallel.

PROOF. A spacelike vector s can be put as s=n,—t!, where n; is a null
vector and ¢ a unit timelike vector, respectively. Hence we have
(1.5) Vi H=V3; H—VGiH=0.

On the other hand, we can put s=--n,--¢, where g(n,, n,)=-—1. Then it follows
that

(1.6) Vi H=—V3 H+VH=0.
Combining (1.5) and (1.6), we get
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(.7 Vi H=V:H.

Changing n, (resp. n,) into 2n (resp. n,/2) in (1.7), we obtain 4av; H=N; H.
From this equation and (1.7), it follows that V3 H=V;,H=0, which together with
(1.6) implies V¢H=0. Therefore we conclude that ViH=0, for any tangent
vector x.

Similarily we have

LEMMA 1.6. If H satisfies Vi H=0 for any timelike vector, then H is parallel.

§2. Curves.

A curve in an indefinite-Riemannian manifold M; is a smooth mapping
¢:I—-M;, where [ is an open interval in the real line R'. As an open submani-
fold of R!, I has a coordinate system consisting of the identity map u of I.
The velocity vector of ¢ at t=1 is

@) :i=de(d/dul ) ET ey, (My).

A curve ¢(?) is said to be regular if ¢’(¢) is not equal to zero for any . A curve
¢(?) in an indefinite-Riemannian manifold M; is said to be spacelike if all of its
velocity vectors c¢’(¢) are spacelike; similarly for timelike and null. 1If c(t) is a
spacelike or timelike curve, we can reparameterize it such that g(c’(¥), ¢’(£))=¢
(where e=-1 if ¢ is spacelike and e=-—1 if ¢ is timelike, respectively). In this
case c(t) is said to be unit speed or arc lenght parametrization. Here and in the
sequel, we assume that the spacelike or timelike curve ¢(¢) has an arc length
parametrization.

We define here a circle and a helix in an indefinite-Riemannian manifold M;
(cf. [171, [5], [15], [18]). Let c¢=c(?) be a timelike curve in M;. By £k,(¢), we
denote the j-th curvature of ¢(f). If k,(1)=0 for j>2 and if the principal vector
field Y and the binormal vector field Z are spacelike, then we have the follow-
ing Frenet formulas along c(?):

c)=":X,
}/VXX—:kl(t)Y,

] VoV =k, (O)X+ k02,
VxZ=—k,®)Y,

(2.1)

where V denotes the covariant differentiation in M,;. A curve c=c(¢) is called a
civcle if ky(t)=0 and k,(¢) is a positive constant along c(t). If both k,(t) and £,(¢)
are positive constants along ¢(¢), then c¢(¢) is called a helix. Let ¢(¢) be a circle.
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Then the components satisfy a system of differential equations, because of the
Frenet formulas for c(f). According to the fundamental theory of differential
equations, we see that there exists a unique solution satisfying the given initial
condition in a sufficiently small interval of 1=0. Namely, for any point p of M;
and any orthonormal vecters x and y at p (where x is timelike and y is spacelike,
respectively), there exists locally a circle passing through p with a tangent
vector x, which satisfies certain conditions. A similar phenomenon holds also
on the helix.

We remark that if the principal vector field Y of a spacelike curve c(t) is
timelike and the binormal vector field Z is spacelike, then we have the following
Frenet formula along c¢(¢):

[c’(t): : X,

Ve X=k,0Y,
2.1
IVXY: Bt X+ kD Z
VxZ=Fk,®)Y .

Next we consider a null curve in a Lorentzian manifold (cf. [1], [2], [5],
[61, [71). By a Cartan frame (X, Y, Z) of a null curve c=¢(f) we mean a family
of vector fields X=X(t), Y=(t), Z=Z(t) along the curve c({) satisfying the fol-
lowing conditions :

cd)=:X, g(X, X)=g(, Y)=0,
UxX=kWOZ, VxY=kWOZ, VNxZ=kO)X+kEQ)Y,

where k,() and ky(f) are functions defined along the curve c(f). Especially if
k.(7) and k() are positive constant along c(#), then we call the curve c=c(f) a
Cartan framed null curve with constani curvatures. On the definition of the Cartan
frame of a null curve x(7), if k,(t)=0 then c=c({) is called a generaiized null
cubic. Moreover if £ is constant, then c(t) is called a generalized null cubic with
constant curvature. For any point p of a Lorentzian manifold, any constnats k,
and k,, and any Cartan frame (X, Y, Z) at p, there exists locally a Cartan
framed null curve ¢(f) with constant curvatures passing through p with velocity
vector ¢/(p)=X(p), which satisfies certain conditions. A similar situation holds
also on the generalized null cubic with constant jurvature.

§3. Circles.

Let ¢=¢(¢) be a regular timelike curve in a Lorentzian manifold M,. In this
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section, we assume that c¢(¢) is a circle, that is, c(f) satisfies

c(t)=:X
(3.1) VxX=FkY,
VY =kX

along the curve c¢(¢), where Y is a spacelike vector field and % a positive con-
stant, respectively.

PROPOSITION 3.1 (cf. [15]). Let c(t) be a timelike curve in a Lorentzian
manifold M,. If ¢(t) is a circle, then the velocity vector field X of c(t) satisfies

(3.2) VvaX_g(VX.X, Vxx)XIO.

Conversely, if the velocity vector field of a timelike curve c(t) satisfies (3.2), then
c(t) is either a geodesic or a circle.

PROOF. If ¢(?) is a circle, we have (3.2) from (3.1). Conversely, we assume
(3.2). Since g(X, VxX)=0, it follows that

d(g(VxX, VxX))/dt=2g(NxVyx X, Vx X)
=2g(Vx X, Vx X)g(X, V3 X)=0,

by virtue of (3.2). Hence g(VxX, VxX) is constant along c(¢). If it is 0, ¢(¢) is
a geodesic. We assume that g(VxX, VxX) is non zero constant. Since M, is
the Lorentzian manifold, there is no non-zero causal vector which is orthogonal
to a timelike vector. Therefore from g(X, VxX)=0, we see that VyX is a
spacelike vector field along ¢(f) and we can put

gVxX, Ve X)=Fk*,  VxX=kY,

where Y is a unit spacelike vector field along c¢(f) and k is a positive constant.
Then we have

VY =(1/-)NxVx X=(1/k)F*X)=kX,

by virtue of (3.2). Thus c(?) is a circle.

THEOREM 3.2. Let M, (dim M,>2) be a connected Lorentzian submanifold of
anindefinite-Riemannian manifold M, If, for some k>0, every timelike circle
with curvature k in M, is a timelike circle in M;, then M, is totally umbilical and
has parallel mean curvature vector in M;. Conversely, if M, is totally umbilical
and has the parallel mean curvature vector, then every timelike circle in M, is a
timelike circle in M,.
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PrOOF. For an arbitrary point p of M,, we consider orthonormal vectors x
and y in T,(M,) such that x is timelike and y is spacelike, respectively. Let%c(f)
be a circle in M, such that

cO=p, Xp)=x, (VxX)Np)=ky,

where ¥ is the covariant differentiation on M, and X is the velocity vector field
of c(2). X satisfies

(3.3) ViV X—g(Vx X, Vx X)X=0,
on M,. By assumption, ¢(f) is a circle in M,. Then it follows that
(3.4) VeTx X—g(Wx X, V2 X)X=0,

where V is the covariant differentiation on M,. Substituting (1.1) and (1.2) into
(3.4), and taking the normal part of it, we get
(3.5) B(X, Vx X)+ViB(X, X)=0,
by virtue of (3.3). Hence, by means of (1.3), we have
(VB)(x, x, x)=—3kB(x, ),

at p. This shows that, given a unit timelike vector x&T,(M,), Blx, y) is in-
dependent of a unit spacelike vector y provided y is orthogonal to x. Changing
y into —y, we have B(x, y)=0, where x and y are orthonormal vectors such that
x is timelike and y is spacelike, respectively. Since p is arbitrary, we have,
from Lemma 1.1, that M, is totally umbilical. Henc it follows that B(X, V)=
g(X, Y)H, for any orthonormal vector fields X and Y. Substituting this equa-
tion into (3.5), we get V¥H=0, for any timelike vector field X. From Lemma
1.6, it follows that the mean curvature vector is parallel.

Next we consider the converse. Let ¢(¢) be a timelike circle in M,. So the

velocity vector field X of ¢(f) satisfies (3.3). Since M, is totally umbilical and
has the parallel mean curvature vector, it follows that

B(X, X)=—H, B(VxX, X)=g(VxX, X)H=0,
ABX X Xh=—g(H, H)X, ViBX, X)=VyH=0
for a timelike vector field. Substituting these equations into (1.1), we have
(3.6) ViVx X=VVx X—g(H, H)X.
On the other hand, using (1.1), B(X, X)=g(X, X)H=—H yield
(3.7 g xX, U X)=g(VxX, Vx X)+g(H, H).
From (3.3), (3.6) and (3.7) it follows that
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VA’vaﬂg(v;{'X, vXX)X:O.
Hence ¢(f) is a timelike circle in M,.

If a spacelike circle ¢(f) has a timelike principal vector, the velocity vector
field X :=c'(t) satisfies

VXVXX+g(VxX, Vxx)X:O.
From this equation we have following
COROLLARY 3.3. Let M, be a Lorentzaian submanifold in an indefinite-
Riemannian manifold M, If every spacelike circle with a timelike principal

vector field in M, is a circle in M;, then M, is totally umbilical and has the

parallel mean curvature vector. The converse is also true.

§4. Helices.

Next we consider helices in a Lorentzian maifold M,. Let ¢=c(f) be a re-
gular timelike helix in a Lorentzian manifold M;. Then we have

cW)=:X,
[VXX:kIY,
“4.1)
] VoY =k XtkZ,
VyZ=—kY

along the curve ¢(¢), where Y, Z are spacelike vector fields and %,, &, are positive
constants, respectively.

PROPOSITION 4.1. Let c(t) be a timelike curve in a Lorentzian manifold M,
(dim M=3). If c(t) is a helix, then the velocity vector field X of c(t) satisfies
4.2) ViV X— KV X=0,
where K is a constant. Conversely, if the velocity vector field of a timelik curve

c(t) satisfies (4.2), then c(t) is one of a geodesic, a circle and a helix.

PROOF. Suppose that ¢(¢) is a timelike helix. Then, from (4.1), it is easily
seen that the velocity vector field X satisfies (4.2) with K=k —F3.

Conversely, we assume that the timelike curve ¢(¢) satisfies (4.2). Differentiat-
ing g(X, VxX)=0 in the direction of X, we have

g(VxVe X, X)+g(Vx X, VxX)=0.

Moreover, differentiating this equation in the direction of X, we obtain
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4.3) g(VXVXVXX; X)+3g(VXVXX, VxX)=0.

Substituting (4.2) into (4.3), we get g(VyVxX, VxX)=0. This implies that
g(VxX, VxX) is constant along c¢(f). If it is 0, then ¢(¢) is a geodesic. If
g(Vx X, VxX)#0, then there exists a unit spacelike vector field Y along c¢(¢) and
a positive constant k, such that

4.4) VxX=PkR,Y.
Since M, (dim M,=3) is the Lorentzian manifold, we can put
4.5) VxY=kX+bZ,

where Z is a unit spacelike vector field which is orthogonal to both X and Y,
and b is a function, respectively. If =0, then ¢(¢) is a circle. Hence we may
assume that b is a positive function. By means of (4.2) we have

d(g(VxVxX, Vx X))/ dt=0=g(VxVxVx X, Vx X)+g(VxVx X, VxVxX)
=Kg(VxX, Vx X)+g(VxVx X, V4V X).
Substituting (4.4) and (4.5) into this equation, we get
kib*=ki—Kk}.
Since k,£0 and b is positive, it follows that b=+/k2—K, i.e., b is a positive
constant. We put b==F,. Hence (4.5) is reduced to
(4.6) VxY=kX+k,Z.
Differentiating (4.6) in the direction of X, we have
4.7 VeV Y=k + k(1 Z).
On the other hand, it follows that
4.8) VeV =1/ k)VxVxVx X=(1/k)(Ri— RV x X=(RI—RDY ,
by virtue of (4.2) and (4.4). Making use of (4.7) and (4.8), we obtain
(4.9) VxZ=—k,Y.
From (4.4), (4.6) and (4.9), we conclude that ¢(f) is a helix.

Next we prove the following

THEOREM 4.2. Let M, (dim M,=3) be a connected Loventzian submanifold of
an indefinite- Riemannian manifold M;. If, for some ki, ky>0, every timelike helix
with curvatures kb, and k, in M, is a timelike helix in M,, then M, is a totally
geodesic submanifold in M,.
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ProoF. For any point p of M), let x, y and z are three orthonormal vectors
in T,(M;) such that x is timelike, and y and z are spacelike, respectively. Let
c(t) be a helix in M, such that

c0)=p, /O=:X, XP)=x, Y(p)=y, Z{p)=z,
X)X P)=ky, (VxY)p)=kix+ksz, (VxZ)p)=-—k:Y,

where Y (resp, Z) is the principal (resp. binormal) vector field of c(2). From
Proposition 4.1, X satisfies

(4.10) VxVxVx X—kVx X=0, b=Fk3—k2.
Since ¢(?) is a helix in M;, we have
’V-XVXVXX—KVXX:O,

where K is a constant. Substituting (1.1), (1.2) and (4.10) into this equation, we
obtain for normal part of M,

4.11) B(X, VxVxX)+ViB(X, V4 X)—B(X, AB¥-D(X))
+95(V¥ B(X, X))—KB(X, X)=0,
for tangent part of M,
(4.12) —ABXIx D (X) Y y(ABE- D(X ) — ATZBE (X)) 4 (h—K)V x X=0.
From (4.11) it follows that
(4.13) 4k2B(x, x)+4k,kyB(x, 2)+5k(VB(x, ¥, x)
+3k3B(y, y)—B(x, AR 2(x))+(VB)(x, x, x, x)
+ky(VB)x, x, y)—KB(x, x)=0

at a point p, by virtue of (1.3) and (1.4). Changing z into —z in (4.13) we have
that B(x, z2)=0, where x and z are orthonormal vectors of T,(M,) such that x is
timelike and y is spacelike, respectively. Since p is an arbitrary point of M,, we
see that M, is totally umbilical by virtue of Lemma 1.1. Changing y into —y in
(4.13) and using the fact that M is totally umbilical we obtain V;H=0, where y
is a unit spacelike vector. Hence from Lemma 1.5, we see that the mean
curvature vector field is parallel. Therefore it follows that (VB)(x, x, x)=0 and
(V2B)(x, x, x, x)=0 for a timelike vector x, which imply that (4.13) is reduced to

(4.14) (—k2+K—g(H, H))H=0.
On the other hand, the inner product of (4.12) with Y implies

g(Vx ABEO)X), Y)+kig(BX, X), BY, Y)—ki(ki—ki—K)g(Y, ¥Y)=0.
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Since M, is totally umbilical with parallel mean curvature vector, this equation
is reduced to

g(H, Hy=—ki+h3+ K.

Combining this equation together with (4.14), we have H=0. This means that
M, is a totally geodesic submanifold of M.,.

§5. Cartan framed null eurves.

In this section we consider the Cartan framed null curves. Let M, (dim M,=3)
be a Lorentzian manifold. By c=c(t) we denote a Cartan framed null curve with
constant curvatures k£, and k, in M,. That is, there are vector fields X, ¥ and
Z along the curve c(t) and they satisfy

cH=:X, gX X)=g¥,Y)=0, gX, YV)=-1,
(6.1 8X, Z)=g(Y, 2)=0, gz, Z)=1,

VxX=kZ, YY=kZ, VxZ=Pk,X+FkY,
where V is the covariant differentiation in M,.

By a straightforward calculation, we have the following

PROPOSITION 5.1. A Cartan framed null curve c(t) with constant curvatures
ky and k, satisfies following equation :

ViV X=2k R,V X.
We consider the converse of this propositon.

PROPOSITION 5.2. Let c=¢c(t) be a null curve of a Lorentzian manifold M,.
Suppose the wvelocity vector field X :=c(t) of the null curve c(t) and a null vector
Jield Y defined along c(t) satisfy the followings:

(5.2) ' VXVXVX‘X‘—_—'Zg(VXX, VXX)”Zg(VXY, VXY)’/2VXX,
g(VxX, V3 X)>0, g(VeV, Vi¥V)>0, gX, V)=—1.

Then c=c(t) is a Cartan framed null curve with constant curvatures.

ProOF. Differentiating g(X, X)=0 in the direction of X, we have
(5.3) g(¥x X, X)=0.
Differentiating (5.3) twice in the direction of X, we obtain

(5.4) g(VXvaXX, )()“{_Bg(VXVX.X’, VXX):O.
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Substituting (5.2) into (5.4) and making use of (5.3), we get
(5.5) g(VxVx X, V3 X)=0.

This equation shows that g(VyX, VxX) is constant along the curve. Hence, by
assumption, we may put

(5.6) kRZ :=VxX.

where Z is a unit spacelike vector field and % is a positive constant. From
(5.3) it follows that

6.7 g(X, 2)=0.

| Differentiating (5.5) in the direction of X, we have

(5.8) 2kg(NxY, VxY ) +g(NxZ, VxZ)=0,

by virtue of (5.2). From this equation it follows that

(5.9) 4krg(VxNxY, ViV )=g(VxVxZ, Nz Z).

On the other hand, from VyVyZ=(1/k)VxVxVxX, we obtain -
8(VxVxZ, VxZ)=g(VxVxX, VxX)=0

by virtue of (5.2) and (5.5). Hence (5.9), reduces to g(VxVyY, Vx¥)==0 and it
implies that g(VxY, V¢Y) is constant along the curve ¢(¢). Therefore we can
put g(VxY, VxY)=w? where w is a positive constant along the curve. Sub-
stituting this equation into (5.8), we have

(5.10) gVxZ, Ny Z)=—2kw.

This means that VyZ is a timelike vector field. Since M, is the Lorentzian
manifold, we may put

(5.11) VxZ=aX+bY,
where e and b are functions. Hence we get
g(VxVx X, X)=—bk.
On the other hand, from (5.3) it follows that
(V¥ X, X)=—g(VxX, Vx X)=—Fk%

From these two equations, we obtain b=k (=constant). Therefore (5.11) implies
that VxZ=aX+EY, from which it follows that

g(VxZ, Ny Z)y=—2ak=—2kw,

by virtue of (5.10). Hence we have a=w (=constant) and
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(5.12) VyZ=wX+kY.

Differentiating (5.12) in the direction of X, we get
(5.13) ViV Z=wVx X+ kY.
On the other hand, by virtue of (5.2) and (5.6), it follows that
(5.14) ViV Z=1/ )V xVxVx X=(1/-)2kwV y X=2wV X .
Combining (5.13) and (5.14), and using (5.6), we obtain
(5.15) VxY=wZ.

Differentiating g(X, Y)=—1 in the direction of X, we have g(VxX, Y)
+g(X, VxY)=0. Together with (5.15), it implies

(5.16) gz, Y)=0.

From (5.6), (5.7), (5.12), (5.15) and (5.16), we obtain the conclusion.
Next we shall prove the following theorem.

THEOREM 5.3. Let M, be a Lorentzian submanifold of an indefinite-Rieman-
nian manifold M;. If every Cartan framed null curve with constant curvatures
in M, is also a Cartan framed null curve with constant curvatures in M, then M,
is a totally geodesic submanifold in M,.

PrOOF. For an arbitrary point p of M, let x, y and z be three vectors in
T,(M;) such that x and y are null vectors and z is a spacelike unit vector, re-
spectively. We assume that they satisfy g(x, y)=—1 and g(x, 2)=g(y, 2)=0.
Let ¢=c(#) be a Cartan framed null curve with a Cartan frame (X, Y, Z) and

constant curvatures k,, k,, such that
- cO=p, c=:X, X(p)=x, Y(p)=y, Z(p)=z,
) (Ve X)D)=kiz, (VY)Y P)=ksz, (VxZ)P)=ksx+kiy,

where V is the covariant differentiation on M,. From Proposition 5.1, X satisfies
(5.18) Ve VxVx X=2Fk R,V X,

on M, By assumption, ¢(f) is a Cartan framed null curve in M,. Hence, from

Proposition 5.1, we have
(519) _v-xvxv—){XZZKlevXX,
where ¥ is the covariant derivative of M; and K,, K, are positive constants.

Combining (1.1), (1.2), (5.16) and (5.17), and taking the normal part of it, we
obtain
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4B(X, ViV X)+5(B)XX, VxX, X)+3B(VzX, VxX)
—B(X, APE-O(X)+(VB)X, X, X, X)
+(VB)X, X, VxX)—2K,K,B(X, X)=0.
Consequently, by virtue of (5.17), the above equation gives
(5.20) 4k, kyB(x, x)+4k3B(x, y)+5k,(VB)(x, z, x)
+3k3B(z, 2)—B(x, AR (x))+(VB)(x, x, x, x)
+ky(VB)(x, x, 2)—2k ks B(x, x)=0,
at p. Changing z into —z in this equation we obtain
(5.21) 22k, ks— K, K;)B(x, x)+4k}B(x, y)+3kiB(z, 2)
—B(x, AP=2(x)+(VB)zx, x, x, x)=0.

We remark that x and y are null vectors such that g(x, v)=—1. Changing x
into 2x and y into (1/2)y in (5.21), we obtain

82k kys— K K;)B(x, x)+4kiB(x, v)+3k2B(z, 2)
—16B(x, AB= D (x)+16(V2B)(x, x, x, x)=0.

From (5.21) and this equation, it follows that

22k ky— K K3)B(x, x)—5B(x, A= ®(x))+5(V*B)(x, x, x, x)=0.
Substituting this equation into (5.21), we have
(5.22) 4B(x, AB@2(x))—4(V2B)(x, x, x, x)+4k2B(x, y)-+3kB(z, 2)=0.
Changing x into 2x and y into (1/2)y in (5.22), we obtain
(5.23) 4B(x, y)=—3B(z, 2),

by virtue of (5.22). Since z is a unit spacelike vector, and x and y are null
vectors such that g(x, z2)=g(y, 2)=0 and g(x, y)=0, we can put x=z-+¢ and y—=
(1/2)(t—=z), where ¢ is a unit timelike vector having the property that g(z, #)=0.
Hence (5.23) is reduced to

4B(z+t, (t—z)/2)=—3B(z, 2),
from which it follows that
2B(t, t)Y=—B(z, z).

Therefore from Lemma 1.3, we conclude that M, is a totally geodesic submani-
fold of M,.
For the generalized null cubic, we have the following results similar to the
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Cartan framed null curve.

PROPOSITION 5.4, The generalized null cubic ¢c=c(t) satisfies VxVxVzX=0,

where Y is the covariant derivative along the curve.
THEOREM 5.5. If a null curve c=c(t) satisfies
Xi=c't), VxVgVxX=0, g(¥yX, VxX)>0,
then c(t) is a generalized null cubic with constant curvature.
THEOREM 5.6, Let M, be a Lorentzian submanifold of an indefinite-Rieman-

nian manifold M;. If every generalized null cubic in M, is also a generalized
null cubic in M, then M, is totally geodesic in M..

§6. Examples.
In this section we give examples of curves mentioned in the previous sections.
Circles [117].
On two-dimensional flat spaces, we have circles as follows:
c(t)=(a cos(t/a), asin(t/a)),
c(t)=(b sinh(t/b), bcosh(t/b)),
c@)=(bcosh (t/b), bsinh(t/b)).

The first is on S'CCR? or HICR2, the second on SIC R} and the third on H'CRj.

Spacelike helix on HE.
By x={(x1, Xs, Xs, xs), We denote a point in R4, In Ri we define a surface
V3 a) by
x?—x%z——cosz—g—, x%—x}z—singg.
Then V2a) can be expressed as an isometric immersion
f: V¥a) — H}
as follows
6.1) x,=A4sinh @, x,=psinh¢g, x,=Acoshd, x,~=pcoshg
where A=cos @/2, p=sina/2. ‘Then we have
X :=f%(@/00)=(Acosh 8, 0, Asinh @, 0)

Y :=f+(0/3¢)=(0, prcosh ¢, 0, usinh §)
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and the line element of V*a) is given by
ds’=2*d6*+u*dg®.
For the tangent vectors X and Y of V¥*a), we have the normal vector N of
V¥a) as follows
N=(psinh §, —2sinh ¢, pcosh 8, —2cosh ).

It follows that
VoN=dN/d@—g(dN/d§, x)x

=(pcosh @, 0, gsinh 4, 0),
VyN=dN/ddp—g(dN/d¢, x)x
=(0, —Acosh ¢, 0, —4sinh ¢),
where V is the covariant derivatve on H}. Hence the eigenvalues x;, and &, of
the shape operator A of this immersion satisfy
=p/4, ky=—2/p.

REMARK. If a=n/2, then 2=p=1. Therefore the mean curvature vector
of V¥=x/2) is zero. This coresponds to the Clifford surface of the Riemannian
space form (cf. [17]).

We construct a curve ¢=c¢(a, m) on Vi a) as follows

(6.2) x;=-—sinh /%), x,=—sinh (mit/k),
xg=—cosh(t/k),  x,=—cosh(mt/k), k=2 ptm®)'?,
Then ¢(t) is a helix on H} with curvatures
ky=2p(1—m?)/k?, ko=m/k%.

REMARK. We can construct a helix on H%?. It is a helix on H} in H7?.
This result is given by the reduction of the normal bundle of submanifolds in
an indefinite-Riemannian space form [5].

Timelike helix on H3.
We construct a curve c¢(¢) on H} as follows
c(t)y=(psin(mt/k), pcos(mt/k), Asin(t/k), Acos(t/k)),
k=(12-—‘u2m2)”2,

where 21 and g satisfy —A*+p?=—1. Then c(?) is a timelike helix on H} with

curvatures
=Ap(l—m?)/ k% ky=m/k®.
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Spacelike helix on S3.
We define a curve ¢(¢) on S} as follows
c(t)=(q cos (t/k), gsin(t/k), rsinh(t/k), » cosh(t/k)),
k=(142r312,
where ¢*—#»®=1. This curve ¢(t) is a spacelike helix on S{ with the curvatures
ky=2r/1+1%/ k2, o=1/k%.

Timelike helix on S3.

We give a curve c(¢) on S} as follows
ct)=(pcos(t/k), psin(t/k), Acosh(t/k), Asinh(t/k)),
k=~222-1,
where 2*+4-p®=1. Then ¢(?) is a timelike helix on S} with the curvatures

ky=24p/k?, ky=1/k".

Cartan framed null curve on Ri.

We consider a curve c(¢) on R}, as follows
c(t)=(a cosht, at, asinhi).

This curve is a Cartan framed null curve on R}. We can easily see that the
curvatures k2, and k,, and the triple (X, Y, Z) are given as follows

ki=a, k,=1/2a,
X=(a, asinht, acosht),
Y =(—1/2a, (sinh)/2a, (cosht)/2a),
Z=(0, cosht, sinht),
respectively.
Cartan framed null curve on H3.
A Cartan framed null curve on H3 is defined as follows
c()=(coshv/2¢, +/ Zsinh ¢, sinhv/2¢, v/ 2cosh?).
The curvatures %, and k,, and the triple (X, Y, Z) of ¢(¢) are given as follows
k=2, k=3/2V72,
X=(+/2sinhv/ 2, v/ 2cosht, v/ 2coshy/2¢, +/ 2sinht),

Yz%(—sinhv 2t, cosht, —cosh+/ 2¢, sinht),



On Curves and Submanifolds 371

Z=(+/2cosha/ 21, sinh ¢, +/ 2sinhy/2¢, cosh?),
respectively.

Generalized null cubic on R: [1], [7].
On R}, the curve
4

c(t)=(—3~t3—t, 2?, %tﬂﬂ)

is an example of the generalized null cubic.
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