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Abstract

The Hasse diagram graph of a finitedistributivepartiallatticeis characterized

by means of prime convexes.

Median graphs contitute a well known and widely studied class of graphs;

see for example the papers [1] and [2] and the references therein. They consti-

tute a subclass of the Hasse diagram graphs of distributive partial lattices. In

this paper we give a characterization for the Hasse diagram graphs G of finite

distributive partial lattices by means of prime convexes of G. This characteriza-

tion generalizes that of Mulder and Schrijver for median graphs reprinted in [1,

Theorem 2.2].

A meetsemilattice S is a partial lattice if for any two elements a, b having

an upper bound in S also the element aVb belongs to S. Clearly every finite

meetsemilattice is a partial lattice. A partial lattice S is distributive if its every

subset (k~＼={s＼s<k) is a distributive lattice. A finite distributive partial lattice S

can be embedded in the distributive lattice /(/S) of ideals of S, where the join

of two ideals / and J is /V≪/= {s|<zVi, z'ei and jeJ}. By using this lattice we

see that one shortest path joining two points a and b of the Hasse diagram graph

S contains the point a/＼b, and if a>b, then every point c, a>c>b, is on some

shortest a-b path.

The graphs G = (V, X) considered here are finite, connected and undirected

without loops and multiple lines. The points of G constitute the set V and its

lines the set X. A pointset AdV of G is called a convex if A contains all points

of any shortest a-b path (of any a-b geodesic) for every two points a,b^A. The

intersection of two convexes is also a convex and thus the least convex contai-

ning a given pointset B of G is fl{C＼C is a convex and BczC}. This set is

briefly denoted by (B). A convex Ai=-V is called prime if the set V＼A is also a

convex. The sets <p and V are trivial prime convexes. A graph G has the prime

convex intersection property (is a prime convex intersection erapK) if its every
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convex A is the intersection of all prime convexes containing A. By [1, Theorem

2.2], every median graph is a prime convex intersection graph. The class of

prime convex intersection graphs is rather wide: for example every complete

graph belongs to this class.

Let a,b,c^V. A point t satisfying the distance conditions d(a,b~)=d(a,t) +

d(t,b), d(b,c~)=d(b,t)+d(t,c) and d(a,c)=d{a,t)+d(t,c) is a median of the

points a, b and c. A graph is a median graph if its all three points have exactly

one median.

If A is a subset of a set U, then A = U＼A is its complement in U.

When proving the main theorem of this note we need two auxiliary results

which we Drove first.

LEMMA 1. A connectedgraph G is a prime convex intersectiongraph if

and only if for any noempty convex A and any point x, x^.A, thereis a prime

convex P separatingA a?idx. i.e. AczP and x^P.

PROOF. If G is a prime convex intersection graph, A its nonempty convex

and x its point such that x^A, there is a prime convex P separating A and x,

because otherwise A connot be represented as an intersection of prime convexes

of G. Conversely, if there is a prime convex separating any convex A and any

point x of the lemma then G is a prime convex intersection graph. Indeed, if

there is a nonempty convex A which cannot be expressed as the intersection of

prime convexes, then the intersection contains a point x not belonging to A. By

assumption there is a prime convex P searating A and x, and thus the interse-

ction cannot contain the point x, and the lemma follows.

Lemma 2. The convex (a, b} of a prime convex i?itersectiongraph G co-

nsists of points on a-b geodesies for every pair a,b^V.

PROOF. Let a and b be a pair of points such that the convex (a, b) contains

at least one point v which is not on any a-b geodesic. This implies the existence

of two points x and z, x is on an a-b geodesic and z is on another a-b geodesic,

such that no point X＼,---,xm of an x-z geodesic x = xQ, Xi,---,Xm,xm+i=z is on

any a-b geodesic. Clearly a and b can be chosen such that every convex (u, w)

with d(u, w) <d(a, b) is the set of all points on u-w geodesies. We may assume

further that d(a,b)>d(x,b~), d(z,b)>d(x,b), and that x and z are as near tob

as possible. Let us consider the point X＼. Because d(a,x)<.d(a,b), the convex

{a, x} consists of points on a-x geodesies, and thus Xi&(a, x}. By Lemma 1, the

prime convex intersection property of G implies now the existence of a prime
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convex P separating <a,x) and xi: <(<z,x>cP and ^eP. Because xi i(a, b}, we

have Xi,bE:P. Let x=bQ,bl,b2,---, bk-＼,bk=b be the points of an x-b geodesic.

Because x and z are as near to b as possible,d(z,b)>d(x,b) and d(xi,z)>d(xi,

x)=l, them a Z>£-.£igeodesic goes over x,i = l,---,k. This implies that there is

no prime convex separating (a,x) and xx, which is a contradiction. Thus the

assumption is false and the convex (a, by consists of points on a-b geodesies for

every pair a,be.V, and the lemma follows.

Now we can present the characterization theorem of this note.

THEOREM. A connected graph G is isomorphic to the Hasse diagram graph

of a finite distributive partial lattice if and only if the following two conditions

hold:

(i) G is a prime convex intersection graph;

(ii) fl{P＼P^ X＼ 4^4> or X = <!>for the collection JC of all nontrivial prime

convexes in G having the following property: if Pi e X, there are P2, Ps,

?nel(≪>3) such that PtOPj^^ and Pifl^fl ･･■C＼Pn= <!>.

PROOF. Mulder and Schrijver proved that a connected graph G is a median

graph if and only if G is a prime convex intersection graph and its prime con-

vexes satisfythe Helly property [1, Theorem 2.2]. The condition (ii) above is

nothing but a weakened Helly property for prime convexes of G.

Assume firstthat G is the Hasse diagram graph of a finitedistributivepartial

latticeS.

(i) Let x<=S. The element corresponding x in the ideal lattice /(£*)of S

is (x]. Because 1(5) is distributive,one (z]~(x~]geodesic goes over the element

(z]AM = (M^]. Thus, if the distance d((z], (xj) =n in I(S), then d(z,x)=n

in S, because the z-z/＼x-x path always belongs to S. In particular,if C is a

convex of the Hasse diagram graph of I(S), then the set {x＼(x~]&Cin I(S)} =

Cs is a convex in S. Moreover, if C is a prime convex in I(S), then Cs is a

prime convex in S. Let A be a nonempty convex of G, x a point of G with x^.

A and A* the least convex of the graph G(I(S)) of /(£) with the property:

(z]eA* in G(/(S)) if zeA in G. Clearly, ^]^A* in G(/(5)). Because 7(5)

is a distributivelattice,the graph GC/C^)) is a median graph and has thus the

prime convex intersection property. Hence there is a prime convex C in G(I(5))

separating A* and (.r], which implies that the prime convex Cs separates A and

x in G. By Lemma 1, this proves [that G has the prime convex intersection

property, and thus (i) holds for G.

(ii) Assume that the collection JC of the theorem is nonempty. We prove
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that least element 0 of S belongs to f]{P＼P^X}, from which the assertion fol-

lows. In fact, we prove the assertion for n = 3; the proofs are the same for other

values of n and hence they are omitted. Let P1,P2>P3&X be three prime

con vexes of G such that PiOPj^fi and P1f)P2nP-i = <p.The sets Px f]P2, Pi 0 P3

and Pzf＼Pz are con vexes of G, and because S is finite,every one of them has a

least element, and let them be aE:Pif]P2,b^P＼C＼Pz and ce.P2C＼Pz. Assume that

Q3f fl{P＼PElX}, which means that 0 belongs to at least one set of X, say to Px.

Because 0,a,bE:Pu then also a/＼b/＼c^P＼.The relation a,c^P2 implies that a A

ceP2. On the other hand, a>af＼c>af＼b/＼c, where a,a /＼bAce Pi, and thus a A

cgPi. Accordingly, aAc^PiC]P2, and because a is the least element in this

convex, a = aAc>c. Similarly we see that b<c. Because thereis an upper bound

c for a and b, the element aVb exists,and as well known, an a-b geodesic goes

over a＼jbin the Hasse diagram graph of a finitedistributivelattice. Thus a＼/b

ePi. Because c,b^P3 and c>a＼/b, the element a＼/b belongs to P3, and analo-

gously we see that aVb^P2. Now, aVb<= Pif)P2f)P3, which intersection should

be empty, and hence the assumption 0^ fl{P|PeX} must be false. This proves

the property (ii).

Assume conversely that G is a graph satisfying the properties (i) and (ii)

of the theorem. We choose an arbitrary point from the set (~){P＼PelJC} and

denote it by h. Let a and b be two arbitrary points in V and let us consider the

intersection(h,a)f](h,b}n(a,by. Because the con vexes (h,d), (h,b) and (a,b)

are the intersections of corresponding prime convexes, we can substitute the

intersection (h, a> P＼(h. b)>H (a, by bv the exnression

(fl {Pi＼Piis a prime convex and <A,a>cPi}) f](fl {Uj＼Uj is a prime convex

and <h,b}c:Ui})f](r＼{Wk＼Wk is a prime convex and (a, b}(zWk}).

Now, PtOWk, PiOUj, Ujf)Wk^<P, and if (h,a)n<h,b}f](a,b) = ^, then

h^f] {P＼Pe.X}, which is a contradiction. Thus (h, a) fl(h, b) 0 (a, by^<f>. Moreo-

ver, this intersection contains exactly one element. This can be seen as follows:

Every prime convex P of G (or its complement P) contains at least two of the

points a, b, h. If the intersection (h, a) D (h, a) 0 (a, by contains two disjoint points

x and y, then every P (or P) contains both x and y, and the convex x cannot

be separated from the point y, which contradicts (i) by Lemma 1. Thus (h, a) C＼

(Jx,by fl<#, by = {d＼. According to Lemma 2, a convex (x, zy consists of points on

x-z geodesies. Thus the relation {d} = (h, ay f](h, by fl{a, by shows that every triple

h, a, b, where a and b are arbitrary points of G, has a unique median.

We order now the points of V as follows :
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a<b ^=^> a is on a b-h geodesic <==> a<E(h,b}.

This definition suggests us to define the meet ≪A^ as the unique median d

of the points a,b and h. Assume that c is a point such that cE:(Ji,d)^＼(h,d)and

c^(h,ct). The intersection (h,d)f](,c,b) is empty, because if x belongs to this

intersection, then the d-x-c-h path is a d-h geodesic and ce<<i, h), which is a

contradiction. There is a prime convex P separating the convexes (h, d) and (c,

by :(h, d)dP and (c, b} C P. Indeed, as seen above, the points h, d and c have a

median u which is on a d-h geodesic and thus belongs to the convex (d,h). By

the prime convex intersection property of G and Lemma 1, there is a prime

convex P separating {c,b} and u ≪c,&>c.P and ≪eP). If now h or d belongs

to P, then also u belongs to P because a is on a c-h geodesic as well as on a

c-d geodesic. Thus h,d<=P, whence also (h,d}(zP. If a^P, then ceF because

it is on an a-h geodesic, and thus a must belong to P. Because d is on an a-b

geodesic, the relation a,b^.P implies a contradiction,and hence c^(Ji,d'}. This

proves that d is a maximum lower bound of a and b, and thus the order defined

on V is a meetsemilattice order. Accordingly, V is a meetsemilattice with h as

the least element. Because V is finite,it is a partial lattice. The Hasse diagram

graph of V is isomorphic to G: When a line belongs to an x-h geodesic, there

is nothing to prove, and hence we assume that the line (a, b) of G does not

belong to any x-h geodesic. This is possible only if d(a,K)=d(b,K). But then

a, b and h have no median, which is absurd, and the ismorphism follows.

It remains to show that every set (Jz＼={v＼vElV and v<k} is a distributive

lattice. By the order definitionabove, (h, £>= (&]. Every convex A of a prime

convex intersection graph induces a prime convex intersection graph. By Mulder

and Schrijver [1, Theorem 2.2], a prime convex intersection graph (Ji,k)>is a

median graph (and then the Hasse diagram graph of a distributive lattice with

h as the least element and k as the greatest element by [1, Theorem 3.1]) ifits

prime convexes needed to separate its convexes satisfy the Helly property. The

prime convexes needed to separate the convexes of (h, k} are obtained from the

prime convexes of X by intersecting them with (h,k)>. Let now P1,P2---,Pm be

prime convexes of X such that P% fiPj f]<A, k} =£<j>.We denote the corresponding

prime convexes of (h,k) by P＼= Pi<T＼{h,ky. By Lemma 2, the convex (Ji,k}

consists of points on h-k geodesies in G. If h,k^P% then P＼ is not prime be-

cause its every point is on some h-k geodesic. Hence either h or k belongs to

P＼. The relation Ae P°tcontradictsthe property Ae D {P|P<= X}, and thus k<=P＼,

and this relation holds for every i,i=l,---,m. Then k^P^f] Plf]---C＼P°m,and

the Helly property of the prime convexes needed to separate the convexes of (h,
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k) follows. This proves the distributivltyof (Ji,ky―(k], and thus G is the Hasse

diagram graph of a finitedistributivepartiallattice.

The author likes to express his sincere thanks to the referee for his valuable
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