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REAL HYPERSURFACES WITH PARALLEL RICCI
TENSOR OF A COMPLEX SPACE FORM

By
U-Hang Ki*

Introduction.

A Kaehlerian manifold of constant holomorphic sectional curvature ¢ is
called a complex space form, which is denoted by M,(c). The complete and
simply connected complex space form consists of a complex projective space
P,C, a complex Euclidean space C, or a complex hyperbolic space H,C,
according as ¢>0, ¢=0 or ¢<0. The induced almost contact metric structure
of real hypersurfaces of M,(c) will be denoted by (/, g, P).

Many subjects for real hypersurfaces of a complex projective space have
been studied by Cecil and Ryan [17, Kimura [8], [9], Kon [10], Maeda [13],
Okumura [15], Takagi [16], [17], [18] and so on. One of those, done by
Kimura, asserted the following interesting result.

THEOREM K ([9]). There are no real hypersurfaces of P,C with parallel
Ricci tensor on which the structure vector P is principal.

On the other hand, real hypersurfaces of a2 complex hyperbolic space H,C
have also been investigated from different points of view and there are some
studies by Chen [2], Chen, Ludden and Montiel [3], Montiel [12] and Montiel
and Romero [14]. In particular, it is proved in [12] the following fact:

THEOREM M. There are no Einstein real hypersurfaces in H,C.

A Riemannian curvature tensor is said to be harmonic if the Ricei tensor
S is of Codazzi type. Although the concept is closely related to a parallel
Ricci tensor, it was shown by Derdzinski [4] and Gray [5] that it is essentially
weaker than the latter one. Nakagawa, Umehara and the present author [6]
proved that there exist infinitely many hypersurfaces with harmonic curvature
and non-Ricci parallel in a2 Riemannian space form.

Recently, some studies about the non-existance for real hypersurfaces with
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harmonic curvature of P,C (resp. H,C) have been made by Kwon and Nakagawa
[11] (resp. Kim [7]). Their results are following:

TuEOREM KNK. There are no real hypersurfaces with harmonic curvature
of Mu(c), ¢#0 on which the structure vector is principal.

The main purpose of the present paper is to improve Theorem K and
Theorem KNK, and study also real hypersurfaces with harmonic curvature of
a complex space form M,(c), c#0. We shall prove the followings:

THEOREM A. There are no real hypersurfaces with parallel Ricci tensor of
a complex space form My(c), c¢+0.

THHOREM B. There are no real hypersurfaces with harmonic curvature of
M,(¢c), c#0 satisfying one of the following conditions:
(1) P is an eigenvector corresponding to the Ricci tensor, (2) the number of

Ricci curvatures does not exceed 2.

1. Preliminaries.

We begin by recalling fundamental formulas on real hypersurfaces of a
Kaehlerian manifold. Let N be a real 2n-dimensional Kaehlerian manifold
equipped with a parallel almost complex structure F and a Riemannian metric
tensor G which is F-Hermitian, and covered by a system of coordinate neigh-
borhoods {U; x4}. Let M be a real hypersurface of N covered by a system of
coordinate neighborhoods {V; y*} and immersed isometrically in N by the
immersion i: M—N. Throughout the present paper the following convention
on the range of indices are used, unless otherwise stated:

A B, --=1,2 -, 2n;i, j, =12, -, 2n—L.

The summation convention will be used with respect to those system of indices.
When the argument is local, M need not be distinguished from i(M). Thus,
for simplicity, a point p in M may be identified with the point #(p) and a
tangent vector X at p may also be identified with the tangent vector 74(X) at
i(p) via the differential 7, of i. We represent the immersion ¢ locally by
x4=x4(y") and B,=(B#) are also (2n—1)-linearly independent local tangent
vectors of M, where B#=d;x* and 9,=9/8y’. A unitnormal C to M may then
be chosen. The induced Riemannian metric g with components g; on M is
given by g;;=G(Bj, B;) because the immersion is isometric.

For the unit normal C to M, the following representations are obtained in
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each coordinate neighborhood:
(1.1) FB=]!Byt+p.C, FC=—p'B;,

where we have put J;=G(FB;, B;) and p,=G(FB;, C), p* being components
of a vector field P associated with P; and J;;=J%g,:;. By the properties of the
almost Hermitian structure F, it is clear that J;; is skew-symmetric. A tensor
field of type (1, 1) with components f? will be denoted by J. By the properties
of the almost complex structure F, the following relations are then given:

Jib==di4pipt, pJr=0, p.Ji=0, pipt=1,

that is, the aggregate (J, g, P) defines an almost contact metric structure.
Denoting by V, the operator of van der Waerden-Bortolotti covariant differenti-
ation formed with g;;, the equations of Gauss and Weingarten for M are
respectively obtained:

(1.2) V;Bi=h;C, V;C=—hj}B,,

where h; are components of a second fundamental form ¢, A=(h%) which is
related by hj;=h%g,; being the shape operator derived from C. We notice
hear that h;; is symmetric. By means of (1.1) and (1.2) the covariant derivatives
of the structure tensors are yielded:

1.3) ViJin=—huprthpmps, Vipi=—h; Ji.

In the sequel, the ambient Kaehlerian manifold N is assumed to be of
constant holomorphic sectional curvature ¢ and real dimension 2z, which is
called a complex space form and denoted by M,(c). Then the components of
the curvature tensor K of M,(c) take the following form:

c
KDUBA:Z(GDAGCB—GDBGCA+FDAFCE—FDBFCA'*ZFDCFBA)-
Thus, the equations of Gauss and Codazzi for M are respectively obtained:

1.4) Rkjih:'l%(gkngji—gjhgki'wl‘]kh fji“‘]jn ]ki"‘szjjih)—l‘hkhhji_hjnhki ’

1.5) thji—vjhki:%(pk Jii—biJei=20:Jep),

where R;;;, are the components of the Riemannian curvature tensor R of M.

To be able to write our formulas in a convention form, the components
X7 of a tensor field X™ and a function X,, on M for any integer m(=2) are
introduced as follows:

X5=X;, X1y Xim-t, Xp=3X7.
7
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In our notation, the Gauss equation (1.4) implies

(1.6) Sji:%{(2n+1)gji'—3pjpi}+hhji_h§i,

where S;; denotes components of the Ricci tensor S of M, and % the trace of

the shape operator A.

REMARK 1. We notice here that the structure vector P cannot be parallel
provided that ¢+#0. In fact, if P is parallel along M, then the second equation
of (1.3) becomes h;,J3=0. Thus, it is not hard to see that h;=hp;p; because
of properties of the almost contact metric structure. Hence it follows that
Vieh;i=(N.h)p;p;, which together with (1.5) give

Ou Ji= 03 J0i=20: 1) = AT )Py~ (Tsh)pa} i

By transvecting p*J*/, we have c(n—1)=0. Thus the assumption c¢+#0 will

produce a contradiction.

2. Real hypersurfaces with harmonic curvature.

Let M be a real hypersurface with harmonic curvature of a complex space
form M,(c), ¢+#0, that is, the Ricci tensor S satisfies V,S;;=V;S,;. Then, we
easily, using the second Bianchi identity, see that the scalar curvature » of M
is constant everywhere. Moreover, the Ricci formula for S;; gives rise to

vaksji:vjvismk_ijkrS’{—ijirsz,
which together with the first Bianchi identity and the Ricci formula imply that
(2-1) Rmkirsg_!_RkjirS;n—*_ijirS;:O’

where S*=S;;g**, g’* being the contravariant components of g;. Therefore,

it follows that
]ijkjihS;ln‘i’Z]Tkkaith:O

and hence, in consequence of (1.4),
3
(—n45)eSsm JiH 5 ASur Ji—=r—AD J = bi(S i) T =20 {Sur P 1)

+2hirhis J T S—2h5 ks, JTTSE=0,
where we have put A,=S;;p’p’. By the way, the last two terms of this

reduces to ~~g~c;b,-(hnp‘)hzsf ™ by virtue of (1.6). Accordingly we have

Sir J7—@n—=3)S;r Ji—(r— AN J5i—Se,p"(pi J5+20; J—3R 1t p his J7 p ;=0
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because of the fact that ¢+0 is assumed, which implies

Bhripthis J7+@2n—1)S . p* Ji=0.
Thus, the last equation can be written as
2.2)  @n=3{S;r Ji—(Ser PPt} —Sir J5+(S 1 p)P: J 5+ (r— A J;:=0,
from which, taking the symmetric parts,

Sir JitSer Ji=Se: p7(ps Ji+0: T D
Hence, the relationship (2.2) turns out to be

2(n—1{S;, Ji—(SerpNp; J it +(r— A0 J;:=0.

Transforming this by Ji and utilizing properties of the almost contact metric
structure, it is reduced to

2.3) 2n—=1){Sji—piS;rp"—iSirp"} —(r—ADg i+ {r+C2n—3)Ai} p;:=0,
which implies immediately that
(2.4) 2(n—1)(S,—2A4,+AD=(r—A,°,
where A,=S5%p7p".
PROPOSITION 2.1. Let M be a real hypersurface with harmonic curvature of

a complex space form M,(c), ¢#0. If the structure vector P is an eigenvector
of the Ricci tensor, namely, if

(2.5) Sj'rpT:Alpj,
then M is Ricci parallel.

PrROOF. By means of (2.5), the relationship (2.3) reduces to
(2.6) 2n—1)S;i—(r—A)Ng+{r—2n—1Ai} p;p:=0,
which implies
(2.7) 2(n—1)S%— {r+@2n—3)A,} S;+ Ar— A)g;=0.

Differentiating (2.6) covariantly, we find
2.8) 2n—1V,.S;+ NV A)g;i—@n—0N A)p;b:

+{r—@n—DAHNp b +Nap)ps} =0

because the scalar curvature r is constant. Since the Ricci tensor S is of
Codazzi type, it is seen that
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2.9  (VeA)g;i—;A0ge—Cn—D{NV: AN p;—(V;A0D e} b
+{r—Qn—DANHN:p;~Vp)pi (Ve p)p;— 3PP}t =0.
If we transvect this with g, then we obtain
V, A —Cn—1Dp"V, A)pe+ {r—2n—1A,} p'V.p,=0

and hence p"V,A,=0. Thus, it follows that V,A,+{r—@n—1)A:}p"V,p,=0.
Transvecting (2.9) with p7p? and taking account of the last equation, we can
verify that A, is constant everywhere. Therefore, by differentiating (2.7)
covariantly, we find

2n—DVS5i— {r+@n—3)Ai}V:5;=0,

which shows that S%; is of Codazzi type. Thus, the Ricci tensor S is parallel
because the scalar curvature of M is constant (see Umehara, Theorem 1.3 of
[197). This completes the proof of Proposition 2.1.

REMARK 2. If the structure vector P is principal, that is, h;.p'=ap; we
can see from (1.6) that P is the eigenvector of the Ricci tensor and hence the
Ricci tensor is parallel.

Now, transforming (2.3) by Si, we obtain

(2.10) 2(n—1){S5—(Sacp)S;r P — P ;Skr P} —(r—AD)S s
+{r+@2n—3)Ai} sS4 p7=0,
which enables us to obtain
@n—1)S} p"—{r+2n—3)A} S, ") p;—(n—1)S5,p"
—{r+@n—3)A}S; pNpx=0.
Thus, it is seen that
@2.11) 2n—1Stp—{r+2n—3)A} Sk, p"=2(n—1)A,— A {r+@n—3)A:})p+ .
Making use of the last equation, (2.10) turns out to be
(2.12) 2(n—1{S%—(S;ep N Ser PN —(r—ADS;+pb0:=0,

where p=A,(r—A,)—2(n—1)(A,—A?. Transforming (2.12) by S% and utilizing
(2.3), (2.11) and (2.12), we get

(2.13) An—1)S5—4(n—Dir+(n—2)A:} S
H{r—ADr+Un—5A)—4n—1)*A,—AD}S;i— plr—ADg =0,

or, equivalently
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(S22 A ) D)t 1S+ g} =0,

where we have put 2:r+(2n—3)A1. Thus the minimal polynomial for S tells
us that there exist at most three Ricci curvatures of M:(r—A4,)/2(n—1),

(A++/D)/4(n—1), where
(2.14) D={r—@2n—1)A,}2+16(n—1)*(4.— A}D).

And their multiplicities are respectively denoted by 2n—1—4—4, 1 and 4.
Therefore the scalar curvature » of M satisfies

(2.15) (h+b—2{r—Q2n—1A}=vD(4—b).

We also have
4(n—l)252:%(12+D)(ll-i-lg)—i-%;i\/ﬁ )+ (r— A @n—1— 14— 1),

which together with (2.4), (2.14) and (2.15) imply that
(2.16) (Ay— AD(h+4,—2)=0.

Now, suppose that the number of distinct Ricci curvatures does not exceed
2. Then we can easily see that A,=A? because of (2.15). Thus, it follows

that S;,p"=A:p;.
According to Proposition 2.1, we have

PROPOSITION 2.2. Let M be a real hypersurface with harmonic curvature of
a complex space form M,(c), ¢c#0. Then the number of distinct Ricci curvature
is at most 3. In particular, it does not exceed 2, then M is Ricci parallel.

3. Real hypersurfaces with parallel Ricci tensor.

In this section we devote to investigate the real hypersurfaces with parallel
Ricci tensor of a complex space form M,(c), ¢#0. Since the Ricci tensor S is
assumed to be parallel, we have (2.13) and hence

An—1)2S,—4(n—1)rS;—4(n—1)n—2)Ss A +r(r — A +4(n—1)r Ay(r—Ay)
+2(n—1)r(As— AD—2(n—1)2n—1) A,(Ay— AD—@n—1) A\ (r— A, =0,

which together with (2.4) yield

1
m(r—A,)a—l—%n—l)Ai’—{—BrAl(r—Al)——B(Zn —3)S,A,—3rS,

+4(n—1)S;=0.
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Thus, A, is a root of the cubic equation with constant coefficients because S;
is constant for each number 7. Accordingly A, is constant. By the definition
of A,, it is not hard to see that

3.1 SirpVp™=0

because the Ricci tensor is parallel. By differentiating (2.3) covariantly, we find

(3.2) 2n—={(Vep)Ssr 0"+ Ve p)Sir "+ D:S;eVa D™+ P;S:: Ve 7}
={r+Cn—=3AHT:p )i+ Nep)ps} .

If we apply p? to this and sum for j, and make use of (3.1), we obtain

2n—1S; N p"=0F—A)VeDi.

Thus, (3.2) turns out to be
(Vep)Sie "+ (Ve p )Sirp"=A(piVe o5+ D N e Do)

Transvecting the last equation with S{p’ and utilizing (3.1), we get

3.3) (A= ADV p=0.

By means of Remark 1, it follows that A,=A? and hence S;,p"=A;p;. There-
fore, the relationship (2.3) is reduced to

2tn—1)S;=r—ANg;—{r—Cn—1)A,}p;p:.
The Ricci tensor of M being parallel, it is seen that
{r—@n—DA}(pNep;+ Ve pi)=0

and hence r—@n—1)4,=0. Thus, M is Einstein. But, there are no Einstein
real hypersurfaces of M,(c), ¢#0 because of Theorem K and Theorem M (see
also [10]). Hence Theorem A is completely proved.

Proor OF THEOREM B. Due to Theorem A, Proposition 2.1 and Proposition
2.2.

By means of (2.16), Theorem A and Proposition 2.2, it is clear that 4=£4=1.
Therefore we can state the following fact:

REMARK 3. Let M be a real hypersurface with harmonic curvature of
M.(0), ¢#0. Then M has three distinct Ricci curvatures: (r—A,)/2(n—1),
(A++/D)/4(n—1), (A—~/D)/4n—1) with multiplicities 2n—3, 1, 1 respectively.
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