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REAL HYPERSURFACES WITH PARALLEL RICCI

TENSOR OF A COMPLEX SPACE FORM

By

U-Hang Ki*

Introduction.

A Kaehlerian manifold of constant holomorphic sectionalcurvature c is

called a complex space form, which is denoted by Mn(c). The complete and

simply connected complex space form consists of a complex projectivespace

PnC, a complex Euclidean space Cn or a complex hyperbolic space HnC,

according as c>0, c=0 or c<0. The induced almost contact metric structure

of real hypersurfacesof Mn(c) willbe denoted by (/, g, P).

Many subjectsfor real hypersurfacesof a complex projectivespace have

been studied by Ceciland Ryan [1], Kimura [8],[9], Kon [10], Maeda [13],

Okumura [15], Takagi [16],[17],[18] and so on. One of those, done by

Kimura, assertedthe followinginterestingresult.

Theorem K ([9]). There are no real hyper surfaces of PnC with parallel

Ricci tensor on which the structure vector P is principal.

On the other hand, real hypersurfaces of a complex hyperbolicspace HnC

have also been investigatedfrom differentpoints of view and there are some

studiesby Chen [2], Chen, Ludden and Montiel [3], Montiel [12] and Montiel

and Romero [14]. In particular,it is proved in [12] the following fact:

Theorem M. There are no Einsteinreal hypersurfacesin HnC.

A Riemannian curvature tensor is said to be harmonic if the Ricci tensor

S is of Codazzi type. Although the concept is closely related to a parallel

Ricci tensor, it was shown by Derdzinski [4] and Gray [5] that itis essentially

weaker than the latter one. Nakagawa, Umehara and the present author [6]

proved that there exist infinitely many hypersurfaces with harmonic curvature

and non-Ricci parallelin a Riemannian space form.

Recently, some studies about the non-existance for real hypersurfaces with

*°Partially supported by KOSEF.

Received December 14, 1987.



74 U-Hang Ki

harmonic curvatureof PnC (resp.HnC) have been made by Kwon and Nakagawa

[11] (resp.Kim [7]). Their resultsare following:

Theorem KNK. There are no real hypersurfaces with harmonic curvature

of Mn{c), c^O on which the structure vector is principal.

The main purpose of the present paper is to improve Theorem K and

Theorem KNK, and study also real hypersurfaces with harmonic curvature of

a complex space form Mn{c), c^O. We shall prove the followings:

Theorem A. There are no real hypersurfaces with parallel Ricci tensor oj

a complex space form Mn{c), c^O.

Thhorem B. There are no real hypersurfaces with harmonic curvature oj

Mn(c), c^O satisfying one of the following conditions:

(1) P is an eigenvector corresponding to the Ricci tensor,(2) the number oj

Ricci curvatures does not exceed 2.

1. Preliminaries.

We begin by recalling fundamental formulas on real hypersurfaces of a

Kaehlerian manifold. Let iV be a real 2n-dimensional Kaehlerian manifold

equipped with a parallelalmost complex structure F and a Riemannian metric

tensor G which is F-Hermitian, and covered by a system of coordinate neigh-

borhoods {U; xA}. Let M be a real hypersurface of iV covered by a system of

coordinate neighborhoods {V; yh) and immersed isometrically in N by the

immersion i: M-*N. Throughout the present paper the following convention

on the range of indices are used, unless otherwise stated:

A, B, ■■■= !, 2, ■■■, 2n;i, j, ―= 1, 2, ･■■, 2n-l.

The summation convention will be used with respect to those system of indices.

When the argument is local, M need not be distinguished from i(M). Thus,

for simplicity, a point p in M may be identified with the point i(p) and a

tangent vector X at p may also be identified with the tangent vector i*(X) at

i{p) via the differential z* of i. We represent the immersion i locally by

xA=xA(yh) and Bj-(Bf) are also (2n ―l)-linearlyindependent local tangent

vectors of M, where Bf―djXA and dj―d/dyj. A unit normal C to M may then

be chosen. The induced Riemannian metric g with components gjt on M is

given by gji=G(Bj, Bi) because the immersion is isometric.

For the unit normal C to M. the following representations are obtained in
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each coordinate neighborhood:

(1.1) FB^HBn+PiC, FC=-piBi,

where we have put Jji=G(FBj, Bt) and pi=G(FBi, C), ph being components

of a vector fieldP associated with Pt and Jn―Jrjgri- By the properties of the

almost Hermitian structure F, it is clear that Jjt is skew-symmetric. A tensor

fieldof type (1, 1) with components J＼ will be denoted by /. By the properties

of the almost complex structure F, the following relations are then given:

JUr = -8^ + pip＼ prJ?=0, PrJTi= R, PiP' = l,

that is, the aggregate (/, g, P) defines an almost contact metric structure.

Denoting by V;- the operator of van der Waerden-Bortolotti covariant differenti-

ation formed with gjif the equations of Gauss and Weingarten for M are

respectively obtained:

(1.2) VjB^hjtC, V,C = -/*S£r,

where ha are components of a second fundamental form a, A―{hf> which is

related by hji=hrjgri being the shape operator derived from C. We notice

hear that ha is symmetric. By means of (1.1) and (1.2) the covariant derivatives

of the structure tensors are yielded:

(1.3) ijJiH^-hjipu + hjnpi, liPi^-kirJl.

In the sequel, the ambient Kaehlerian manifold N is assumed to be of

constant holomorphic sectional curvature c and real dimension 2m, which is

called a complex space form and denoted by Mn(c). Then the components of

the curvature tensor K of Mn{c) take the following form:

KnCBA ^-riG DAG cb~―G db& c a~＼-F DAF cb~ FdbFca~^FdcF' Ba)

Thus, the equations of Gauss and Codazzi for M are respectively obtained

(1.4) Rkjih=

(1.5)

-j^Skhgji―gjhgki+JkhJji―JjhJki--^JkjJih)+hkhhji ―hjhhki

Vkhjt-Vjhtt=j(pkJjt-pjJki-2ptJkJ)

where Rkjiu are the components of the Riemannian curvature tensor R of M.

To be able to write our formulas in a convention form, the components

Xfi of a tensor field Xm and a function Xm on M for any integer m(^2) are

introduced as follows:

x?t=xJtlx＼i-x＼≫
i
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In our notation, the Gauss equation (1.4) implies

(1.6) Sj^jiGn + Dgji-ZPjPJ + hhjt-hit,

where Sji denotes components of the Ricci tensor S of M, and h the trace of

the shape operator A.

Remark 1. We notice here that the structure vector P cannot be parallel

provided that c^O. In fact,if P is parallel along M, then the second equation

of (1.3) becomes hjrJri=0. Thus, it is not hard to see that hji―hpjpj because

of properties of the almost contact metric structure. Hence it follows that

TJkhJi=C7kh)pjpi, which together with (1.5) give

■jiPkLi-pjJki^piJkj^WkWPj-WjVp^Pi

By transvecting pijkj, we have c(n ―1)―0. Thus the assumption c^O will

produce a contradiction.

2. Real hypersurfaces with harmonic curvature.

Let M be a real hypersurface with harmonic curvature of a complex space

form Mn(c), c^O, that is, the Ricci tensor S satisfiesxJkSji=T7jSki. Then, we

easily, using the second Bianchi identity, see that the scalar curvature r of M

is constant everywhere. Moreover, the Ricci formula for Sjt gives rise to

which together with the firstBianchi identity and the Ricci formula imply that

(2.1) RmkirS1jJrRkjirSm.JrRjmirSl ―V,

where Sj=Sjigih, gji being the contravariant components of gjt. Therefore,

it follows that

JkiRkji!lSi+2rkRkmihS?=0

and hence, in consequence of (1.4),

{-n+j)cSJrrt+jiSirrJ-(r-A1)JJt-pt(Srtpt)Jtj-2PAStrPf)Ji}

+2htrhisJrsStj-2hjthirJsrSts=0,

where we have put A1=Sjipipi. By the way, the last two terms of this

3
reduces to ―yrCpj(hrtPt)hiSJrs by virtue of (1.6). Accordingly we have

Sirn-(2n-3)Sjrri-(r-A1)Jji-Strpr(piJtj+2pjJl)-3hrtpthisrspj=0
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because of the fact that c=£0is assumed, which implies

3hrtpthisJrs+(2n-l)Srtptri=0.

Thus, the last equation can be written as

(2.2) (2n-3){Sjrri-(Strpr)pjJl}-SirrJ+(SrtPt)PiJrj+(r-A1)Jji=0,

from which, taking the symmetric parts,

Sjrri + SirJ^Strp'ipjJl + pitf).

Hence, the relationship (2.2) turns out to be

2(n-l){SJrJri-(Strpr)pjJti}+(r-A1)Jji=0.

Transforming this by J＼and utilizing properties of the almost contact metric

structure, it is reduced to

(2.3) 2(n-l){Sji-piSjrpr-pjSirpr}-(r-A1)gji+{r+(.2n-3)A1}pjpi=0,

which implies immediately that

(2.4) 2(n-l)(S2-2A2+A21)=(r-A1)2,

where Ai=S2Jipipi.

Proposition 2.1. Let M be a real hyper surface with harmonic curvature of

a complex space form Mn{c), c^O. // the structure vector P is an eigenvector

of the Ricci tensor,namely, if

(2.5) SjrP^A.Pj,

then M is Ricci parallel.

Proof. By means of (2.5), the relationship (2.3) reduces to

2(n-l)SJi-(r-A1)gJi+{r-(2n-l)A1}pjpi=0,(2.6)

which implies

(2.7)

(2.8)

2(n-l)S%-{r+(2n-Z)A1}Sji+A1(r-A1)gji=0

Differentiating(2.6) covariantly, we find

2(n-l)VkSji + (?JkA1)gJi-(2n-l)C7kA1)PjPi

+ {r-(2n-l)A1}{(Vkpj)pi + (Vkpi)pj}=0

because the scalar curvature r is constant. Since the Ricci tensor S is of

Codazzi type, it is seen that
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(2.9) C7kAl)gji-(^jA1)gki-(2n-l){C7kA1)pJ-(7JA1)pk}pi

+ {r-(2n-l)Al}{{lkpj-ljpk)pi+{lkpi)pj-{ljpi)pk}=§.

If we transvect this with gji, then we obtain

VkA1-(2n-l)(p1VrA1)pk+{r-(2n-l)Al}prVrpk=0

and hence />r7ri41=0. Thus, it follows that 77kA1+{r―(2n―l)A1}prVrpk=0

Transvecting (2.9) with pjpl and taking account of the last equation, we car

verify that Ax is constant everywhere. Therefore, by differentiating (2.7

covariantly, we find

2(n-l)VkS%-{r+(2n~3)A1}VkSji=Q,

which shows that S^ is of Codazzi type. Thus, the Ricci tensor S is paralle!

because the scalar curvature of M is constant (see Umehara, Theorem 1.3 oi

[19]). This completes the proof of Proposition 2.1.

Remark 2. If the structure vector P is principal, that is, hjrpT―aph we

can see from (1.6) that P is the eigenvector of the Ricci tensor and hence the

Ricci tensor is parallel.

Now, transforming (2.3) by S＼,we obtain

(2.10) 2{n-l){S%-{Sktpt){Sjrpr)-pjSlrpr}~{r-Al)Sjk

+ {r+(2n-3)A1}pjSkrpr=Q,

which enables us to obtain

(2(n-l)Slrpr-{r+{2n-3)A1}SkTpr)pJ-(2{n-l)StJrpr

-{r+(2n-3)A1}Sjrpr)pk=0.

Thus, it is seen that

(2.11) 2(n-l)Slrpr-{r+@n-3)Al}Skrpr=(2(n-l)Ai-A1{r+(?n-3)A1})pk.

Making use of the last equation, (2.10) turns out to be

(2.12) 2(n-l){S%-(SJtpt)(Skrpr)}-(r-A1)Sjk+{jiPjPk=0,

where fi=Al(r―A1)―2(n ―l)(At―Af). Transforming (2.12) by SI and utilizing

(2.3),(2.11) and (2.12), we get

(2.13) A(n-iyS3ji~4(n-l){r+(n-2)A1}S%

+ {(r-Al)(r+(4n-5)A1)-4(n-mA2-Ai)}Sji-ii(r-A1)gji=0,

or, equivalently
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(S$-
2r(M^}

5^{2(n-l)Slr-kSir+figir}=0

where we have put X=r+(2n―3)A1.

us that there exist at most three

tf±VZ?)/4(n-l), where
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Thus the minimal polynomial for S tells

Ricci curvatures of M: (r―A)/2(n―1),

(2.14) D= {r-(2n-l)A1}z+16(n-i)2(A2-Af).

And their multiplicitiesare respectively denoted by 2w ―1―k―/2,h and 4.

Therefore the scalar curvature r of M satisfies

(2.15) (/1+/2-2){r-(2n-l)yl1} = VD(A-/2).

We also have

4(n-lfS2=|(22+D)(/1+4)+|;v'fi(/i-4)+(/'-^1)2(2K-l-/1-/2))

which together with (2.4),(2.14) and (2.15) imply that

(2.16) G42-^)(/i+4-2)=0.

Now, suppose that the number of distinct Ricci curvatures does not exceed

2. Then we can easily see that A2=A＼ because of (2.15). Thus, it follows

that SJrpr=A1pj.

According to Proposition 2.1, we have

PROPOSITION 2.2. Let M be a real hypersurface with harmonic curvature of

a complex space form Mn{c), c^O. Then the number of distinctRicci curvature

is at most 3. In particular,it does not exceed 2, then M is Ricci parallel.

3. Real hypersnrfaces with parallel Ricci tensor.

In this section we devote to investigate the real hypersurfaces with parallel

Ricci tensor of a complex space form Mn(c), c=£0. Since the Ricci tensor S is

assumed to be parallel,we have (2.13) and hence

4(n-l)2S3-4(n~l)rS2-A(n-l)(n-2)S2A1+r(r-Aiy+A(n-iyA1(r-A1)

+2(n-l)r(A2-Af)-2(n-l)(2n-l)A1(A2-Ai)-(2n-l)Al(r-A1)2=0,

which together with (2.4) yield

2

^
__1)(r-A1)*+2(n-l)Al+3rA1(r-Al)-3(?n-3)SiA1-3rS2

+4(n-l)Sa=0.
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Thus, Ai is a root of the cubic equation with constant coefficients because St

is constant for each number i. Accordingly Ax is constant. By the definition

of Au it is not hard to see that

(3.1) S,r/>i7*/>r=0

because the Ricci tensor is parallel. By differentiating(2.3)covariantly, we find

(3.2) 2{n-l){(lkpi)Sjrpr+{lkp])SirpT+piSjTlkpr+pjSirlkpr}

= {r+(2n-3)A1}{(lkpj)pi+^kpi)PJ}.

If we apply pj to this and sum for /, and make use of (3.1), we obtain

2(n-l)Sirlkpr={r-A1)lkpi.

Thus, (3.2) turns out to be

FkPJSjrP'+WkPdSirP^AAptftpj + pjlM.

Transvecting the last equation with Sip6 and utilizing(3.1), we get

(3.3) (At-AWkPi=0.

By means of Remark 1, it follows that A2=Al and hence Sjrpr=A1pj. There-

fore, the relationship (2.3)is reduced to

2(n-l)SJi=(r-A1)gji-{r-(2n-l)Ai＼pjpt.

The Ricci tensor of M being parallel,it is seen that

{r-(2n-i)A1}(piVkpj+p^kpi)=0

and hence r―(2n―l)A1=0. Thus, M is Einstein. But, there are no Einstein

real hypersurfaces of Mn{c), c^O because of Theorem K and Theorem M (see

also [10]). Hence Theorem A is completely proved.

Proof of Theorem B. Due to Theorem A, Proposition 2.1 and Proposition

2.2.

By means of (2.16),Theorem A and Proposition 2.2,itis clear that ^=4=1.

Therefore we can state the following fact:

Remark 3. Let M be a real hypersurface with harmonic curvature of

Mn(c), c^O. Then M has three distinct Ricci curvatures: (r―Ai)/2(n―1),

(A+VZ7)/4(n―1), U―VU)/4(n-l) with multiplicities2n―3, 1, 1 respectively.
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