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1. Introduction

Let Q be a bounded domain ofRk with Lipschitzboundary dCl. We consider

the followingsystem of hyperbolicequationsfora map H:nx(O,≫)-)Jl':

(1.1)
au{x)D^ui(x,t)-Dp{bf(x)Dau'(x,t)) + cIJ(x)＼＼u{x,t)＼＼";-2ui(x,t)

+a
ij(x)Dlu'(x,t)

= R in Qx(0,°o), j = ＼,...,i

where D, = d/dt,D(l = d/dx" ,＼＼u(x,t)＼＼c= (cri(x)u (x,t)uJ(xj))112 and m>＼. Here and

in the following, summation over repeated indices is understood, the greek indices

run from 1 to k, and the latin ones from 1 to £. We assume that the coefficients

aAx), bjf(x) and cAx) are bounded functions defined on O and satisfy the

conditions

(1.2)

(1.3)

^.(jc)^'^' > Ao l^l2 for all £eR',

<bf{x)nlanJfi>Xx＼T]＼1 for all i] e Rkl

c,7(jt)£'<f>A2l£l2 for all %eR',

aJx) = aii(x), bf(x) = bf(x), cJx) = cAx),

for some positive constants A0,A,and A2. The initialand boundary conditions are

(1.4)

(1.5)

u(x,O) = uQ(x), D,u(x,O) = vo(x) in Q,

u(x,t) = w(x) on <9Qx(0,°°),
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where uo(x),vo(x) and w(x) are given maps such that uo(x) = w(x) on dQ..

In §2 we shall construct global weak solutions to (1.1), (1.4) and (1.5) by the

semi-discretization in time variable combining the variational method (Theorem

2.1). This construction was employed to hyperbolic equations without damping

term by Tachikawa [15]. It is very powerful tool to construct global weak

solutions, because we need not distinguish technically between single-valued

equations and systems of equations. It applied to other various evolution equations

in [10, 11, 12,5, 1,7,8].

The method of semi-discretization in time variable, so-called Rothe's method,

has been used to construct solutions of parabolic equations since about 60 years

ago (see Rothe [13]). Moreover, by Rektorys [12] and Kacur[3], Rothe's method

was applied to hyperbolic equations also.

Though the Faedo-Galerkin method is very common to construct

solutions, it would be fruitful to consider various constructions, since

solutions of hyperbolic systems are not uniquely determined in general.

weak

weak

In §3 we shallinvestigate the exponential decay property of solutionsin case

of w = 0 and m>2 (Theorem 3.1). For the case that 2<m<2(k-l)/(k-2),

Zuazua [18, Example 2.6] shows that any weak solution has the exponential decay

property. Moreover, itis known that the weak solutions which are given as limit

functions of smooth approximate solutions satisfy the exponential decay property

(see [9]). For example, the Faedo-Galerkin method gives us the weak solutions

satisfying the exponential decay property. On the other hand, the weak solutions

constructed in §2 are not given as limits of smooth approximate solutions.

Therefore, it is not trivialthat they have exponential decay property even if

m> 2(k-I)l{k-2). We shall utilizethe discrete energy method to approximate

solutions, and pass to the limit. In the time-discretized form we can employ

various testfunctions and easily derive discrete energy method.

Other resultson hyperbolic equation with damping term can be seen in [14, 6,

17, 19, 20, 4].In [6, 17, 4] authors investigated global smooth or strong solutions

and their asymptotic behavior. Zuazua [19, 20] dealt with equations with

localized damping term. See also references cited therein.

2. Construction of weak solutions

In this article we denote I?'-valued Sobolev and Lebesgue spaces

Hl2(Q;R'), If(Q;R') etc. simply by Hl2(Q), L"(O) etc. We define a weak

solution of (1.1) satisfying the initialand boundary conditions (1.4) and (1.5) as

follows.
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Definition. Let ydn and y,=0denote the trace operators to dQ and Qx{0}

respectively. For uo,w e //K2(O)n Lm(O) and v0eL2(Q) satisfying ydQu0=ydQw,

a map ≪:Qx[0,r)―≫/?'' is called a weak solution of (1.1) on [0, T) with the

initial and boundary conditions (1.4)―(1.5), if the following conditions are

satisfied:

(i) ueL°°(O,T-,n"(Q))nL°°(O,T-,HU2(Q))withDlueLr(O,T;L2(Q))

(ii) 7t=0u(x,t)= u0(x) and ydQu(x,t) = ydilw(x) for 0<t<T

(iii)For any w(x, t)e C'([0,T);Co(O)) n C([0,7); C1(fl)),

(2.1)

ll L (-aij(x)Dlui(x,t)Dty/j(xj) + b^(x)Daui(x,t)Dpy/j(x,t)

+C,J
(jc)|Kjc, t)＼＼'"-2u1 (x, t)y/j (x, t) + a.. (x)D,ui (x, t)＼ifj(x, t))dxdt

-J. aAxXixWix^dx.

We say u is a global weak solution if u＼Qx[0T)is a weak solution on [0, T) for any

T> 0.

Remark. It follows from (i) that u e C([0,7];L2(Q)) (see [16, Chapter III,

Lemma 1.1]).

To construct a weak solution of (1.1), we proceed as in [15]. We determine a

family {un} as follows:

(I) (n = 1). Let vo(x) - (v]0(x),-･･,v'0(x)) be a given map of class L2(Q) as in the

above definition. Take v(x,t)e L~(R;Hl'2(Q))nL°°(R;L:"(Q)) such that

v(x,O) = O, D,v(x,O) = vo(x) in Q, v(x,t) = O on dQxR,

D,v(-,t)is a weakly continuous map of t with values in L2(O).

Let us define u,(x) = uJx) + v(x,h)

Remark. To get a map v(x,t)satisfying(2.2),for example, we solve the

initial-boundaryvalueproblems

Dfvi(x,t)-Avi(x,t) + ＼vi＼m'2vi(x,t)= 0 on QxR,

v'(jc,O) = O, Dtv'(x,O) = v'o(x)

v'"(jc,O= 0

in Q,

on dQxR

[14, Theorem 2] guarantees the existence of weak solutions {v'(x,t)} of (2.3) in

the class L°°(R;HL2(Q))n L°°(R; Lm (Q)) with the weak continuous time

derivatives {Dv'(x,t)}. Moreover, they satisfy the energy estimates
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(* I D,v> f 4-I||Dv'||2 + ― |v'T ]dx<
f ^>

K ＼2dx

for all t, where ||-||denotes the Euclidean norm, and D = (D],...,Dk).

(II) (n>2). Given ≪,_,,≪,_,e Hh2(Q)n L'"(O) and h>0, we consider the

functional

^■'-[[{""'2y-"4"^^>""4

for ueHu2(Q)nL"(Q) with u = wondQ. Here ||m||^

b°f{x)r)'ariJpFor n>2, let un(x) be a minimizer of

{u g /f'-2(Q)nL"'(O):u = w on ^O}.

The Euler-Lagrange equation of ^n(u) is

0
_d_

de
.?n(u + e<p)＼£=0

(2.5)
in ＼h2

2h I

= aij(x)uiuJ,＼＼7]＼＼2h =

^ in the class

ar(x){u' -2<_, +ui_2)<pj +bf(x)DauiDp(pj+ciJ(x)＼＼u＼＼::-2ui(pJ

+ ^ atJ( jc)(k' - ≪;,_,)(pj
^dx

for all <p e //^ (Q) n L'"(Q)

The lower semicontinuity of Lp-norms guarantees the existence of a minimizer of

:?n . Moreover one can see that a minimizer satisfies(2.5) by means of

differentiabilityof the integrand of :yn with respect to Du and u . About general

theory of the direct method of calculus of variations see [2, Chapter I]

Thus u(n > 2) satisfies(2.5) and we get the following lemma.

Lemma 2.1. Let

(2.6)
ill

{u } be as above. Then we have the energy estimates

11Un -Kt,_, 1|^

h2
dx+£(un)+£{un_x)

＼<K0

for some positive constant K,,depending on u{)and v0

£(u) =
L [＼＼＼Du＼＼j

>
+
m '

Proof. Since un and un_2coincideon dQ,

where

]dx

un -un_j(n > 2) is an admissible

testfunction for (2.5). Thus using Young's inequality, we get



(2.7)

0

Now, let

d_

d£
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.^>,,+£(w,,-W,,_2))L0

-IM aki(< - 2<_, + u'n_2)(ui- uU) + bfDX(Dpui - Duj^)

+ciyii≪niir2<(≪i-≪n-2)+―

-≪,,-2
ll≪

2h

＼
dx

-(""--
I^"-+l||DH^ii;+l|i^r)U

f IIUn ~Un-＼llu j

b≫=i^lDuJl+>'x)dx

Then (2.7) implies

≪,+ K + bn_x< an_x+ bn_{+ bn_2<-<ai+bi+b0

On the other hand, the definition of u, and (2.4) imply that

a, =

/22

l

<£
~ h

＼＼v(x,h)＼＼ldx<-^l＼hlhQ＼＼ D,v(x,t)＼＼2dt＼dx

fh f
||VO(*)||2^<C'[ h＼＼V{)(x)＼＼2dx,

J o Ja Jq.
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where c and c' are constants depending only on (a,7). From the above estimates,

remarking (2.4) again, we get (2.6).

Now, using {un(x)},we constructtwo maps uh and

a weak solutionof(1.1).Let us define

uh(x,t) =
＼

u *(*.')=

uQ(x)

un(x)

uJx)+v(x,t)

t-(n-l)h
h
u(x) +

u, which approximate to

nh-t
h

for t = 0,

for (n - ＼)h< t < nh, n>＼,

for -＼<t<h,

u .(x) for (n-l)h<t<nh,n>2
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Then, we can proceed as in [15,§3]and see that uh and uh converge to a weak

solutionof theequation(1.1)which satisfiesthe conditions(1.4)and (1.5).

From (2.5),we can see that

Jo JiJ

jj^(x)(D,ui,(x,t)-
D,u'h(x,t - h))(pj(x)

+b?(x)DX(x>≫Dfiq>J(x) + cu(xmk(xM?2uUx't)<PJ(x)

+w
x)[d,u[{xJ)+ D^ixJ -h))^ {xlri(t)dxdt

(2.8) -＼l＼J＼{aiMADM^t)-R<<{x,t-h))<pJ{x)

+b?{x )DX(x,t)Dp<pJ(x) + cij{xy＼uh(x,t)＼＼≫-2utix,t)q>J(x)

4* (*)(DX(x, t) + D,u[(x,t - h)) (pj(x| ?|(r)rfw/f= 0

for any T > 0 and 77e C~[0,T).

On the other hand, from (2.6), we get the estimates

(2.9)

(2.10)

(2.11)

(2.12)

ess sup ||£)

-＼<t<T Ja

n

uh ＼＼2adx<2K0,

II D,uh ||

J>

ldxdt<2K0 (T+l)

(u,)dt<2KJT + l),

!

<

>(≪*
)dt < 2KJ

Using the Banach-AJaoglu theorem, from (2.9),(2.10) and (2.11) we can deduce

that

(2.13)

(2.14)

(2.15)

D,uh -^D,u,Dauh -±Dau weakly in L2(Qx(-l,7))

uh -±u weakly in L'"(Q x (-1, T)),

D.uh -* uf weakly starin L°°(-1, T; L2(Q))

for some u e £"(Qx(-l,T))n HU2(Qx(-lT)) and u' e L°°(-1,T;L2(Q))as h i 0

taking a subsequence if necessary. Here m' = max{2,m}. In what follows h 1 0

means always a limit along a suitable subsequence. Since (2.13) and (2.15) imply

that Dtu = u' almost everywhere on Qx(-lJ), we can see thatDtu e IT(-l,T;

Is (Q.)).Moreover, using Rellich's compactness theorem, from (2.13) and (2.14),
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we get

(2.16) uh->u stronglyin L2(Qx(-l,7)) as h i 0

Using the Banach-Alaoglu theorem again, by (2.12) we obtain that

JDauh -±Dau weakly in Is (O x (0, T)),

1
uh-^u weakly in L'"'(Ox (0,7))

as hiO for some u e L'"'(Ox(0J)) with DieL2(flx(0J)) taking a

subsequence if necessary.

Moreover, by the definition of u, and uh and (2.9), we have

(2.17)
i: L
IIuh
~uh
＼＼＼dxdt^ ch2K0T ->0 as hio

for some constant c depending only on the matrix {atj). Hence, using (2.16) and

(2.17), we see that uh ―>u in L2(Qx (0,T)). This implies that u = u almost

everywhere and therefore Dau = Dau almost everywhere on Ox(0, T). Thus we

obtain

(2.18)

D

≪

uh^u weakly in IT (Ox (0,7)),

uh -≫u strongly in L2 (O x (0, T)),

it -^Dau weakly in L2 (Ox (0,7))

as hiO.

For any T](t)e CT [0,7), if /iis small so that spt rjcz[Q,T-h), then

(2.19)

i

h
atj(x)(Dtul (x, t) - Dtu[ (x, t - h))(pj (x)T](t)dxdt

aVj(x)D,u'h (x, t)(pj(x)7?(?)
f<+ h)

dxdt

The weak continuity of D,

(2.20)
If"

£
ayixWv'ixjWixMt + Wdxdt

v impliesthat

j aJx)Dlvi(x,t)(pJ(x)r](t+ h)dxdt^
＼
a.-ix^ix)^'(x)T](O)dx

as hiO. From (2.19) and (2.20),we obtain

f7"f ＼aiM){DK(xJ)-Dtu[(xJ-h))(pj(x)n{t)dxdt

(2.21)

-≫-
i:
Jo ij(x)Dlui(x,t)(pj(x)D,T](t)dxdt-lalJ(x)vio(x)(pj(x)ri(O)dx



u[(x,t) - Dtu[(x,t - h))(p'(x)rf(t)dxdt
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as hiO.

Because of (2.18), by means of Egoroff's theorem, we get

(2.22)
f

Jo
cij＼uh＼C2ull(piridxdt-V J. cij＼＼u＼＼'^'2u'(pJT]dxdt―≫0 as hiO,

taking a subsequence if necessary.

Next, let us see the convergence of the damping term. Using (2.13),

i: £
a^x^D^ixJ-h)-Dtu>(x,t))(p]{x)T]{t)dxdt

we have

< j aij(x)D,uih(x,t)(pJ(x)T](t)dxdt- jo
£
aij(x)Dtul(x,t)(pJ(x)T](t)dxdt

J -h Jn J
(x)Dtuih(x,t)q>J(x)(7](t + h)- 7}{t))dxdt

<
f|
fltfu)(D,M;

J o Ja v

J -h JQ.

+
f J

J T-h J:

D,u'h(x, t) - D,u' (x, t))(pJ(x)7](t)dxdt

aAx)D, < (x,t)(p'(x)7](t)dxdt

aij(x)D,uih(x,t)(pi(x)7](t)dxdt

J -h Jn IJ

-> 0

as h -I0 . Therefore

{x)Dtu[ (x, t)(pJ(x)(rf(t + h)- r){t))dxdt

,we get

n

J o Ja
|a,;(x)(DX(*,O + £^

(2.23)

Using (2

J o Jn y

20) again

i^xJ-h^ixMOdxdt

(x)Dtu(x,t)(pj(x)T](t)dxdt as hlO

we can see that

fh f |a,(*)(D,

Jo Ja h ' v



(2.24) =

―≫

n

J o Jn
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j-a^x^Dy (xj)- D/ (x,t - h))(pj(x)T](t)dxdt

I
a,:/UK(*)(p7(x)?7(O)^-£ aij(x)vio(x)(pJ(x)ri(O)dx= O

as h -lO . Moreover, it is easy to see that

(2.25) Jo

I
[bf (x)Dau;i(xj)Dp(pi(x) + clj(x)＼＼uh(xj)＼＼:'-＼;,(x,t)(pi(x)

+
2
au(x^uiix^O + D^ixj-h^y'ix^rKOdxdt-tO as hi 0
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Now, letting hiO in (2.8) and using (2.13), (2.18), (2.21), (2.22), (2.23),

(2.24) and (2.25) we obtain

(2.26)

f

Jo

+ c

j
(-a,7 (x)D,u' (x, t)(pJ(x)DtTftt) + bf (x)Daui (x, t)Dp(pJ (x)T](t)

..(jc)||u(x, t) C2u' (x, t)(pj(x)ri(t) + a,{x)Dlul(p1 (x)r](t)(t))dxdt

=
I
a^(x)v;(x)^(x)r](O)^,

for all cpe C^(Q), and for all rje Cq[0,T). Since functions of the form (p(x)rj(t)

are totalin the space C'([0,r);C0(Q))nC([0,r);C'(Q)), (2.26) means that w

satisfies(2.1).

On the other hand, since uh(x,0) = u0(x), uh＼dnx[_lm)= w and uh -^ u in

//Il2(flx(-1,T)) as h 10, we can see that w satisfies the initial condition

u(x,Q) = uQ(x) and the boundary condition u＼dCix(Qoo)= w also. Using diagonal

argument, we get a global weak solution.

THEOREM 2.1. Let Q. be a bounded domain of Rk with Lipschitz boundary

dQ.. Suppose that (1.2) and (1.3) are satisfied. For any voeL~(Q) and

uo,we //''2(Q)nL'"(Q) with Ydnu0 -ydQw, there existsa global weak solution of

(1.1) which satisfiesthe initialand boundary conditions (1.4) and (1.5).

3. Asymptotic behavior

In this section we show the exponential decay property for the weak solution

of (1.1) which is constructed in the previous section. In the following we treat

only the case that m > 2 and the boundary conditions are

(3.1) u(x,t) = 0 on <90x(Q,°o)
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We test (2.5) by (p = un - ≪,_,to get

°= i:^K+£K-^-.))L

=
f [-n-fltf

K< -<-,)-≪-. -<-2)K<-"U)

+ bfDauin(Dpui-Dpui_,) + clJ＼＼un＼＼r2uM,"<-.)

(3.2) +
^a..≪

-M;_2){uJn -uJn_{)＼dx

=
jQ I ^2-dl

Un ~ Un-＼ ＼t ~ "ij (<-l " U>n-2 )(< ~
K-＼ ) 1

+ ||Dun ＼＼l-bfO^D^ + ||un ||≫-|| ua ＼＼r＼<≫L

+
2^IK-<V,

II'+^aiA< ~<-M ~<-2)＼dx

Thus dividing (3.2) by h and using Young's inequality, we get

(3.3)

+ "
U" M"~'

"≪ j
L_
a (u' ―u' )(uj ― u1 "I

＼dx

2/?2 2h2 j ' ""' ""'
un-2nUJC

Since we are posing the homogeneous boundary condition, un is an admissible

testfunction for (2.5) too. Therefore we can see that

0 =iH>'<+eM4=o

-L

"Jo

+＼＼Dun＼＼l+＼＼u

Thus we get

L

h2

We +
＼
an< ≪ - ui-＼̂~Jhav (m≫~2m≫-i+ u'"-2K

＼dx

≪/,(<-<-l)≪-l-<-2)^



"I denotes the ceiling i.e.,

x), the above difference

(3.4) -m*

Existence and Asymptotic Behavior

h

+＼＼Dunis+n iibr

-aijUn-l
<.
h

+ a

jraij≪-2<-i+<-2)<

≪u-―h―

＼dx

On the other hand, 0 = -r&n(un +e un)＼e=0implies the estimates

U
oFa≪

61

(,: - 2<_, + u＼,_2)u',ai <
I (n
a,. ＼n+ii≪.ic+""'^2"° +

^k

Remarking that with the help of Poincare's inequality the right-hand side of the

above inequality is estimated bv the energy estimate (2.6), we obtain

(3.5) II ＼a
ij
{U'n-2U'n-＼+<-MdX＼^hK＼

where Kx is a constant depending only on Ko and Q..

Now, inserting (3.4) into (3.3) and using (3.5), we obtain

(3.6)

0> 1{
i lK-"n-lll≪ IK-1 -Un-lt

2h2 2h2

H f＼DuH＼＼
4f-
h＼m

4

2

h ^wDu^my

ikii:-->,,-,ii:)+

＼≪-A

h

2

)

I

II ",-",-! ll≫

2h2

-WDu

Kiir

n

＼＼b

<-＼ + <-2-w^
h

-hKx

Let uh and u, as in the previous section and put

(3.7) ^(0:=JQ(|iiA%ie,+|^; D,ui

J4<V" <^,y

+
2l|D"JI*

+
mKrV*

Then from (3.6) we can deduce that

because m>2.Forany t e (0,°o),putting n = ＼tlh~](|~

fx]is the smallest integer greater than or equal to

inequality implies that
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(3.8)

(3.9)

(3.10)

Hence letting

X,

h

(3.11) m

where K^

(3.13)

Takeyuki Nagasawa and AtsushiTachikawa

(0 = rh(nh)<

<

I

( I

T,(+0) +

^

>

)■

h2K,

(+0) + M,

1

＼+ h

(t)dxdt < J K2e''T](t)dt,

1

l + h

Remark that ＼/;(+0)is dominated by a constant K2(u0,v0) which is independent

of h. Since we are assuming that O is bounded, we can use Poincare's inequality.

Therefore it follows from (3.8) that

^j

Qaiju;iDyh(xj)dx
+ CojQ＼＼uh＼＼l(x,t)dx<(l+ hy"K2+hKl

where Codepends only on (a,:/),(^) and Q,. Multiplying the both side of (3.9) by

7]g CT[0, °°)with ?](r)>0 ,and integrating them from 0 to °owe get

J

o

L [＼aij<D,u^x^
+ Coll"/.＼＼l(x,t))ri(t)dxdt

^^{(i+hr'K.+hK^iodt

Remark that uh,uh->u and Dtuh -* Dtu in L2(Qx(0,T)) for any Te(0,oo)

taking subsequence if necessary (see [15]) and that

(l + hy" <{(l + h)Uhy' -*e~' as/iiO

X 0 in (3.10) and taking subsequence if necessary, we obtain

^a
ijuiDluJ(x,t)+C0＼＼u＼＼2a(x,t)

for all 7]eC0°°[0,°o)with T](t)>0. We recall that u belongs to C([0,T];L2(Q))

and Dm to L°°(0,T;L2(O)).Therefore (3.11) implies that

(3.12) D,l ＼＼u＼＼l(x,t)dx+ Coln＼＼u＼＼l(x,t)dx< K,e~' almostevery te(0,°o)

KJ((aij),K2).It is easy to see that the estimate (3.12) implies

||M(.,t)||' <Jfc-C"

where K is a positive constant depending only on coefficients of the equation, the

initialdata and Q ,and C, is a positive constant depending only on coefficients of

the equation and Q .

From (3.7) and (3.8) we have
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l(x,t)dx + £(uh(-,t))<(l+ hy"K, +hK, + C, J. uh ＼＼2(x,t)dx
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Using the lower semicontinuity of the left-hand side,(2.13), (2.18) and (3.13), we

get the exponential decay property of ＼＼D,u＼＼2L2iQ)and the energy £(u)byh^>0.

Thus we obtain the following theorem.

THEOREM 3.1. Let m>2 and u(x,t) he the weak solution of (1.1) with

conditions (1.4) and (3.1) which is constructed in the previous section. Then

u(x,t) enjoys the following exponential decay property

(3.14) ||≪(.,t) ＼＼2L2(a)+|| D,u(-,t) ||2L2(a)+ £(≪(-,t)) < Ke≪ for almost every t > 0

where K is a positive constant depending only on coefficients of the equation, the

initial data and O, and C is a positive constant depending only on coefficients of

the eauation and Q .
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