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ON THE BRUN-TITCHMARSH THEOREM

By

Hiroshi MIKAWA

1. Introduction.

Let #n(x; g, a) denote the number of primes not exceeding x and being
congruent to @ modulo ¢. In 1936 P. Turin [6] showed that, under the ex-
tended Riemann hypothesis,

n(x; g, a)~ as x — oo

X
¢(g) log x
for all g<x(logx)™**(¢>>0) and almost-all reduced residue classes a modulo q.
The terminology “almost-all” means that the number of exceptional reduced
classes is o(p(q)) as g—co.

In 1972 C. Hooley [1] demonstrated that there holds the inequality

(44¢)x
¢(g) log(x*/q)
for all ¢=<x** and almost-all a. Later Y. Motohashi [4] proved that the same
is valid for x**<g<x'"* as well. The purpose of this paper is to make an
improvement upon this upper bound to large moduli.

n(x; q,a)= (>0, x> x4(¢))

THEOREM. Let ¢ be a small positive constant and assume x>xoc). If q be

given and x*"<g<x(logx) 4 with A>5, then we have
P (18+¢e)x

X;¢ 6) ——————
T D= g log(xt/g)

Sor almost-all reduced classes a modulo q.

REMARK. It is of some interest to note that, using the argument of H.
Iwaniec [3, section 2], one may easily show that

2+e)x . -
o \&TEA < 45/6-0
m(x:q, a)< ©(g) log(xg™*'%) e
e= _/2de)x e s e (0<5<1/200)
o(q)10g(x/) ==

for almost-all a.
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We use the standatd notation in number theory. Especially, 7, used in
either 7/s or congruence (mod s), means 7r=1(mod s). ¢ denotes a small positive
constant and the constants implied in the symbols € and 0 may depend only
on &. For convenience, we write n~N when NZN,<n<N,<2N for some N,
and N..

I would like to thank Professor S. Uchiyama for encouragement and careful
reading of the original manuscript. [ would also thank the referee for making
the paper easier to read.

2. Lemmas.
We first state the inequality of Rosser-lwaniec sieve [2, 5] in a simplified
form that is sufficient for our present aim.

LEMMA 1. We have for any >0 and all x>xe)

(2+e)x
. < S Y .
n(x; ¢, a)= 2@)logD (d%;:l A Dyra(x; g, a)
where D=1 is an arbitrary parameter;

T
the sieving weights (14)=(14(D)) have the following properties:

ro(x; g, a)=|{n: n<x, n=a(modyq), d | n}|—

=0 if dz=D,
[22] < p*(d),
aud for any M, Nz1, MN=D,
a= 2 T Danl, M, N)b(, M, N)

islogDmsM nsN
d=mn

with certain sequences (a) and (b), lanl, b =1,

LEMMA 2. Let (t)=[t]—t+1/2. For H>2 we have

p= 3 -LhD +0(min(1,ﬁ)>

TwifisE 27ih

where e(x)=e*"'* and Hx||:mi§|x——n]. Moreover,
ne

. 1
mm(l s W) = h%ZC he(ht)

with
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log H H).

Ch<<min( g

LEMMA 3. For any >0, we have

») e(b%)«r(c)(b, d)‘/2d”2+5(1+1—}).

n~
(n,cd)=1

Lemma 2 is well known. Lemma 3 is the Hooley’s version of bounds for in-
complete Kloosterman sums [1].

3. Proof of Theorem.
Maintaining the notation introduced in Lemma 1, we put
Eoe= 2 Adrox; g, a).
We use the following lemma:

LEMMA 4. If M=x"*"%g=%° gnd N=q"°x~%*?, then we have

2-¢

g X
aZ‘:l [Eq < x (log x)*+

(a,q—)=1

uniformly for x%"<qg<x.

We postpone the proof of Lemma 4 until the final section. By Lemma 1,
on choosing M and N as in Lemma 4, we have

(18+99¢)x

7@ log(x¢/g) T e

ey n(x; g, A)<

We denote by & the exceptional set of reduced classes modulo g, i.e.

(184-99¢)x

={a:1<a< =1 . — v L
8 {Cl ,70_(], (ax f]) > ﬁ(-x » q: a)> @(Q) log(xs/q) }
We shall show that |€|=0(¢(g)), from which Theorem follows.

By (1) we see that a&& unless

E, S L
o) log (x*/g)

We therefore get, by Lemma 4, that uniformly for x*"<¢=<=x(log x)™4 with 4>5

2 g ;2
SZIES 2 1Eal*<xllogx)i+ - (log )

(a,9=1

s

or
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{ q(lOfx)5

(€< plg) +(logx)“}

< o(g){(logx* *-+(logx)™"}
as required.
4. Proof of Lemma 4, preliminaries.

In this section we reduce the proof of Lemma 4 to the estimation of R
defined by (5) below. Since

E= 3 (3 w255

nsy ain d, =1 d
n=a(g) d,p=1
we have
q q
2) D ELPE X | EP=W =2V +U
(a,;)=1 e=t
where

A
v=2(3.%)

v=3( 2 ( = 1“2)%

so=1 dy

12sn fipL, d2 5%

We first consider W. We interprete the congruence n;=n.(modq) as n,=n,+ql.
Changing the order of smmation we have

W=2 3 3 Zlagle, = 1+2(0 3 Zaz)2

o<<lsx d dg nsx—ql nszT
<L Pl 6 nGd D) W@t
n+ql=0(dg)

The simultaneous congruences n=0(modd,), n+¢/=0(modd,) are soluble if and
only if (d,, d,)|/, and, in case of (di, d.)|l/, reduce to the single congruence
n=b(mod [d,, d,]) where
b=0 (modd,)
3
b=—ql (modd?¥)
with d%¥=d;/(d;, ds), 7=1, 2. Thus,

W=2 3 3 B lds I, LTSt

o<izzlg @ nsT-ql
(g Bt n=bild . dsD

4) =W,+2R+0(x(logx)°")

where
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_x—ql
V=2 2
W= B BB At
(d1 dg)ll
and
/
5 R= S A 1 r4
( ) 0<§x/q 21 Ql dl dZ(nEg(%E_.%lzj) [dl’ Z:I)

Leaving the estimation of R to the next section, we here carry out the sum-
mation over / in W,.

W= 3 3 f{“zdz— 2 2Ax—q).
(f{d L2 [ds, d.] dg,dgl

We may assume (d,, d,)<x/q, otherwise the sum over / is empty. By an ele-
mentaty argument we see that the inner sum is equal to

x2

———— 1 0®).
a(d,, dy 7O
Hence,
Aa,Aa x? x
Wi= 32 = 12 2 Z
(&%%%é%}q [d,, d.] q(d,, ds) (d dg)Sr/ [di, d 2]>
x? Zd 2 x? 1
= +0(=- by +O0(x(logx)®
2 7) (q(dﬁz}dz)%/qdld) (x(logx)")
6) =U40(x(logx)?).

We turn to V. Since

)3 = 3 z
B E 2=, 3 (7 +0w)

=<(d12q) =1 Iji, > +0D),

we have

(3ol 3, 45

d (da, =1 dz
X
——U—i—O(?DlogD).
Combining this with (2), (4) and (6), we get

) él lEalz<<|R|+x(logx)3+§DlogD

(a;p=1

where R is defined by (5).
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5. Proof of Lemma 4.

In this section we estimate R by appealing to Lemmas 2 and 3. We shall
show that R«x®%¢”!, from which Lemma 4 follows by (7). We begin with
expressing the innermost sum in (5) as

—ql b b
® 91’([;,, Zﬂ“[dl, dzj)— ( [di, d 2]>

By the definition (3) of b(mod [d,, d.]) and the relation

_’Ti_i_ig—l—(modl) for (m, n)=1,
n m mn
we have
b bax bdl g, L dt

since p*(d,)=p(d.)=1 and (d,, d,)|l. Furtheremore we decompose (4q,) DY
Lemma 1, getting

(10) A= 2 > 3 arale, M, N)bsa(c, M, N).

2 <168 MN rs=(d,. dg) mn=d}
In conjunction with (5), (8), (9) and (10) we may write

R= 2 2 25k 2 Z EZ arm(c; A/[y N)bsn(C: A{; N)

l q( » =1 cslogMN rs=0 m n

(B s qr )= gat )

kmn

(1D << Z r(a)logx ST S S osup |[RG, K, M, N, a, 3, 7)

KsMoMsMgNsNya, 8.7
with

R1:R1(5’ 1{7 [M, Af: a’ ﬁ) T)

- 9 Z 2
- B B3 Bk )5t
(kmn,q)=1

where My=x%3"4¢%° N,=¢"°x7%*; K, M, N’s run through powers of 2; the
supremum is taken over all sequences (a), (B), () such that |al, 1Bl 17115
and L=x/¢g6. When KMN<x'"*, we trivially have

x2

A7
(12) R« 20 X7

From now on we assume

(13) KMN>x'7%.



On the Brun-Titchmarsh theorem

We apply Lemma 2 to ¢-function in R,, getting

(14) R1=R2+R3
where
- a(k)B(m)r(n) _k \(e-et s bt
Rz—kgK(lkézghgz)E:ﬂllnlN okmn 0<\'%‘I§He(hql mn )So e(5kmn >dt
(emn, =1
R« 3 3 2 5 3 min(l 1 )
TSk Sy N H(x5/8kmn)+ql(R/mn)|

,mu)=(mn,q) =1

with x,=0 and x,=x—qdl.
First we treat R,, By Lemma 2,

15) R 2 3 [CrllShl
jil2 heZ

where

h:k;;{ lgzL mgM ngN 2(52:761];1 >e(hq[%~).

(k mn)=(mn,q)=1
We preceed to the estimation of S,. Trivially,
(16) S < KLMN.,

For h#0 we have, by partial summation and Lemma 3,

R $:10253] ) (hgl%—)!(l-}-}i—x)

(mn Q= 1 (&, mn) 1 51&7’)171

. hx . . K
<‘(l+ BKMN)ER% 25 (hgl, mn)' P Gmn)r (H_W)

(hl’ mn) 1z SV 2\1/2 Sy 1/2
enfis i) m(E eI Mgy szpy

m n

&xt <1+ KMV)}L_,“r(hl){(MN)W—I—K(MN)‘/Z}

3/2
x4 (k) Lllog wXMoN,)
hx
1-5¢
a7 <« Li=*(log x)(1+—z757) 7,
since M,N,<x%%*"*, Now we choose
:
H=
X

then H>2 by (13). Thus, by (15), (16), (17) and Lemma 2, we have

37
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hx
. 1-5¢,
R:<(|Col+ lh@fﬂ | ChI)KLMN+0<|§§H2! Crl Lx**(log x)(1+—-—KMN)r(h)

«(IOI%[H +3 le)KLMN

+Lxog )|, 2 e (14 ) e B ()
o<h=H KMN KMN/h

& Lx'*+ Lx'"%(log x)-x**(log x)*

(18) <<x—2x"“(lo x)?
q0 g1

We turn to K.. We have

R’ 3 g leonl

0 JYE_ mM 0kmN
(k, m)=(m,q)=

10(7»231115(;0/115 nz T(n)—e(akhﬂin)e<hQZ%>}dt

- ht k

m c"e(ﬁkmn )e(hql mn)’

where the supremum is taken over all sequences (c¢), |¢|<1, and all 0=<¢t=<ux.
Thus,

SKWN m

19 Ryl ——— sup (KM )Y3(S(t, c))'®

5K\/1\7

where
S=St =2 =

k~K m~M
(kq, m)=1

h ;
T e i er () (190 ) |

We proceed to the estimation of S. Expanding the square and changing the
order of summation, we have

5= 5, 38 e 3 (G gt ot )

R1hg Ly lp nysng m o/ Okm

= X 2 = >3

0Lhy, hosH Uy, lzsL( n7%1"2 q) 1 m~M
(hany—hen )t _ ‘
S G e L (G R A

k~K
(R, mn ng) =1

Here, the contribution of the diagonal terms h,l,n.—h.l,n,=0 is at most

= KM<KKM 3 )

hiling=holony Ts2HLN
< x*HKLMN
(20) <<x1-25H2L
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By Lemma 3, the non-diagonal terms contribute to S at most

2 E 2 2(1_}_%)} ~ZK e((h1117’lz—/’lzlznl)q mnlélnz ))

hi,hgly,lagny,nogm
hilina*hglgng (k,mning) =1
(mnlnz,q)=1

Hx . _ 1/2
(1 ) 3, 3, B B b i,

hiling=kalony
(mning,gq)=1

K
-(mnmz)”2(l+ )
MmNy
(Aylyne—hylony, mnin,) \1/2
<t n 5 (03 ’ )
hihg 11,1 m,ny, Ny MNNs
hyling#halany

"{(m_Enz(mnlnz)z)m-%ff(m 5 D

Here we easily see

(hilyny—holon,, mnin,) <%t

>
MN1N,

Ny, Ny
hiling=holgn;

Therefore, the contribution of the non-diagonal terms is
Lx**(HLY{(MN?®P*+ K(MN*)"?}
<< xSEHZ LZA/[D3/2N03 .

Combining this with (19) and (20), we have

3¢
R2 << % {]\/10217\]0(.7(:1—25[{2L“I"XSEHZLZA/[UB/ZNQS)} 1/2

ST G ERG)() ())”

q

%2
o -3¢/2
(21) < q5 X .

In conjunction with (11), (12), (14), (18) and (21) we get

2-¢

x? X
R« 422y ,
<5§Zx}/q7(5)(10g x) o x < 7

as required.
This completes the proof of our Theorem.
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