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ISOMETRIES OF A GENERALIZED

TRIDIAGONAL ALGEBRAS Jl＼V"

By

Young Soo Jo1 and Dae Yeon Ha

Abstract. Let Jlffi be a generalization of a tridiagonal algebra

which is defined in the introduction. In this paper it is proved that

if <p:Jt^-^J-iT is a surjectiveisometry, then there exists a unitary

operator U such that <p(A)=U*AU for all A in jZ££°or a unitary

operator W such that 0>(j4)=WMW* for all A in ci|r, where lA

is the transpose matrix of A.

I. Introduction

In [3], Gilfeather and Larson discovered tridiagonal algebras and in [4], Jo

characterized alllinear isometric maps of a tridiagonal algebra onto itself. Let

SC be a complex Hilbert space with an orthonormal basis {flt f2, ･･･,f2n}- Then

a member of the tridiagonal algebra on M has the form

* * *

*

*

*

*

*

with respect to the basis {fu f2, ■■･,fm＼, where all non-starred entries are

zero. If we write the given basis in the order {fu fs, f5, ■■■, fZn-＼,ft, fi, ･■･,

fzn}, then the above matrix looks like this
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*

*

*

*

*

*

*

*

* *

*

where all non-starred entries are zero. Let M be a complex Hilbert space with

an orthonormal basis {eu e2,･･･,e2n} and let

*

*

* *

*

*

50=

*

be an (n, n)-matrix, where all non-starred entries are zero.

Let 5 be an (n, n) matrix. Then S0^S means that if the (z, /)-component

of So is *, then the (i, /)-component of S is also *. Let J2 )= {( * n ): Z>i

and D2 are (n, n) diagonal matrices and S is an (n, n) matrix with m stars in

each row and column and S0^Sk Then J-iT is a generalization of a tridiagonal

algebra. In this paper, we will prove the following.

Theorem. Let (p: JL^-^Jt-i^ be a surjective isometry. Then there exists

a unitary operator U such that (p(A)=U*AU for all A in JL$tf)or a unitary

operator W such that <p(A)=WtAW* for all A in J-iV, where lA is the trans-

posed matrix of A.

From now, we will introduce the terminologies which are used in thispaper.

Let M be a complex Hilbert space. If x and y are two vectors in JC, then

(x, y) means the inner product of the two vectors x and y. If S is a non-

empty subset of M, then [S] means the closed subspace generated by the

vectors of S. An operator is a continuous linear transformation on M and the

set of all such is &{M). A projection on M is a self-adjoint idempotent operator

in B{M). There is an obvious correspondence between projections and their
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ranges, which are always norm-closed subspaces of M.

A lattice X of projections (or subspaces) is a collectionof projections closed

under the operations A and V, where Ef＼F is the projection whose range is

(range Zi)n(range F) and E＼/F is the projection whose range is [(range E)＼J

(rauge F)J. An operator A leaves a projection E invariant in case AE=EAE,

and we denote by AlgX the collection {A: AE―EAE for all££l|. AlgX

is a weakly closed subalgebra of 3i(3C).

Dually, if JL is a subalgebra of £}(M), then LatJ. is the lattice of all or-

thogonal projections invariant for each operator in J.. An algebra J.is reflexive

if A = AlgLatJ. and a lattice X is reflexive if X ―LatAlgX. Let a be in C,

then a is the complex conjugate of a. Let / and j be non-zero natural numbers.

Then Ei} is the matrix whose (i,;)-component is 1 and all other components

are zero. Let
<A
and Jl2 be subalgebras of $(JC).

A linear map <p of JLX into J.2 is isometry if it preserves norm.

2. Examples

Exampxe 1. Let M be a 2n-dimensional complex Hilbert space with an

orthonormal basis {eu e2, ･･■ , ezn＼.
Let £1(B+i),B+i, E2(n+i),n+i, ･･･

, ^mtn+^.n+t
be

m jl^5 for all z(l^iz^n) and let JT be the subspace lattice generated by {[>i],

Le2J> ■" >
Le7iJ> L^Kn

+ D) '■■> 6m(n + i),
en
+ U, L^l(7i + 2)j ^2(n + 2), "' , 8m(.n+2), &n + t＼, "" >

[ei(≪n), ･･･, ea(8B), ･･･ , em(2n), G2n~]}. Then J.^ = AlgX and ci^} is reflexive.

Example 2. Let M be a 2n-dimensional complex Hilbert space with an

orthonormal basis {eu e2,･■■,e2n} and let (/ be a (2n, 2n) diagonal unitary

matrix whose (i,z')-component is uH for alli(l^i^2n). Define <p: J^i^―^J-i^

by (p(A)=U*AU for all A in J.^. Then <pis an isometry such that <p(Eti)=

Eu for all z= l, 2, ･･･,2n. If Ei} is in J.i ＼ then the (i, y)-component of <p(A)

is UudijUjj for /1=(go) in Jlif (If^it^n and n + l^/^2n).

Exampxe 3. Let us consider Jl^ as the following algebra.

* 0 * 0 *

ID, S＼ * * 0 0 *

A=＼ is in JL§> if and only if S= 0***0

＼0 Ds) 0***0

* 0 0 * *

Let V be a (10, 10) matrix whose (1, 2)-,(2, 1)-,(3, 3)-,(4, 4)-,(5, 5)-,(6, 10)-,

(7, 8)-, (8, 7)-, (9, 9)-, and (10, 6)-component are 1 and all other components are

zero. Define w＼ JR^JR by <p(A)=V*AV for all A in Jiff. Then <p is an
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isometry such that <p(I)=I, <p(En)=E 22, <p(E22)=En, (p{Ezz)―E3Z, (p{En)=En,

<p(E55)=E65) (p(E66)=E10,10> <p(Et,)―ES8> <p(£88)=is77, (p(E99)=E99, and <p(E10,10)=

E66.

Example 4. Let us consider J.iZ) as the following algebra.

* 0 * *

A=
(

1 is in jZ<3> if and only if S=
* * ° *

0 * * *

Let U be the unitary matrix whose (1, 8)-,(2, 7)-,(3, 6)-(4,5)-,(5, 4)-,(6, 3)-,

(7, 2)-,and (8, l)-component are 1 and all other components are 0. Define <p:

cjC'-^I3' by (piA^U'AU for all A in J|3), where '^4 is the transposed matrix

of A. Then cpis an isometry such that <p(I)=I, <p(E1i)=ES8,(p{E22):=Evl)<p(ES3)

―E6B,(p(Eu)=E&5, ip{Ei5)=Eiiy a>(Est)=Ea≫,<p(E17)=E22, and <p(E88)=Ell.

Example 5. Let us considerJ.W as the following algebra.

M s)is in J.W if and only if S= 0
0

0 0*

* * 0

* * 0

0 * *
* 0 * * /

Let U be a (10, 10)-matrix whose (1, 8)-, (2, 9)-, (3, 10)-, (4, 6)-, (5, 7)-(6, 4)-, (7, 5)-,

(8, 1)-, (9, 2)-, and (10, 3)-component are 1 and all other components are zero.

Define cp: Jl[V^Ji[V by (p(A)=UlAU* for all A in Jl[V, where lA is the trans-

posed matrix of A. Then <p is an isometry such that (p{I)―I, (p(En)=E88>

(p(EZ2)=E99, <p(ES3)=E10A(h (piEu^Ete, <p(EB5)=E11, <p(Eu) = Eiit <p(E71) = E5b,

<p(E8g)=En, (p(Eg9)=E22, w(Eio, iO)=E33-

3. Results

Through this section, M is a 2n-dimensional complex Hilbert space with a

fixed orthonormal basis {eu e2, e2n}. We see that there is a commutative sub-

space lattice X such that Jl^i)= AlgX. (p will denote an isometry from J.^

onto J.iV･ Let x and y be two non-zero vectors in Si. Then x§§yis a rank

one operator defined by (x6§y){h)=(h, x)y for every h in Si.

Lemma 1 ([7]). Let X be a subspace lattice and let x and y be two vectors.

Then x<$Z)yis in AlgX if and only if there exists E in X such that y is in E

and x is in E-, where E_=V{F: FejT and F^tE} and E-=(E_)±.
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Lemma 2 ([8]). Let X be a subspace lattice and let (p: AlgX-^AlgX be a

surjectiveisometry. If <p(I)=A and if x0x is in AlgX, then ||ylx||= ||x||,where

I denetes the identity operator.

Theorem 3. Let <p: J.b%)->JL$'> he an isometry. Then <p(I)is a diagonal

unitary operator.

Proof. Let <p(I)=(btj). Since Il9>(/)0ill= ||e<||= l and (p{I)ei―bueu ＼bu＼=l

for all z= l, 2, ■■■, n. Since ||<p(/)||= ||/||= l, (p(I) is a diagonal unitary operator.

Let $={A: A is a diagonal operator in JliT}. Then 5) is a maximal

abeliansubalgebra containingX and g=JL$)r＼(Jl&))*, where J.^ ―AlgX and

(Jl$>)*={A*: A is in JUT).

Lemma 4 ([6]). A linear map <pof one C*-algebra into another which carries

theidentityinto theidentity and is isometric on normal elements preserves adjoint,

i.e.,(p(A*)=((p(A))*.

Definition 5. Let J.x and jZ2 be C*-algebras. A Jordan isomorphism or

C*-isomorphism <p＼J.X-^J.^,is a bijectivelinear map such that if A=A* in J.x,

then <p(A)=(<p(A))* and (p(An)=(<p(A))n.

Lemma 6 ([6]). a) A linear bijection<p of one C*-algebra J.x onto another

Jl2 which is isometric is a C*-isomorphism followed by left multiplication by a

fixed unitary operator, viz, <p(I).

b) A C*-isomorphism <p of a C*-algebra JLX onto a C*-algebra J.2isisometric

and preserves commutativity.

Let (p: J.kP-tJllP be an isometry and let tp(I)=U. Then UA and U*A

are in JLffl for every A in JlffiK Define <p＼JliV^JliV by <p(A)=U*<fiA) for

every /I in Jli^･ Then ^ is an isometry such that (p(I)=L Since 3) is a C*-

algebra, (p(I)=I, and <£is an isometry, 0|^) preserves adjoint by Lemma 4.

From this fact, we can prove the following lemma.

Lemma 7. $(&)=£).

Since <p: J.^―^J-in'1is a surjective isometry, just like <p, and since the

main theorem would be true of <pif it were true of (p, we now work exclusively

with (p and drop the "A". Equivalently we assume that (p(I)―L Then we

can get the following corollary.
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Corollary 8. If cp: J-if-^J-in'1is an isometry such that <p(I)=I, then w{3))

=3).

Let <p: J-iV-^J-i^ be an isometry such that </>(/)=/. Then since

<p~1＼3)are Jordan isomorphisms, we can prove the following lemma.

tp＼2)and

Lemma 9. Let <p: J-iV-^J-iT be an isometry such that <p(I)=I. Then E is

a projection in 3) if and only if <p{E)is a projection in 3).

Lemma 10 ([6]). // <pis a Jordan isomorphism from a C* algebra J.x onto

a C*-algebra Jl2, then <p(BAB)=<dB)<rtA)<p(B) with A and B in J.^.

Let E and F be orthogonal projections acting on a Hilbert space M.

a partial order relation <^ is described as follows: E^F if and only if

FE―E. From Lemmas 9 and 10, we can prove the following theorem.

Then

EF =

Theorem 11. Let <p: J-iT^J-iV be an isometry such that <p(I)=I. Then

(p([ei~＼)is rank one for each i=l, 2, ･･･, 2n.

Lemma 12 ([8]). Let <p: Jl(2f)= AlgX
~^J.i2T =

AlgX be an isometry such

that <p(I)―I. Let E be a projection in 3) and let T be in AlgX=Jli2%) with

T=ETE＼ Then we have (p(,T)=ip{E)(p(J)<p{Ey+ip(Ey<p{T)<p(E).

From Lemma 12, we can get the following lemma.

Lemma 13. Let <p: J-i^-^J-lT be an isometry such that <p(I)=I. Let Ei,ui),

Ei,iU), ■■■, .Ei.icm) be in J.iV{n + l^ki(l), ･■■, i(m)<L2n and l<Li<*n). Let (p{Eu)―

En and let (p(Euj)iUj))=EXj,Xj for all j=l, 2, ･■■,m. If lf^lt^n, then x^n + l

and there exists aUXj in C such that ＼ai,Xj＼=l and <p(EiiUj))=di,XjEi,Xj. If n

+ l^a/^2n, then l<=Xjf^n and there exists aXj,i in C such that ＼aXj,i＼=l and

(p(Ei,Uj))―aXj,iEXj,i.

Proof. Suppose that 1 ^ / ^ n. Since £M(;-) = EuJ),i(j)Ei,j(j)EUj),i<.J)=

EnEi,i(j)Eii, (p(Ei,uj))=Eij,Xj<p(Ei,i(j))EXj,xj-)-EXjtXj<p(Eifi(j))EXj,Xj and <p(Eiti(j))

= Eii<p(Ei.uj))Eii+Eii(p(Ei,uj))Eii by Lemma 12. So x^n + l and (p(Ei,Uj))=

(Xi,XjEi,Xj for some aiiXj in C and ＼at,Xj＼=l. Similarly, we can prove the

second nart of lemma.

Lemma 14. Let <p: JL^-^Jl^ be an isometry such that <p(I)=I. Let (p{En)

= Ekk. If l^k^n and if (piE^-Euil^i^n), then 1^/^n. // n + l^k^2n
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and if ip{Eu)=Eu{l^i<n), then n + l^l^2n.

Proof. Define a permutation a on {1, 2,■■■,In) by <j(a)=b if (p(Eaa)―

Ebb. Suppose l^k^n. Since EUn+i is in Jlin＼ o(n + l)^n + l by Lemma 13.

Since E2,n+1 is in J.$＼ a(2)^n. Since £2,n+2is in Jl^＼ <r(n+2)^n + l. Since

£3,n+2is in JiiT, ff(3)^n. Continue this way. Then a(i)£n for all /=1, 2, ･･･,

72. Similarly we can prove the second part of lemma.

Lemma 15. Let U be a unitary operator. Then ＼＼I-＼-U＼＼=2if and only if

1 is in a(U), where I denotes the identity and o{U) is the spectrum of U.

Proof. Suppose that ||/+t/||=2. Since U is unitary, I+U is a normal

operator. So the norm of I+U is equal to its spectral radius; that is, 2―

||/+£/||=sup{|l + a| : a^a(U)}. Hence 1 is in o(U) because o(U) is a compact

subset of the unit circle in C. Suppose that 1 is in o(U). Since I+U is a

normal operator, ＼＼I+U＼＼= sup{|l + a| : a Eo(U)＼. But ||/+£/||̂ ||/||+ ||£/||=2.

Since 1 is in a(U), sup{|l+.≪| : a^a(U)}^2. Hence ＼＼I+U＼＼=2.

Proposition 16. Let A be an (n, n) matrix whose (1, 1)-, (1, n)-, (2, 1)-,

(2, 2)-, (3, 2)-, (3, 3)-, ･■･,(n, n ―1)-, ((n, n)-component are 1 and a// ctf/zercow-

ponents are zero (n^2). T/ien ||/1||=2.

Proposition 17. Let A be an (n, n) matrix whose (1, 1)-, (1, 2)-, (2, 2)-,

(2, 3)-, ･･･, (n ―1, ≪―1)-, (≪･―1,≪)-,(n, l)-component are 1 anrf a// o^/ier com-

ponents are zero (n>2). Then IIi4||=2.

Theorem 18. Let <p: Jl^-^J.^ be an isometry such that <p(Eu)=Eu for

z= l, 2,■･･, 2n. Then there exists a unitary operator U such that (p(A)=U*AU

for every A in Jlffi.

Proof. Let ip(Ekj)=akjEkj for all Ekj in <J| ＼ where ＼akj＼=l. Let akj

= ei9kL Let A={atj) be in Jlffi and let aktkW represent the {k, ^(/))-component

of A, where l<k£n, l^i^m and n + l-g.k(j)<>2n. Let U=(un) be a (2n, 2n)

unitary diagonal matrix and let Un ― eidl (1=1, 2, ■･■,In). Consider U*AU. If

the linear system (*): dn+i ― di=di,n+1, dnZ) ― 61=dliU2), ･･･, Onm) ― di―dlil(m)

(l(m) = 2n), ^2(1) ―^2,2(1), 02(2)~02=02,2(2), ･", 0 2(m) ~ @ 2 = @ 2,2(,m), '", ^n(I) ― ^71 ―

On.nd), 0n(2) ― dn = dn,n(2), ･■･, 6n(m) ― 6n = 6ntTUm) has solutions, then y>(i4)=

U*AU for every A in
<J|^).

Let /C be the (mn, 2n) matrix consisting of the

coefficients of the linear system (*) the let X―(8UUv, Ouim, ･･･, 0n n(m))J. Then
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the linear system (*) has solutions if and only if rank K= rank (K, X). We know

that rank/f =2n ―1. If 0*,B+i-0i.B+i + 0i.B+i_i dk,n+k = 0(/>£^l) and

Oq.n + p ― Oq.n+q-l + Qq-l.n+q-l 1" 0 p + 1,n + p + 1 ~ 0 p + 1,n + p = 0 (g ― 2^
p~^ 1), then rank

(K,X)=2n-h Let

Rk.n + k

0
71 + k

0

^k+l.n +k+l 0

v=

0
a*.
0

0

n + l

0 aj.rc+z-i ai,n+i

Then we see that ||7||= ||y>(fl)||for some B in Jl$>. Since ||fl||=2by Proposi-

tion 16, 11711=2. Since

V

0

0

0

where

w=

0

(Xk + l.n + k + 1

0

a 2i
0

0

0 ･

aS2 0

0

0

0
<Jj_i,n + i

0

0

0 dl^k-H.l-k

0

0

_

0

(Xl.n + l

<2i,i-* + i

0

0

0

= I+W,

Where Q21― Olk+i.n + k&k.n + k, #32― #*+2,n + *+l #*+i,n + *+i, "･･, #Z-fc +l,i-fc― #j,re+ J_l

az-i.n+j-i, and au.i+i = ak,n+iai,n+i. 1 is in <r(TF) by Lemma 15. So ≪ft>n+!

az,n +iaj.n+z-iaj-i,n+j-/---a*+i,n + *a*,n + A = l or equivalently 6k,n+i ― 8i,n+i + 6i,n+i-i

)rOk+i.n + k ― 0k.n + k=O- Let

Vl=

OLp + i, n + p

0

0

(Xq, n + p

&p + l, n + p + l "

&p + 2,n + p + l &p + 2,n + p + 2

0

0

0

≪ (Xq-l,n+q-2

0

0

0

0

&q-l, n+q-1

(Xq, n+q-1

Then we see that ||Fill= 119(5011 for some Bx in JL$＼ Since ||fii||=2by Pro-

position 17, ||Fi||=2. Since
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v1

^p + 1,

0

0

w,=

n + p

Isometries of a Generalized

0

0

0

bi2

0

b
q-p.l

0

0

^23
0

0

0

" (Xq, n+q-1

0

0

0

0

0

h-p

= I+Wit

0
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Where 0＼<l―<2p + i,n + p +iQfp + 2,7i+ p +l> #23― <2p + 2,7i+ p + 2#p + 3,n + p + 2) '", "g-p-l,g-p― (Xq-l,n+q-l

ag.n+g-i, &g-p,i=ag,re+pap+i,n+p. 1 is in <r(Wi) by Lemma 15. So ag,re+pap+i,B+p

<^p +l, re+ p +l^p + 2,re+ p +l "■ ^9-1, n+q-l&q, n+q-1 =: i Or eQUlValeiltly Vq,n + p ― ^q,n+q-l ~＼~

Oq-i,n+q-i― ･･･ +Qp+Ln+p+i ― 0p+i.n+P = O- Hence rank (K, X) = 2n―1. Hence

<p(A)=U*AU for all .4 in JlffiK

Lemma 19. Let ip: JliV^J-iV be an isometry such that <p(I)=Iand <p(Ekk)

= Eik,ikfor k = l, 2, ■■■,2n. If l^z'i^n, then there is a unitary operator V such

that V<p(Ekk)V*=Ekk for all k = l, 2, ■■■,2n and V<p(Ek,kU))V*=aik.tk(nEk.kil)

for 1=1, 2, ･■■,m, and for some 0Likti. in C.

Proof. Let V be a (2m, 2m) matrix whose (k, z"ft)-componentis 1 for all

k = l, 2, ■■･,2n and all other entries are 0, where <p(Ekk)=Eik,ik for all k=l,

2, -,2n. Then V<p(Eik)V*=Ekk and V<p(Ek,kll))V*=aik.ika,Etk.tkai for all

k ―1, 2, ･･･,2n and 1=1, 2,■■■,m, and for some ocik,ika în C.

Theorem 20. Le* <p: J^' -> ci^} be an isometry such that <p(I)=I and

(p(Ekk)~Eikyift. If l^ii^n, then there is a unitary operator W such that <p(A)

=W*AW for all A in J.W.

Proof. By Lemma 19 there is a unitary operator V such that V<p(Ekk)V*

= Ekk for all k = l, 2, ■■■, 2n. Define <px: Jlffi*-≫Jl*P by <p1(A)=V<p(A)V* for

all A in Jl^^ Then ^x is an isometry by Lemma 19 and (pl{Ekk)=Ekk for all

k = l, 2, ■■･,2n. Then there is a unitary operator U such that <p1(A)=U*AU

for all A in J^ by Theorem 18. Since <p1(A)=U*AU=Vip(A)V* for all A in

jl< >, <p(A)=(y*U*)A(UV) for all ^ in Jl$＼ Put t/7=W. Then ^(A)=^*^PF

for all A in ^i?'.
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Lemma 21. Let <p: JiiV'-^J^iV be an isometry such that <p(I)=Iand <p(Ekk)

= Eik,ik(k = l, 2,■■■,2m) // m+1^'i^2m, then there is a unitary operator V

such that Vl<p(A)V* is in JL$> for all A in JL$> and Vt<p(Ekk)V* = Ekk for all

k = l, 2,■■■,2n.

Proof. Let V be a (2n, n) matrix whose (k, z^-component is 1 for k = l,

2, ･■･,In and all other components are 0. If Ek<kU) is in J.^ for k=l, 2, ･･･,

n and for 1=1, 2, ■■■,m, then (p(Ek,kU))=aikclyikEiHl),ik. Since V'yiEk.kaiW*

:=a''i≪).'/£H.4a,^=≪iK1).U(o£Mi(!)l/*=:aisa),ij£Ua) for all fc= l, 2, ･･･,

n and all /=1, 2, ･･･,m, Vl<p(A)V* is in J.^ for all ^L in <J^) and FV(^**)V*

=£Aft for all k=l, 2, ■■■,In.

Theorem 22. Let <p: JiiT^^-iV be an isometry such that (p{Ekk)=EikAk

for k ―1, 2, ■■■,2n. If n + lt^ii^2n, then there is a unitary operator W such

that wiA^W'AW* for all A in Ji^＼

Proof. By Lemma 21 there is a unitary operator V such that Vl(p(Ekk)V*

=Ekk for all k=l, 2,■■■,In and V'^AW* is in JL^ for all A in JL^K So

there is a unitary operator U such that Vl(p(A)V*=U*AU for all A in JZ|£°by

Theorem 18. Set %UV)=W. Then c(/1)=W",W* for all A in j^ >.
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