UNIQUENESS OF CERTAIN 3-DIMENSIONAL HOMO-LOGICALLY VOLUME MINIMIZING SUBMANIFOLDS IN COMPACT SIMPLE LIE GROUPS

By

Yoshihiro Ohnita and Hiroyuki Tasaki

1. Introduction.

The purpose of this paper is to prove uniqueness of certain 3-dimensional homologically volume minimizing submanifolds in compact simple Lie groups.

Let G be a connected compact simple Lie group whose rank is greater than 1 and G_1 be an analytic subgroup of G associated with the highest root of G. The explicit definition of G_1 will be found in Section 2. It is well known that the homology class $[G_1]$ represented by G_1 generates the real homology group $H_3(G; \mathbf{R})$ of G. Furnishing G with a bi-invariant Riemannian metric \langle , \rangle , we consider a volume minimizing submanifold contained in the real homology class $[G_1]$. Using the notion of calibration introduced by Harvey-Lawson [1], the second named author has proved the following theorem in his paper [5].

THEOREM 1. If M is a compact oriented 3-dimensional submanifold of G contained in the real homology class $[G_1]$, then

$$\operatorname{vol}(G_1) \leq \operatorname{vol}(M)$$
.

In this paper we investigate submanifolds M contained in $[G_1]$ which satisfy the equality:

$$\operatorname{vol}(G_1) = \operatorname{vol}(M)$$

and obtain the following theorem.

THEOREM 2. Let M be a compact oriented 3-dimensional submanifold of G contained in $[G_1]$. The equality

$$\operatorname{vol}(G_1) = \operatorname{vol}(M)$$

holds if and only if M is congruent with G_1 in G. In particular, G_1 is a unique volume minimizing submanifold contained in $[G_1]$ up to congruence in G.

Received April 4, 1985.

REMARK. Theorem 2 is an affirmative answer to the problem posed in [5, p. 126 Remark].

2. Preliminaries.

Let \mathfrak{g} be the Lie algebra of G. Take a maximal Abelian subalgebra \mathfrak{t} in \mathfrak{g} , then the complexification \mathfrak{t}^c of \mathfrak{t} is a Cartan subalgebra of the complexification \mathfrak{g}^c of \mathfrak{g} . For each element α in \mathfrak{t} , put

$$\mathfrak{g}_{\alpha} = \{X \in \mathfrak{g}^{\mathfrak{C}}; [H, X] = \sqrt{-1} \langle \alpha, H \rangle X \text{ for each } H \in \mathfrak{f} \}.$$

An element α in $t-\{0\}$ is called a *root* if $\mathfrak{g}_a \neq \{0\}$. Let Δ denote the set of all roots. We obtain a direct sum decomposition of \mathfrak{g}^c :

$$\mathfrak{g}^{\boldsymbol{C}} = \mathfrak{f}^{\boldsymbol{C}} + \sum_{\alpha \in A} \mathfrak{g}_{\alpha}$$
.

Fix a lexicographic ordering on t and denote by Δ_+ the set of all positive roots in Δ .

The following lemma follows from the above direct sum decomposition of gc. For details of the proof, see Section 3 of Chapter VI in Helgason [2].

LEMMA 3. There exist unit vectors E_{α} , F_{α} in g for each $\alpha \in \Delta_+$ in such a way that:

i)
$$g = t + \sum_{\alpha \in \mathcal{S}_+} RE_{\alpha} + \sum_{\alpha \in \mathcal{S}_+} RF_{\alpha}$$

is an orthogonal direct sum decomposition of g;

ii)
$$[H, E_{\alpha}] = \langle \alpha, H \rangle F_{\alpha}, \quad [H, F_{\alpha}] = -\langle \alpha, H \rangle E_{\alpha}, \quad [E_{\alpha}, F_{\alpha}] = \alpha$$

for $\alpha \in \Delta_+$ and $H \in \mathfrak{t}$.

Let δ be the highest root in Δ_+ and set

$$\mathfrak{g}_1 = \mathbf{R}\delta + \mathbf{R}E_{\delta} + \mathbf{R}F_{\delta}.$$

Then \mathfrak{g}_1 is a compact 3-dimensional simple Lie subalgebra of \mathfrak{g} . Let G_1 be the analytic subgroup of G corresponding to \mathfrak{g}_1 . Wolf has proved that G_1 is simply connected when G is centerless in the proof of Theorem 5.4 in [6]. Therefore G_1 is simply connected, even if G has a nontrivial center.

Put

$$\phi(X, Y, Z) = \frac{1}{|\delta|} \langle [X, Y], Z \rangle$$

for X, Y, and Z in \mathfrak{g} . By regarding an element of \mathfrak{g} as a left-invariant vector field on G, ϕ is a bi-invariant 3-form on G. In particular, ϕ is a closed form on G.

We introduce an orientation on g_1 such that $\{\delta, E_{\delta}, F_{\delta}\}$ is a positive basis of g_1 .

LEMMA 4. ([5]) For each 3-dimensional oriented subspace ξ in g, the inequality

 $\phi|_{\epsilon} \leq \operatorname{vol}_{\epsilon}$

holds. The equality holds if and only if there is an element g in G such that

 $\xi = \operatorname{Ad}(g)\mathfrak{g}_1$

and that $\operatorname{Ad}(g):\mathfrak{g}_1 \rightarrow \xi$ is orientation preserving.

3. Proof of Theorem 2.

At first we review the proof of Theorem 1.

Let *M* be a compact oriented 3-dimensional submanifold of *G* contained in the real homology class $[G_1]$. Since ϕ is a bi-invariant form on *G*, the inequality of ϕ stated in Lemma 4 holds at every point in *G*. The proof of Theorem 1 is as follows:

$$\operatorname{vol}(G_1) = \int_{G_1} \operatorname{vol}_{G_1} = \int_{G_1} \phi = \int_M \phi \leq \int_M \operatorname{vol}_M = \operatorname{vol}(M).$$

The equality holds if and only if $\phi|_M = \operatorname{vol}_M$. A 3-dimensional oriented submanifold M of G which satisfies $\phi|_M = \operatorname{vol}_M$ is called a ϕ -submanifold of G. So the following lemma completes the proof of Theorem 2.

LEMMA 5. If M is a ϕ -submanifold of G, then M is congruent with a piece of G_1 in G. Furthermore, if M is complete, then M is congruent with G_1 .

PROOF. We show that M is totally geodesic in G. Let x be any point of M. Since G is a homogeneous Riemannian manifold, we may suppose that x is the identity element e of G. We may show that the second fundamental form h of M vanishes at e. It follows from Lemma 4 that there is an element g in G such that $T_e(M) = \operatorname{Ad}(g)\mathfrak{g}_1$. For simplicity we set $T_e(M) = T_e(G_1)$ and identify $T_e(G)$ with \mathfrak{g} . Then the following equations hold:

$$(1) T_e(M) = \mathfrak{g}_1$$

and

$$T^{\scriptscriptstyle \perp}_{\mathfrak{e}}(M) = \{H \in \mathfrak{t} ; \langle \delta, H \rangle = 0\} + \sum_{\alpha \in \mathfrak{d}_{+} - \langle \delta \rangle} (\mathbf{R} E_{\alpha} + \mathbf{R} F_{\alpha}) \,.$$

The curvature tensor R of G is given by

(2)
$$R(X, Y)Z = -\frac{1}{4}[[X, Y], Z]$$

for X, Y and Z in \mathfrak{g} . See, for example, Milnor [3]. So the assumption on M and Lemma 4 imply that R(X, Y)Z is contained in the tangent space of M for any tangent vectors X, Y, and Z of M, that is, M is a curvature invariant submanifold of G. As M is curvature invariant and G is locally symmetric, the equation

(3)
$$h(W, R(X, Y)Z) = R(h(W, X), Y)Z + R(X, h(W, Y))Z + R(X, Y)h(W, Z)$$

holds for tangent vectors X, Y, Z, and W of M. The above equation is due to Ohnita [4]. Putting W=X and Z=Y in (3), we obtain

(4)
$$h(X, R(X, Y)Y) = R(h(X, X), Y)Y + R(X, h(X, Y))Y + R(X, Y)h(X, Y).$$

From now on we shall consider h at e. Let X and Y be orthonormal vectors in g_1 . Then

$$R(X, Y)Y = \frac{1}{4}|\delta|^2 X.$$

By (2) and (4),

(5) $|\delta|^{2}h(X, X) = -[[h(X, X), Y], Y] - [[X, h(X, Y)], Y] - [[X, Y], h(X, Y)].$

Let \mathfrak{z} be the centralizer of \mathfrak{g}_1 in \mathfrak{g} and \mathfrak{m} be the orthogonal complement of \mathfrak{z} in $T^{\perp}_{\mathfrak{e}}(M)$. Then

$$\mathfrak{z} = \{H \in \mathfrak{f}; \langle \delta, H \rangle = 0\} + \sum_{\substack{\alpha \in \mathcal{I}_+ \\ \langle \alpha, \delta \rangle = 0}} (\mathbf{R} E_{\alpha} + \mathbf{R} F_{\alpha})$$

and

$$\mathfrak{m} = \sum_{\substack{\alpha \in \mathcal{I}_{+}-\{\delta\}\\\langle \alpha,\delta\rangle \neq 0}} (\mathbf{R} E_{\alpha} + \mathbf{R} F_{\alpha}) \,.$$

According to Wolf [6], $(g, g+g_1)$ is a compact quaternionic symmetric pair. So the right hand side of the equation (5) is contained in m. Therefore the image of h is contained in m.

Since $(\mathfrak{g}, \mathfrak{z}+\mathfrak{g}_1)$ is a quaternionic symmetric pair, \mathfrak{m} has a quaternionic vector space structure and \mathfrak{g}_1 acts on \mathfrak{m} as the multiplications by purely quaternionic numbers. In particular, we obtain

$$[(6) \qquad [X, [Y, h(X, Y)]] = -[Y, [X, h(X, Y)]],$$

because X and Y are orthogonal vectors in g_1 and $h(X, Y) \in \mathfrak{m}$.

The equation

(7)
$$|\delta|^2 h(X, X) = -[Y, [Y, h(X, X)]] + 3[Y, [X, h(X, Y)]]$$

follows from (5), (6), and the Jacobi identity.

On the other hand

(8)
$$[U, [U, V]] = -\frac{1}{4} |\delta|^2 V$$

for any unit vector U in \mathfrak{g}_1 and any vector V in \mathfrak{m} . Indeed, since each unit vector in \mathfrak{g}_1 is G_1 -conjugate to $\delta/|\delta|$ and \mathfrak{m} is $\operatorname{Ad}(G_1)$ -invariant, we may suppose $U=\delta/|\delta|$. Put

$$V = \sum_{\substack{\alpha \in \mathcal{I}_{+} - \{\partial\} \\ \langle \alpha, \delta \rangle \neq 0}} (s_{\alpha} E_{\alpha} + t_{\alpha} F_{\alpha}) \, .$$

By ii) of Lemma 3 and the fact that

$$\frac{2\langle \alpha, \delta \rangle}{\langle \delta, \delta \rangle} = 1$$

for each α in $\Delta_+ - \{\delta\}$ with $\langle \alpha, \delta \rangle \neq 0$ (cf. Wolf [6]), we have

$$\begin{split} [U, [U, V]] &= -\frac{1}{|\delta|^2} \sum_{\substack{\alpha \in \mathcal{A} + -\langle \delta \rangle \\ \langle \alpha, \delta \rangle \neq 0}} \langle \alpha, \delta \rangle^2 (s_\alpha E_\alpha + t_\alpha F_\alpha) \\ &= -\frac{|\delta|^2}{4} \sum_{\substack{\alpha \in \mathcal{A} + -\langle \delta \rangle \\ \langle \alpha, \delta \rangle \neq 0}} (s_\alpha E_\alpha + t_\alpha F_\alpha) \\ &= -\frac{|\delta|^2}{4} V. \end{split}$$

It follows from (7) and (8) that

(9)
$$\frac{1}{4}|\delta|^2h(X,X) = [Y, [X, h(Y,X)]]$$

for any orthonormal vectors X and Y in g_1 . By (9) we also have

(10)
$$\frac{1}{4}|\delta|^2h(Y,Y) = [X, [Y, h(Y,X)]].$$

Thus by (6), (9) and (10) we get

$$h(X, X) = -h(Y, Y).$$

Since g_1 is 3-dimensional, we have

$$h(X, X) = 0$$

for any unit vector X in g_1 and h=0.

Hence M is totally geodesic in G. Since G_1 is also totally geodesic in G, M is a piece of G_1 . Q. E. D.

References

- [1] Harvey, R. and Lawson, Jr., H.B., Calibrated geometry, Acta Math. 148 (1982), 47-157.
- [2] Helgason, S., Differential geometry, Lie groups, and symmetric spaces, Academic Press, New York, 1978.
- [3] Milnor, J., Curvatures in left invariant metrics on Lie groups, Advances in Math. 21 (1976), 293-329.
- [4] Ohnita, Y., Stable minimal submanifolds in compact rank one symmetric spaces, Tôhoku Math. J. 38 (1986), 199-217.
- [5] Tasaki, H., Certain minimal or homologically volume minimizing submanifolds in compact symmetric spaces, Tsukuba J. Math. 9 (1985), 117-131.
- [6] Wolf, J. A., Complex homogeneous contact manifolds and quaternionic symmetric spaces, J. Math. Mech. 14 (1965), 1033-1047.

Yoshihiro Ohnita	and	Hiroyuki Tasaki
Mathematical Institute		Department of Mathematics
Tohoku University		Tokyo Gakugei University
Sendai, 980		Koganei, Tokyo 184
Japan		Japan
Current address (Y. Ohnita)		
Current address (1. On	mta)	
Department of Mathema		
	atics	ity
Department of Mathema	atics livers	-
Department of Mathema Tokyo Metroporitan Un	atics livers	-