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IN STRATIFIED MEDIA R3
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Abstract. This paper deals with the asymptotic energy distributions

for large times of the solutions of elasticwave propagation problems

in stratified media R＼ We construct asymptotic wave functions

which approximate the solutions for large times and calculate the

asymptotic energy of the solutions using these asymptotic wave

functions. In particular,it is shown that the energy of Stoneley

wave is asymptotically concentrated along the interface.
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§1. Introduction

Energy distribution of the solutions of various wave propagation problems

has been studied by C. H. Wilcox ([10], [11], [12], [13]). He constructed asymp-

totic wave functions which approximate the solutions in the sense of L2 for

large times and calculated asymptotic energy distributions of the solutions in

several domain by making use of these asymptotic wave functions.

The construction of asymptotic wave functions is based on an eigenfunction

expansion theorem which is proved by the same author and on the method

of stationary phase. J.C. Guillot [3] studied a Rayleich surface wave pro-

pagating along the free boundary of a transversely isotropic elastic half-space

and showed that the energy of the Rayleich component of the solutions with

finiteenergy is asymptotically concentrated along the boundary.

In this paper we shall derive energy distribution of the solutions of elastic

wave propagation problems in plane-stratifiedmedia R3 using methods due to
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Wilcox. We construct asymptotic wave functions by using spectral integral

representations of the solutions and the method of stationary phase. The inte-

gral representations are based on an eigenfunction expansion theory which was

proved by the author [8] using methods due to S. Wakabayashi [9]. We cal-

culate asymptotic energy of the solutions for large times of the interface prob-

lems for elasticwaves and show that the energy of the Stoneley components

of the solutions with finite energy is asymptotically concentrated along the

interface.

We start with the mathematical formulation of the elastic wave propagation

problem.

Consider the plane stratified medium Rs={x=(xlt x2, x3); Xt^R} with the

planar interface x3=0, which is defined by

f ttu fiu pi), xs<0,
U(*≫),fJt(xs),p(x,))=<

{ G?2,fit,pi), *3>0.

Here Xu X2,fix,fi%are certain quantities called Lame constants and pu />2>0 are

the densities.

We shall denote the lower half-space RI={xgRs ; x3<0} by medium I and

the upper half-space Rl={x^R3; x3>0} by medium II, respectively, as ir

Figure 1.
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Figure1. StratifiedmediaI and II.

The propagation problem of elasticwaves in the stratifiedmedium is for

mulated as the followinginitial-interfacevalue problem:

(1.1)

(1.2)

(1.3)

(1.4)

£j2

~(t!x)+Mu(t>x)=O,

u{t, x)＼X3=_0=u(t, x)＼Xs=+0,

ak%u{t, x)＼x 0=<yk3u(t, x)＼x =+0,

M(0, x)=f(x)

du

~dt (0, x)=g(x)



where

(1.5) Mu = -

(1.6)

(1.7)

Energy distribution of the solutions

A(x3)+u(xs)

p(x3) p(x3) p(x3)k,j=i dxkdxj

<rkju=A(xs)(V･u)dkj+2u(x3)ekJu ,

&kJu =
2＼dxj dxk/
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(1.2) and (1.3) are called interface conditions, and (1.4) is called an initial con-

dition.

The ciuj, diuli, j, k, 1=1, 2, 3) are the stress-strain tensors given by

(1.8)

with the properties

ciiij^hdkidij+fiiidkidij+dkjdii)

Ckiij―^dkidij+uzidkidij+dkjdu)

ckilj―^iklj―^kijl―Wjfct>

ckilj―^iklj―<-kijl―t-ijki,

and 8ki is the Kronecker delta. We assume that the constants c[uj,ciiu satisfy

the following stabilityconditions

(1-9) ii+ju*>0, Ui>0, (i=l, 2),

which are equivalent to the conditions

3

(1.9)'
k,i

s

= 1

3

k,i,i,j=i

3
ciiijSljski^3d1 S Is**!2, <5i>0,

k,i=l

3

ciiijSijSki^'Bd2
k,i=l

＼ski＼2, 32>0,

for all complex symmetric 3x3 matrices (ski), ski=sik^C (cf. [4])

We introduce the Hilbert space

(1.10)

with inner product

M=L＼R＼ C＼ p(x3)dx)

(u, v)=＼ u-vp(xs)dx

where u-v denotes the usual scalar product in C'6: M-y=Sf=i utVi. It was

shown in [8, Theorem 1.2] that the operator A on M with domain

D{A)={u(eH＼RI, C*)@H＼R%, C3);

u satisfies the interface conditions (1.2) and (1.3)

in the sense of trace on x3=0}
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and action definedby

(1.11) Au = Mu, u^D(A)

is a self-adjointoperator on M. Here

H＼R＼,Cz)={u{x);D%ugL＼RI) for 0^a^2}

is a Hilbertspace with innner product

(u,v)2 = [ S Dau(x)-Dav(x)dx

JRS |o|sm

Every u<=D(A) satisfies the interface conditions (1.2) and (1.3), so the mixed

problem (1.1)-(1.4)may be reformulated as the problem of finding a function u :

R-+JC such that

(1.12)
^+Au=0

for VttER,

(1-13) u(0)=/, ^-(0)=*.

The operator A is non-negative [8, Lemma 1.4] and the spectral theorem for

self-adjoint operators (cf. [2]) implies that (1.12) and (1.13) has a (generalized)

solution given by

(1.14) m(0=(cos tA1/a)f+(A-1/2 sin tA1/2)g, tz=R

for every pair /, g^M. u has derivatives du/dt and d2u/df and is a strict

solution of (1.12) if and only if /gD(A), g^D(A112).

Next we define the energy of solution u on a set KdR3 at time t for the

elastic wave propagation problem by

(1.15) E(u, K, 0=4 (
du 2 3 du

dxj
dx

If u is a solution of (1.1)-(1.4),u satisfiesthe conservation laws of energy:

E(u, Rs, t)=E(u, R3, 0)=const. for We/2,

where the constant may be finiteor infinite. If one defines a sesquilinear form

B in M by

D{B)=H＼R＼ C*)CZM

and

B(u, v)=― 2 ＼ A/wti―･-=,―rfx,

then it is easy to verify that B is closed and non-negative, and that A is the

unique self-adjointnon-negative operator in M associated with B (cf.[5]). Then
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D(A1'2)=H1(R3, C3) and for all u(eD(A1/2) one has

＼＼A1/2u＼＼2=B(u, u)=
3

a f ,, du du
＼ Mkj-~―--~―dx

JK3 OXj 0Xk

where ||･||is the norm in M. It follows that

(1.16) £(M, ft3, /)= ―
2+M1/2k||2=||mB
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Here the norm ＼＼u＼＼eis called the energy norm. If f<=D(Az/1), g^M, then u{t)

<=D(A1/2), du/dt(EJ( for all t^R and u(t) satisfies

(1.17) I|m(0II^=I|m(0)||^<co for We/2.

Therefore a necessary and sufficient condition for u to have this property is

that the initialstate /, g has finiteenergy:

(1.18) f<=D(A1/2), gtEM.

Hereafter we consider only solutions with finitetotal energy.

When

f(EM, g(ED(A~112),

the solution u of the elasticwave propagation problem in M, defined by (1.12)

and (1.13), satisfies

u{t,x)=Re{v(t, x)＼,

where

v(t,-)=e-UAl/ih, h=f + iA-1/2g,

then v{t,x) has the following representation (see Section 2):

v(t,x)= V>vUU x)+J]vfKt, x)+ E vUt, x)<=M .
jfEM jeM kGN

vtj(t,-x)(jG {/)i,p2}) are called Pressure (P) components, vfj(t,x)(j(E.{su s2}) are

called Shear Vertical (SV) components, vff(t, x)(j<=M= {su pu s2, p2}) are called

Stoneley components and vik{t,x)(k^N= {slt s2}) are called Shear Horizontal

(SH) components. We remark that if

(1.19) Dis(c|r)>0,

then the Stoneley components exist. Here cSr=min {cSl, cH} and Dis(^) is defined

by (2.6) below (cf. Section 2, [8, Section 3]). This condition is determined by

Lame constants Xu fit and densities pt {i―1, 2).

Our main results are the following theorems. Theorem 1.1 shows that the

energy of the Stoneley components vff(t, x)(j<bM) of v is asymptotically con-

centrated along the interface x,=0.
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Theorem 1.1. We assume that

ft=D(Al'*)r＼M, g<E3Cr＼D{A-112), Dis(cir)>0,

lim E(v?f, (C-(O)＼jC+(O))r＼B(t, #(*)), t)=E(v?f, R＼ 0), ;"eM

where

C-(0)= {* =#£;-0(|x'|)<*8<O},

C+(d)={x<ERL;Q<xs<O(＼x'＼)},

B(t, &(f))= {x<=R3; cstt―9(t)£ ＼x' ＼£cstt+-9(t), x3<eR} ,

9(t): lim#(f)=°°, ＼8(t)＼<2cstt,

d{＼x'＼): lim d(＼x'＼)=oo, monotone increasing function,

＼X'l-oo

cst'. propagation speed of Stoneiey wave.

The next theorem shows that the P, SV, SH components vfjit,x)(;eM),

v£k(t,x)(k<=N) behave like free waves.

Theorem 12. We assume that

f t=D(Al>%)r＼3C, g^MnDiA'1'2),

then

lim E(vfj, Ss(t, $)uSPl(t, $)＼jSSz(t,$)uSP2{t, £), t)=E(vtj, R＼ 0), ;eM,

£-≫oo

lim E(vik> Ss(t, S)uSS2(t, &), t)=E(vik, R＼ 0), k^N,
t-*oo

where

SSl(t, $(t))= {x^Rl; ctlt―9(t)^ Ix |£cSlt+$(t)},

SPl(t, &(t))= {x^R3-; cPlt-$(m Ix| <cPlt+&(t)＼,

SSz(t, &(t))= {x^R%; cHt-9(t)S I x | ^c,,f+£(*)},

SPt(t, &(t))= {xelR% ; cPtt~9(t)^ | x |£cPit+-9(t)},

&(t): lim-5(0=00,
£->co

cVl, cP2: propagation speeds of P waves,

Csv cs%: propagation speeds of SV and SH waves.

These theorems are obtained calculating the energy of the asymptotic wave

functions vff°°(t,x), v＼f{t,x) (j'gM), vf (t, x) (feeiV) which defined by means of
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the stationary phase method.

The remainder of this paper is organized as follows. In Section 2, we give

spectral integral representations of the solutions of the propagation problem by

using the eigenfunction expansion theorem for A developed in [8]. In Section

3, we construct asymptotic wave functions of the Stoneley components by means

of the method of stationary phase. We construct asymptotic wave functions of

the P, SV, SH components in Section 4. In Section 5, we calculate the asym-

ptotic energy distributionsof the solutions for large times.

§2. Eigenfunction Expansions for A

The eigenfunction expansion theorem for A was developed in [8]. In this

section it is applied to give spectral integral representations of the solutions of

the elastic propagation problem. This section begins with a brief review of

the structure and properties of the eigenf unctions and the expansion theorem.

Let yj'={rjU7?2)ei?2 be the dual variables of x'―{xx, x2) and let Fx> denote

the partial Fourier transformation with respect to x';

u{f]',Xs)=(Fx>uXV', xs)=

for u in M. Let

For every ^'^O, let

(2.1) u=

1

,i.m. -=-

fl-oo Alt }＼x'＼sR
e~Uxirii+x^^u(x)dx

D(A)=FX.D(A)= {u ; ug=D(A)} ,

Au=FX'AF~,1u, u^D(A).

IV1

1

T~r＼V*w＼＼

＼o

-J?2

!?1

0

0

0

w

c=

1

0

0

0

0

1

0

1

0

where U and C are unitary matrices and ＼rjf＼={-q＼-＼-rjtf12.Then we have

(2.2) Au=F-,1UC(A1(v')RA2(V'))(UC)-1Fx,u for u<=D(A),

where Ai(i)')and A2(tj')are non-negative self-adjointoperators (see [8, Proposi-

tion 1.7], [1], [3]).

We can get an explicitrepresentation of the Green function G^x^y^y'iQ

for the operator A^rj')―£/(£<£/?)from the expression of the solution for the

following problem:

(2.3)

(2.4)

{Al{v/, D)-Qvty, xs)=f{v', xs)

v{rj', x3) | x Q=v{r)', x3)|X3==+0,
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(2.5) B1(v')v(V/, *s)l*,=-o=£iO7'W, *s)l*,=+o.

Here (2.4) and (2.5) are the interface conditions for Aiirj',D) corresponding to

(1.2) and (1.3). A^tj', D) (D=(l/i)(d/dx3)) is the differentialoperators corre-

sponding to the self-adjoint operator AJj)'). Since the solution v of (2.3) should

satisfy the interface conditions (2.4) and (2.5), the denominator of v has the

Lopatinski determinant A{rj',Q as follows:

A(≫',C)=ltfTDisC*),

(2.6)

where

(2.7)

6sl t≪2/

C≪2 CS,^

z

a

c

* /
1

9
v c?i

r2
Csi

ftlfr

{dxbz+azb^z*

z

r2

b,=

Xi+2fii

■

1

1-
z

~2
> o%―x＼＼

2-

and pressure(P) waves are

0 = 1, 2)

Cs,Cs

a.^1

The squares of propagation speeds of shear(SV, SH)

erivenbv

pi Pi

respectively. From the conditions (1.9), the minimum speed of {cSl,cVl,cSv cP2}

is either cSj or cs%.

We can see that Dis(z) has the only one real zero when Dis(z) has zeros.

Denote by clt its real zero. Then the zero of A(^', Q is Cstly'l2 and is the

origin of the Stoneley wave propagating along the interface xs=0 in the elastic

space R3, and cSt is its speed.

By virtue of principle of the argument, the conditions for the existence of

zeros of the Lopatinski determinant A(^', C)= 1^'!6Dis(^) (the existence of the

Stoneley waves) are given as follows:

If cSl<cS2, then

( i ) Dis(cl1)>0=) The zero £=Cst＼r]'＼2of A(tj',Q in £ exists in

[0, CsJ^'l2) with order 1. More precisely, we shall

prove in the proof of [8, Theorem 6.51 that cSt^0.
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(ii) Dis(cj1)=O =3 csj= cSi and we shall consider this case under

some some restricted conditions (cf. [8, Lemma 6.4]).

(iii) Dis(Cs1)<0=4 A{-q', Q has no zero.

If cH<cSl, then we must replace DisCc^) by Dis(c|2).

We also obtain an explicit representation of the Green function G2(x3, ys,7]';Q

for the operator A2{t)')―^I (C<£i?) by the same method as Gx(x3, ys, rj'; 0- The

Lopatinski determinant corresponding to the operator A^rj')―£/ (&<£R) has no

zero. By using the Green functions Gi(xs, yz, -q'; Q and Gz(x3, y3, t]'; Q, we

define

4>u(x3, V ; 0=FyllG1(x3, ys, V'; C)](0(M7)-C)%W*.rS jeM,

^ft(x3, ^ ; C)=F^[G2(^3, 3^3,)?'; C)](a^()?)-QK^3)-1, k(=N.

Here tj=(i}u rj2,f)=(>7/, I), ^･()?)―^l^l2 are the eigenvalues of
^4i(^'),

Pfa)) are

mutually orthogonal projections for A1(y]'), Xk(r})=cl＼rj＼zare the eigenvalues of

At(ji'), M={su pu s2, p2} and N= {s1, s2}. When Z-^Xjty + iO, ^c%t＼r]＼2, and

C,-^Xk{i))±iO, the limits <pfj(x3,rj), <pfj(x3, rj),and <p£k(xs,f}) exist and these limit

functions are generalized eigenfunctions for A^rj'), A2(t}'), respectively.

Using these generalized eigenfunctions for A^rj'), A2(t}'), we define gener-

alized eigenf unctions for A as follows:

(2.8)

(2.9)

(2.10) <PUX, V)=-~2~7TeUXirll+X2V2)l]C(O2x2^ik{X;h V))

j<bM,

i'gM,

k&N,

where Onxn denotes the nXn zero matrix.

Now we definethe Fourier transform of f^M with respect to these gen

eralizedeigenfunctions:f>->(ffj,ffl,fik),

(2.11)

(2.12)

(2.13)

/f/^Um.j #>(x, i))*f(x)p{xs)dx

f?f(V)=LLm.^
^<R<

plKx, v)*f(x)p(xt)dx

fik(y)=U.m.＼ <]>Ux, r})*f(x)p(xs)dx,

R―coJ ixI%R

jgM

jgM,

ktEN
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Theorem 2.1 corresponds to the Parsevaland Planchereiformulas.

Theorem 2.1. We assume thatDis(cL)>0. Let f, gtEM and 0<a<b<oo.

Then we have

+k%rLMv)-iKv)dv.

The firsthalf of Theorem 2.2 expresses the Fourier inversion formula with

respect to generalized eigenfunctions. The latter half gives the canonical form

for A.

Theorem 2.2. We assume the same assumption as Theorem 2.1.

(1) For f^JC,

/(*)= S l.i.m.f (<ptj(x, y))ftj(V)+<pfKx, ^/f/0?))^

+ S l.i.m.l #*(x, 7))ffk(i})drj.

(2) For f(=D(A),

Af(x)= S U.m.( (UytyUx, 7))ftj(y])+ch＼v'＼2<p?f(x,y)f?Ky))dv
jeM fl->~J[ij＼sR

+ 2 l.i.m.f h{r))(f>n{x,y)fik(y)dr),

and

(Af)Uy)=Uy)fUv)> /^M,

(AOf/O^cI^T/SK?), >eM-

Theorem 2.3 gives an explicit expression of the ranges i?(0±).

Theorem 2.3. Assume the same assumption as Theorem 2.1. We define the

mappings by

0fj: Jf 3/ ―> ffjty&LKRl C3), js=M,

0fj : M=>f ―* ffl(V)^L＼R＼ C3), j<=M,

0Zk: JC=>f ―* fUv)<=L＼R*±, C3), k^N,

and put
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j<=M JBM keN

Then we have

#(0±)= a R(Pj(vm0lxl)L＼Rl, C3)0 23 c(i3X)?)cOlxl)^2(i23,C3)
je.it

e s R(o,x2ci)L≪(fli, c3)

j<EM

419

This implies that 0± are unitary operators in M, and that the systems of gener-

alized eigenfunctions {<ptj,</>?/,<J>tk)and {<pTj,<pff,<p2k＼are complete, respectively.

The next theorem shows the utility of the eigenfunction expansion theorem

for the operator A.

Theorem 2.4. Let W(Z) be a complex-valued bounded Lebesgue measurable

function on a(A)={X: 2.^0} and let W(A) be the corresponding operator defined

by means of the spectral theorem.

Then we have

mm)uV)=w(c}＼vnfrJ(V)^(pj(V)Rolxl)L"(Rs±t c*), j<=m,

mA^Mv)=^(ci＼Vnfik(v)^(O2x^l)L＼Ri, C3), k&N.

It will be convenient to rewrite the solution (1.12)-(1.13) in the following

form.

Theorem 2.5. Let f and g be real-valued functions such that

(2.14) fe=M, geEDiA-1'*),

and define

(2.15) h=f+iA~ll2g^JC.

Then the solution in M defined by (1.14) satisfies

(2.16) u(t, x)=Re{v(t, x)},

where v(t, x) is the complex-valued solution in Si defined by

(2.17) v{t, -)=e~itAinh.

The proof of Theorem 2.5 is due to Wilcox [10, Theorem 2.3]. This theo-

rem implies that the solution u{t, x) of (1.12) and (1.13) is determined by v(t, x).

Combining Theorem 2.4 and Theorem 2.5, we have the following:



420 Senjo Shimizu

Theorem 2.6. We assume that

f<=M, g^D(A-1/2), Dis(c!r)>0.

Then the solution of the elasticwave propagation problem, by (1.12) and (1.13)

has the representation

(2.18)

where

(2.19)

(2.20)

(2.21)

and

(2.22)

(2.23)

(2.24)

v(t,*)= 2vf/*, *)+ 2vf/(f, x)+ S vUt, x)eiJC,
j(EM

vUt, x)=

v?f(t, x)

l.i.m

=1.1.m

vik(t, #)=l.i.m

ij-*oo

hfj(7j)=

JGM j<BN

JliyisiJ

J＼T][SR

fUi))+i

1

j<=M.

/ EM

k<=N,

#fX5?)e(jPX^)0Olxl)L2(i2L C3)

-g?j(V) i(Pj(V)ROlxl)L＼R＼ Cs)

cj＼y＼

fe.O?>=/"(>?)+!'―7―

§3. Transient Guided (Stoneley) Waves

This section deals with the Stoneley components vff(t,x) O'eM) defined by

(2.20) and (2.23). It is shown in Section 5 below that these components are

transient, in the sense that the energy in any bounded region tends to zero for

large t, and are guided, in the sense that the energy concentrate near the

boundary x3=0. The proofs are based on asymptotic approximations for vf}(t,x)

(/eM) for large t which are derived in this section.

In this section it is assumed that the initialdata f(x) and g(x) are real-

valued functions and f^SC, g^D(A~1/2), and that the condition Dis(cfr)>0 (i.e.

existence of the Stoneley wave) is satisfied.

Substituting (2.9)in (2.20),we can represent the Stoneley components vff(t,x)

O'gM) in the form

(3.1) vff(t,x)=la:m.(^)J| ^''･''-"^'''''UCVWf/C*,, v)^Olxl)hfl(v)dv,
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iw=
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-(
1

0

0

v=(y'> £)=0?i≫ v*> £)

421

and <pij(x3,j])is a generalized eigenfunction for the operator Ai(tj')(given by

[8, (4.17) and (4.18)]).

The function </≫f/(x3,tj)and h?j(y) (J^M) can be written in the form

(3.2)

(3.3)

where

≪≪** *)=ran e-e<v"ll*≪l0f/(≫/)jP/i7),

^>=^5k*&v>,

Coj ―

Here $fj(r)') is a bounded

kff(r)')(=L＼R?, C3) because

(3.4)

(3.5)

(0<cw<l).

continuous function (see [8, (4.17) and (4.18)1)and

ii£f/o?)iii≪(*s,=j

=―ll*2K?')lli.≪.>.

Then the integral in (3.1) is rewritten

where

(3.6)

(3.7)

vfHt, x)=
fl-oo＼27r/J|i?'|S≪

xU^OC^f/^Oeo^OQ^OVl^'Uf/^')^', /eM,

w=U..,,.,{q^<w ≪≫*"■*≪

We note that U(y)C(0f/(y)cOixiX?(y) is a bounded continuous function

of n' in R2, because
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＼v'＼

･r+<wr
d£< 2 r 1 dd

TC

Now we consider the following integral

(3.8) w(t, x)=^-＼ ei(x'-''-tei"'l)-e8"f||x≫lVr^7T0(j?/W, (j)^3){R2)-3){R＼C),

where cx and c2 are positive constants and £)(RZ) denotes the usual Schwartz

space.

Introducing plane polar coordinates (v, w) for yi', we find

(3.9) w(t, x)― ―
n

lit JoJsi
ei"ix'.m-e1t)-≫et＼xa＼v≫i%^va^(la)(lv

Z7T Jo

where

(3.10) J(x',v)=＼ eivx'-"${va>)d(o.

In order to find the asymptoic behavior of w(t, x) for £―>oo,we calculated the

asymptotic behavior of ]{%', v) for Ix'l^00 making use of the method of sta-

tionary phase.

The following theorem is a version of the method of stationary phase and

give the asymptotic formula at infinity of the Fourier transform of a measure

(with smooth density) concentrated on the hypersurface Sn~x(see [6, Section 5],

[7, Section 4] for general C°°hypersurface S).

Theorem 3.1. Let S be the unit sphere of Rn (n^2), p. be a C°°function

defined on S. Then we have the following asymptotic formula:

(3.11)

/(*) =
(

ei<x-s>pt{s)dS
Js

(lit ＼(≫-l)/2 /
2?T ＼(≫-l)/2

-y-A g*(l*l-(*/*)(≫-D)+jU(_^-^Lj g-f(|I|-(≪/4)(n-1))+9(x)

as |x|-*oo along the ray x = I x 16, where q(x) satisfies

(3.12)

for each multi-index v

Vq(x)=O(＼x＼-<n+1>'z)
as |*|->oo

Applying this theorem to (3.10) we find



(3.13)

where

(3.14)

J(x', v)=
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1/2 / 2tT ＼l/2

xf=r0 r=＼x'＼^O, 0eS＼
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and we get

(3.15) ＼qo{x',v)＼Ma＼vx'＼-^ for|x'|^l.

Here Mo―Mo(^>) is a positive constant which is independent of x', #eSx and

v>0. In (3.13) the square roots are defined by the convention that if z=±i＼z＼

then zll2^e±i(:c/i)＼z＼1/2with |2|1/2^0.

Substituting (3.13) in (3.9), we obtain

(3.16)

where

(3.17)

Jo

+(-2OT≫-1/2(Vi"(r-ci°-VC2lX3lv0(-^)rfv
Jo

+gi(t, x)

Ql(t, x)={2n)-1^e-ivc^-vc^x^v3'zq,{x', v)dv,

| Ql(t, x) ＼̂{2k)~1M, I x' I -8/*jV≪2i*≫idv

=(27T)-1Afocil Ia:'I "s'a|jc,| -1.

From (3.16), it follows that qx(t, x) is a continuous function of %―{%', x3). There-

fore we have

(3.18) ＼Ql(t,x)＼^Ma+＼x'＼i'2yXl+＼x3＼y1 for *=(*', xs)^R＼

where M=max((2u:)~1M0Cz1, maxt,＼x＼n＼gi(t,x)＼)is independent of t.

Let us define the functions G%(t, 6, xz) by

(3.19) G|(r, 0, x3)=(±2mr1^e±i^^x^v^(±vd)dvf r, x3^R, OzeS1.

Then we have

(3.20) wit, x)=
G r-cjt, d, xz) , Gfjr+cJ, 0, xa) , _u

7= 1 7= VQl＼Jy X)
Vr Vr

x'=rd, r=|x'|^O, OeS1, x3(eR.

We prepare the followingfour lemmas.
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Lemma 3.2. For every 0(y}')^L2(R2), Gi(r, 0, xs) can he define and we have

(3.21) ＼＼G%T, d, Xs)IU*≪xSxJO = 7^=ll0(j/)IU≪<*2> ･

Proof. By Fubini'stheorem, we have

||GJ(r, 6, X3)＼＼i2(RxSxR)

=jj

X(LIFr^G^r,
6, xz)＼*dv^dddx3 (by Parseval'sformula)

= [[ ^P e-2vc^x^＼v(f>{vd)＼'dv^dddxz

= -||0O/)lli≪≪≪>, i'=vO. u

Lemma 3.3. For every 0eL2(JT), we define w°l(t,x) by

(3.22)

Then we have

(3.23)

Proof.

w%t, x)―

G$(＼x'＼―dt, j^rr, xs)

＼＼w%t, ･)lli≪≪≫)^l|G$(r, 0, xs)＼＼h(RxSlxR}

c2

＼＼W%t, ･)llL2≪8) = ( ( ["iGtir-dt, 6, x3)＼2drd6dxz

G%(j, 0, xz)＼zdzd0dxt

Xs)＼＼h(.RxSlxR)･ D

Lemma 3.4. The function w(t, x) defined by (3.8) for <j><=2){R'1)can also be

defined for any 6^L2(R2) and we have



(3.24)

Proof. In fact,
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＼＼w(t, ･)llw(≪a) = ―/=H0(jyOllL*<Ji8)

(Parseval's formula)

= ( (2＼~＼-n'＼e-2c*^'^dxs)＼<f>(V')＼2d7)

JiJ2＼ JO ' /

= -ll^/)ll£≪(u≪>- □
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Lemma 3.5.(See Wilcox [10, Lemma 2.7]). Assume that u(t,x) has the pro-

perties

(3.25)

(3.26)

(3.27)

u(t, -)eL2(i2n) for every t>t0,

＼im＼＼u(t,･)IIl2(a-)=0 for every compact K(zRn,

u(t,x)＼^g{x)<=L＼Rn).

where t0 is a constant. Then

(3.28) lim ＼＼u(t, 01U2(jjra)=0

t-oo

Theorem 3.6. Let w^ = w and W$ be the functions defined by (3.8)and (3.22)

for 0eL2(/22), respectively. Then

(3.29) ＼im＼＼w^t,-)-w%t, -)ll^2c≪3>=0.

Proof. First we consider the case where ^e£)(i22). Putting

(3.30) u(t,x)=Wf(t, x)-w%t, x),

we verify that(3.25)-(3.27)hold for u{t,x). From (3.30),Lemma 3.3 and Lemma

3.4, u(t, -)^L2(R3) for every i^R. Next consider

w^i, *)=
^LJ/"^1^*''

v> <^dvd(ii

where

Noting that <p is a C1 function of v in [0, <x>)for fixed {x't of),we perform an
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integration by parts with respect to v. Then we get the estimate

MK
sup ＼wt(t,x)＼S-rrr,

where MK is a positive constant which depends on K and <j>but does not de-

pend on t. As for w'XU, x), we have for any d>0

＼＼w%t,･)ll£2(Bd)^(<'
f ＼d＼G%(r-Clt,

0, xs)＼zdrdddx3
J-dJS1JO

=
(d LT

Xl-Ht.a-c^lG^S, 0, X3)＼*dsdddx3,

where JBd= {x; ＼x＼^d} and X[a,6] denotes the characteristic function of the

interval [a, &]. The last integral tends to zero when t-*oo by Lebesgue's

dominated convergence theorem. Thus

lim||u(f, -)llw(Bd)=O as i->

From (3.20), (3.22) and (3.30), it follows that

(3.31) u(t, x)

Gs{＼x'＼+Clt
X'

＼x'＼
Xs)

An integration by parts in (3.19) gives

Gi(t, 8, #j)=:-7====―――■―-―-
9 V―2m ―(zt+c2＼x3＼)

From this we deduce the estimate

(3.32)

where

(3.33)

G^CIx'l+Cxf, jpT, x3)

+ Qi(t, x)

I g-ivt-vci＼x&＼
Jo

X =rd

^g(x)^L＼R3) for Ul^l,

M

{cl+＼x'＼+C2＼xi＼)

M

(Ci + C2|*≫|) X

Xr
for |*'|^1,

for |jc'|^1,

and M is a suitable constant. From (3.18),(3.31)and (3.32) with (3.33), we see

that (3.27) holds for this u(t,x).

Now we show (3.29) for general $^L＼R2). For arbitrary s>0, there exists

60t=£)(R2)such that H―60hn≪i)<s, because £>{R?)is dense in LHR2). Then
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＼＼Wf(t,-)―W%t, OUlisuis)

^＼＼w$(t, ')―Wfo(t, ^hsutv + WWfct, ')―w^it, -)!U2(fl3)

2

= "7== 110― ^o＼＼LnR2)+ ＼＼W^{t, -) ― W$(t, -)＼＼lUR3)

Vt-2

Since $0<=£[)(R2), there exists to>O such that for any t^t0

＼＼w<i>0(t,-)-w°;0{t, ･)lli2(jR3)<£.

Thus (3.29) holds for

3.6. □

any 6(eL＼R2).
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This completes the proof of Theorem

In order to state our main theorem in this section, we recall some relations.

When f(EM and g^D(A-1/2), h=f+iA~1/2g^J{. Let /?/ and gff be the Fourier

transforms of / and g with respect to the generalized eigenfunction <pffof A,

respectively. Then

cst＼f]I

and the Stoneley components vff(t,^^L'XR3, C3) (;gM) of the solution v(t,x)

of the elastic wave propagation problem defined by (1.12) and (1.13) can be

represented in the form (3.5):

vfKt, x)= l.i.m.f-―^＼ ei(.x'-rj'-tcSt＼ri'＼)-CojiV'＼＼x3＼

xU(V')C(^!(V'm0lxl)Q(v')V＼v'＼kfKv')dv'> jeM,

where <j>ij(f]')and kfj{rj') be the functions defined by (3.2) and (3.3), respectively,

i.e.,

<P?Kx3, >?)=---!^|--e~Cw"'l|X8l0f/(^/)/JXi?),

By (3.4),

and

Taking as 6 in Theorem 3.6 each component of the matrix function
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UO/)C(^/(^)0OlxoW)^/O/)>

then we obtain the following main theorem in this section.

Theorem 3.7. We assume that

f^D{Alli)r＼M, g^Mr＼D{A~1'2), Dis(cir)>0.

Let vfj°°(t,x) (j'gM) be the functions defined by

(3.34)

where

(3.35)

vfnt, x) Gsfr-cstt, e, x,)_x,=r r= x, ^e51>

Gstir, 0, xl)=l.i.m.-7L[Vr"eo^lisl

X＼J(v0)C(ij>fXv0)ROlxlMi>0)V^k?fb0)-l-r-dv
P＼xs)

Then we have

(3.36) limibf/a -)-v?nt, on^=0

vf/°°(£,x)^JC is called asymptotic wave function for Stoneley component vfj(t,x)

of the solution v(t,x).

§4. Transient Free (P, SV, SH) Waves

This section deals with the P, SV components vtj(t,x) (j'eM) and the SH

components vik(t,x) (6eiV) defined by (2.19) and (2.22),(2.21) and (2.24), respec-

tively. It is shown in Section 5 below that each such components are transient

and free in the sense that they behave like a diverging cylindrical wave when

t-^oo. The proof of these statements are based on asymptotic approximations

of vfj(t,x) (j'gM) and v£k(t,x) (k^N) for large t which are derived in this

section.

In this section it is assumed as in Section 3 that the initialdata f(x) and

g(x) are real-valued functions. We study mainly the asymptotic behavior for

large times of the component vtPl(t,x), because the other components vTPl(t,x),

vfj(t,x) (/e {Si,p2, s2}) and vik(t,x) (k^.N={su s2}) can be handled in a quite

similar way.

If f&SC, g^D(A~1/2), the component viPl(t,x) has the following spectral

integral representation



(4.1)
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vtPXt, x)=U.m.(~)[ e^'-v'^Pi^Uty)

1 /J^coVZTT/Jujisfl
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Here U(^/)≫C are the matrices defined by (2.1), hfP](r})is defined by (2.22), and

<ptPl(x3,7])is a generalized eigenfunction of A^-q').

We now recall that <pfpXx3,in) has the following form:

(4.2)

(4.3)

(4.4)

0i"Pl(*3, f})

(pipAXs, fj)

0ip+(*s, Y])=

f <pi$Sx3, rj), x3<0,

i

(plp^Xs, Tj), X3>0,

f ei≪;r3ai(>?)+e-^3a2()?)+e-≪Sl('?^p1)^a3(7?)j £>o,

I 0, $<0,

[ 0, ^<0.

Here at{ij)(*= 1, ･･･, 5) are bounded continuous 2x2 matrix functions of p

if]',£)=(i)u7)i,I) and

(4.5)

(4.6)

i

and the decomposition

(4.7) l.i.m

+1 ,i.m

＼2tc /
JiBisfi.s>o

^
2

Jwr _7*

w
2

cPl＼rj＼>cSl＼rj'＼

(cf. [8, (4.9),(4.10)]).

Then vfPl(t,x) has for x3<0 the form

＼f]＼＼ Cp ＼7]＼<CS 7}'

vtpXt, x)=U.m.(4-)＼ ei<*'-v-"Plw>

X＼J(r)')C(<p[Uxz,V)mixi)htPl(v)dV

eux'-v'+sxt-tc^^^
,^(ai(

^lxl)h+ (V)dv

(4-)[ ei(x'-''-^-£cPi"?l)U()7')C(≪2()7)cOlxl)%1(^)rf)7

+ lJ1m.(~―)J

1,ss/(X''r/"C'Sl<'';?l)Ir!Cpi'"l)U^/)C(^^c0''<1)^)d)?

= Vi(*,*)+F2(*, x)+Vs(i, x) if x3<0.

Since we can decompose vfPl{t,x) (xs>0) into a sum of integral expression of

type V3(t, x) using (4.4),we consider vtPl(t,x) only in Rt= {x = (x', x3),x'^R2,

xs<0}.
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First we consider Vy.it,x). Let F(£) be the Heaviside function of £ (i.e.

y(£)=l for £>0 and =0 for £<0) and put

(4.8) ^(7)=r(cU(7/)C(ai(7)e0ixi)fr,1(7) ･

Then 0<=L＼R3+, C3). As in Section 3, we can extend the result obtained for

0&3)(R%, C3) to the result for 0^L＼R＼, £73)by using the fact that 0{R＼, C3)

is dense in L2(R3+, C3). Therefore it suffices to consider the integral

(4.9) Writ, *)=J-f e*'*'-''^-"!"1'^)^, <f)^g){R3+)=g)iR＼, C)d<D(R3, C).

Then

-^<xf-vf + xtS-te1V'＼7jf＼*+et)=xa-tci:^^T^<0

if xs<0, £>0 and t>0.

This means that the phase function has no stationary point on supp <j>{r))and

therefore we can see integrating by parts with respect to £ that Wi(t, x) tends

to zero when ?-*oo for fixed x and uniformly an each compact set KdRt. In

order to find the asymptotic behavior of W^t, x) as |x|-*oo, we introduce

spherical coordinates

We find

(4.10)

where

(4.11)

Wx{t, x)

J(x, v)=

By Theorem 3.1 we have

(4.12)

where

and

(4.13)

J{x, v)=

_1

2x Jo

f
fvx-°J(j){v(i})da}

(4*-).≪"^)+(-5l

＼tvr / V ―ivr

＼e-ivr(j}(-vd)+q{x,
v)

x=rd, r= 1x1^0, 0eS2

＼g(x, v)＼£
Mo

＼vr＼*
for |yx|>0.

Note that if xe/Ji, <f>(vd)=0 because #3<0 and supp0cz/?+. Now we define

following Wilcox's procedure [10]

(4.14) GHz, 0)=
r^

e±iv%±iv)(j>{±vd)dv
Jo



then we have

(4.15)

where

(4.16)
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WM, x)=
GKr+dt, 6)

r
+gi(t, x)

gi(f,x)=^-iVffei"^) v)dv
LizJo

From (4.13), we get the estimate

(4.17) ＼Qi(t,X)＼^
M

＼x＼*
for |x|^l.
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By the same argument as in Section3 which is due to Wilcox, one shows that

(4.18) limll^xCf, .)IU≪(*i)=O

As for Vt(t, x), it suffices to consider Wi(t, x', ―x3) for xs<0. In fact,

(4.19) Ws(t, x)=^-( e*^'-''-*'5-"!""^)^, <f≫^£)(Rl)

~2*T
V+xst-tciWUMn', ―g)d-n'd£

=W1(t, x', -xs).

Note that if x^Rl i.e. x = rd, 63<0, then <j>(-vOf,-(-v69))=0. Hence we

find

(4.20)

where

(4.21)

W*(t, x)=
Gtjr-dt, 0)

r
+ Oi(t, X', ― XB)

Jo

In this case, we can also show that

(4.22)

where

(4.23)

lim＼＼W2(t.-)-Wf(t, OIU≪≪i)=0,

WT(t, x)=
r

Next we consider the following integral

(4.24)

where

W3(t, x)=-£-＼ e<<*'-''-^w-"1i7i)^)d^j (j)^g){R＼),

LiltjR＼
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(4.25)
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±V$＼7JTt-＼i)'＼s, c2|i7l>|5?'l,

iV＼7]'＼2-cl＼r)＼2, ct＼7)＼<＼r)'＼.

We take a C°°partitionof unity {Xu Z2>13＼in a neighborhood of supp 0

such that

(4.26) O^Z/^1 (; = 1, 2, 3), Xj =C

X1(7})+Xi(r})+Xi(7i)=l on Q,

o.={v.W>ffi

Q-lv '*T <＼y＼2<

fiH'^|!<4Sf}

o(Qj)

ci-2e J

(QdRl)

where s is a sufficientlysmall positive constant. Using this partition of unity,

we decompose W3(t, x) as follows:

(4.27) w3(t, X)= s _Lf eHx'-r''-x^r>)-u^1'^lj{rj)^{r])d7]

LjTLJidj

= j:w3j(t,x), respectively.

First consider

(4.28) WW, x)=-^-＼ e^*'-''"*^"1-1''1-^"1^!^)^)^^.

Li1ZJ *Jj

Making the change of variables (■/]',$)->(in', X), X= Vcl＼j]＼2―＼-nI2, we get

(4.29)
Lit J{(ij'. X); ■fj'e.RZ./>oi

Xjty, Wity, Sty, X))#ty, Sty, X))dr)'dX,

where

(4-30)
■≪''･

≫=S$tfj>
Hf'

≪=≪?'･ ≪=ivJR3=WP.

This transformation is non-singular on a suitable neighborhood of suppX^.

Noting that

Jty, DUi)', Sty, X))<f>ty,Sty, Z))<E3){{ty,i);3?'G^ ^>0}),

we see that (4.29) is an integral of the same type of (4.9) and (4.19). Therefore

we can show that



(4.31)

and

(4.32)

Here

(4.33)

and

(4.34)
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＼im＼＼WUt, -)IU2c≪l>=0,

＼im＼＼WUt,-)-Wi?(t, ･)IUa≪i) = O

W7?(t, x)=

GUt, d)=

Next consider

(4.35) WS3(t, x)

Jo

Gti(r
C

_i_

r

t

o)
x=rd

Ut{-iv)J(vd', -vdz)

2tt jiei

Making use of spherical coordinates in (t, x)-space:

(4.36) l=rd0, x,=r0, (/=l, 2, 3), r=Vt* +1 xp^O, 0eS3.

We write the integralin

(4.37)

Then

W≫(t,x)=±

(

＼

4.35) as follows:

433

(4.38) p{6, f])=d'-r]'-cld0＼r1＼-id,V＼r1'＼i-cl＼r]＼2,Y]=(V', &

is a complex phase function such that Im p{6, ^)>0 on supp X3(^)^(^) when

#3<0. Since

dP -B r o V* :ff (l-c!)>7≫ . _1 2

O59& I≫I vln'l -c＼＼f)＼

We find that

(4.39)
h

k=i

-c10o-r-+*'0s cig__

07]k 51 *=i＼ I

on a suitable neighborhood of

(4.40) Z/=
/ 2us

＼ k =

dp

dv

+ot

supp Xs<j)

2
+

k

dp
w

D

y＼> ＼y＼'

(1―ci)|)/|2―c|£2

Then for the operator L



434

we have

(4.41)
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girp(d, 7J)―. _/y["g<rPfg'??"|

r

where p denotes the complex conjugate of p. Using repeatedly this relation,

we find

Wu(t, x)=

(4.42)

f etr^e-vK'LYiUyWvWv-

Mp,
6.I

= {f+＼x＼y2

JL

2nr

2izr

~2nrl

Here lL denotes the transpose operator of L. From this expression, we get

＼Wia(t,x)＼<

where MPi$,i is a positive constant. Taking />[≪/2] + l, we deduce from the

estimate (4.42) that

(4.43) limll^stf, OIU8(*L>=0.

Now consider Ws2(t, x). From (2.19), we see that the linear operator

is continuous uniformly in t^R. From (4.9) and (4.19), we have

＼＼W1(t,■)＼＼^(Rs_)= V27r＼＼e-itc^^(V)＼＼L2(R3+),

＼＼W2(t,･)lli≪≪!.)= V2ff||e-"ei""0(7)|U≪(^+).

From these relations, it follows that the linear operators

L＼R%, C3)^htPl(v)^Vi(t, -)eL2CRL, O,

L＼R＼, Cs)GhiPl(v)^V2(t, -)^L＼Rl, C3),

are continuous uniformly in t^R. Hence the linear operator

L＼R＼, C*)=5htPl(y)^Vt(t, -)^L＼Rl, C3)

is also continuous uniformly in t^R and we have

V3(t, x)=Wti(t, x) for <!>(r1)=UrI)V(rj')C{ai{r])@Oly.l)hiPl(rj)

Thus for arbitrary <5>0. there exists a R>0 for which
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＼＼Wn{t,*)IU*≪!yM*iizi**≫.cs><$ for Vfe/2.

Taking s small enough, we have from (4.26) and (4.27)

WUt, ･)llL2(UiAU;lxlsB).C3)<^-

Note that

when

fr
Plty)e<D(toeJl5.;3'*()},C'*),
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and define vtpx{t,x) by

1 r r

where GJ and Gti are the functions defined by (4.21) and (4.34) for $(y)=G>(jj)

&£K{t)&R%; fj'^Q], C3). Then we conclude that

(4.44) ＼Jm＼＼viPl(t,O-v^, -)IU≪(jii.c')=0

when ^(^e^diyefiij.; V^O}, C3).

For general htPl{fj)^L＼R＼,C3), we can show that (4.44) also holds. In

fact, from the continuity of linear operators

L＼R%, C*)^htPl(v)-*vtPl(t,-)^L＼Rl, C3),

L＼R＼, C*)E>htPl(v)->R(V)

=Y(%MV/)C(ai(v)RO1*i)hip1(y)^L＼R*-, C3),

and from the fact that 3)({r]^R＼; rj'^Q), Cs) is dense in L＼R＼, C3) by the

same argument in Section 3.

Therefore, the principal result of this section states as follows:

Theorem 4.1. We assume that

f<ED(All2)r＼M, g<=J(r＼D(A-llZ).

Let vi?(t, x) (/eM) be the functions defined by

(4.45) vtrit,x)=

Gix{r-cixt, 0) v GUr~cPlt, 0)

^ Xs<^r r

Gjz(r-cS2t, 0)
|

GUr-CpJ, d)

r r

jor t<=R, x~rd, r=|je|^O, ^eS2, where if l=j, then

x≪>Q,
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(4.46) GKt, d)=l.i.m
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{Rei>J%-w)Y(-vds)U(vd')C

Jo

and if li=-j,then

(4.47) GKt, d)=＼A.m.[Rei"T(-w)J(vd', -vOJXW, %{v6', -vOs))
fl-ooJO

XY{^d'-vd,))＼]{vd')C{a{vd', $W, -v≪,))c0lxl)

P＼X3)

for ri= v(D,v^O, o>eS2. Here a's are bounded continuous 2x2 matrix functions,

(4.48) JW, D=
CiX

W*-(-£-i)l*T

and Xi satisfies

(4.49) O^O^rgl, Z.gC^,), Q1 = ＼V;＼V＼2>-
'f }.

"72 £

(4.50) Hm||i;^,-)-ytra-)IU=0.

vij°(t,x)^M are called asymptotic wave functions P, SV components vfj(t,x) of

the solution vit,x).

Moreover let v£k°(t,x) (&eiV) be the functions defined by

(4.51) vtnt, x)=-

GXr-cJ, 6)

r '

for t^R, x=rd, r=＼x＼^O, d<=S2, where if l―k, then

(4.52) G+(r, O)=＼.i.m.

7?-co

X(02

＼Reivr(-iv)Y(-v0sMv$')C

Jo

x20i8(v0', -vO3))htkW, -v0s)-^ dv

and if li^k, then

(4.53) Gt(x, 6)=U.m＼Re^{-iv)J{vd', -vOJl&O', W, -vO3))
/e-ooJo

XY($(i>d', -vds)Mvd')C(,02x2RB(vd', %{vd', -v0s)))

XhtkW, %(vd',-vd,))―^-dv
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for rj―v(D,v^O, o>eS2. Here fi's are bounded continuous functions, and J and

Xi are defined by (4.48) and (4.49),respectively. Then we have

(4.54) lim||i&(*,')-vtST(t,-)IU=0.

vtk'it,x)GJC are called asymptotic wave functions for SH component vtk(t,x) of

the solution v(t,x).

Remark. As to vxT{t,x) (j'gM) and vzlTit,x) (i^gJV), we obtain similar

asymptotic wave functions by obvious modification.

Proof of Theorem 4.1 is the same as the proof of Theorem 3.7.

§5. The Asymptotic Energy Distributions for Large Times

In this section we calculate asymptotic energy distributions of the solutions

of the elasticpropagation problem when £―≫oo,by using the asymptotic wave

functions Vij°°(t,x), vfj°(t,x) (jgM), vtk°(t,x) (fteJV) which constructed in

Section 3 and 4.

In this section, as in Section 3 and 4, it is assumed that f(x) and g(x) are

real-valued functions.

Theorem 5.1. Suppose that the solution u(t) of (1.12) and (1.13) defined by

(1.14) has the property

lim||M(OII

{-.00
.#=0

for any initialdata f^D(A1/2)r＼M, g^Mr＼D(A-1/2). Then, for the solution u{t)

of (1.12) and (1.13) with initialdata

(5.1)

we have

(5.2)

fEED(All2)r＼M, g<=jcr＼D(A-1/2)

lim

t-oo

E{u, R＼ O=lim||M(OIU=O

£-*oo

Proof. From the condition (5.1) and (2.8),

A1'2u(t)-=All2e-itAl'＼f+iA-l/2g)=e-itAll＼A1'2f+ig)^M)

d_ u(t)=-iAl'2e-itAll＼f+iA-1'2g)= -ie-itAll＼All*f+ig)GM.

Thus (d/dt)u(t) is the solution of (1.12) for f' = A1/2ft£J{ and g' = All2g^D(A~1/2)

Then by assumption
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Hence
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Iim||/I1/2M(OIU=O and lim -^~u(0 =0

lim E(u, R＼ t)

t-'OO

=lim

(

£-.00 ＼

d

~d7
u{t)

^+||41/2w(0IISf)=0.
□

Let /GO(i1/2)ni, g^Mr＼D{A-1'2), Dis(c|r)>0, and v{t,x) be the corre-

sponding solution of (1.12) and (1.13). We define the asymptotic wave functions

vffnt, x) (1=0, 1, 2, 3) by

(5.3) vfint,x)=

(X ＼

(5.4) G°st(T,0, x3)=U.m.-Jr4Vr

x'|1/2
x'*0,

PKxs)

(5.5) GUt, d, x,)=l.i.m.-7i=^(Vf-c≪^"≫'(i^I)

X U(vd)C($?}(vdmOlxl)Q(vd)V v hfj(vd)^-vdv
P＼x$)

(/=1, 2)

(5.6) G%t(t, 6, *3)=

P＼xz)

where a is 1 or ―1 according as x3<0 or x3>0. Then we have

Theorem 5.2. Assume that

f^D{Al^)r＼Mf g^Str＼D{A-"z), Dis(dr)>0.

Then

(5.7) lim -LvfKt, ')-v?j?{t,･) =0, j<=M,
t-*ooJt Si

(5.8) lim
J―vfKt,

-)-v?fr(t, ･) =0 1=1, 2, 3, jgM,

The proof of Theorem 5.2 is the same as that of Theorem 3.2 except for

obvious modifications.

The calculationof asymptoticenergy distributionsare based on the next

lemma.
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(5.9)

Energy distributionof the solutions

Lemma 5.3. Assume that

ft=D(Al'2)nM, g^Mr＼D{A~1/2), Dis(cir)>0.

B{t, 8(t))={x^R3; Cstt―9(t)£＼x'＼c8tt+{Kt),xs^R＼

where $(t)is any functions of t&R which satisfy

(5.10)

Then we have

(5.11)

0^8(t)£oo for Vt(=R.

E(vf}~,Bit, W), 0

= Li

0

＼＼G°st(r,-,x3)＼＼l2(shdrp(xs)dx3

f f#a> f 3

Proof. From the definitionof the energy (1.15)

(5.12) E(vff°°,B, t)^jK＼v^＼p{xz)~J:_Mklvsx£-vflr)dx
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By the change of variable r―cst―r', the firstterm of the right-hand side of

(5.12) is

＼＼Vii<F(t,')＼W{sa,ow)

= (" [estt+*U)[ ＼G%t(r-cstt, d, x*)＼zdddrp(x3)dxs

Too
r,9(£)r

＼ ＼G%t(r, 0, xz)＼2dddrp(xs)dxs.

By introducing the spherical coordinates x'―rd, r―＼x'＼^Q, d&S1, and by the

change of variable r―cstt=r', the second term of the right-hand side of (5.12)is

- 2 (

f

Mklvffk~(t,x).vffr(t, x)dx

3 Poo fSU) C
= - 2 ＼ MklG%t{r-cstt, 6, xa)'Glst(r-cstt, 0, xs)d0drdxs

k,l=lJcslt-c°Jcstt-dU)JSl

3 foo r5(≫ p
= - 2 ＼ ＼ M^G^Cr, <9, xs)-G^(r, 0, xB)dddrdxs.

*,j=lJ-≪>J-'9≪)Js1

Thus we have (5.11). □

The following theorem shows that asymptotic energy distributions concern

the asymptotic concentration of energy in expanding spherical region B(t, -5(0)-
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Theorem 5.4. Assume that

f s=D(Al'*)r＼M, g^JCnDiA-1'2), Dis(cfr)>0.

Let $(t) satisfy(5.10) and also

(5.13)

Then

(5.14)

and hence

(5.15)

lim -9(t)=oo.

t~*oo

＼imE(vff,B{t, mi t)=E(v?}, R＼ 0),

limE(vfj, Rs＼B(t, $(t)), t)=0.

t-*oo

Proof. From the triangle inequality

＼E(vfj,B, ty>2-E(vff°°,B, tyi*＼^E(vff-vff°", B,t)1/2.

Theorem 5.1 implies

＼)mE(v＼f-vfj-, B, 01/8^limbf/-!;f/-|U=0.

Lemma 5.3 imolies

lira £(i;f/~ B, 01/2=f

J-*oo J
＼ ＼＼G%t(r,･, x3)＼＼l^sbdrp(x3)dx3

;

jfij-oojsl 23 MklGkst{r, 0, x3)-Glst(r, 0, x3)dddrdx3
A.7=1

=E(vff~, R＼ 0).

This gives (5.14) and (5.15). □ "

The next corollary shows the transiency of the Stoneley components vf}{t,x)

Q'eM) in the sense that the energy in any bounded region tends to 0 for t―≫oo.

Corollary 5.5. Assume that

/ei)(^1/2)n^, g^JCnD(A-1/2), Dis(dr)>0.

Let KdR3 be any bounded set. Then we have

(5.16) lim£(vf/,/T, Q=0.
t->nn

Proof. By the boundedness of KcR3, there existsr>0 such that

KczQr={xGR＼ ＼x＼^r}.
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In theorem 5.4, if we take

―9(t)=r-cstt^-cstt,

then

KcQrdR'XBii, &(t)) for We/2.

Hence

0£E(vfl, K, i)£E(v?{, R3＼B(t, &(t)l 0,

so (5.16) follows from Theorem 5.4. □
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The main result of this paper is the following theorem. This theorem

shows that the energy of the Stoneley components vff(t,x) (jeM) of v(t,x)

is asymptoticallyconcentratedalong the interface%3=0.

Theorem 5.6. Assume that

f^D{Ali2)C＼M, g^<Kr＼D{A-1'2), Dis(c|r)>0.

Then we have

(5.17)

where

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

limE(vff, (C-(d)UC+(d))r＼B(t, Sit)),t)=E(vff, R＼ 0), ;gM,

C-(d)={xs=Rl; -d(＼x'＼)<xs<0},

C+(d)={x(ERl;O<x3<d(＼x>＼)},

B(t, $(t))= {x^R3; cstt―9(t)^|x'|<cstt+${t), x3^R＼

&(t):＼im$(t)=oo, ＼8{t)＼<2csti,

d(＼x'＼):lim d{＼x'＼)―co, monotone increasing function.

IX'l->oo

Proof. It suffices to show that

(5.23) lim£(yf/~, J23＼(((C-(0)WC+(0))n.Ba -5(0), 0=0

Because the triangle inequality and Theorem 5.1 imply

lim|£(vf/,K, ty'2-E(vff, K, 01/2l=0

for any KcR＼ Note that

(5.24) R3＼{({C-{0)＼jC＼O))r＼B(t, W)), t)

= ≪{xeJ2i, xz<-d{＼x'＼)}＼J{x<ER＼,.d{＼x'＼)^x3))r＼B{t, Q(l))}

＼J{＼x'＼^cstt―9(t), cstt+-9(t)£＼x'＼,x3seR}
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and
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(5.25) E(v?{", Gu t)=＼
(＼vff?＼p(x3)- ±

Mklv?fr-vffr)dx, i = l, 2
JGj＼ k,l=l /

We consider the firstterm of the right-hand side of (5.25). By the change of

variable r'―r―cStt,

＼＼,,Stoa/f ＼||2

,
gmlcAL

+ )＼G%t(r-c8tt,0,x>)＼*p(xt)dx*d0dr

jcstt-g{t)jsi＼j0(T) J-oo / '

The conditions (5.21) and (5.22) implies

lim d(r+cstt)^＼[m 0(-&(t)+2stt)=oo

Hence

lim＼＼vffo-(t,.)H3rWl,=O.

By the change of variable r'=r―cStt,

Wvf/nt,･y＼#<G^J^cstt+gM^[S^~e<r))＼jG%t(r-cstt) B, xs)＼*dddrp(xs)dx3

"Un *cn+
n(r))LIGUr ' °'x*)＼t^drp{xt)dxi

From the condition (5.21), we have

lim||i#.-tt-)ll3rWl>=0.

The second term of the right-hand side of (5.25) can be treated similarly. This

comoletes the oroof of Theorem 5.6. n

Finally, we consider the P, SV, SH components vtj(t,x) (/eM) and v£k(t,x)

(k&N). The next theorem shows that the P, SV, SH components behave like

Theorem 5.7. Assume that

f<aD(Ax'z)r＼M, g^Mr＼D(A-1/2)

Than ma hai)o

(5.26)

(5.27)

limE(vfj, SSl(t, 8)uSPl(t, S)USSz(t, $)USPz(t, £), t)

=E(vfhR3,0), /£M,

YimE(vik, SSl(t,$)uSS2(t, -5),t)=E(vik, Rs, 0), k(=N,



where

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)
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SSl(t,m)={xG=R'-;ctlt―9(t)£＼x＼<ctlt+m},

SPi(t, #(*))= {xeiii ; cPlt-$(t)£ I x |^cPlf+^(0},

S,2a ^(0)={jcg≪?.; c,2f―6/(O^|x|^c,8f+^(O},

SPs(t, ^(0= kG≪i ; cP2t―9(t)^ I JfI ^cP8f+Wl,

#(f):lim#(0=°°.
t-oo
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The proof of this theorem is obtained by using Theorem 4.2 and modified

Theorem 5.4.

The next corollary shows the transiency of the P, SV components vfj(t,x)

O'gM) and the SH components vtk(t,x) (ieJV) in the sense that the energy in

any bounded region tends to 0 for t―>oo.

Corollary 5.8. Assume that

f(ED{All*)C＼JK, g^M^D{A~1'2).

Let KaR3 be any bounded set. Then we have

(5.33)

(5.34)

＼imE(vfj, /C 0=0

lim E(v%k, /C, 0=0
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