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Let us consider the following Cauchy problem for a linear differentialequa-

tion of firstorder with analytic coefficientsand data in a neighbourhood of the

origin:

dtu(t,x)―al{t,x, dx)u(t,x)―f{t, x), u(0, x)~uo(x).

The Cauchy-Kovalevsky theorem asserts that if the order of ar with respect

to dx fulfilsord a^l, then there exists a unique analytic solution u = u(t,x)

in a neighbourhood of the origin. In [5] it is shown that ord ax^Ll is necessary,

too. The situationis quite different for linear systems with analytic coefficients

and data, for example, for

dtUi(t,x)―alil(t>x, dx)u1(t,x)―aU2(t, x, dx)u2(t,x)=f1(t, x),

dtuz(t,x)―a2,i(t,x, dx)u1(t,x)―a2i2(t,x, dx)u2(t,x)―f2(t,x),

mx(0,x)―u1(x)> ≪2(0,x)=u2(x).

Local well-posedness is valid under more general conditions, the so-called

Leray-Volevich conditions [4, 13]

ord auj^qi-qj+l, i, /e {1, 2}, (1)

where ord aitj denotes the order of a*,/?, x, dx) with respect to dx> Qj are

arbitrary natural numbers (aitj(t,x, dx)=Q if qi―<^+l<0). Setting qx=q2 then

we obtain the Cauchy-Kovalevsky conditions. The conditions (1) are in general

not necessary for local well-posedness [1, 4]. But under the condition (1) the

system can always be reduced to a firstorder system [7]. In the case dim x

―＼a necessary and sufficientcondition for the local (uniformly at every point)

well-posedness of the Cauchy problem is that the system can be reduced to a

one satisfying the Leray-Volevich conditions(1) within meromorphic functions [6].

Besides the nonlinear classicalCauchy-Kovalevsky theorem abstract nonlinear
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versions were given in [8, 9, 10]. These abstract versions imply an existence-

and uniqueness result for dtu―F(u, t),k(0)=Q, where the nonlinear operator F

satisfying suitable assumptions in a scale of Banach spaces is a singular operator

of firstorder (see [11]). These assumptions are of Cauchy-Kovalevsky type.

The goal of the present paper is to show Leray-Volevich conditions which

guarantee conical evolution of the solutions (see [1, 12, 14]) can be formulated

for the following Cauchy problem for a system of nonlinear abstract evolution

equations of Nirenberg/Nishida type:

i

dtUi=Fi(ui,

1. ･･･. n. Let us assume

{Bs, | W|s}o<s<so ―

Un, t), M,(0) = 0

＼(XHsr,
1215=311^11?} , {H,, i|-||s}0<so0

I 1=1 J 0<S<SO

(2)

is a scale of Banach spaces, this means, HscHS', IHI≫'^IH|g for 0<s'5Ss<s0,

SoSsl; fj,qit Ci,j, R and K are positive constants, pitj are nonnegative constants

for i, 7 = 1, ･･･, n):

For any 0<s'<s<s0<^ the mappings

Ft: (uu ･･･, un, t) ―> Fj(w!, ･･･, Mn, 0 are continuous of

|MeBs: ||Mi[|s<i?}x[0, 77)into 5... (3)

For any 0<s/<s<so, all jJ=(mi, ■･･, un), v=(vu ･■･,vn)^Bs with ||Wj||s<i?, ＼＼vi＼＼s

<i? and for any ^e[0, tj) the mappings Ff are nonlinear singular operators of

order pitj with respect to u} in {mgBs: |Wi||s<i?}, that is,

WFtiu,, -, un,t)-Ft(Vl, ■■■>vn,t)＼＼s.<±Ci,J^s^^j.

Choosing u;=0 the mappings Fj(0,･･･, 0, t) satisfy for all 0<s<s0

IIFitf),-,0, Oll.^^/(so-s)≪*.

The numbers pt,j and qt fulfilthe Leray-Volevich conditions

(4)

(5)

(6)

Theorem 1. Under these assumptions there existsa positive constant b and

there exists in a subscale {Bs, |-|j}o<s<s≪>a uniquely determined solutioni/G

C＼[0, b(Soo―s)),-Ss)o<s<sooof (2) possessing conical evolution, this means,

sup ||Ki(OII≪(Ks.---s)-0≪*<oo
°<S<Soo.teCO.ftCSoo-S))

for all i―1, ･■■,n. Moreover, ＼＼Ui(t)＼＼s<Rfor all admissible t.
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Remark 1. In the special case qi=piij=l which is studied in [8, 9, 10] the

Leray-Volevich conditions are obviously satisfied.

For the proof of Theorem 1 we need the next lemma.

Lemma. For a fixed positive constant hf^l we have for all £e[0, h)

Wh-rywit.fidT^Dih-tYti, (7)

Jo

where D depends only on Qj and pUj.

Proof, i) $<qj+pUj<l,

Jo

ii) qj+pi,j=l, using qt>0 then

[
(h-ry'dT^lnih-tr^CiQiXh-t)^,
Jo

iii) qj+ pi.j>l, using qj+ptj―l^qu h^l then

[(h-TTWPi.JidT^iqj + pij-D-Xli-tyWi-rv

Jo

^(qj+pi.j-irxh-tr"

Proof of Theorem 1. Let us consider the problem (2). The change of

variables t=t'b, Q<b^l is determined later, transforms (2) in

dt'Ui=bFi(u1, ･･■,un, t'b)=Gt(uu ■■■,un, f), uM=0, (8)

rj'―r]/b, the relation (4) in

WG&Uu ■■■, un, n-Gfru -,vn, t')L>£
I
Ct.jfr
''"f?;1]'

, ( 9)

and, finally, the relation (5) in

l|Gi(0, -,Q,t')＼＼,iZbK/(so-s)*i. (10)

As in [8, 9] the solution u of (8) will be obtained as the limit of a sequence

Uk = (Ui,k, ■･･,unik) defined recursively by uit0 = 0, uitk+1 ~ ut,k+Vi, k, where

＼＼Ui,k(tr)＼＼t<R/2for Ve[0, sk-s), sk<y, sk+1=sk(l-(k+2)-% and uilk Is defined

by

≪i.*a')=r G^Ml^xCt), -, ≪,,*.!(:),r)dr, fe=0, 1, 2, ･･･.
Jo

Now let us introduce the functional
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sup ＼＼vt.k(ff)Usk-s-tyt

Using (10) we get for Mo[vi]

AfoM= sup ＼＼vi,oh(so-s-t')qi
°<s<s0'f'eco,so-s>

<

sup
It*
G<(0, -0, r)dr

o<s<≫o-t'ezo,so-s)|Jo

bKs0
sup ―

o<s<so'£'e[o,so-s) (so ― s)qi

(so-s-n?i
s

(so-s-t'y^bKso

Now we suppose that ＼＼uitk(t')＼＼s<Rfor £'e[0, sk―s).

Using (3) from the iteration process uUk+l(t'),respectively, viik(f)are well

defined for f e[0, s&―-s). Consequently, we can estimate by (9)

iK*(niif
is:

(Gi(uuk, ■■■,un<k, T) ― Gt(uuk_u ■･･ un,k_u T))dz

Jo i=i (S*(f) ―s)Pj.^

s

where sk(T)=(sk+s ―r)/2 for re[0, sk―s). Obviously, s<sk(t)<sk for all r

and 0<s<s*. From the definitionof Mk_1[_vj']we obtain (sk<sk-i> sk(t)+T<sk

for all reTO. s*―s))

These estimates lead to

＼＼vi.>(n＼＼.<i}

i
Mk_livJ-]ci.Jbw*.j

Jo

Taking into consideration the statement of the lemma gives

＼＼vt.k(t')＼＼t^D(slt-s-t')-qiibci.jb2!'J+**.JMk_1[vJ},
.7=1

equivalently, Mk[vij^^Ei7j=1Ci,jDb2q}+Pi.JMk_1[vj'}. Choosing now the positive

constant b£l such that Tlnj=iCi,jDb2qJ+pi.J=X<l we arrive step by step at

MxM^XbKso, M2[vi~]^X2bKs0,■■■,Mh[yi~]^XkbKs0.

From the definition of the functionals Mk[yi＼ we obtain

＼＼Vi.k(t')＼＼.£

respectively,

Mk[vt-]
=
MklVi-]{k+2)^

<
X"bKso(k+2)"≪

(s,-sfe+1)9i si* = slf

l|Ki.≫+i(f')ll.^2 ll^iCnil.^-^-sr- S(/+2)29^
r=o sj 1=0

for all k and all f e[0, Soo―s),where Soois the limit of the sequence {sk}. Now
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a suitable choice of b yields s^6/CsoSr=o(/+2)29^^i?/2 for alli=l, ･･･,n.

From this follows ＼＼uuk+l(t')＼＼s^R/2for all k^N0> *'e[0, Soo-s) and (KsOc.

The sequence {uitk(t')} converges to a function Ui(t')in //s for all t'e

[0, s≫-s). The vector 2(f')=(Mi(O, ■･･,M≪(O)e5, belonging to C＼tO, sn-s),

-6s)o<s<soo,l|Mf(^)lls< R> represents a solution of (8). Hence, u{t) belongs to

C＼[0, b(soo-s)),Bs)0<s<Sooand is a solution of (2). Moreover we obtain for all

f'e[0, Sco―s)from

l|vi.*(OII≪(s≪-s-Oa<^l|vi.*(OII.(s*-s-O≪i^^^s0,

immediately,

1=0

But this implies

SUP ||Mi(OII.(*(s.-s)-O'i<°°,

0<S<Soo,£e[O,6(Soo-S))

consequently, the solution possesses conical evolution.

Let us now suppose the existence of two different solutions

u, vg=C＼10, b(soo-s)), Bs)0<s<Soo,WuMU, ＼＼Vi(t)＼＼s<R,

possessing conical evolution, that is,

SUP ＼＼Ui(jt)＼＼MS~~ s)-t)*l <co ,
o<s<sm,teco,6(Soo-s))

sup

0<S<Soo, £e[0,6(Soo-S))
＼＼Vi(f)UKs≫-s)-W<oo

After the transformationt―t'bwe conclude

M= sup ||Ui(O-^(Olls(s~-s-O9i<^0<s<Sco.£'e[0,≪oo-s),i=l,―,n

Applying thisrelationto

implies

Ui(t')-Vi(t')=[ (Gi(uu ･･･, un, z)-Gi(vu ･･･, vn, r))dr
Jo

||(Ki-l><)(OII.^J
V n

oMCujbJs^s(j)

Choosing s(t)=(so,+s~t)/2 gives

M

T)qHs(r)-s)pi.}

rt' n M2?J+pU

dz

and, finally,M<XM. Thus, Af=O, equivalently, ^(0=^(0 in Ht for f e

[0, sra―s). From this follows w=t) in contradiction to the assumption.

Besides the conical evolution of solutions in [1] the notion cylindricalevolu-
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tion of solutions of special systems of partial differential equations is introduced.

The next theorem expresses the possibility to transfer this type of evolution

to solutions of systems of Nirenberg/Nishida type (2).

Theorem 2. Instead of (6) let us suppose the condition

Pi.j^Qi-qj. (11)

Under this assumption and the assumptions of Theorem 1 there existsin a subscale

{Bs, | ･|≪}o<j<*≫a uniquely determined solution mgC,([0, T], Bs)0<s<Stx>of (2) pos-

sessing cylindrical evolution, this means,

sup ||tti(OIL(s≪―s)9*<oo for all i―l,---,n,
o<s<*oo.teco.r]

where T<-q is a certain positive constant independent on 0<s<Soo. Moreover, it

holds ＼＼Uiit)||S<Rfor all * =[0, T].

Sketch of the Proof. Let us define the functionals

M*M= sup IK*(OII≪(s*-s)≪<

is determined later. Using

AfoM= sup IKo(Olls(so-s)9':
o<s<so,£eco,r]

KT

^ SUp 7 ―-
o<s<so.teco,rD {so―S)qt

and applying (4) to the formulas

where T<7)

(so-sy*=KT

rt

Vi.k(t)=＼ {Fi{ultk, ■･', ≪n>≫, t) ― Ft(ui,k-U ■■■,Mn.*-i, r))rfr
Jo

one obtains

llfi.≫(OII.^
(CS

JO .7= 1
Ci.j

Mk-ijvj]

(Sk-S)≪KS-S)pi.j
dt

Setting s=s+(sk―s)/2 yields with (11)

＼＼vi,*(OII.(s*-s)≪^g Ci.^i.JTM^lvj-}

and, finally,Mk[vt']^%1Ci.j2!lJ+p*.JT Mk_1[vj~].A suitable choice of T implies

^1j=iCiJ2qJ+Pi.JT~X<l. The same reasoning as in the proof of Theorem 1

gives Mk[vi~]^lkKT,

for all i=

I|m*.*+i(OII.^SIKi(OII.^
1=0

1. ･･･. n and

KT -
^(l+2)^Xl^R/2

S& J=o
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SUP ||Mi(OII≪(s≫-s)≪*^
o<s<Scx,,jeco.f] 1=0

sup

0<S<S;,£e[0,r]
IKiCOIUsi-s)"
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J=0 1=0

Thus, all statements concerning the existence of the solution are proved. The

uniqueness follows from Theorem 1.

Remark 2. One should refer to the correspondence of the type of evolution

with the weights are used in the definition of the functionals. In the case of

conical evolution the interval of existence with respect to t depends on the

parameter s, 0<s<Soo. The set {(s,t)^R2: (s, t)^((0, s≫)X(―(Soo―s),Soo-s))}

forms a conical set in R2. Contrary to this case in the case of cylindrical

evolution the interval of existence with respect to t does not depend on the

parameters s. The set {(s,t)^R2: (s, t)^((0, Soo)X[0, T])} forms a cylindrical

set in R＼

At the end of this paper we deal with some examples for the case of

conical evolution. The statements can be easy transfered to the case of cylin-

drical evolution.

Example 1. Let G be a bounded domain in Rn. Then we defineasin T21

{Hs, M|s}s>0=
＼u(EC°°(G): sup ＼daxu＼H ^-^―= ||m||s

I G,＼a＼(EN0 ;･=! 1 rAaj) J s>0

where j^l and rr/a,-)= /U;!rVa^+2 if ≪;>0, rr/0)=^0. With a suitablechoice

of ^0 the spaces Hs become Banach algebras. One can show, that the dif-

ferential operators d£ are singular operators of order </3,̂ > = S"=i^Tj in tne

scale {Hs, ||m||s}0<s<s0-Thus, is the case of quasilinear systems of the form

dtUi=itFitk(t, x, uu ･･-,un)d^-kuk

we obtain the Leray-Volevich conditions </3i,£,J~}^qi―g*+ l were derived for

the nonlinear case in [2].

Example 2. Let {Gs}0<s<s0= {z: ＼z＼<s}0<s<So be a family of domains ge-

nerating the scale of holomorphic functions

{Hs, ＼＼u＼＼s}0<s<s0={H(Gg)r^C(Gs),sup|m|-||m||s}o<s<So,

where H(GS) denotes the space of holomorphic functions in Gs. The differential

operators d{ are singular operators of order j in the scale {Hs, ||w||s}o<s<So.Thus,

for quasilinear systems of the form
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S Fi,k(t, Z, UU ･■■, ttB)3£.*K*

k=l

we obtain the Leray-Volevich conditions /i,^^―g^ + l were derived for the

linear case of higher order in [1].

The solution ti=(ui, ■■■,un) satifiesthe conditions

SUP
＼Uj(t,2)|(6(Soo-s)-09i

Gs,0<S<Soo,Je[0.6(Soo-S))

sup ＼uj(t,z)＼(b(s^-＼z＼)-tyK
GSoo,te[0,6(800-121))

The set {(t,z): z^GSoo and *e[0, b(sx―＼z＼))}forms a conical set with the base

GSoo(see [12, 14]). This motivates the notion conical evolution. As in [12] one

can also define scales of generalized analytic functions in the sense of I.N.

Vekua and study linear systems of Leray-Volevich type in such scales.

Example 3. As in [1] we consider scales of Banach spaces of entire func-

tions of exponential type

{Hs, ||M||s}o<sOnsi

＼ue=H(C≫):
sup| u(*)|exp(-( 2 (2-s)r,(l+ 12,1<>)))= Nl.}

where Qj>l and r, are positive constants. The multiplication operator z"-,

respectively, the differential operator di are singular operators of order S"=i≪</

qu respectively, of order S?=i/3j(<7;―I)/?* in the scale {Hs, ||m||s}0<s<s0- After

introducing the functionals

M*M = sup

o<s<s h, t'eco, sj-s)

l|vi.*(^z)ll.(s*-s-f')3:*B=im>-*/'*

the solution u ―(u,, ■･■, un) of the linear system

satisfies

drUi =
jb

i

but)(n

i
z$*.j-*dbti.j.*)uj

SUp ＼＼Uj(t,z)＼＼s(b(Soo―s)-t)^im^klqk<oo
0<S<Soo,teCO.ftCSoo-S))

The Leary-Volevich conditions are representable in the form

n n
S(a<,y.k+bij,kiqu ―1))/<?a^1+ S (mt,k―ntj,k)/qk.

One can prove that all entire functions Uj(z) satisfying

I uj(z)＼^Mj
ft
d+ ＼zkI)m^ k exp((2-s)r,(l+ ＼zk＼)≪*
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for all 0<s<l fulfil

||UjWh^Mj
ft
(1+ Uk i)m>-k exp(-(s-s')r*(l + k* I)qk)
k =l

^M,C/(s ―s')2*"1"1^*'9* for all 0<s/<s<l
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Hence we obtain the same growth conditions as in [1]. The Leray-Volevich

conditions correspond to the conditions from [1].

It seems to be interesting that we can conclude for all examples the special

Leray-Volevich conditions from the same abstract result (Theorem 1). Hence,

the Theorem 1 in the case of conical evolution and Theorem 2 in the case of

cylindrical evolution lead to new qualitative results for systems of abstract

evolution equations.
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