A NOTE ON SPAN UNDER REFINABLE MAPS

By

Akira Koyama

1. Introduction.

All spaces considered in this note are metric, and all maps are continuous functions. A compactum is a compact metric space. A continuum is a connected compactum. In [1], Ford and Rogers defined a map $r: X \rightarrow Y$ from a compactum X onto a compactum Y to be *refinable* if for each $\varepsilon > 0$, there is an ε -map $f: X \rightarrow Y$ from X onto Y whose distance from r is less than ε . Refinable maps are useful in continuum theory, and many properties in continuum theory are preserved by refinable maps. For example, decomposability [1], aposyndesis [2], property [k], irreducibility, hereditary indecomposability and being the pseudo-arc [6] (see for other properties [4] and [5]).

Lelek [8] defined the surjective span of a continuum X, $\sigma^*(X)$, (resp. the surjective semi-span, $\sigma_0^*(X)$) to be the least upper bound of all real numbers α with the following property; there exist a continuum C and maps $f_1, f_2: C \to X$ such that $f_1(C) = X = f_2(C)$ (resp. $f_1(C) = X$) and dist $(f_1(c), f_2(c)) \ge \alpha$ for every $c \in C$. The span $\sigma(X)$ and the semi-span $\sigma_0(X)$ of X are defined by the formulas;

 $\sigma(X) = \sup\{\sigma^*(A) \mid A \text{ is a subcontinuum of } X\},\$

 $\sigma_0(X) = \sup \{ \sigma_0^*(A) | A \text{ is a subcontinuum of } X \}.$

Recently, many authors have been investigating span theory and finding interesting properties. Concerning span and special classes of maps, the following problems are raised in the University of Houston Problem Book;

Problem 86. Do confluent maps of continua preserve span zero?

Problem 92. If M is a continuum with positive span such that each of its proper subcontinua has span zero, does every nondegenerate monotone continuous image of M have positive span?

Ingram, [3, Theorem 2], showed that monotone maps of continua preserve span zero.

In this note we will show that refinable maps of continua preserve surjective Received November 20, 1984.

Akira Koyama

(semi-) span zero, and refinable preimages of continua with surjective (semi-) span zero have surjective (semi-) span zero. We note that for a refinable map $r: X \rightarrow Y$, if Y has property [k], then r is confluent ([6, Theorem (2.3)]), and moreover if Y is locally connected, r is montone ([1, Corollary 1.2]).

The author would like to express his thanks to the referee for his suggestion.

2. Results.

In this note an ANR means an absolute neighborhood retract for the class of metric spaces. For a metric space X and points x, x' of X, d(x, x') is the distance from x to x' under a metric of X.

THEOREM. Let $r: X \to Y$ be a refinable map of continua. Then $\tau(X)=0$ if and only if $\tau(Y)=0$, where $\tau=\sigma^*$, σ_0^* , σ or σ_0 .

For the proof we need the following lemmas:

LEMMA 1 ([10, Lemma 1]). Let $f: X \rightarrow P$ be a map from a compactum X to a compact ANR P. Then for every $\varepsilon > 0$, there is a positive number $\delta > 0$ such that if $g: X \rightarrow Y$ is a δ -map from X onto a compactum Y, then there is a map $h: Y \rightarrow P$ such that f and hg are ε -near.

By a slight modification of the proof of [9, 3.1], we have the following.

LEMMA 2. Let X be a non-empty continuum contained in a compactum Z. If β is a real number and for n=1, 2, 3, ..., there exists a continum Z_n in Z such that $\beta \leq \tau(Z_n)$ and $\lim Z_n = X$, then $\beta \leq \tau(X)$, where $\tau = \sigma^*$, σ_0^* , σ or σ_0 .

PROOF OF THEOREM. Since surjective span zero is a topological invariant in the class of continua, we may assume that both X and Y are subsets of the Hilbert cube Q.

Suppose that $\sigma^*(X)=0$. Let C be a continuum, and let $f_1, f_2: C \to Y$ be maps such that $f_1(C)=Y=f_2(C)$. Let take a compact ANR neighborhood U of X in Q and a continuous extension $g: U \to Q$ of r. For each integer $n \ge 1$, there is a positive number $\varepsilon_n > 0$ such that

(2) if $d(x, x') < \varepsilon_n, x, x' \in U$, then $d(g(x), g(x')) < \frac{1}{n}$.

Since r is a refinable map, there exists a sequence $\{r_i\}$ of maps $r_i: X \rightarrow Y$ such that for each $i \ge 1$,

(2) $r_i(X) = Y$,

238

(3)
$$d(r(x), r_i(x)) < \frac{1}{i}$$
 for all $x \in X$, and
(4) diam $r_i^{-1}(y) < \frac{1}{i}$ for all $y \in Y$.

Then by (2), (4) and Lemma 1, we have integers $n \leq i(1) < i(2) < \cdots$ and maps $h_j: Y \rightarrow U, j=1, 2, \cdots$, such that

(5)
$$d(h_j r_{i(j)}(x), x) < \frac{1}{j}$$
 for all $x \in X, j=1, 2, \cdots$.

By (2) and (5), we easily have that $\lim_{j} h_{j}(Y) = \lim_{j} h_{j}r_{i(j)}(X) = X$. Since $\sigma^{*}(X) = 0$, by Lemma 2, there exists an integer $j_{0} \ge 1$ such that

(6)
$$\sigma^{*}(h_{j}(Y)) < \varepsilon_{n}$$
 for all $j \ge j_{0}$.

Now take an integer $j \ge j_0$ with $1/j < \varepsilon_n$, and put the maps

$$r' = r_{i(j)}: X \longrightarrow Y \text{ and } h = h_j: Y \longrightarrow h_j(Y) = h(Y).$$

Considering two maps hf_1 , $hf_2: C \rightarrow h(Y)$, by (6), there exists a point $c_n \in C$ such that

(7)
$$d(hf_1(c_n), hf_2(c_n)) < \varepsilon_n$$
.

Then by (1),

(8)
$$d(ghf_1(c_n), ghf_2(c_n)) < \frac{1}{n}$$
.

By (2), take points $x_1, x_2 \in X$ such that $r'(x_i) = f_i(c_n)$ for i=1, 2. Then by (3), (5) and (1), we have that for i=1, 2,

(9)
$$d(f_i(c_n), ghf_i(c_n)) = d(r'(x_i), ghr'(x_i))$$

 $< d(r'(x_i), r(x_i)) + d(r(x_i), ghr'(x_i))$
 $< \frac{1}{i(j)} + d(g(x_i), ghr'(x_i))$
 $< \frac{1}{n} + \frac{1}{n} = \frac{2}{n}$

Hence by (8) and (9),

(10) $d(f_1(c_n), f_2(c_n)) < \frac{5}{n}$.

Let $c_0 \in C$ be an accumulation point of the sequence $\{c_n\}$. Then by (10), $d(f_1(c_0), f_2(c_0))=0$. It follows that $\sigma^*(Y)=0$.

Conversely, we suppose that $\sigma^*(Y)=0$. Let C be a continuum, and let $f_1, f_2: C \to X$ be maps such that $f_1(C)=X=f_2(C)$. For each $n \ge 1$, there is an 1/n-map $r_n: X \to Y$ from X onto Y, since r is a refinable map. Since $r_n f_1(C)=Y=$

Akira Koyama

 $r_n f_2(C)$ and $\sigma^*(Y)=0$, there exists a point $c_n \in C$ such that $r_n f_1(c_n)=r_n f_2(c_n)$. Then $d(f_1(c_n), f_2(c_n)) < 1/n$. Hence, as in the first part of the proof, we have the point $c_0 \in C$ such that $f_1(c_0)=f_2(c_0)$. Therefore $\sigma^*(X)=0$.

The above proof may be used to prove similar theorems for σ_0^* , σ and σ_0 .

COROLLARY 1. Let $r: X \to Y$ be a refinable map of continua. Then $\tau(X) > 0$ if and only if $\tau(Y) > 0$, where $\tau = \sigma^*, \sigma_0^*, \sigma$ or σ_0 .

Therefore refinable maps of compacta preserve positive span.

In the latter part of the proof of the Theorem we needed only the fact that there exists an 1/n-map from X onto Y for each $n \ge 1$. Hence the following is obtained. The case $\tau = \sigma$ is included in [11, Lemma 21].

COROLLARY 2. Let X and Y be continua. If X is Y-like and $\tau(Y)=0$, then $\tau(X)=0$, where $\tau=\sigma^*$, σ_0^* , σ or σ_0 .

By [4, Corollary 3.4], every hereditarily decomposable circle-like continuum admits a refinable map onto a circle. Therefore we have

COROLLARY 3. Every hereditarily decomposable circle-like continuum has positive surjective (semi-) span.

References

- [1] Ford, Jo and Rogers, J. W. Jr., Refinable maps, Colloq Math, 39 (1978), 263-269.
- [2] Hosokawa, H., Aposyndesis and coherence of continua under refinable maps, Tsukuba J. Math, 7 (1983), 367-372.
- [3] Ingram, W.T., Hereditarily indecomposable tree-like continua, II, Fund. Math, 111 (1981), 95-106.
- [4] Kato, H., Refinable maps in the theory of shape, Fund. Math, 113 (1981), 119-129.
- [5] , A note on refinable maps and quasihomeomorphic compacta, Proc. Japan Acad, 55 (1982), 69-71.
- [6] ——, Concerning a property of J.L. Kelly and refinable maps, preprint.
- [7] Lelek, A., Disjoint mappings and the span of spaces, Fund. Math., 55 (1964), 199-214.
- [8] ———, On the surjective span and semi-span of continua, Colloq. Math, 37 (1977), 35-45.
- [9] —, The span and the width of continua, Fund. Math, 98 (1978), 181-199.
- [10] Lončar, I. and Mardešić, S., A note on inverse sequences of ANR's, Glasnik Mat, 3(23) (1968), 41-48.
- [11] Oversteegen, Lex G. and Tymchatyn, E.D., On span and weakly chainable continua, Fund. Math, 122 (1984), 159-174.

Department of Mathematics Osaka Kyoiku University Ikeda-city, Osaka, 563 Japan