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A NOTE ON SPAN UNDER REFINABLE MAPS

By

Akira Koyama

1. Introduction.

All spaces considered In this note are metric, and all maps are continuous

functions. A compactum is a compact metric space. A continuum is a con-

nected compactum. In [1], Ford and Rogers defined a mapr: X-*Y from a

compactum X onto a compactum Y to be refinableif for each £>0, there is an

s-map/: X-+Y from X onto Y whose distance from r is less than s. Refinable

maps are useful in continuum theory, and many properties in continuum theory

are preserved by refinable maps. For example, decomposability [1], aposyndesis

[2], property [k], irreducibility,hereditary indecomposability and being the

pseudo-arc [6] (see for other properties [4] and [5]).

Lelek [8] defined the surjective span of a continuum X, a*(X), (resp. the

surjective semi-span, o*(X)) to be the least upper bound of all real numbers a

with the following property; there exist a continuum C and maps ft,ft: C-*X

such that /1(C)=X=/8(C)(resp. /a(C)=J^) and dist(/i(c),/2(c))^a for every cg

C. The span a(X) and the semi-span <?0{X) of X are defined by the formulas;

o{X)―su.ii>{o*{A)＼Ais a subcontinuum of X},

ffo(X)=sup{at(A)＼A is a subcontinuum of X].

Recently, many authors have been investigating span theory and finding

interesting properties. Concerning span and special classes of maps, the follow-

ing problems are raised in the University of Houston Problem Book;

Problem 86. Do confluent maps of continua preserve span zero?

Problem 92. // M is a continuum with positivespan such that each of its

proper subcontinua has span zero, does every nondegenerate monotone continuous

image of M have positivespan?

Ingram, [3, Theorem 2], showed that monotone maps of continua preserve span

zero.

In this note we will show that refinable maps of continua preserve surjective
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(semi-) span zero, and refinable preimages of continua with surjective(semi-)

span zero have surjective(semi-) span zero. We note that for a refinable map

r: X-+Y, if Y has property [k~＼,then r is confluent ([6, Theorem (2.3)]), and

moreover if Y is locally connected, r is montone ([1, Corollary 1.2]).

The author would like to express his thanks to the referee for his suggestion.

2. Results.

In this note an ANR means an absolute neighborhood retract for the class

of metric spaces. For a metric space X and points x, x' of X, d(x,xr) is the

distance from x to x' under a metric of X

Theorem. Let r: X-+Y be a refinable map of continua. Then t(X)―0 if

and only if t(Y)~0, where z=a*, cf, a or a0.

For the proof we need the following lemmas:

Lemma 1 ([10, Lemma 1]). Let f: X―>P be a map from a compactum X

to a compact ANR P. Then for every £>0, there is a positivenumber 5>0 such

that if g: X―>Y is a 8-map front X onto a compactum Y, then there is a map

h: Y->P such that f and he are s-near.

By a slight modification of the proof of [9, 3.1], we have the following.

Lemma 2. Let X be a non-empty continuum containedin a compactum Z. If

ftis a real number and for n=l, 2, 3, ･･･, there existsa continum Zn in Z such

that fi^T(Zn) and UimZn~X, then /3^r(Z), where t=g*, g%, a or o0.

Proof of Theorem. Since surjective span zero is a topological invariant

in the class of continua, we may assume that both X and Y are subsets of the

Hilbert cube Q.

Suppose that a*(X)=0. Let C be a continuum, and let fi,f2: C-+Y be

maps such that f1(C)―Y―fz(C). Let take a compact ANR neighborhood U of

X in Q and a continuous extension g: U-+Q of r. For each integer n^l, there

is a positive number en>0 such that

(2) if d(xs x')<enf x, x'<=U, then d{g(x),g(x'))<K

Since r is a refinable map, there exists a sequence {rj of maps rt: X―>Y such

that for each /S^l,

(2) ri(X)=Y,
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(3) dMx),ri(x))<
!

i
for ail xeX and
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(4) diam ri＼y)< A- for all jeF.

Then by (2),(4) and Lemma 1, we have integers n^f(l)<z(2)O- and maps

hj'.Y-+U,j=l,2, ･･-, such that

(5) d(hjrUj)(x),x)<― for all x<bX, ;=1, 2,

By (2) and (5), we easily have that Umhi(Y)=Umhjrtw(X)=X. Since o*{X)
i j

=0, by Lemma 2, there exists an integer jo:^l such that

(6) 0*(hj(Y))<en for all j^h-

Now take an integer /i£/0with l//<sn, and put the maps

rf=ri(J): X―^ Y and /i=^: F―>/jj(7)=/i(F).

Considering two maps hfu hf2: C-+h{Y), by (6), there exists a point cn^C such

that

(7) d(hMcn), hUcn))<sn.

Then by (1),

(8) dighUcn), ghUcn))<K

By (2), take points xlt x2eZ such that r/(xi)=fi{cn) for i=l, 2. Then by (3),

(5) and (1), we have that for i=＼, 2,

(9) d(Ucn), ghUcn))=d(r＼xt＼ ghr＼xt))

<d(r'(xi), Hxi))+dMXi), ghr'(Xi))

<
1
+ d(g(xt), ghr＼Xi))

n n n

Hence by (8) and (9),

(10) d(f1(cn)>Ucn))<^.

Let cogC be an accumulation point of the sequence {cn}. Then by (10), <i(/i(c0),

/2(c0))=0. It follows that a*(Y)=0.

Conversely, we suppose that o*(Y)=0. Let C be a continuum, and let

fu f%
■
C-^X be maps such that f1(C)=X=f2(C). For each w^l, there is an 1/n-

map rn: X―>Y from X onto Y, since r is a refinable map. Since rnf1(C)=Y=
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TnfziC) and a*(Y)=0, there exists a point craeC such that rnf1(cn)-=rnf%{cn).

Then d{fx{cn),f%(cn))<l/n. Hence, as in the firstpart of the proof, we have

the point coeC such that /1(c0)=/a(c0). Therefore <7*(Z)=0.

The above proof may be used to prove similar theorems for a%, a and a0.

Corollary 1. Let r: X-> Y be a refutable map of continue Then r(X)>0

if and only if t(Y)>0, where v=a*, a*, a or an.

Therefore refinable maps of compacta preserve positivespan.

In the latterpart of the proof of the Theorem we needed only the fact

that thereexistsan 1/n-map from X onto Y for each nS^L Hence the following

is obtained. The case v―a is includedin [11, Lemma 211.

Corollary 2. Let X and Y be continua. If X is Y-like and r(Y)=0, then

t(X)=0, where t―o*, a*, a or a0.

By [4, Corollary 3.4], every hereditarily decomposable circle-likecontinuum

admits a reflnable map onto a circle. Therefore we have

Corollary 3. Every hereditarily decomposable circle-like continuum has posi-

tive surjective (semi-) span.
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