SOME CRITERIA FOR REDUCIBLE ABELIAN VARIETIES

By
Akira Ohbubhi

Dedicated to Professor Yukihiro Kodama on his 60th birthday

Introduction.

A principally polarized abelian variety is called reducible if it is isomorphic to a product of two abelian varieties of positive dimensions. For a principally polarization L, it is well known that $L^{\otimes 2}$ determines a morphism. Its image is called a Wirtinger variety. If a principally polarized abelian variety is irreducible, then the Wirtinger variety coincides with the Kummer variety associated to this polarized abelian variety. Moreover if an abelian variety is sufficiently general, then the Wirtinger variety is not contained in any conics. On the other hand, if a principally polarized abelian variety is reducible, then the Wirtinger variety is contained in many conics. Our main purpose is to give conditions for reducibility of an abelian variety in terms of conics which contains the Wirtinger variety associated to the abelian variety.

Notations.
char (k) : The characteristic of a field k
k^{*} : The group of all units of a field k
f^{*} : The pull back defined by a morphism f
G^{\wedge} : The character group of a finite group G
\underline{L} : The invertible sheaf associated to a line bundle L
$\mathcal{O}(D)$: The invertible sheaf associated to a divisor D
$K(\mathcal{L})$: The subgroup of an abelian variety defined as follows, $K(\mathcal{L})=\{x \in A$; $\left.T_{x}{ }^{*}(\mathcal{L}) \cong \mathcal{L}\right\}$ where T_{x} is a translation morphism on A and \mathcal{L} is an invertible sheaf on A
$N S(A)$: The Néron-Severi group on a variety A
$S^{n} V$: The n-th symmetric product of a vector space V
$\operatorname{Map}(A, B)$: The set of all maps from a set A to a set B
$\Gamma(A, \mathcal{L})$: The global sections of an invertible sheaf \mathcal{L} on an abelian variety A

§1. Review.

Let k be a fixed algebraically closed field of $\operatorname{char}(k) \neq 2$, and let A be a g Received February 16, 1987, Revised November 9, 1987.
dimensional abelian variety defined over k. If L is an ample line bundle on A, then it is well known that $K(\underline{L})$ is a finite group and $K(\underline{L}) \cong G \oplus G^{\wedge}$ where G is a finite abelian group isomorphic to $\boldsymbol{Z} / d_{1} \boldsymbol{Z} \oplus \cdots \oplus \boldsymbol{Z} / d_{g} \boldsymbol{Z}$ with $d_{1}|\cdots| d_{g}$. We take $d_{i}>0$ for $i=1, \cdots, g$. Put $\delta=\left(d_{1}, \cdots, d_{g}\right)$. Let $G(\underline{L})$ be the theta group of L defined by $\left\{(x, \psi) ; x \in K(\underline{L})\right.$ and $\left.\psi: \underline{L} \leftrightharpoons T_{x}^{*}(\underline{L})\right\}$. In the following, we assume $\operatorname{char}(k) X d_{g}$.

Theorem 1. $G(\underline{L})$ has a unique irreducible representation $\Gamma(A, \underline{L})$ in which k^{*} acts by its natural character.

Proof. See Mumford [3].
Let $G(\boldsymbol{\delta})$ be the Heisenberg group, that is $G(\boldsymbol{\delta})=k^{*} \times G \times G^{\wedge}$ as sets with multiplication

$$
(t, x, m)\left(t^{\prime}, x^{\prime}, m^{\prime}\right)=\left(t t^{\prime} m^{\prime}(x), x+x^{\prime}, m+m^{\prime}\right)
$$

Put $V(\boldsymbol{\delta})=\operatorname{Map}(G, k) . \quad V(\boldsymbol{\delta})$ is naturally a vector space over k and is a $G(\boldsymbol{\delta})$ module by

$$
((t, x, m) f)(u)=\operatorname{tm}(u) f(x+u)
$$

where $(t, x, m) \in G(\delta)$ and $f \in V(\delta)$.
THEOREM 2. $G(\boldsymbol{\delta})$ has a unique irreducible representation $V(\boldsymbol{\delta})$ in which k^{*} acts by its natural character.

Proof. See Mumford [3].
Theorem 3. $G(\underline{L})$ and $G(\boldsymbol{\delta})$ are isomorphic to each other as groups.
Proof. See Mumford [3].
Let δ be the delta function in $V(\delta)$ where x is in G defined by $\delta_{x}(y)=0$ if $y \neq x$ and $\delta_{x}(x)=1$. If α is an isomorphism from $G(\underline{L})$ to $G(\delta)$, then α induces the isomorphism $\beta: \Gamma(A, \underline{L}) \rightarrow V(\delta)$. We put $q_{L}(x)$ by the "Nullwerte" (in the sense of Mumford) of $\beta^{-1}\left(\delta_{x}\right)$. Now we assume that L is totally symmetric and choose a symmetric theta structure on (L, L^{82}) (see Mumford [3]). The symmetric theta structure induces $\beta_{1}: \Gamma(A, \underline{L}) \simeq V(\delta)$ and $\beta_{2}: \Gamma\left(A, L^{\otimes 2}\right) \simeq V(2 \delta)$. Let s, s^{\prime} be elements of $\Gamma(A, \underline{L})$. We put $f_{1}=\beta_{1}(s)$ and $f_{2}=\beta_{2}\left(s^{\prime}\right)$. Let $f_{1} * f_{2}=$ $\beta_{2}\left(s \otimes s^{\prime}\right)$.

Theorem 4. (Multiplication formula). In above notations

$$
f_{1}^{*} f_{2}(x)=\sum_{y \in x+G} f_{1}(x+y) f_{2}(x-y) q_{L \otimes 2}(y) .
$$

Proof. See Mumford [3].

§2. Examples.

Let $\delta=\left(d_{1}, \cdots, d_{g}\right)$ where d_{1}, \cdots, d_{g} are positive integers with $d_{1}|\cdots| d_{g}$. In this section we assume $\operatorname{char}(k) \nless d_{g}$. Let G_{o} be the group $\boldsymbol{Z} / d_{1} \boldsymbol{Z} \oplus \cdots \oplus \boldsymbol{Z} / d_{g} \boldsymbol{Z}$.

Definition. We define $\operatorname{Sp}\left(G_{\dot{\partial}}\right)$ by

$$
\begin{aligned}
\left\{\sigma \in \operatorname{Aut}\left(G_{\dot{o}} \times G_{\dot{\delta}}^{\hat{}}\right) ;\right. & \text { For every }(x, m),(y, n) \in G_{\delta} \times G_{\grave{\delta}} \hat{,} \\
& \left.((x, m),(y, n))_{S p}=(\sigma(n, m), \sigma(y, n))_{S p}\right\},
\end{aligned}
$$

where $((x, m),(y, n))_{s p}=n(-x) m(y)$ and $\sigma(x, m)=(\alpha x+\beta m, \gamma x+\delta m)$ for $\sigma=$ $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$.

We put $\langle x, m\rangle=m(x)$ where $x \in G_{\bar{\delta}}$ and $m \in G_{\hat{\delta}} \hat{}$.
Definition. We define a group N_{0} as follows,

$$
\begin{aligned}
N_{0} & =\left\{(\sigma, f) ; \sigma \in S p\left(G_{\dot{\delta}}\right) \text { and } f: G_{\dot{\delta}} \times G_{\hat{\delta}} \widehat{k^{*}} \text { with } f\left((x, m)+\left(x^{\prime}, m^{\prime}\right)\right)\right. \\
& \left.=f((x, m)) f\left(\left(x^{\prime}, m^{\prime}\right)\right)\left\langle\alpha x+\beta m, \gamma x^{\prime}+\delta m^{\prime}\right\rangle /\left\langle x, m^{\prime}\right\rangle \text { where } \sigma=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)\right\}
\end{aligned}
$$

as sets. The multiplication of N_{0} is defined by

$$
(\sigma, f)\left(\sigma^{\prime}, f^{\prime}\right)=\left(\sigma \sigma^{\prime}, f^{\prime \prime}\right)
$$

where $f^{\prime \prime}(w)=f^{\prime}(\sigma w) f(w), w \in G_{\dot{\delta}} \times G_{\hat{o}} \hat{}$.
As $\sigma=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in S p(G(\delta)),\left\langle\alpha x+\beta m, \gamma x^{\prime}+\delta m^{\prime}\right\rangle /\left\langle x, m^{\prime}\right\rangle=\left\langle\alpha x^{\prime}+\beta m^{\prime}, \gamma x+\delta m\right\rangle /$ $\left\langle x^{\prime}, m\right\rangle$. Therefore the multiplication of N_{0} is well defined. Now we take an element (σ, f) in N_{0}. We define a map

$$
n_{(\sigma, f)}((t, x, m))=(t f(x, m), \sigma(x, m))
$$

Lemma. Via $n_{(\sigma, f)}, N_{0}$ acts on $G(\boldsymbol{\delta})$ as a group of automorphisms over k^{*}.
Let η be an automorphism of $G(\boldsymbol{\delta})$ over k^{*}. As $G(\boldsymbol{\delta})$ acts on $V(\boldsymbol{\delta})$, we can determine another $G(\delta)$-action on $V(\delta)$ via η. But in these two actions on $V(\delta)$, k^{*} acts by its natural character. Therefore these two actions are isomorphic to each other by theorem 2 in $\S 1$. Therefore η determines a base change of $V(\delta)$.

Example 1. $\delta=(2, \cdots, 2)$ and σ is a

$$
\left(\begin{array}{lll|llll}
0 & & & 1 & & & \\
& 1 & \ddots & & 0 & & \\
& & & 1 & & & 0 \\
\hline 1 & & & 0 & & & \\
\hline & 0 & & & 1 & & \\
& & \ddots & 0 & & & \\
& & & & & &
\end{array}\right)
$$

over $\operatorname{char}(k) \neq 2$. In above notations, let $x==^{t}\left(x_{1}, \cdots, x_{g}\right)$ and $m=^{t}\left(m_{1}, \cdots, m_{g}\right)$ where x_{i} and m_{i} are elements of $\boldsymbol{Z} / 2 \boldsymbol{Z}(i=1, \cdots, g)$. We define $\langle\rangle:, G_{\hat{\delta}} \times G_{\hat{o}}$ $\rightarrow k^{*}$ by

$$
\langle x, m\rangle=(-1)^{x_{1} m_{1}+\cdots+x_{g} m_{g}} .
$$

In this situation, σ is an element of $S p\left(G_{\dot{\delta}}\right)$. Because

$$
\left(\sigma(x, m), \sigma\left(x^{\prime}, m^{\prime}\right)\right)_{S p}=(-1)^{x_{1} m_{1^{\prime}}+x_{2^{\prime}} m_{2}+\cdots+x_{g^{\prime}} m_{g} /(-1)^{x_{1}^{\prime} m_{1}+x_{2} m_{2^{\prime}}+\cdots+x_{g^{m}}} g^{\prime}}
$$

where $x^{\prime}=^{t}\left(x_{1}, \cdots, x_{g}{ }^{\prime}\right)$ and $m^{\prime}={ }^{t}\left(m_{1}{ }^{\prime}, \cdots, m_{g}\right)$. We define a map $f: G_{\dot{\delta}} \times G_{\hat{\delta}}{ }^{\prime}$ $\rightarrow k^{*}$ with

$$
f(x, m)=(-1)^{x_{1} m_{1}} .
$$

The pair (σ, f) is an element of N_{0}. In fact

$$
\begin{aligned}
f\left((x, m)+\left(x^{\prime}, m^{\prime}\right)\right) / f(x, m) f\left(x^{\prime}, m^{\prime}\right) & =(-1)^{\left(x_{1}+x_{1}^{\prime}\right)\left(m_{1}+m_{1}^{\prime}\right)} /(-1)^{x_{1} m_{1}}(-1)^{x_{1}^{\prime} m_{1^{\prime}}} \\
& =(-1)^{x_{1}^{\prime} m_{1}+x_{1} m_{1}{ }^{\prime}}
\end{aligned}
$$

on the other hand,

$$
\begin{aligned}
\left\langle\alpha x+\beta m, \gamma x^{\prime}+\delta m^{\prime}\right\rangle /\left\langle x, m^{\prime}\right\rangle & =(-1)^{x_{1}^{\prime} m_{1}+x_{2} m_{g^{\prime}}+\cdots+x_{g} m_{g^{\prime}}} /(-1)^{x_{1} m_{1}+\cdots+x_{g} m_{g^{\prime}}} \\
& =(-1)^{x_{1}^{\prime} m_{1}+x_{1} m_{1}}
\end{aligned}
$$

where $\sigma=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$. Hence (σ, f) is an element of N_{0}.
Now we calculate the base change of $V=V(\delta)$ defined by the above (σ, f). Let σ_{0} be the base change of V defined by (σ, f). By definition

$$
\sigma_{0}((t, x, m) \cdot v)=(t f(x, m), \sigma(x, m)) \cdot v
$$

for every element v of V. Let $t=1, x=0$ and $v=\delta_{0}$ where $0==^{t}(0, \cdots, 0)$. As $(1,0, m) \delta_{0}=\delta_{0}, \quad \sigma_{0}\left((1,0, m) \delta_{0}\right)=\sigma_{0}\left(\delta_{0}\right)$. Moreover $\sigma_{0}\left((1,0, m) \delta_{0}\right)=(1, \sigma(0, m)) \sigma_{0}\left(\delta_{0}\right)$ and $\sigma(0, m)=\left({ }^{t}\left(m_{1}, 0, \cdots, 0\right),{ }^{t}\left(0, m_{2}, \cdots, m_{g}\right)\right)$. We put $\sigma_{0}\left(\delta_{0}\right)=\sum_{s \in(Z / 2 Z) g} h(s) \boldsymbol{\delta}_{s}$. By above relations, we obtain

$$
\sum_{s \in(Z / 2 Z) g} h(s) \delta_{s}=\sum_{s \in(Z / 2 Z) s}(-1)^{m_{2} s_{2}+\cdots+m_{g} s g f(s) \delta_{s+m_{1} e_{1}}}
$$

where $e_{1}={ }^{t}(1,0, \cdots, 0)$ and $s={ }^{t}\left(s_{1}, \cdots, s_{g}\right)$. Therefore

$$
\sigma_{0}\left(\delta_{0}\right)=c\left(\delta_{0}+\delta_{e_{1}}\right)
$$

where c is a constant. Similously we obtain

$$
\sigma_{0}\left(\boldsymbol{\delta}_{e_{1}}\right)=c\left(\boldsymbol{\delta}_{0}-\delta_{e_{1}}\right)
$$

Moreover

$$
\sigma_{0}\left(\boldsymbol{\delta}_{s}\right)=c\left(\delta_{s-s_{1} e_{1}}+(-1)^{s_{1}} \delta_{s-\left(s_{1}-1\right) e_{1}}\right)
$$

where $s={ }^{t}\left(s_{1}, \cdots, s_{g}\right)$.
Example 2. $\delta=(4, \cdots, 4)$ and σ is

$$
\left(\begin{array}{ccc|ccc}
0 & & & -1 & & \\
& 1 & & & & \\
& & \ddots & & & \\
& & & & & \\
\hline 1 & & & 0 \\
\hline & 0 & & & & \\
& & \ddots & & & \\
& & & & & \\
& & & & 1
\end{array}\right)
$$

over $\operatorname{char}(k) \neq 2$. In above notations, let $x={ }^{t}\left(x_{1}, \cdots, x_{g}\right)$ and $m={ }^{t}\left(m_{1}, \cdots, m_{g}\right)$ where x_{i} and m_{i} are elements of $\boldsymbol{Z} / 4 \boldsymbol{Z}(i=1, \cdots, g)$. We define $\langle\rangle:, G_{\dot{\delta}} \times G_{\delta}{ }^{\wedge}$ $\rightarrow k^{*}$ by

$$
\langle x, m\rangle=\sqrt{-1} x_{1} m_{1}+\cdots+x_{g} m_{g}
$$

It is clear that σ is an element of $S p) G_{\delta}$). We define a map $f: G_{\delta} \times G_{\delta}^{\wedge} \rightarrow k^{*}$ with

$$
f(x, m)=\sqrt{-1}^{x_{1} m_{1}}
$$

The pair (σ, f) is an element of N_{0}. In this situation, thebase change of $V(\delta)$ defined by (σ, f) is as follows,

$$
\begin{aligned}
\sigma\left(\delta_{s}\right)= & c\left(\delta_{s-s_{1} e_{1}}+\sqrt{-1}{ }^{s_{1}} \delta_{s-\left(s_{1}-1\right) e_{1}}+(-1)^{s_{1}} \delta_{s-\left(s_{1}-2\right) e_{1}}\right. \\
& \left.+\sqrt{-1^{3 s_{1}}} \delta_{s-\left(s_{1}+1\right) e_{1}}\right)
\end{aligned}
$$

where $s=^{t}\left(s_{1}, \cdots, s_{g}\right), e_{1}={ }^{t}(1,0, \cdots, 0), c$ is constant and $\sqrt{-1}$ is an element of k with $\sqrt{-1^{2}}=-1$.

§3. Reducibility of abelian variety.

In this section we consider the canonical map $t: \Gamma(A, \mathcal{O}(2 \theta))^{\otimes 2} \rightarrow \Gamma(A, \mathcal{O}(4 \theta))$ where A is an abelian variety and θ is a theta divisor on A. We assume char $(k) \neq 2$ and fix a symmetric theta structure $\left(\alpha_{1}, \alpha_{2}\right)$ on $(\mathcal{O}(2 \theta), \mathcal{O}(4 \theta))$ where α_{1} is a group isomorphism from $G(\mathcal{O}(2 \theta))$ to $G\left((2, \cdots, 2)\right.$) over k^{*} and α_{2} is a group isomorphism from $G(\mathcal{O}(4 \theta))$ to $G((4, \cdots, 4))$ over k^{*}. Let δ be $(2, \cdots, 2)$. In this case we obtain a $G(\delta)$ module $V(\delta)$ and a $G(2 \delta)$ module $V(2 \delta)$ and t induces

$$
\beta: V(\boldsymbol{\delta})^{\otimes 2} \longrightarrow V(2 \boldsymbol{\delta})
$$

We write $\beta(a \otimes b)=a^{*} b$. Now the multiplication formula says that

$$
\delta_{s}^{*} \delta_{t}=\sum_{x \in\left(2 Z_{/ 4 Z}\right) g} q_{L}{ }^{84}(\underline{s}-\underline{t}+x) \delta_{\underline{\underline{s}+\underline{+}}+x}
$$

where $\underline{L}=\mathcal{O}(\theta)$, s and t are elements of $(\boldsymbol{Z} / 2 \boldsymbol{Z})^{\boldsymbol{g}}$ and $\underline{s}, \underline{t}$ are elements of $(\boldsymbol{Z} / 4 \boldsymbol{Z})^{g}$ with $\underline{s} \bmod 2=s$ and $\underline{t} \bmod 2=t$. Let $\underline{\beta}$ be a map

$$
\underline{\beta}: S^{2} V(\delta) \longrightarrow V(2 \delta)
$$

induced by β. We put $\Delta_{c}=\left(\delta_{x} \odot \delta_{c-x}\right)$ where c is an element of $(\boldsymbol{Z} / 2 \boldsymbol{Z})^{g}$ and x runs through a complete set of representative of $(\boldsymbol{Z} / 2 \boldsymbol{Z})^{g} /\{0, c\}$. Moreover we put $E_{c}=\left(\delta_{c+x}+\delta_{-\underline{c}+x}\right)$ where x runs through a complete set of representative of $(2 \boldsymbol{Z} / 4 \boldsymbol{Z})^{g} /\{0,2 \underline{c}\}$. With the above notations, the map $\underline{\beta}$ is defined by

$$
\underline{\beta}\left(\Delta_{c}\right)=E_{c} F_{c}
$$

where F_{c} is an element of $M_{2 g}(k)$ if $c=0$ and an element of $M_{2 g-1}(k)$ if $c \neq 0$. As $\left(\Delta_{c}\right)_{e \in(Z / 2 Z) g}$ are basis of $S^{2} V(\delta)$, therefore $\underline{\beta}$ is represented by the following matrix

$$
\left(\begin{array}{llll}
F_{x_{1}} & & \\
& \ddots & \\
& & F_{x_{2} g-1} & \\
& & & F_{0}
\end{array}\right)
$$

where $(\boldsymbol{Z} / 2 \boldsymbol{Z})^{g}=\left\{0, \boldsymbol{x}_{1}, \cdots, x_{2 g_{-1}}\right\}$. Let G_{c} be a subgroup of $(\boldsymbol{Z} / 2 \boldsymbol{Z})^{g}$ satisfying $(\boldsymbol{Z} / 2 \boldsymbol{Z})^{g}=G_{c} \oplus(\boldsymbol{Z} / 2 \boldsymbol{Z}) c$ in which c is a given non-zero element. Let $G_{c}^{(2)}$ be the subgroup of $(\boldsymbol{Z} \boldsymbol{Z} / 4 \boldsymbol{Z})^{g} \cong(\boldsymbol{Z} / 2 \boldsymbol{Z})^{g}$ corresponding to G_{c}. We fix such notations Now the multiplication formula says

$$
\begin{aligned}
\boldsymbol{\delta}_{x} * \delta_{c-x} & =\sum_{\eta \in\left(2 Z_{1 / 4}\right) g} q_{L^{\otimes 4}}(2 \underline{x}-\underline{c}+\eta) \boldsymbol{\delta}_{\underline{c}+\eta} \\
& =\sum_{\eta \in G_{c}^{(2)}} q_{L^{\otimes 4}}(2 \underline{x}-\underline{c}+\eta)\left(\boldsymbol{\delta}_{\underline{c}+\eta}+\delta_{-(\underline{c}+\eta)}\right) .
\end{aligned}
$$

Therefore we obtain

$$
\sum_{x \in G_{c}} \chi(x) \delta_{x}^{*} \delta_{c-x}=\left(\sum_{u \in G_{c}^{(2)}} \chi(u) q_{L} \otimes_{4}(u-c)\right)\left(\sum_{v \in G_{c}^{(2)}} \chi(v)\left(\delta_{c+v}+\delta_{-(c+v)}\right)\right)
$$

where χ is a charactor of G_{c}. Let X_{c} be the set

$$
\left\{\chi \in G_{c} \wedge ; \sum_{u \in G_{c}^{(2)}} \chi(u) q_{L^{\otimes 4}}(u-\underline{c})=0\right\} .
$$

Theorem. In the above notations, if $(\boldsymbol{Z} / 2 \boldsymbol{Z})^{g}=G_{1} \oplus G_{2}$, and if for every $x \in G_{1}, y \in G_{2}$ with $x \neq 0$ and $y \neq 0$ the rank of F_{x+y} is at most 2^{g-2} and ever y contained in $G_{x+y} \hat{-}-X_{x+y}$ have same value at x, then $(A, \mathcal{O}(\theta))$ is reducible.

Proof. By the assumption, the order of $G_{x+y} \wedge-X_{x+y}=$ the rank of F_{x+y}
$\leqq 2^{g-2}$. Therefore there exists a subgroup H of G_{x+y} ^ which satisfies $\chi(x)=1$ for every $\chi \in H$, and some element $\rho \in G_{x+y}$, we obtain $X_{x+y} \supset \rho+H$. Hence

$$
\sum_{x \in H} \sum_{u \in G_{x+y}^{(2)}} \rho(u) \chi(u) q_{L^{\otimes *}}(u-\underline{x}-\underline{y})=0
$$

and

$$
\begin{aligned}
\sum_{x \in H} \chi(u) & =2^{g-2} \quad \text { if } u=0 \text { or } u=x \\
& =0 \quad \text { if } u \neq 0 \text { and } u \neq x
\end{aligned}
$$

by the definition of X_{x+y}. Therefore

$$
q_{L^{\otimes}}(\underline{x}+\underline{y})+\rho(x) q_{L^{\otimes} \pm}(\underline{x}-\underline{y}+u)=0 .
$$

Moreover

$$
q_{L^{\otimes}:}(\underline{x}+\underline{y}+u)+\rho(x) q_{L^{\otimes i}}(\underline{x}-\underline{y}+u)=0
$$

for every u contained in G_{x+y}. Hence

$$
\begin{aligned}
\delta_{t}^{*} \delta_{x+y-t} & =\sum_{u \in G_{x}^{(2)}} q_{L^{\otimes 4}}(2 \underline{t}-\underline{x}-\underline{y}+u)\left(\delta_{\underline{x}+\underline{y}+u}+\delta_{-(\underline{x}+\underline{+}+u)}\right) \\
& =-\rho(x) \sum_{u \in G_{x+y}^{(2)}} q_{L^{\otimes}}(2 \underline{t}+\underline{x}-\underline{y}+u)\left(\delta_{\underline{x}+\underline{y}+u}+\delta_{-(\underline{x}+\underline{y}+u)}\right) \\
& =-\rho(x) \delta_{t+x} * \delta_{t-y},
\end{aligned}
$$

especially $\delta_{0}{ }^{*} \delta_{x+y}=-\rho(x) \delta_{x}{ }^{*} \delta_{y}$. Let $f(x+y)$ be $-\rho(x)$. This f is a function from $\left\{x+y ; x \in G_{1}\right.$ and $y \in G_{2}$ with $x \neq 0$ and $\left.y \neq 0\right\}$ to $\{ \pm 1\}$. We fix a symmetric theta structure $\left(\alpha_{2}, \alpha_{3}\right)$ on $(\mathcal{O}(4 \theta), \mathcal{O}(8 \theta))$. We have already obtained

$$
\begin{aligned}
& \delta_{0}^{*} \delta_{x+y}=f(x+y) \delta_{x} * \delta_{y} \\
& \delta_{0}^{*} \delta_{x^{\prime}+y^{\prime}}=f\left(x^{\prime}+y^{\prime}\right) \delta_{x^{\prime}} * \delta_{y^{\prime}}
\end{aligned}
$$

for any non-zero $x, x^{\prime} \in G_{1}$ with $x \neq x^{\prime}$ and any non-zero $y, y^{\prime} \in G_{2}$ with $y \neq y^{\prime}$. Therefore

$$
\left(\delta_{0} * \delta_{x+y}\right) *\left(\delta_{0} * \delta_{x^{\prime}+y^{\prime}}\right)=f(x+y) f\left(x^{\prime}+y^{\prime}\right)\left(\delta_{x} * \delta_{y}\right) *\left(\delta_{x^{\prime}} * \delta_{y^{\prime}}\right)
$$

by the above symmetric theta structure. On the other hand

$$
\left(\delta_{0} * \delta_{0}\right) *\left(\delta_{x+y} * \boldsymbol{\delta}_{x^{\prime}+y^{\prime}}\right)=f\left(x+x^{\prime}+y+y^{\prime}\right)\left(\delta_{0} * \delta_{0}\right) *\left(\delta_{x+y^{\prime}} * \delta_{x^{\prime}+y}\right) .
$$

Hence we obtain the relation

$$
f\left(x+x^{\prime}+y+y^{\prime}\right)=f(x+y) f\left(x^{\prime}+y^{\prime}\right) f\left(x+y^{\prime}\right) f\left(x^{\prime}+y\right) .
$$

Let $\tilde{\tilde{\delta}}_{x+y}$ be $f(x+y) \delta_{x+y}$ if x is a non-zero element of G_{1} and y is a non-zero element of G_{2} and let $\tilde{\delta}_{z}$ be δ_{z} if z is an element of G_{1} or G_{2}. The above relation says that

$$
\tilde{\tilde{\delta}}_{x+y} * \tilde{\tilde{\partial}}_{x^{\prime}+y^{\prime}}=\tilde{\sigma}_{x+y^{\prime}} * \tilde{\partial}_{x^{\prime}+y}
$$

for $x, x^{\prime} \in G_{1}-\{0\}$ with $x \neq x^{\prime}$ and $y, y^{\prime} \in G_{2}-\{0\}$ with $y \neq y^{\prime}$. We denote $\phi: A$ $\rightarrow \boldsymbol{P}^{2 g-1}$ by a morphism defined by $\underline{L}^{\otimes 2} \cong \mathcal{O}(2 \theta)$. The above relations say that $\phi(A)$ is contained in some Segre variety embedded in $P^{2^{g}-1}$ which is isomorphic to $\boldsymbol{P}^{2^{g_{1-1}}} \times \boldsymbol{P}^{2^{g_{2}-1}}$ where g_{i} is a dimension of G_{i} as a vector space over $\boldsymbol{Z} / 2 \boldsymbol{Z}$ $(i=1,2)$. Let ϕ_{i} be a morphism from A to $\boldsymbol{P}^{2^{g_{i-1}}}(i=1,2)$ which is a composition of ϕ and the projection on $P^{2^{g_{1-1}}} \times \boldsymbol{P}^{2^{g_{2-1}}}$ and let H_{i} be a hyperplane of $\boldsymbol{P}^{2^{g_{i-1}}}(i=1,2)$. We put $B_{i}=$ the connected component of $K\left(\mathcal{O}\left(\phi_{i} * H_{i}\right)\right)$ containing $0(i=1,2)$. It is clear that B_{i} is an abolian subvariety of $A_{i}(i=1,2)$. Let A_{i} be the abelian variety A / B_{i}, let $p: A \rightarrow A_{1} \times A_{2}$ be the canonical morphism and let η_{i} be the morphism from A_{i} to $\boldsymbol{P}^{2^{g_{-1}}}$ defined by $\phi_{i}(i=1,2)$. As $\phi_{i}(-x)=$ $\phi_{i}(x)$ for every $x \in A(i=1,2)$, hence $\eta_{i}(-x)=\eta_{i}(x)$ for every $x \in A_{i}(i=1,2)$. Therefore $\eta_{i}{ }^{*} H_{i}$ is totally symmetric. This implies $\eta_{i}^{*} H_{i}$ is linearly equivalent to $2 D_{i}$ for some divisor D_{i} on $A_{i}(i=1,2)$. In this situations,

$$
\operatorname{dim} \Gamma\left(A_{i}, \mathcal{O}\left(\eta_{i}^{*} H_{i}\right)\right) \geqq 2^{g_{i}}
$$

$(i=1,2) . \quad$ As $p^{*}\left(\eta_{1} * H_{1} \times A_{2}+A_{1} \times \eta_{2}{ }^{*} H_{2}\right)$ is linearly equivalent to 2θ,

$$
\begin{aligned}
2^{g} & =\operatorname{dim} \Gamma(A, \mathcal{O}(2 \theta)) \\
& \geqq \operatorname{dim} \Gamma\left(A_{1}, \mathcal{O}\left(\eta_{1}^{*} H_{1}\right)\right) \operatorname{dim} \Gamma\left(A_{2}, \mathcal{O}\left(\eta_{2}^{*} H_{2}()\right.\right. \\
& \geqq 2^{g_{1} 2^{g_{2}}}=2^{g}
\end{aligned}
$$

Hence $\operatorname{dim} \Gamma\left(A_{i}, \mathcal{O}\left(\eta_{i}^{*} H_{i}\right)\right)=2^{g_{i}}(i=1,2)$. Therefore $\eta_{i}{ }^{*} H_{i}$ is linearly equivalent to $2 \theta_{i}$ where θ_{i} is a principally polarization of A_{i} because $\eta_{i}^{*} H_{i}$ is linearly equivalent to $2 D_{i}$ for some divisor D_{i} on $A_{i}(i=1,2)$. So we obtain that dimension of A_{i} is g_{i} and p is a finite surjective morphism ($i=1,2$) (see Ohbuchi [4]). As 2θ is linearly equivalent to $p^{*}\left(\eta_{1} * H_{1} \times A_{2}+A_{1} \times \eta_{2} * H_{2}\right)$, therefore 2θ is linearly equivalent to $2 p^{*}\left(\theta_{1} \times A_{2}+A_{1} \times \theta_{2}\right)$. Hence θ is algebraically equivalent to $p^{*}\left(\theta_{1} \times A_{2}+A_{1} \times \theta_{2}\right)$ because $N S(A)$ is a torsion free module for any abelian variety A. Hence θ is linearly equivalent to $p^{*}\left(T_{z_{1}} * \theta_{1} \times A_{2}+A_{1} \times T_{z_{2}} * \theta_{2}\right)$ for some $z_{i} \in A_{i}(i=1,2)$. Therefore p is an isomorphism and $(A, \mathcal{O}(\theta))$ is reducible polarized abelian variety (see Ohbuchi [4]). Thus we prove the theorem.

§4. Reducibility of 3-dimensional abelian variety.

In this section we prove the following theorem.
THEOREM. Let A be a 3-dimensional abelian variety defined over algebraically closed field k of $\operatorname{char}(k) \neq 2$. Let I be a kernel of $S^{2} \Gamma(A, \mathcal{O}(2 \theta)) \rightarrow \Gamma(A, \mathcal{O}(4 \theta))$. If dimension of I over $k \geqq 5$, then $(A, \mathcal{O}(\theta))$ is reducible.

We put $\underline{L}=\mathcal{O}(\theta)$. We fix smmetric theta structures $\left(\alpha_{1}, \alpha_{2}\right)$ and $\left(\alpha_{2}, \alpha_{3}\right)$ on ($\underline{L}^{\otimes 2}, \underline{L}^{\otimes 4}$) and ($\underline{L}^{\otimes 4}, \underline{L}^{\otimes 8}$) respectively. Let $\delta_{x}^{(i)}$ be a delta function contained in $V\left(\left(2^{i}, 2^{i}, 2^{i}\right)\right)$ and let $G_{2 i}=G_{(2 i, 2 i, 2 i)}$ be a group $\left(\boldsymbol{Z} / 2^{i} \boldsymbol{Z}\right)^{3}(i=1,2,3)$. Especially we dente δ_{x} by $\delta_{x}^{(1)}$. For every c contained in $G_{2} i$, we take \underline{c} which is an element of $G_{2 i+1}$ with $\underline{c} \bmod 2^{i}=c$ and take $\underline{\underline{c}}$ which is an element of $G_{2 i+2}$ with $\underline{\underline{c}} \bmod 2^{i+1}=\underline{c}(i=1,2)$. And for every c contained in $G_{2^{i+1}}$, we take c° which is an element of $G_{2} i$ with $2 c=2 c^{\circ}$. Let λ be an element of $G_{2}{ }^{\wedge}$ and let a, b be elements of G_{8} with $a \bmod 2=b \bmod 2$.

Definition. In above notations, we define $T(\lambda ; a, b)$ by

$$
T(\lambda ; a, b)=\sum_{u \in G_{2}} \lambda(u) \delta_{c}^{2+b^{0}+2 \underline{u}} * \delta_{c}^{2+2 \underline{u}}
$$

where c is an element of G_{4} with $2 \underline{c}=a-b$.
Definition. For $\lambda \in G_{2}{ }^{\wedge}$ abd $c \in G_{8}$, we define $q_{1}(\lambda, c)$ by

$$
q_{1}(\lambda, c)=\sum_{u \in G_{2}} \lambda(u) q_{L^{\otimes 8}}(c+4 \underline{u})
$$

To prove the theorem, we prepare the following lemmas.
Lemma 1. For every λ contained in $G_{2} \wedge$ and every a in G_{8}, there exists some $b \in G_{2}$ with $q_{1}(\lambda, a+4 \underline{b}) \neq 0$.

Proof. See Mumford [3].
Lemma 2. The kernel of $S^{2} V(4,4,4) \rightarrow V(8,8,8)$ is generated by

$$
q_{1}(\lambda, c) T(\lambda ; a, b)-q_{1}(\lambda, b) T(\lambda ; a, c)
$$

where a, b, c are elements of G_{8} and $a \bmod 2=b \bmod 2=c \bmod 2$.
Proof. By Lemma 1 and Igusa [2] p. 167 theorem 5, this lemma is clear.
Proof of Theorem. By the notation of $\S 3$, the homomorphism

$$
\underline{\beta}: S^{2} V(2,2,2) \longrightarrow V(4,4,5)
$$

is denoted by $\underline{\beta}\left(\Delta_{c}\right)=E_{c} F_{c}$ where c is an element of G_{1}. Therefore $\underline{\beta}$ is represented by the following 36×36 matrix,

$$
F=\left(\begin{array}{ccc}
F_{x_{1}} & & \\
& & \\
& & \\
& & F_{x_{7}} \\
& & \\
& & \\
&
\end{array}\right)
$$

with respect to $\left(\Delta_{c}\right)_{c \in G_{2}},\left(E_{c}\right)_{c \in G_{2}}$ where $G_{2}=\left\{x_{1}, \cdots, x_{7}, 0\right\}, F_{c}$ is an element of
$M_{4}(k)$ if $c \in G_{2}$ is not 0 and F_{0} is an element of $M_{8}(k)$. The assumption says that the rank of $F \leqq 31$. Therefore there exists at most 5 c's contained in G_{2} with determinant of $F_{c}=0$. By the example in $\S 2$, we may assume that at least 2 of these $c \neq 0$. We prove this theorem in two steps.

STEP 1; If there exists some c contained in G_{2} with $c \neq 0$ and the rank of $F_{c} \leqq 2$, then the theorem is true.

We take a $c^{\prime} \neq c$ which satisfies $\operatorname{det} F_{c^{\prime}}=0$. Let χ_{1} and χ_{2} be element of $G_{2}{ }^{\wedge}$ with $\chi_{i}(c)=1$ and

$$
\sum_{u \in G_{2} /(0, c)} \chi_{i}(u) q_{L^{\otimes}}{ }^{\otimes}(2 \underline{\underline{u}}-c)=0
$$

where $i=1,2$. We put

$$
\left\{\chi \in G_{2}{ }^{\wedge} ; \chi(c)=1\right\}=\left\{\chi_{1}, \chi_{2}, \chi_{3}, \chi_{4}\right\} .
$$

Let H_{c} be a kernel of $\chi_{3} \chi_{4}$. As H_{c} contains c and dimension of H_{c} as a vector space over $\boldsymbol{Z} / 2 \boldsymbol{Z}$ is 2 , therefore there exists some t contained in H_{c} and $t \neq c$ with

$$
(*)_{c} \quad \delta_{0} * \delta_{c}= \pm \delta_{t} * \delta_{c+t}
$$

and $H_{c}=\{0, c, t, c+t\}$. Now we take $a, b \in G_{4}$. By the definition,

$$
T(\lambda ; 2 \underline{a}, 2 \underline{b})=\sum_{u \in G_{2}} \lambda(u) \delta_{a+b+2 \underline{u}}^{(2)} * \delta_{a-b+2 \underline{u}}^{(2)}
$$

for every λ contained in $G_{2}{ }^{\wedge}$. Therefore the Nullwerte of $T(\lambda ; 2 \underline{a}, 2 \underline{b})$ is

$$
\sum_{u \in G_{2}} \lambda(u) q_{L^{\otimes 4}}(a+b+2 \underline{u}) q_{L^{\otimes 4}}(a-b+2 \underline{u}) .
$$

Especially the Nullwerte of $T(\lambda ; 2 \underline{d}, 0)$ is

$$
\sum_{u \in G_{2}} \lambda(u) q_{L^{\otimes 4}}(\underline{d}+2 \underline{u})^{2}
$$

for every d contained in G_{2} and fixed \underline{d}. If χ is an element of H_{c}, then

$$
\begin{aligned}
\sum_{u \in G_{2}} \chi(u) q_{L^{\otimes 4}}(\underline{c}+2 \underline{u})^{2} & =2 \sum_{u \in G_{2} /(0,0)} \chi(u) q_{L^{84}}(\underline{c}+2 \underline{u})^{2} \\
& =2 \sum_{u \in H_{c}} \chi(u)(1+\chi(t)) q_{L^{\otimes 4}}(\underline{c}+2 \underline{u})^{2},
\end{aligned}
$$

because $q_{L^{\otimes 1}}(\underline{c}+2 \underline{u}) \pm q_{L^{\otimes i}}(\underline{c}+2 \underline{u}+2 \underline{t})=0$ by the relation $(*)_{c}$. Hence for $\chi \in H_{c}$ with $\chi(t)=-1$, the Nullwerte of $T(\chi ; 2 \underline{c}, 0)=0$. Moreover we can take this χ with $\chi\left(c^{\prime}\right)=1$. Lemma 2 says that

$$
q_{1}(\chi, b) T(\chi ; 2 \underline{e}, 0)=q_{1}(\chi, 0) T(\chi ; 2 \underline{e}, b)
$$

where $e \in G_{2}$ and $b \in G_{8}$ with $b \bmod 2=0$. Now we prove that

$$
(*)_{c^{\prime}} \quad \delta_{0} * \delta_{c^{\prime}}= \pm \delta_{t} * \delta_{c^{\prime}+t}
$$

The proof of $\left({ }^{*}\right)_{c^{\prime}}$ is done in two cases.
case 1). $q_{1}(\chi, 0)=0$.
As there exists $b \in G_{8}$ with $b \bmod 4=0$ by Lemma $1, T(\chi ; 2 e, 0)=0$. In this case, we take $e=c^{\prime}$. Then $T\left(\chi ; 2 c^{\prime}, 0\right)=0$. Therefore we obtain

$$
\sum_{u \in G_{2} / H_{c}} \chi(u)\left(q_{L^{\otimes 4}}\left(\underline{c}^{\prime}+2 \underline{u}\right)^{2}-q_{L^{\otimes 4}}\left(\underline{c}^{\prime}+2 \underline{u}+2 \underline{t}\right)^{2}\right)=0
$$

This equation and the relation given by $\operatorname{det} F_{c^{\prime}}=0$ gives

$$
q_{L^{\otimes 4}}\left(\underline{c}^{\prime}+2 \underline{u}\right) \pm q_{L^{\otimes 4}}\left(\underline{c}^{\prime}+2 \underline{u}+2 \underline{t}\right)=0
$$

Hence we obtain $\left({ }^{*}\right)_{c^{\prime}}$.
case 2). $\quad q_{1}(\chi, 0) \neq 0$.
By this condition,

$$
T(\chi ; 2 \underline{\underline{e}}, b)=\left(q_{1}(\chi, b) / q_{1}(\chi, 0)\right) T(\chi ; 2 \underline{\underline{e}}, 0)
$$

We put $e=c$. In this case, the Nullwerte of $T(\chi ; 2 \underline{c}, 0)=0$. Hence the Nullwertw of $T(\chi ; 2 \underline{c}, b)=0$ for any $b \in G_{8}$ with $b \bmod 2=0$. We take $b=2 c^{\prime}-2 \underline{c}$. This implies

$$
\sum_{u \in G_{2}} \chi(u) q_{L^{\otimes 4}}\left(\underline{c}^{\prime}+2 \underline{u}\right) q_{L^{\otimes 4}}\left(-\underline{c}^{\prime}+2 \underline{c}+2 \underline{u}\right)=0
$$

Hence

$$
\sum_{u \equiv G_{2}} \chi(u) q_{L^{\otimes 4}}\left(\underline{c}^{\prime}+2 \underline{u}\right) q_{L^{\otimes 4}}\left(\underline{c}^{\prime}+2 \underline{c}+2 \underline{u}\right)=0
$$

In this situation,

$$
\begin{aligned}
& \sum_{u \in G_{2}} \chi(u) q_{L^{\otimes 4}}\left(\underline{c}^{\prime}+2 \underline{u}\right) q_{L^{\otimes 4}}\left(\underline{c}^{\prime}+2 \underline{c}+2 \underline{u}\right) \\
& \quad=2 \sum_{u \in G_{2} / i 0, c} \chi(u) q_{L^{\otimes 4}}\left(\underline{c}^{\prime}+2 \underline{u}\right) q_{L^{\otimes 4}}\left(\underline{c}^{\prime}+2 \underline{c}+2 \underline{u}\right) \\
& \quad=4 \sum_{\left.u \in G_{2} / 40, c, c^{\prime}, c+c^{\prime}\right\}} \chi(u) q_{L^{\otimes 4}}\left(\underline{c}^{\prime}+2 \underline{u}\right) q_{L^{\otimes 4}}\left(\underline{c}^{\prime}+2 \underline{c}+2 \underline{u}\right) \\
& \quad=4\left(q_{L^{\otimes 4}}\left(\underline{c}^{\prime}+2 \underline{u}\right) q_{L^{\otimes 4}}\left(\underline{c}^{\prime}+2 \underline{c}+2 \underline{u}\right)-q_{L^{\otimes 4}}\left(c^{\prime}+2 \underline{u}\right) q_{L^{\otimes 4}}\left(\underline{c}^{\prime}+2 \underline{c}+2 \underline{u}\right)\right)
\end{aligned}
$$

Therefore this equation and relation given by $\operatorname{det} F_{c^{\prime}}=0$ give

$$
q_{L^{\otimes 4}}\left(\underline{c}^{\prime}+2 \underline{u}\right) \pm q_{L^{\otimes 4}}\left(\underline{c}^{\prime}+2 \underline{t}+2 \underline{u}\right)=0
$$

Hence we obtain the relation $\left({ }^{*}\right)_{c^{\prime}}$.
Now it is clear that $c^{\prime} \neq t$ by the definition of c^{\prime}, t and c. Let $c_{0}=c+t$ and $c_{0}^{\prime}=c^{\prime}+t$. The relations $\left({ }^{*}\right)_{c}$ and $\left({ }^{*}\right)_{c}$, say that

$$
\begin{aligned}
\delta_{0} * \delta_{0} * \delta_{c_{0}^{\prime}} * \delta_{c_{0}^{\prime}+c_{0}+t} & = \pm \delta_{0} * \delta_{0} * \delta_{t+c_{0}^{\prime}} * \delta_{c_{0}+c_{0}^{\prime}} \\
& = \pm \delta_{0} * \delta_{c_{0}^{\prime}} * \delta_{t} * \delta_{c_{0}+c_{0}^{\prime}}
\end{aligned}
$$

Hence $\delta_{0} * \delta_{c_{0}+c_{0}^{\prime}+t}= \pm \delta_{l} * \delta_{c_{0}+c_{0}^{\prime}}$. Therefore we obtain the relations

$$
\begin{aligned}
& \delta_{0} * \delta_{t+c_{0}}= \pm \delta_{t} * \delta_{c_{0}} \\
& \delta_{0} * \delta_{t+c_{0}^{\prime}}= \pm \delta_{t}^{*} \delta_{c_{c_{0}^{\prime}}} \\
& \delta_{0}^{*} * \delta_{t+c_{0}+c_{0}^{\prime}}= \pm \delta_{t} * \delta_{c_{0}+c_{0}^{\prime}} .
\end{aligned}
$$

Hence we obtain this theorem by the theorem of $\S 3$.
Step 2; General case.
First, we show in the case of which $\operatorname{det} F_{c_{i}}=0(i=1, \cdots, 5)$ and $c_{i} \neq 0$ for every i. In this case, there exists some χ_{i} contained in $G_{2}{ }^{\wedge}$ with $\chi_{i}\left(c_{i}\right)=1$ and

$$
\sum_{u \in G_{2} /\left(0, c_{i}\right)} \chi_{i}(u) \delta_{u} * \delta_{c_{i}-u}=0
$$

for $i=1, \cdots, 5$. We prepare the following Lemma.
Lemma 3. In above notations, there exists some i and j with $i \neq j$ and i, j $\{1, \cdots, 5\}$ which satisfies $\chi_{i}\left(c_{j}\right)=\chi_{j}\left(c_{i}\right)$. Moreover if $\chi_{5}=0$ and $c_{5}=0$, then there exists some i and j with $i \neq j$ and $i, j \in\{1, \cdots, 4\}$ which satisfies $\chi_{i}\left(c_{j}\right)=\chi_{j}\left(c_{i}\right)$.

Proof. If there exists some i and j with $i \neq j$ and $\chi_{i}=\chi_{j}$, then this lemma is clear. And if there exists some i with $\chi_{i}=0$, then this lemma is again clear. So we assume that $\chi_{1}, \cdots, \chi_{5}$ are all distinct and not equal to 0 . We also assume that c_{1}, \cdots, c_{5} are all distinct and not equal to 0 . We put the set E_{+}and E- by

$$
\begin{aligned}
& E_{+}=\left\{(i, j) ; i \neq j \text { and } \chi_{i}\left(c_{j}\right)=1\right\} \\
& E_{-}=\left\{(i, j) ; i \neq j \text { and } \chi_{i}\left(\chi_{j}\right)=-1\right\} .
\end{aligned}
$$

As $\chi_{i}\left(c_{i}\right)=1$ and $c_{j} \neq 0$ for every $i, j=1, \cdots, 5$, therefore the order of $E_{+} \leqq 7$ and the order of $E_{-} \geqq 13$. Hence the first part of this lemma is clear. Moreover in the case of $\chi_{5}=0$ and $c_{5}=0$ we put the set $E_{+}^{\prime}, E_{-}^{\prime}$ by

$$
\begin{aligned}
& E_{+}^{\prime}=\left\{(i, j) ; i \neq j, i, j=1, \cdots, 4 \text { and } \chi_{i}\left(c_{j}\right)=1\right\} \\
& E_{-}^{\prime}=\left\{(i, j) ; i \neq j, i, j=1, \cdots, 4 \text { and } \chi_{i}\left(c_{j}\right)=-1\right\} .
\end{aligned}
$$

If the order of $E_{+}^{\prime} \geqq 6$, then there exists some $\chi_{i}, \chi_{j}(i \neq j)$ with the order of $T_{i}=\left\{c_{k} ; \chi_{i}\left(c_{k}\right)=1, k=1, \cdots, 5\right\}$ and $T_{j}=\left\{c_{k} ; \chi_{j}\left(c_{k}\right)=1, k=1, \cdots, 5\right\}$ are both 4. As T_{i} and T_{j} are subgroup of G_{2} and $T_{i}, T_{j} \subset\left\{c_{1}, \cdots, c_{4}, c_{5}=0\right\}$, hence $T_{i}=T_{j}$. This is a contradiction. Therefore the order of $E_{+}^{\prime} \leqq 5$. Hence this lemma is clear.

Now we continue the proof of the theorem. By Lemma 3, we take i, j with $i \neq j$ and $\chi_{i}\left(c_{j}\right)=\chi_{j}\left(c_{i}\right)$. Therefore

$$
\begin{aligned}
\sum_{\left.u \in G_{2 / i}, c_{i}\right)} \chi_{i}(u) \delta_{u} * \delta_{c_{i}-u}= & \delta_{0} * \delta_{c_{i}}+\chi_{i}\left(c_{j}\right) \delta_{c_{j}} * \delta_{c_{i}+c_{j}}+\chi_{i}(v) \delta_{v} * \delta_{c_{i}+v} \\
& +\chi_{i}\left(c_{j}+v\right) \delta_{v+c_{j}} * \delta_{v+c_{i}+c_{j}}, \\
\sum_{u \in G_{2 / i}, c_{j}} \chi_{j}(u) \delta_{u} * \delta_{c_{j}-u}= & \delta_{0} * \delta_{c_{j}}+\chi_{j}\left(c_{i}\right) \delta_{c_{i}} * \delta_{c_{j}+c_{i}}+\chi_{j}(v) \delta_{v} * \delta_{c_{i}+v} \\
& +\chi_{j}\left(c_{i}+v\right) \delta_{v+c_{i}} * \delta_{v+c_{j}+c_{i}} .
\end{aligned}
$$

In this, this v is an element of G_{2} with $c \bmod \left\{0, c_{i}, c_{j}, c_{i}+\delta_{j}\right\} \neq 0$. Therefore we obtain

$$
\left(\delta_{c_{i}}+\delta_{c_{j}}\right) *\left(\delta_{0}+\xi \delta_{c_{i}+c_{j}}\right)+\eta\left(\delta_{c_{i}+v}+\delta_{c_{j}+v}\right)^{*} *\left(\delta_{v}+\xi \delta_{v+c_{i}+c_{j}}\right)=0
$$

where $\xi, \eta \in\{ \pm 1\}$. By the examples of $\S 2$, we obtain the theorem.
Finally, we show this theorem in general case. If $\sum_{u \in G_{2}} \chi(u) \delta_{u} * \delta_{u}=0$ implies $\chi=0$, then these cases arereduced in Step 1 or the first case of this step, by the examples in $\S 2$. Now we assume that $\sum_{u \in G_{2}} \delta_{u} * \delta_{u}=0$ and the rank of $F_{0}=7$. In this case, let $c_{5}=0$ and let $\chi_{5}=0$. By lemma 3, we also obtain this theorem. Therefore we prove this theorem.

References

[1] Beauville, A., Prym Varieties and the Schottky Problem. Invent. Math. 41 (1977), 149-196.
[2] Igusa, J., Theta Functions. Springer-Verlag (1972).
[3] Mumford, D., On the equation defining abelian varieties I. Invent. Math. 1 (1966), 287-354.
[4] Ohbuchi, A., Some remarks on ample line bundles on abelian varieties. Manuscripta Math. 57 (1987), 225-238.

Department of Mathematics
Faculity of Education Yamaguchi University
1677-1 Oh-aza Yoshida
Yamaguchi-shi, Yamaguchi 753
Japan

