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Introduction.

A principally polarized abelian variety is called reducible if it is isomorphic

to a product of two abelian varieties of positive dimensions. For a principally

polarization L, it is well known that Z,R2 determines a morphism. Itsimage is

called a Wirtinger variety. If a principally polarized abelian variety is ir-

reducible, then the Wirtinger variety coincides with the Kummer variety as-

sociated to this polarized abelian variety. Moreover if an abelian variety is

sufficientlygeneral, then the Wirtinger variety is not contained in any conies.

On the other hand, if a principally polarized abelian variety is reducible, then

the Wirtinger variety is contained in many conies. Our main purpose is to give

conditions for reducibility of an abelian variety in terms of conies which con-

tains the Wirtinger variety associated to the abelian variety.

Notations.

char(&): The characteristicof a field k

k*: The group of all units of a field k

f*: The pull back defined by a morphism /

G~: The character group of a finitegroup G

L: The invertible sheaf associated to a line bundle L

0{D): The invertible sheaf associated to a divisor D

K(X): The subgroup of an abelian variety defined as follows, K(X)―{x^A:

TX*(X) = £} where Tx is a translation morphism on A and X is an in-

vertiblesheaf on A

NS(A): The Neron-Severi group on a variety A

SnV: The n-th symmetric product of a vector space V

Map (A, B): The set of all maps from a set A to a set B

F(A, X): The global sections of an invertible sheaf X on an abelian variety A

§1. Review.

Let k be a fixed algebraically closed field of char(&)=£2,and let A be a g
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dimensional abelian variety defined over k. If L is an ample line bundle on A,

then it is well known that K(L) is a finitegroup and K(L) = G($G~ where G

is a finite abelian group isomorphic to Z/diZR ■･･RZ/dgZ with dx＼･･･＼dg.

We take dt>0 for f=l, ･･･,g. Put d=(di, ･･･, d*). Let G(L) be the theta group

of L defined by {(x,<p); x^K(L) and <p: L^TX*(L)}. In the following, we as-

sume char(&) I dg.

THEOREM 1. G(L) has a unique irreducible representation F(A, L) in which

k* acts by its natural character.

Proof. See Mumford [3].

Let G(8) be the Heisenberg group, that is G(<5)=£*XGxG~ as sets with

multiplication

(t, x, m)(t',x', m')=(tt'm'(x), x + x', m+m').

Put F(<5)=Map(G, k). V(8) is naturally a vector space over k and is a G(<5)-

module by

(Of,x, m)f)(u)=tm{u)f(x + u)

where (t, x, m)<=G(d) and /eK(3).

THEOREM 2. G(d) has a unique irreducible representation V(§) in which k*

acts by its natural character.

Proof. See Mumford [3].

Theorem 3. G(L) and G(d) are isomorphic to each other as groups.

Proof. See Mumford [3].

Let d be the delta function in V(8) where x is in G defined by dx(y)―0 if

y^x and 8x(x)―1. If a is an isomorphism from G(L) to G(8), then a induces

the isomorphism /3:F(A, I)->F(5). We put qL(x) by the "Nullwerte" (in the

sense of Mumford) of P~＼8X). Now we assume that L is totally symmetric and

choose a symmetric theta structure on (L, LR2) (see Mumford [3]). The sym-

metric theta structure induces fa: F(A, L)~7(3) and j82:F(A, LR2)~7(2^).

Let s, s' be elements of F{A, L). We put /i=jSi(s) and /2=/32(s'). Let /i*/2=

i82(s(g)s/).

Theorem 4. {Multiplication formula). In above notations

fi*Mx)= S fi(x+ y)Mx-y)qL9t(y).
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Proof. See Mumford [3]

509

§ 2. Examples.

Let d=(dlf ■■■, dg) where dlr ■■■, dg are positive integers with dx＼ ■■■＼dg

In this section we assume char (k) I dg. Let G§ be the group Z/diZR ･■･RZ/dgZ

Definition. We define Sp(Gs) by

{<j<^Aut(GdxGs"); For every (x, m), (3;, n)^G8XGf,

{{x, m), (y, n))Sp = (a(n, m), a{y, n))Sp}

where ((x, m), (y, n))Sp = n(―x)m(y) and a{x, m)―{ax+Bm, yx+dm) for a

We put <jc,ni>=m{x) where x^G§ and m^Gf.

Definition. We definea group No as follows,

N0=＼(a, /); a(ESp(Gs) and f: GsXGf ―> k* with /((*,m)+(x

= f((x, m))f{(x', m'))(ax + fim, yx'+dm'^/ix, m') where a ―

as sets. The multiplicationof No is defined by

(a, f){a', f')=(oo', f")

where f//(w)=f'(aw)f(w), w<=G8XG8".

m

ca
))

As a = ^a y^Sp(G(5)), (.ax + fim, yx'+dm')/<.x, m'> = <ax' + /3m',yx+dmW

<x', m>. Therefore the multiplication of A^ois well defined. Now we take an

element (a, f) in JV0. We define a map

nto.j■>((},x, m))=(tf(x, m), a{x, m)).

Lemma. Via n<CT>/),iV0 acts on G(8) as a group of automorphisms over k*.

Let 7] be an automorphism of G(8) over k*. As G(8) acts on V(8), we can

determine another G(<5)-actionon V(d) via rj. But in these two actions on V(8),

k* acts by its natural character. Therefore these two actions are isomorphic

to each other by theorem 2 in §1. Therefore 7] determines a base change of

V{8).

Example 1. 8―(2, ･･■,2) and a is a
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over char(&)^2. In above notations, let x = ＼xx, ■･･, xg) and m=t(mi, ■■■, mg

where xt and m4 are elements of Z/2Z (z = l, ･･･ , g). We define < , >: GsxG8'

-+k* by

<*, rri>=(-l)ximi+-+*8m8.

In this situation, c is an element of Sp(Gg). Because

(a(x, m), a(x', m'))iSp=(-l)*imi'+*2'm2+-+*≪'m≪/(-l)Xl'mi+Xzm2'+'"+r*m*'

where x' ― ＼xx, ■■■, x/) and m' = t(m1', ■■■, mg). We define a map /: GsxGs'

->k* with

/(*, m)=(-l)ximi.

The pair (a, f) is an element of No. In fact

f((X, m) + (x', m'))/f{x, m)f{x', m') = (-l)Cxi + x1')(m1 + m1.)/(_1)x1ml(_1)x1-m1'

= (_l)zi' l+il l'
;

on the other hand,

(ax + $m, rx'+dm'>/<x, m'>=(-l)*i' i+^ 2'+-+x≪m*7(_l)*i i+-+** ≪'

where or= ( ^1). Hence (c, /) is an element of No.

Now we calculate the base change oi V―V{h) defined by the above (a, /).

Let
<r0 be the base change

of V defined by (a, /). By definition

0o((t, x, m)-v)=(tf(x, m), a(x, m))-v

for every element v of V. Let t=l, x=0 and v=d0 where 0=^(0, ･･･ , 0).
As

(1, 0, m)do=80, <ro((l, 0, m)ao)=<To(5o). Moreover <ro((l, 0, m)50)=(l, <r(0, m))ao{do)

and *(0, m)=('(m1, 0, ･･･ , 0), '(0, ?n2, ■･･, m,)). We put <to(3o)= S Ks)ds.
By

S£(Z/2Z)S

above relations, we obtain

seC^/2Z)5 SGC2/2Z)S

where e^'Cl, 0, ■･･, 0) and s^is,, ■■■, ss). Therefore

(T0(d0)―c(80+8ei)
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where c is a constant. Similously we obtain

ffo(dei)=c(3o―dei).

Moreover

(Jo(ds)=c(ds-Siei+(―l)Sl5s_(Sl_1)ei)

where s = {(si, ･･･, sg).

Example 2. 5=(4, ･･･, 4) and a is

/

V

0

1

1

0

1

0

1

0

0

1

over char(&)^2. In above notations, let x

0

1

= '(*!

where xt and raf are elements of Z/AZ (i=l

->k* by

g)
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Xg) and m=t(mi, ■･■, mg)

We define (,y＼G8xGf

It is clear that a is an element of Sp)Gd). We define a map /: GsXGs"->k*

with

f(x, m)=Vz:lXimi.

The pair {a, /) is an element of No. In this situation, thebase change of V(8)

defined by (a, f) is as follows,

a(ds)―c(ds-Siei+ V― lSl<5s_CSl_1)ei+ (―l)Sl5s_(Sl_2)ei

+ V=rT3Sl5s_(,1+1)ei)

where s = t(si,■■･, sg), e:―＼l, 0, ■･･, 0), c is constant and V―1 is an element of

k with a/^T2=-1.

§3. Reductibility" of abelian variety.

In this section we consider the canonical map t: F(A, 0(26))R2^F(A, 0(46))

where A is an abelian variety and 6 is a theta divisor on A. We assume

char(&)^2 and fix a symmetric theta structure (au a2) on (O(26), 0(46)) where

≪i is a group isomorphism from G(O(26)) to G((2, ■･･, 2)) over k* and a2 is a

group isomorphism from G(O(46)) to G((4, ･■･, 4)) over £*. Let 5 be (2, ■■■, 2).

In this case we obtain a G(8) module V(d) and a G(2d) module V(2d) and f induces

a : V(8T2 ―> V(2d).
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We write fi(a§§b)=a*b. Now the multiplication formula says that

ds*5t= 2 qLRi(s―t+x)5,+t+x

where L―O(d), s and tare elements of (Z/2Z)g and s, t are elements of(Z/4Z)g

with s mod2=s and t mod2=f. Let (3 be a map

£: S2F(<5)―> 7(25)

induced by
^8.

We put Ac―(dxRdc-x) where c is an element of (Z/2Z)g and x

runs through a complete set of representative of (Z/2Z)e/{0, c). Moreover we

put Ec―(8c+x+S-c+x) where x runs through a complete set of representative of

(2Z/4Z)g/{R, 2c}. With the above notations, the map ftis defined by

§(AC)=ECFC

where Fc is an element of Mzg(k) if c=0 and an element of M2g-i(k) if c^O.

As (Ac)ce(Z/2z)gare basis of S27(5), therefore £ is represented by the following

matrix

r

where (Z/2Z)s={0, xu ･･･, x2S.,}

F"1-'fJ

Let Ge be a subgroup of(Z/2Z)8 satisfying

{Z/2Z)8―GcR{Z/2Z)c in which c is a given non-zero element. Let G<2)be the

subgroup of (2Z/4Z)8 =(Z/2Z)8 corresponding to Gc. We fixsuch notations

Now the multiplicationformula says

dx*de-x= 2 qLRi(2x―c+ 7j)dc+v

― S 9lR4(2x―£+ 9)(5c+,+d_Ce+,)).

Therefore we obtain

S Z(x)^^c^=( S X(u)qL8i(u-c))(S X(z;)(5c+u+a_(c+u)))

where Z is a charactor of C. Let X. be the set

{XeG/; 2 X(u)qLRi{u-c)=O}
neap

Theorem. In the above notations,if (Z/2Z)8=G1^GZ, and if for every

xed, y&Gz with x^O and y^O the rank of Fx+y is at most 2S~2and every 1

containedin Gx+y*―Xx+y have same valueat x, then(A, 0(6))is reducible.

Proof. By the assumption, the order of Gr+v^ ―Xx+v=the rank of Fx+V
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<:2g~z. Therefore there exists a subgroup H of Gx+y~ which satisfiesX(x)= l

for every l^H, and some element p^Gx+v~, we obtain Xx+yZDp + H. Hence

S 2 p(u)X(u)qLRi(u ―x―y)=O

and

S Z(m)=2*"2 if w=0 or w= x

=0 if m^=0 and u^x

by the definition of Xx+y. Therefore

qLRi{x-＼ry)+p{x)qLRi{x―y+u)―Q.

Moreover

qLRi(x+y+u) + p(x)qLRi(x― y-{-u)=0

for every u contained in Gx+V. Hence

8t*8x+y-t= 2 QLRi(2t―x―y+u)(dx+y+u+d-u+y+U))

= ―p(x) S qLRi{2t+x― y + uXd-c+y+u+d-u+y +u))

= -p(x)dt+x*dt-y,

especially do*dx+y――p(x)dx*dy. Let f(x+y) be ―p(x). This / is a function

from {x+y; x<=d and y^G2 with x^O and y^O} to {±1}. We fix a sym-

metric theta structure (a2, a3) on (.0(46),O(86)). We have already obtained

do*dx+y=-f(x+y)dx*dy

do*dx.+
V'=f(xf+yf)dx.*dy.

for any non-zero x, x'gGi with x=tx' and any non-zero 3;,y'<^G2 with yi^y'.

Therefore

(5o*^+J,)*(30*^' +1,0=/(A:+3')/(^/+3'/)(5x*ai,)*(5j:.*5l,.)

by the above symmetric theta structure. On the other hand

(do*doy(dx+y*dx,+y.)=f(x + x'+y + y')(do*dor(dx+y*dx,+ y).

Hence we obtain the relation

f(x + x'+ y+y')=f(x + y)f(x'+y')f(x+y')f(x'+y).

Let dx+y be f(x+y)8x+y if x is a non-zero element of d and y is a non-zero

element of Gz and let <5 b̂e <52if 2-is an element of d or G2. The above rela-

tion says that

SX+y dx'+y'―OX+y' 3xr+
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for x, x'gG,-{0} with x^x' and y, y'<=G2― {0} with y^yf. We denote <j>:A

-^■P28'1by a morphism defined by LRZ=O(20). The above relations say that

<j>{A)is contained in some Segre variety embedded in Pzg~l which isisomorphic

to PzSl-lxP'iS2~'1where gt is a dimension of Gt as a vector space over Z/2Z

(i―l, 2). Let 0t be a morphism from A to P2^1-1 (z= l, 2) which is a composi-

tion of 0 and the projection on p^^-^xP^2"1 and let Hi be a hyperplane of

p2si-i (j=it 2). We put Bi=the connected component of K(p($t*Hi)) containing

0 (i=l, 2). It is clear that Bt is an abolian subvariety of At (7=1, 2). Let At

be the abelian variety A/Bt, let p: A^>AiXAz be the canonical morphism and

let 7]ibe the morphism from At to P2*1-1 defined by ^f (i=l, 2). As <j)t{―x)=

<f>i{x)for every xeA (z"=l, 2), hence r]i{―x)~7]i(x)for every xg^j (z= 1, 2).

Therefore ^t*//iis totallysymmetric. This implies r]t*Hi is linearly equivalent

to 2Di for some divisor Di on At (?'―1,2). In this situations,

dimr(i4i,C>(iy1*//i))^2**

(≪= 1, 2). As p*(r]l*H1xA2+A1X7}2*H2) is linearly equivalent to 20,

2g=dim r(A, 0(20))

^dim r(i4x, OtySHJ) dim T(^2, O(ty*HtQ

~^2g^2g^―2s.

Hence dim r(i4f, O(r]i*Hi))=2ei (i=l, 2). Therefore gy**/^ is linearly equivalent

to 2#i where ^t is a principally polarization of At because 7]i*Ht is linearly

equivalent to 2Dt for some divisor Dt on At (i=l, 2). So we obtain that dimen-

sion of Ai is gi and p is a finitesurjective morphism (i=l, 2) (see Ohbuchi [4]).

As 20 is linearly equivalent to ^(^//iX^+AjX^*/^), therefore 20 is linearly

equivalent to 2p*(01xA2+A1X02). Hence 0 is algebraically equivalent to

p*(01XA2+Alx02) because NS(A) is a torsion free module for any abelian

variety A. Hence 0 is linearly equivalent to p*(TZl*01XA2+A1xTZz*02) for

some z^Ai (i=l, 2). Therefore £is an isomorphism and (^4,0(0)) is reducible

polarized abelian variety (see Ohbuchi [4]). Thus we prove the theorem.

§4. Reductibility of 3-dimensional abeliaii variety.

In this section we prove the following theorem.

Theorem. Let A be a "^-dimensionalabelian variety defined over algebraically

closed field k of char(£)^2. Let I be a kernel of ST(A, O(26))-+r(A, 0(46)).

If dimension of I over k^5, then (A, 0(0)) is reducible.
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We put L―O{0). We fix smmetric theta structures (alt a2) and (a2, a3) on

(LR2, LR4) and (IR4, LR8) respectively. Let dp be a delta function contained in

F((2＼2*, 20) and let G2i=G(2t,2t,2i)be a group {Z/l'Zf (/=1, 2, 3). Especially

we dente 5X by ≪5£＼For every c contained in G2i, we take c which is an

element of G2i+i with c mod2f = c and take c which is an element of G2i+2 with

c mod2£+1=c (2= 1, 2). And for every c contained in G2%+＼,we take c° which

is an element of G2t with 2c=2c°. Let X be an element of G2" and let a, b be

elements of Go with a mod 2=b mod 2.

Definition. In above notations, we define T{X; a, b) by

where c is an element of G4 with 2c―a―b.

Definition. For X<^G^ abd cgG8, we define Qi(X,c) by

qx(k, c)= S X(u)gLR8(c+4u).

U<BGo

To prove the theorem, we prepare the following lemmas.

Lemma 1. For every X contained in G2" and every a in Gs, there existssome

bEiGo with o,U, a+4b)±Q.

Proof. See Mumford [3].

Lemma 2. The kernel of S2V(A, 4, 4)->V(8, 8, 8) is generated by

q^X, c)T(X; a, b)-q1(Z, b)T(X; a, c)

where a, b, c are elements of G8 and a mod 2=6 mod2=c mod 2.

Proof. Bv Lemma 1 and Isrusa [21 p. 167 theorem 5. this lemma is clear.

Proof of Theorem. By the notation of §3, the homomorphism

§:S2V(2, 2, 2)―■>7(4,4,5)

is denoted by fi(Ac)=EcFc where c is an element of Gu Therefore

oresented bv the following 36x36 matrix.

*･*,

'.,

)

/3 is re-

with respect to (Ac)ceG2,(Ec)ceG where G2={xlt ･･･, x7) 0}, Fc is an element of
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Mt(k) if c^G2 is not 0 and Fo is an element of M8(k). The assumption says

that the rank of ^^31. Therefore there exists at most 5 c's contained in Gz

with determinant of ^=0. By the example in §2, we may assume that at least

2 of these c^O. We prove this theorem in two steps.

Step 1; If there exists some c contained in Gz with c^O and the rank of

Fc^2, then the theorem is true.

We take a c'i^c which satisfiesdet Fc-=0. Let lv and X2 be element of G-T

with li(c)―l and

23 Xt(u)qL*i(2u-c)=0
ueG2/(0,ci

where z= l, 2. We put

{ZgG2a; X{c)=l} = {X1,Xt,Xi,Xi}.

Let i/c be a kernel of Z3Z4. As Hc contains c and dimension of Hc as a vector

space over Z/2Z is 2, therefore there exists some t contained in Hc and ti^c

with

(*)e 50*ac=±a£*ac+t

and i/c={0, c, f, c+f}. Now we take a, 6eG4. By the definition,

TU;2a,26)= S ^(m)^2|6+2u*^6+2U
weG2 ~

for every A contained in Gz*. Therefore the Nullwerte of T(X＼2a, 2b) is

S A(u)qLRi(a+b-＼-2u)qLRi(a―b+2u).

MGG2

Especially the Nullwerte of Til; Id, 0) is

S X(u)qLRi(d+2uT
ueGz

for every d contained in G2 and fixed d. If X is an element of Hc, then

S X(u)qLR4(c+2uf=2 S Z(m)^R4(c+2w)2
weC?2 ≪eG2/(0,ci

=2 S l{u){l+l{t))qLRi{c+2uf,
u<=Hc

because qLRi(c-＼-2u)±qLRi(ci-2uJt-2t)=Qby the relation(*)c. Hence for Zei/C

with l(t)= ―1, the Nullwerte of T{X;2c, 0)=0. Moreover we can take this Z

with X(c')=l. Lemma 2 says that

9l(Z,6)T(Z; 2e, 0)=q1(l> O)T(Z; 2e, fc)

where eeG2 and 6gG8 with & mod 2=0. Now we prove that

(*)c do*3c'= ±W'+≫.
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The proof of (*)c-is done in two cases.

case 1). ?!(%,0)=0.

As there exists /jgG8 with b mod 4=0 by Lemma 1, T(Z; 2e, 0)=0. In this

case, we take e―c'. Then TQ/L;2c' 0)=0. Therefore we obtain

S X(uXqLRi(c'+2u)*-qLRi(cf+2u+2ty)=0

liGG2/ffc

This equation and the relationgiven by det/v=0 gives

qLRi(c'+2u)±qLei(cf+2u+2t)=0 .

Hence we obtain(*)c-.

case 2). q1(X>0)^0.

By thiscondition,

T(Z; 2e,b)={qi{l,b)/qi{l,0))T(Z;2e,0).

We put e=c. In this case, the Nullwerte of T(l;2c, 0)=0. Hence the Nul

lwertw of T(l; 2c,b)=0 for any beEG8 with 6 mod2=0. We take 6=2c'-2c

This implies

S Z(M)gz,R4(c'+2w)gLR4(-c'+2c+2M)=0.
UEG2

Hence

2 l(u)qLRi(c' +2u)qLRi(c'+2c+2u)=Q.

USG2

In thissituation,

2 X(u)qLRi(c'+2u)qLRi(c'+2c+2u)

=2 S X(u)qLRi(c'+2u)qLRi(c'+2c+2u)

=4 s

U<EGo/{0,C,C ,C+C' )
X(u)qLRi(Q'+2u)qL<si(cf+2c+2u)

=4(gLR4(c'+2u)qLRi(c' +2c+2u)-qLRi(c'+2u)qLRi{c'+2c+2u))

Therefore this equation and relation given by det Fc>=0 give

qLRi(c'+2u)±qLR4(c'+2t+2u)=0.

Hence we obtain the relation(*)c-.

Now it is clear that c'^t by the definition of c',t and c. Let co=c+t and

c'o^c'+t. The relations (*)c and (*)c,say that

do*do*dc-o*dc'o+Co+t= ±5o*do*dt+c>o*dC()+c'o

= ±do*dc>*dt*deo+C'0.

Hence do*dCo+c>o+t=±dt*dCo+c'O'Therefore we obtain the relations
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do*dt+c>o=±5t*dc'o

8c,*dt+cQ+c'o―±8t*8Co+c'o.

Hence we obtain this theorem by the theorem of § 3.

Step 2; General case.

First, we show in the case of which detFCi=0 (/=1, ･･･, 5) and c^O for

every i. In this case, there exists some X* contained in G2~ with Xi{Ci)―land

for i

S Xi(u)du*5H-u=Q

= 1, ･･･, 5. We prepare the following Lemma.

Lemma 3. In above notations,there exists some i and j with i^j and i, j

{1, ■･･, 5} which satisfiesXi(Cj)=Xj(Ci). Moreover if Z5=0 and c5=0, then there

existssome i and j with ii= j and i, /ell, ･･･, 4} which satisfiesZj(c,)=Z,(Cj).

Proof. If there exists some i and j with ii^j and Xi=Xj, then thislemma

is clear. And if there exists some i with Zj=O, then this lemma is again clear.

So we assume that X1}■■■,X5 are all distinct and not equal to 0. We also as-

sume that cu ■■■, c5 are all distinctand not equal to 0. We put the set E+ and

E. by

E = {(*■,/);i±3 and Xt(cj)=l}

£_={(*,/); i*j and Zt(^)=-1}.

As Zi(Ci)=l and c,-=£0for every i,;=1, ･･･, 5, therefore the order of E+f^7 and

the order of E_^13. Hence the firstpart of this lemma is clear. Moreover in

the case of X5=0 and c5=0 we put the set E'+,EL by

E'+={(i, /); i±j,i, ; = 1, ･･･, 4 and Zi(ci)=l}

£!={(/, ;); f^;, /,y=l, ･■･, 4 and Zi(^)=-1} .

If the order of E+^6, then there exists some lt, 1, (i^j) with the order of

Ti={cA;Zi(cfe)=l, k=l, -,5} and 7>={c4; Z/c*)=l, fc=l, - , 5} are both 4.

As Tt and T,,-are subgroup of G2 and Tf, T;-C{ci, ･･･, c4, c5=0}, hence Ti―Tj.

This is a contradiction. Therefore the order of £|^5. Hence this lemma is

clear.

Now we continue the proof of the theorem. By Lemma 3, we take i, j

with i^j and "X.i(Cj)=Xj(ci).Therefore
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S Xi(u)8u*8ei-u=d0*8ei+Xi(Cj)8e*8ei+ej+Xi(v)dv*8Ci+v
u<EG2/[O,Ci} l l } l 3 l

+Xt(Cj+v)8v+e*dv+ei+cj,

2 Xj(u)du*dej-u=do*dej+XJ(ci)dci*dej+ei+Xj(v)dv*dci+v
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+Xj(ct+v)dv+e*dv+cj+ci ■

In this, this v is an element of G2 with c mod{0, ct, ch Ci+5,-}=£0. Therefore

we obtain

(^i+3cp*(3o+^c<+cp+i?(5Ci+0+^+0)*(5B+^+Ci+cp=0

where %, w^.{±l}. By the examples of §2, we obtain the theorem.

Finally, we show this theorem in general case. If 2 X(u)du*du=Q implies

ueGo

X=0, then these cases arereduced in Step 1 or the firstcase of thisstep, by the

examples in § 2. Now we assume that S du*du=O and the rank of F0=7.

ueGo

In this case, let c5―0 and let X5=0. By lemma 3, we also obtain thistheorem.

Therefore we prove this theorem.
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