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ON A CLASSIFICATION OF ARONSZAJN TREES II
By
Masazumi HANAZAWA

§1. Introduction.

In the former paper [3], we considered the classification of Aronszajn trees
by the notions of Souslin trees, w;-trees with property 7, almost-Souslin trees, w;-
trees with no club antichain, special Aronszajn trees and R-embeddable trees.
As we remarked in its last section, there is another interesting notion. It is the
notion of non-Souslin trees which had been introduced by Baumgartner [1]. The
classification of Aronszajn trees by this notion together with the previous ones

is shown by the following :
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where ST=the class of Souslin trees,
yST=the class of w,-trees with property 7,
AST=the class of almost-Souslin trees,
NCA=the class of w;-trees with no club anti-chain,
SAT=the class of special Aronszajn tree,
RE—=the class of R-embeddable w;-trees,
NS=the class of non-Souslin trees,
AT=the class of Aronszajn trees.
Under ZFC alone, none of the categories but Category 5 can be proved to be
non-void. In the former paper we proved that if V=L, Categories 1~11 are all
non-void (note that the trees constructed in Theorems 9, 10 and 11 [3], are the
elements of Categories 9, 10 and 11 respectively). In this paper we shall prove
that if V=L, remaining Categories 12~15 are also non-void. It is shown as a
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by-product that <> suffices for the existence of non-Souslin trees which are not
R-embeddable.

§2. Preliminaries.

Most of the notions and the notations which are used here are described in the
former paper. It is assumed that the reader knows them. Let T=<T, <r) be a
tree. <X, <p> is called a subtree of T if XCT. <X, <ry is called a transitive
subtree of T if it is a subtree of T such that VxeX VyeT) y<rx—ycX] (in
the paper [3], we called a transitive subtree a subtree). When XCT, we use

X to denote <X, <r>,

htx(x) to denote the height of x in X,

X’a to denote the set {x=X: hty(x)=a},
X M to denote the set {xeX: htx(x)<a}.

But T, htr(x) T, T ta will exceptionally be written as T, ht(x), Ta, T [
respectively. If SCw,, T |S is the set {x&T : hi(x)€S}. Recall that 2 is the
set of all limit ordinals <w, In this paper w,-trees are assumed to have only

one minimal element (a root).
Before introducing more special notions, we shall raise well-known facts.

LEMMA 1. If T is an R-embeddable tree with ht(T)Zw,, then the tree
(T M w\2), <1y is Q-embeddable.

ProoF. With each x&T | (w,\f2), associate a g=@ such that e(x")<g<e(x),
where ¢: T—R is the embedding and x’ means the immediate predecessor of x.

LEMMA 2. If T is a Q-embeddable uncountable tree, then T contains an un-

countable anti-chain.

ProoF. Let e embed T in Q. Clearly {x=T :e(x)=¢q} is an anti-chain and

is uncountable for some ¢<@.

LEMMA 3. Let T be an R-embeddable tree. If X is an uncountable subset of

T, then X contains an uncountable anti-chain of T.

PrOOF. X is clearly R-embeddable. If )?,1 is uncountable for some a, then
X (cX ) is an uncountable anti-chain of X and hence an uncountable anti-chain
of T. If X, is countable for all &, then X [ (w,\2) is uncountable. Since
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<)? M \2), <r» is Q-embeddable by Lemma 1, there is an uncountable anti-chain
cX w\2)CX by Lemma 2.

LEMMA 4. Let T be a tree with height w,. If T, is finite for uncountably
many «, then T has a confinal branch.

PROOF. Put T*={x<=T : x has an extension in every higher level T,}. It
is easy to see by the assumption that the transitive subtree <(T*, <z»> of T has
height w;,. Pick a branch b of T#,  We shall show that the order type, say 4,
of b is w;. Suppose A<w;. Pick a<w, such that A<a and T, is finite. Put
Y, ={yeT,; x<py} for each xb. Then N{Y,: xb} is non-empty, since (1)
Y, #0, 2) x<py—Y,2Y, and (3) Y, is finite. Pick yen{Y,:x=b}. Then
bC 9, this contradicts the assumption that 6 is a branch (a maximal linearly
ordered subset of T), q.e.d.

Now recall that ¥ is the tree U R**! with the ordering defined by x<rpy

alw]
oxCy and that if x&Z, m(x) is the real number x(2¢(x)). When x<% and a
limit ordinal A is in dom (x), we write ;n}n x(§)=r instead of (Vg<r Ja<d VB<A)

[a<f—q<x(B)=r]. Now we define a transitive subtree T, of T as follows:
Ip={x€2: P(x)},

where P(x) is the conjunction of the following three:
(1) x(a)=0 for all a=dom (x);
2) x(a)<x(a+1) for all « with a+1=dom (x);
(3) for all limit ordinals A=dom (x),

Vr> 0)[2141’? x(&)=reox()=r].

For a transitive subtree T of ¥, we put

T'={xeT : m(x)=0}.
We shall write
x<Zry instead of x<py & (x, yINT’=0.

LEMMA 5. Let T be a transitive subtree of Tp. Then for every x, yeT :
1) m(x)=0;

@) xZry—m(x)<m(y);

(3) the function m increases monotonously on [x, ¥) if (x, y)NT°=0;

@) m(x)>0-3y[y<rx];

5) 1€ & x, yeT, & t=9—x=y;

®) m(x)=0—-ht(x)e2;
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(7) if hi(y)=8, then for every r>0,

lim m(z)=r if m(y)=r,
zZ=yY
where lim m(z2)=r means
z—y

(Ve>0)Az<ry)Vwelz, y)Im(w)>r—el;

Q) y<rx & x€T° & qeQ—F)[yZrz<rx & m(2)>q].

ProoOr. The first seven statements are easily checked. To show the last
one, suppose that y<,x=T° and ¢=@Q. Let w be the least of those elements z
that y<rz=r,x and m(z)=0. By (3), the function m increases monotonously on
Ly, w), since (y, w)NT*=0. Hence w increases monotonously on [hi(y), ht(w)).
Hence lim w(£)=co because of (7) and w(ht(w))=0. Pick { so that At(y)<{<

E-nt(w)
At(w) and w({)>q. Put z=w [ ({+1). Then
ylrz<w=rx & m()=zht(2)=wl)>q, q.e.d.
If a transitive subtree of Ip is an w,-tree, we call it a P-tree. Recall that

an w,-tree T is called a non-Souslin tree if every uncountable subset of 7 con-
tains an uncountable anti-chain. By NS, we denote the class of all non-Souslin

trees.

LEMMA 6. Let T be an Avonszajn P-tree. If

{a: T.NT° is finite}
18 a stationary set, then
(i) if X is an uncountable subset of T°, X, is uncountable for some a<w,

(i) TeNS.

Proor. (i) Let X be an uncountable subset of 7° and suppose that )?a is

countable for all a<w,. Put:
C={Q: X 12cT 1 2.

C is a club set since X I @ is countable for all «<w,. Hence by the assumption

of the lemma, the set
E={ieC: T;NT" is finite}

is stationary and hence uncountable. Put:

Y={yeT: y<r;x for some x<X}.

CramM. If A€ E, then Y, is a subset of T°NT,;.
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PrROOF OF CLAIM. Since ¥ is a transitive subtree of T, }7,1 cT;. Let ye?;.
Let x be a minimal element of {xX: y=7x}. Then htx(x)=A4. (The reason:
In general htx(2)=<ht(z). Hence by the minimality of x, At x(x)=2. If htx(x)<2
then ht(x)<A because A€C; this contradicts y=rx). Now suppose y&T".
Then we can pick w=Zry by Lemma 5-(4). Pick 8 so that At(w)<fS<4 and pick
z€X so that htx(z2)=p and z<rx. Then ht(w)<f=htx(z)<ht(z)<ht(y)=42and
80 w<rz<py<rx. Thus ze(w, yJNT° a contradiction. Claim is thus proved.
Thus ¥; is finite for all 2 E. By Lemma 4, Y has a cofinal branch which is
also a cofinal branch of 7. This is absurd since T AT.

(ii) Let X be an uncountable subset of 7. For each z&T?®, put:

X(z): {XEX: Zng})

Z=1{z€T": X»,#0}.

Case 1. Z is uncountable. By (i), we can find an uncountable subset Y (i.e.
Z, for some a) of Z such that Y is an anti-chain of 7. With each y=Y asso-
ciate an element, say x(y), of X¢5. Then the subset {x(y): y€Y} of X is
clearly an uncountable anti-chain of T.

Case 2. Z is countable. Since the uncountable set X is the union of
{Xe»: z€Z}, we can find z€Z such that X, is uncountable. Note that )?m is
an R-embeddable tree by Lemma 5-(3). By Lemma 3, X (» contains an uncount-
able anti-chain which is also an antichain of 7" and is contained in X. Lemma 6

is thus proved.
COROLLARY 7. Let T be an Aronszajn P-tree. If the set
la<w,: m(x)>0 for all xT 4}
18 stationary, then T & NS.

Though this corollary assumes a rather strong condition, it suffices for our
purpose. In this sense Lemma 6 is redundant. Lemma 6 stands because of its
own interest.

Recall that a $g-sequence {Z,: a<w;> has the following properties: If T is

an w;-tree and is a transitive subtree of ¥, then
(1) if X is a subset of T, then the set

{a<w,: XNT } a=Z,} is stationary;
(2) if e is a function which embeds 7 in R, then

{a<w,: e ' (T | «)=Z,} is a stationary set.
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Recall that a O¥-sequence ({W¢: icw} : a<w,» has the following properties: If
T is an w,-tree and is a transitive subtree of %, then
(1) if X is a subset of 7, then

{a<w,: XNT | a=W¢ for some 7/<w} contains a club set.
(2) if e is a function which embeds 7 in R, then

{a<w,: e V(T [ a)=W§¢ for some /<w} contains a club set.

LEMMA 8. (1) () There exists a g-sequence.
(2) (O*) There exists a $O¥-sequence.

LEMMA 9. Let T be a P-tree and {Z,: a<w.,) a g-sequence. If for every
A€ (VxeT)LZ,# %] holds, then T AT.

PRrROOF. Suppose that X were a cofinal branch of 7. Then there is a 1€ £
such that Z;=XNT }A. Let x be the unique element of X~\T,;. Then Z;=
XNT | z=2%, a contradiction.

LEMMA 10. Let T be a P-tree and {Z,: a<wy a y-sequence. Let T
satisfy the following condition :

(1) if 2€Q and Z; is a function which embeds T | 2 in [0, 1), then there is
an x<=T, such that

™) (Vady < 0)LZ3°(»)—1/n<Z;(y)],
where Z3*°(y)=sup{Z;(z): y<rpzeT | 4}.
Then T is not R-embeddable.
PROOF. Let ¢ embed T in B. We may assume ran (¢)C[0, 1). Put:
C={2€Q:AyeDNlx<ry & q<e(y]—EyeT I Dlx<ry & g<e(y)]
for every ¢q=@Q and every xT | i}.

Clearly C is club and hence we can pick 2€C such that ¢ | (T | 2)=Z;. Then Z;
embeds 7 14 in [0, 1). So, by the assumption, we can take x €T ; which satisfies
(*). Let x’ be one of the immediate successors of x. Pick n so that 1/n<e(x”)
—e(x). Pick y<grx so that Z$**(y)—1/n<Z;(y). Since 2=C, e(x’)<supf{e(z):
y<pzeT}=supfe(z): y<rpzeT } A} =2Z3"(y). It follows that 1/n<e(x")—e(x)<
73 (y)—e(y)<1/n, a contradiction.

LEMMA 11. Let <{W¢: i<w}: a<w) be a O¥-sequence. Let T be a P-tree
which satisfies the following condition:
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(1) whenever A2 and W* is an anti-chain of T [ 2 and x&€T,, one of the
Sfollowing conditions holds :

(a) Ay<rx)¥VzeT | Dy <rpz—zEW{],
() Fy=Zrx3g>0OIm(n)=m(y)+q & VzeWHLyZrz—mlz2)=m(y)+2¢1].

Then T has property 7.

The proof of this lemma is given separately in a later section, since it is
rather long.

Finally we define for two w;-trees (T, <,) and (7', <;) an w;,-tree T+7T’ as
follows: The field of T+ T’ is T X {0} UT’x {1}\ {<0,, 1>}, where 0,, 0, are the
roots of T, T’ respectively; The ordering <y of T+ T’ is defined by

{x, <<y, 0 if x, yeT and x<,vy,
x, L<e<y, D if x, yeT\{04 and x<yy,
0, <7<y, 1> if yeT'\{0}.

§3. Theorems.

THEOREM 12 (O*). (NS\RE)NrST+0.

PROOF. Let (Z,: a<w,> be a {g-sequence and {({W¢: i<o}: a<wy a
OF-sequence. We define a P-tree T by induction on levels so that T satisfies the
following :

(1) if a<f<w; and x€T, and =@\ (m(x), o), thereis a y=Ty such that
xZry and m(y)<q.

Set T,={07} ;

Toni={xV{Kg, at+D}: x€T, & m(x)<qeq}.
Let 2= £ and suppose T I 2 has been defined so that (1) holds. Fix an in-
creasing sequence <1, : n<w) such that lim 1,=2. For each x=T ' 2 and each
new

positive rational ¢, we define ¢,(x, q) as follows: Let x=T [ 1and 0<gc@. We
pick x,, x¥<T ' 4, qu, ¢¥>0 inductively so that:
(a) xo=x and ¢q,=¢q;
(b) if W% is an anti-chain of 7" | A and
FzeT M HlxZrzeWi & m(z)<m(x,)+gn],
then

0 ZrxfeEWE & m(xE)<m(xn)+gn and gr=m(x,)+q,—m(x%);

otherwise, x¥=x, and ¢¥=gq,/2;
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(© x3rxner & At(xp1)> 2 & mlxpr)<m(xH)+q¢k (this is possible by (1));
(@) grei=m(xD+gE—m(xneo)-

Put: talx, @)= \J x\J {<sup mlxa), D}
Notice that xZrt:(x, ¢) and 0<m(t(x, ¢))<m(x)+q. Now, we shall define T;.
Case 1. Z, is a cofinal branch of T 2. For each x&T | A and each positive
rational ¢, pick x*eT [ 1 and ¢* so that:
x<px¥*& Zy, ht(x®)=ht(x)+1, m(x*)<m(x)+q and ¢*=m(x)+q—m(x*).
And put: ux(x, g)=ta(x* ¢%).
We set: Tr={uilx,q): x=T 2, 0<q=q}.

Note that if u=u;(x, ¢), then Z;# 2, x2Zru and 0<m(u)<m(x)-+q.

Case 2. Z; is a function which embeds T 11 in [0, 1). Pick y,, v*eT |2
inductively as follows:

(@ yo=0r;

(b) if W2 is an anti-chain of T [ 2 and

(FzeWHLya<rz & Z3(y2)—1/(n+1)<Z3(2)],
then
Ya<lryEEWE and Z§%(y,)—1/(n+1)<Z,(y%) ;

otherwise, y,<pyi<T } 2 and Z§°(y,)—1/(n+1)< Z;(y%);

(c) _‘yn—é1>Ty:7,z< & ht(ynﬂ)f\)zn;
(see Lemma 10 for the definition of Z$*°(y,)).

Put: ;=\ 3.\ K, D}
nlw
where the real r is taken so that s; =%, (such an r is unique).

We set: T;={s:}\U{t:x, ¢): x&T [ 2, 0<q=q}.
Case 3. Otherwise. We set:
T:={t:(x, ¢): x€T | 2, 0<q=q}.

T, is thus defined. Now set:
T=\UT,.

alwy

T is clearly a P-tree. We can easily check that T AT by Lemma 9, T« RE by
Lemma 10, TeNS by Corollary 7, TerST by Lemma 11, using the following
facts:

(a) even when Z; is a cofinal branch of T | 4, Z,+ % for every x=T;;
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(b) if Z; is a function which embeds T [ 2 in [0, 1), then for every n<w,
¥a<r$2 €T and Z3(y,)—1/n=ZP(ya-1)—1/n<Zi(ya);

(c) stationarily many ordinals £ are put in Case 3 and for every such
ordinal 2 it holds that (Vx&T)[m(x)>0];

(d) if W2 is an anti-chain of T |1 and ¢{=t,(x, ¢), then the one of the fol-
lowing holds:

1°. x*eWint and (VzeT Y D[ xk<pz—zaW2i];

2°. mOEm(x)+qk & Ve xkZrzeWi—m(z2)Zm(xa)+2¢%];

(e) if W4 is an anti-chain of T ['4, Z; is a function which embeds T I'2 in
[0, 1) and t=s;, then one of the following holds:

1°. yxeWint and hence (VzeT [ D yE<pz—zaWL];

2°. ZEx(y)— 1/ (n+1D)<Zi(yas), Velya<rz & ZP(y2)—1/(n+1)<Z;(2)—
z&eW%] and hence Vz[y,1<pz—zeEW4ET.
Theorem 12 is thus proved.

THEOREM 13 (OF). (WVS\RE)N(AST\rST)+0.

ProoOF. Assume O*. We can take Te(WNS\RE)NyST (Theorem 12) and
T'e REN(AST\7yST) (Devlin and Shelah [2, Theorem 4.4]). Then clearly T+ T’
e(NS\RE)~N(AST\rST).

THEOREM 14 (). (NS\RE)NNCA\AST)+0.

Proor. Let (Z,: a<w,> be a {g-sequence. To define a P-tree, we construct
each level T, by induction on a ensuring that the following holds:

(1) if a<f<w; & x€T, & m(x)<qeQ, there is a yeT; such that xZry
& m(y)<q, and additionally if B is a successor ordinal, there is a y’&7T; such
that x=Zry” & m(y’)=q.

Set : To= {07} ;

Toii={xV g, at D} : x€T,, m(x)<q=q}.

Let 1= 2 and suppose that 7 ' 2 has been defined. Fix an increasing sequence
{A,: n<wy such that sgp A,=A. For each x&T | 2 and each rational ¢g<m(x),

we shall define #,(x, ¢) as follows: First take an increasing sequence <{g,: n<<w)
such that lim ¢,=¢ and m(x)<q,. Pick x, for every n<w by induction so that :
Xo=—X;

K <rXner & Mt (Xns)>An & M(Xni)=0¢n,
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(this is possible by (1)). We set:
tai(x, q)zngwxnUKq, D}
Notice that x=Zrt,(x, ¢) and m(t:(x, q))=q.
Now we shall define T;.

Case 1. Z; is an cofinal branch of T ['2. For each x<T | 4 and each rational
g>m(x), pick x* so that At(x*)=ht(x)+1, x<px* m(x*)<q and x*<Z;. Put:

sx(x, @=t(x% q).
We set: Ti={silx, q): x€T | 2, m(x)<qeq}.

Clearly Z;#{yeT [ 1: y<rsi(x, ¢)}.

Case 2. Z; is an anti-chain of T 2. For each x&T |1 and each rational
g>m(x), pick x* and ¢*€@Q so that:

(@) if QuweT ' D[x=ZweZ; & m(w)<q], then

xZpx*eZ;, m(x*)<qg and m(x*)<{¢*<q;
(b) otherwise, x*=x and m(x)<g*<q.
Put: u(x, )=t (x* q*%).
We set: Ti={uix,q): x€T | 2, m(x)<geq}.
Case 3. Z; is a function which embeds T [ 4 in [0, 1). Pick y, for each
n<w by induction so that:
¥e=0r;
VYue1>1Yn & ht(Yas)>An & ZP(yn)—1/(n+1)<Z;(ynsa) -

Put : V= \<J v\ {Kr, DY,

where »r< R is taken so that v;€Xp,. We set:
Ti;={va\UHtalx, ¢ x€T 2, m(x)<q=@Q}.
Case 4. Otherwise. We set:
T,={t:x,q): x€T 12, m(x)<qsq}.
T; is thus defined. Now we set:

T=UT,.

alwy
Clearly T is P-tree. We can easily check that T AT by Lemma 9, T« RE

by Lemma 10 and T NS by Corollary 7, using the following :
(a) Z;+4x for every xTy, even if Z; is a cofinal branch of T '1;
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(b) if Z; embeds T [ A in [0, 1), then y,<v; and
Z92(yp)—1/nEZ5(Ya-1)—1/n<Zx(ya);

(c) stationarily many limit ordinals are put in Case 4, and for such an ordinal
A2 m(x)>0 for all xT;.

To see that 7= NCA, suppose that there were a club anti-chain X of T. Put:
C=€Q:(VxeT | Vge@Q[EAweTR(x, w, X, )—EweT | HR(x, w, X, 9)1},
where R(x, w, X, ¢) stands for xZ,weX & m(w)<g. Clearly C, is a club set.
Hence so is C=C:n\{ht(x): x€X}. So we can pick 1€ 2 so that 1eCn{a<w;:
XNT ta=Z,}. Then we can pick t€XNT; since 1= {ht(t): t€X}. Since
XNT 1 2=Z,, Z; is an anti-chain of T | A2 and so we can take x=7T [ 2 and ¢=@
so that ¢t =wu;(x,q). Then m(t)=q¢*<q. Thus R(x,t, X, q) and hence
HweT | H)R(x, w, X, q) because A=C,. Since XNT | 1=Z;, this implies that
x*eZ,. Thus, x* t=X and x*<yt. This is absurd since X is an anti-chain.

TeNCA is thus shown.

On the other hand, it can be easily checked that the set {¢t;(0r, 1): 4 is a
limit ordinal ordinal put in Case 4} is a stationary anti-chain and hence T'& AST,
g.e.d.

THEOREM 15 (). (NS\RE)\NCA=+0.

PrOOF. Assume . We can take Te(NS\RE)NWNCA\AST) (by Theorem
14) and T'eSAT\NCA ([3, Theorem 5]). Then clearly T+ T’ (NS\RE)\NCA.

§4. Proof of Lemma 11.
Let X be an uncountable anti-chain of T. Put:
Co=1{a<w,: XN\T | a=W¢ for some iSw},
Ci={2€2: VyeT I HAxeX)y<px]-Fze XNT [ DLy <rz]T,
C={e: AxeX)yZrx & m(x)<ql-FzeXNT I Hy<Zrz & m(z)<ql],
for every yeT [ 2 and every ¢g=@}.
Let C be a club set such that CcCon\CiNCo.

Camm 1. XN\T ;=0 for every 2<C.

PrOOF. Suppose A€Cand x€ XN\T,;. Picki€wsothat XN\T [ =W Since
X is an anti-chain, W# is an anti-chain of 7 [ 4. Hence by the assumption of the
lemma, (a) or (b) must hold.
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Case 1. (a) holds. Pick y<rx so that (YzeT [ D[y<rpz—z&W4]. Since
Wi=XAT 2 and 2€C;, 7@x=X)[y<rx]. This contradicts “y <rxeX”.
Case 2. (b) holds. Pick yZrx and ¢>0 so that:

m(x)=m(y)+q and (VzeWhly<rz—m(z)=zm(y)+2q].

Since XN\T [ 2=W?% and 2€C,, 7@xeX)[yZrx & m(x)<m(y)+2¢]. This con-
tradicts “x=X & yZrx & m(x)=Em(y)+¢”. Claim 1 is thus proved.

Let {1:: £<w,> be the monotone enumeration of C\U{0}. Let (x%: n<w) be
an enumeration of XN\T | (2e4:\4e) such that x4+ x5 if n#m, for each £<w:.

We shall define w$ for each £<w, and each n<w.

Case 1. hi(xi)e Q. wh is taken so that (wh, x§] is a singleton set, i.e. w}
is the immediate predecessor of x§.

Case 2. ht(x$)e Q. First note that there is a y<px% such that (y, xi]f\j\% %5
={. (To see this, suppose not. Then ;%i(’_‘j\/Jn %% and hence £5,C 5 for some j<n,

which implies x$=<rx{ (Lemma 5-(5)). But it is absurd since xb# x5 and X isan
anti-chain).
Subcase 2.1. m(x§)=0. Take y% so that:

A<ht(y8), »u<rxh and (3%, 251N Y #=0.
Jj<n

wt is taken so that

Y Zrwh<oxh and m(wh)>m(y)+1,

(this is possible by Lemma 5-(8)).
Subcase 2.2. m(x$)>0. We can take y% so that:

Rt(¥8)> 2 (¥5, 51N U £5=0 and »5<raf.
j<n

Then w3 is taken so that
Yo ZrwiZrxh and  m(xd)—m(wh) <m(wh)—m(y%),

(this is possible by Lemma 5-(7)).
wé is thus defined. Now put:

U=\U{(wh, x87: E<w,, n<o}.
This is a nbd of X.

Finally we shall define a nbd V of T | C such that U~ V=0. For this pur-
pose, we shall define v* for every veT [ C. LetveT | C and put A=ht(v). Let
i be the number such that W#=X~T [ 2. W? is clearly an anti-chain of 7 I A.
So by the assumption of the lemma, Condition (a) or (b) must hold for » (sub-
stituted for x).
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Case 1. (a) holds. Then we can take v*< ;v so that
(VzeT I Dv*<rz—zeW1i].
Case 2. (b) holds. Take u<T I 2 and ¢>0 so that uZv and
m)=m(u)+q and (VzeWHlulrz—m(z)=m(u)+2q].

We may assume that m(u)>m(v)—1. (If not so, by Lemma 5-(7), there is u’ such
that u=Z,u'Zrv and m(u’)>m(v)—1. Then take u’ and m(u)+qg—m(u’) instead

of v and q.)
CLAIM 2. For at most only one pair <&, n), (u, vIN(wh, x51+0.

PrOOF. We show first that (u, v]\(wh, x§1+0 implies that (1) Az(x$)<A
and (2) ht(x$)e . To show (1), suppose not. Then by choice of w$, At(x})>
ht(wa)=A:=2. Hence (u, v]N\(wh, x5]=0 which contradicts the assumption. To
show (2), suppose not. Then (wf, x{]={x%}. Hence xé{e(u, v], so uZrxt.
Note x5 Wi (For, x5, XNT [ Aby (1) and Wi=XAT | 2 by choice of i.) Hence
by the property of q, m(x%)=m(u)+2¢>m(u)+g=m(v). This is absurd since
x5,=<,v. Next we show that (u, vJ\(w%, x5]1+0 implies that u<(y}, x%], where
y% is as given in the definition of wf. (Note that it(x%)= £ by the above.)
Suppose that there is t<(u, vI(wh, x5]. Then uZ,t=Zrv and yi=rwh<rt.
So, u and v§ are comparable. It suffices to show that y{<pu. If m(x%)=0,
then m(y%) <m(w)—1<m(t)—1<m@w)—1<m(u) and so y§<yu. If m(x§)>0, then
Y8 2wt 2rxh. Hence uZpxt, since uZrt v and whZrt<rxh. So, by the pro-
perty of ¢. m(x%)=m(u)-+2q and hence

m(t)—m(y%)>m(ws)—m(y5) >m(xh)—m(ws) >m(x5)—mv)
>(2g+m(w)—(m(w)+g)=g=m@)—m(u)>m(t)—m(u),
which mean y%<ru. In both cases, yi<yu. Thus (u, vIN(wh, x4]1+0 implies
ues(y, x4]. The claim follows from this immediately. For, there is at most
only one pair <&, n) which satisfies u €(y%, x%], since the intervals (3%, x%], €<,
and n<w, have been taken so as to be mutually disjoint. Claim 2 is thus proved.
By this claim we can take v* so that:
v¥<v and (Vé<w, Ya<o)[(* viNn(w, x51=0].
v* is thus defined for all veT [ C. Clearly (v*, vJN\U=0. We set:
V=U{@* v]: veT } C}.
Then V is a nbd of 7 [C such that U~nV=0. This completes the proof of
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Lemma 11.

§5. Remark on Lemma 6.

First note that every w,-tree is isomorphic to some P-tree. Concerning
Lemma 6 and Corollary 7, it would be natural to ask whether the former is
essentially more general than the latter: i.e. whether the following condition
(C1) is strictly weaker than (C2) for Aronszajn trees T :

(C1) there is a P-tree T’ isomorphic to T such that

{a<ew,: T,N\(T’)° is finite} is stationary;
(C2) there is a P-tree T” isomorphic to T such that
{a<w;: TIN(T")=0} is stationary.

The answer is affimative: i.e. the following holds:

PROPOSITION (O*).  There is an Aronszajn tree which satisfies (Cl) but does
not (C2).

PROOF. Let <({W¢:i<w}: a<w,> be a {X-sequence and {Z,:a<w;> be a
Og-sequence. We construct a P-tree T such that T;N\T° has at most one ele-
ment for every 1= but (C2) does not hold. We define T, for @ <w; inductively
ensuring that:

(1) if a<p<w, and xT, and m(x)<g<Q, then there is a y& Ty such that
x=Zry and m(y)<gq.

Put To={07} and Ten={xV{g, at+D}: x&T,, m(x)<qeQ}. Let 1€
and suppose that T | 4 has been defined. Let <4,: n<w) be a sequence such that

lim 2,=A. For each x&T [ 1 and each rational ¢>m(x), we pick x, inductively
nlw

so that:
(a) if Z; is a cofinal branch of T I 4, then xZrx, and x,& Z; and m(xo)<q;

otherwise, x,=2x;
(b) Tne1>rXn Rt(Xpe)>2, and m(x,+1)<q.
Put :
talx, q)=n\<lwxuu {<sup m(x), ).

Let K(n) mean the number such that n=2™(2- K(n)+1)—1 for some mcw. Now,
we shall define y, by induction as follows:
1. if Z; is a cofinal branch of T | A then y, is taken so that y,& Z;; other-
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wise, y,=0r;

IL (a) if Wi, is a function from T } 1 to [0, o), then Yau+1 18 taken so
that y,+1>rya and At(yn+1)>4, and one of the following holds:

1° Wécm(ynﬂ)zn,

2°0 Wkar(nser)>sup Wik (9): Yo<leyET 1A, hi(y)> 2} —1/n;

(b) otherwise, y,.; is taken so that y,.;>ry, and AHYper)> An.
Put :

Uz :ng yTLU {<7’, Z>} ’

where r is taken so that u; =%, We set:
Ti={u}\Y{tix, @): xT | 2, m(x)<qeq}.

Then the tree T= \U T, is as required. To see that (C2) is false, take arbitrarily

aLwy
an isomorphic P-tree 7/ and an isomorphism f from T to 7’. Define a function

e¢: T—R by e(x)=m(f(x)). Take club sets Co={22:(VxeT | Wqe@)[(3yeT)
Lx<ry & e(3)>q]—AyeT 1 Dlx<ry & e(y)>¢]]} and C,C {2€Q: Wi=e [ (T | 2)
for some i}.

CLAIM. e(u;)=0 for every 1€Cyn\C..

PRrROOF. Suppose e(u;)>0 and A=C,N\C;. Pick i€w so that Wi=e [ (T | 2).
Then we can take a v<rpu; such that f(v)Z7 f(u;). Let t be an immediate suc-
cessor of u;. Pick new so that: 2,>ht(w), n>e(u;), et)—e(uz)>1/n and K(n)
=1. Recall y,;, in the definition of %;. Then 1° or 2° must hold. First notice
that f(0)Zr f(yp+)<r f(u2), since h(W)<Ap<ht(Yni1), SO f(uz) and f(yns)
<pf(uz). And so e(v)<e(y,i1)<e(uz)<n.

Case 1. 1° holds. Then e(y,:1)=Wtn(yns1)=n. This is absurd by the
above notice.

Case 2. 2° holds. By 1€C,, e(u:)>e(yp+1)>supie(y): y,<yeT [A—1/n
=sup{e(y): y.<yeT}—1/n=e(t)—1/n. This is absurd since e(t)—e(u;)>1/n.
Claim is thus proved.

It is obvious by the claim that T does not have property (C2). Proposition
is thus proved.
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