ON A CLASSIFICATION OF ARONSZAJN TREES II

By
Masazumi Hanazawa

§1. Introduction.

In the former paper [3], we considered the classification of Aronszajn trees by the notions of Souslin trees, ω_{1}-trees with property γ, almost-Souslin trees, ω_{1} trees with no club antichain, special Aronszajn trees and R-embeddable trees. As we remarked in its last section, there is another interesting notion. It is the notion of non-Souslin trees which had been introduced by Baumgartner [1]. The classification of Aronszajn trees by this notion together with the previous ones is shown by the following :

where $S T=$ the class of Souslin trees,
$\gamma S T=$ the class of ω_{1}-trees with property γ,
$A S T=$ the class of almost-Souslin trees,
$N C A=$ the class of ω_{1}-trees with no club anti-chain,
$\boldsymbol{S A T}=$ the class of special Aronszajn tree,
$\boldsymbol{R E}=$ the class of \boldsymbol{R}-embeddable ω_{1}-trees,
$N S=$ the class of non-Souslin trees,
$A T=$ the class of Aronszajn trees.
Under ZFC alone, none of the categories but Category 5 can be proved to be non-void. In the former paper we proved that if $V=L$, Categories $1 \sim 11$ are all non-void (note that the trees constructed in Theorems 9, 10 and 11 [3], are the elements of Categories 9,10 and 11 respectively). In this paper we shall prove that if $V=L$, remaining Categories $12 \sim 15$ are also non-void. It is shown as a

[^0]by-product that \diamond suffices for the existence of non-Souslin trees which are not \boldsymbol{R}-embeddable.

§ 2. Preliminaries.

Most of the notions and the notations which are used here are described in the former paper. It is assumed that the reader knows them. Let $T=\left\langle T,\left\langle_{T}\right\rangle\right.$ be a tree. $\left\langle X,\left\langle_{T}\right\rangle\right.$ is called a subtree of T if $X \subset T .\left\langle X,\left\langle_{T}\right\rangle\right.$ is called a transitive subtree of T if it is a subtree of T such that $(\forall x \in X \forall y \in T)\left[y<{ }_{T} x \rightarrow y \in X\right]$ (in the paper [3], we called a transitive subtree a subtree). When $X \subset T$, we use

$$
\begin{aligned}
& \tilde{X} \text { to denote }\left\langle X,\left\langle_{T}\right\rangle,\right. \\
& h t_{X}(x) \text { to denote the height of } x \text { in } \tilde{X}, \\
& \tilde{X}_{\alpha} \text { to denote the set }\left\{x \in X: h t_{X}(x)=\alpha\right\}, \\
& \tilde{X} \upharpoonright \alpha \text { to denote the set }\left\{x \in X: h t_{X}(x)<\alpha\right\} .
\end{aligned}
$$

But $\tilde{T}, h t_{T}(x) \tilde{T}_{\alpha}, \tilde{T} \upharpoonright \alpha$ will exceptionally be written as $T, h t(x), T_{\alpha}, T \upharpoonright \alpha$ respectively. If $S \subset \omega_{1}, T \upharpoonright S$ is the set $\{x \in T: h t(x) \in S\}$. Recall that Ω is the set of all limit ordinals $<\omega_{1}$. In this paper ω_{1}-trees are assumed to have only one minimal element (a root).

Before introducing more special notions, we shall raise well-known facts.
Lemma 1. If T is an \boldsymbol{R}-embeddable tree with $h t(T) \leqq \omega_{1}$, then the tree $\left\langle T \upharpoonright\left(\omega_{1} \backslash \Omega\right),\left\langle_{T}\right\rangle\right.$ is \boldsymbol{Q}-embeddable.

Proof. With each $x \in T \upharpoonright\left(\omega_{1} \backslash \Omega\right)$, associate a $q \in \boldsymbol{Q}$ such that $e\left(x^{\prime}\right)<q<e(x)$, where $e: T \rightarrow \boldsymbol{R}$ is the embedding and x^{\prime} means the immediate predecessor of x.

Lemma 2. If T is a \mathbf{Q}-embeddable uncountable tree, then T contains an uncountable anti-chain.

Proof. Let e embed T in \boldsymbol{Q}. Clearly $\{x \in T: e(x)=q\}$ is an anti-chain and is uncountable for some $q \in \boldsymbol{Q}$.

Lemma 3. Let T be an \boldsymbol{R}-embeddable tree. If X is an uncountable subset of T, then X contains an uncountable anti-chain of T.

Proof. \tilde{X} is clearly \boldsymbol{R}-embeddable. If \tilde{X}_{α} is uncountable for some α, then $\tilde{X}_{\alpha}(\subset X)$ is an uncountable anti-chain of \tilde{X} and hence an uncountable anti-chain of T. If \tilde{X}_{α} is countable for all α, then $\tilde{X} \upharpoonright\left(\omega_{1} \backslash \Omega\right)$ is uncountable. Since
$\left\langle\tilde{X} \upharpoonright\left(\omega_{1} \backslash \Omega\right),\left\langle_{r}\right\rangle\right.$ is \boldsymbol{Q}-embeddable by Lemma 1, there is an uncountable anti-chain $\subset \tilde{X} \upharpoonright\left(\omega_{1} \backslash \Omega\right) \subset X$ by Lemma 2.

Lemma 4. Let T be a tree with height ω_{1}. If T_{α} is finite for uncountably many α, then T has a confinal branch.

Proof. Put $T^{*}=\left\{x \in T: x\right.$ has an extension in every higher level $\left.T_{\alpha}\right\}$. It is easy to see by the assumption that the transitive subtree $\left\langle T^{*},\left\langle_{T}\right\rangle\right.$ of T has height ω_{1}. Pick a branch b of \tilde{T}^{*}. We shall show that the order type, say λ, of b is ω_{1}. Suppose $\lambda<\omega_{1}$. Pick $\alpha<\omega_{1}$ such that $\lambda<\alpha$ and T_{α} is finite. Put $Y_{x}=\left\{y \in T_{\alpha} ; x<_{r} y\right\}$ for each $x \in b$. Then $\cap\left\{Y_{x}: x \in b\right\}$ is non-empty, since (1) $Y_{x} \neq \emptyset$, (2) $x<_{r} y \rightarrow Y_{x} \supseteq Y_{y}$ and (3) Y_{x} is finite. Pick $y \in \cap\left\{Y_{x}: x \in b\right\}$. Then $b \subset \hat{y}$, this contradicts the assumption that b is a branch (a maximal linearly ordered subset of T),
q. e. d.

Now recall that \mathfrak{T} is the tree $\underset{\alpha<\omega_{1}}{\bigcup} \boldsymbol{R}^{\alpha+1}$ with the ordering defined by $x<{ }_{T} y$ $\leftrightarrow x \subset y$ and that if $x \in \mathfrak{Z}, m(x)$ is the real number $x(h t(x))$. When $x \in \mathfrak{Z}$ and a limit ordinal λ is in dom (x), we write $\lim _{\xi \rightarrow \lambda} x(\xi)=r$ instead of $(\forall q<r \exists \alpha<\lambda \forall \beta<\lambda)$ $[\alpha<\beta \rightarrow q<x(\beta) \leqq r]$. Now we define a transitive subtree \mathfrak{T}_{P} of \mathfrak{T} as follows:

$$
\mathfrak{I}_{P}=\{x \in \mathfrak{Z}: P(x)\},
$$

where $P(x)$ is the conjunction of the following three:
(1) $x(\alpha) \geqq 0$ for all $\alpha \in \operatorname{dom}(x)$;
(2) $x(\alpha)<x(\alpha+1)$ for all α with $\alpha+1 \in \operatorname{dom}(x)$;
(3) for all limit ordinals $\lambda \in \operatorname{dom}(x)$,

$$
(\forall r>0)\left[\lim _{\xi \rightarrow \lambda} x(\xi)=r \leftrightarrow x(\lambda)=r\right] .
$$

For a transitive subtree T of \mathfrak{T}_{P}, we put

$$
T^{0}=\{x \in T: m(x)=0\} .
$$

We shall write

$$
x \overrightarrow{<}_{T} y \text { instead of } x<_{T} y \&(x, y] \cap T^{0}=0 .
$$

Lemma 5. Let T be a transitive subtree of \mathfrak{T}_{P}. Then for every $x, y \in T$:
(1) $m(x) \geqq 0$;
(2) $x \overrightarrow{<}_{T} y \rightarrow m(x)<m(y)$;
(3) the function m increases monotonously on $[x, y)$ if $(x, y) \cap T^{0}=\emptyset$;
(4) $m(x)>0 \rightarrow \exists y\left[y \overrightarrow{<}_{T} x\right]$;
(5) $\lambda \in \Omega \& x, y \in T_{\lambda} \& \hat{x}=\hat{y} \rightarrow x=y$;
(6) $m(x)=0 \rightarrow h t(x) \in \Omega$;
(7) if $h t(y) \in \Omega$, then for every $r>0$,

$$
\lim _{z \rightarrow y} m(z)=r \quad \text { iff } m(y)=r,
$$

where $\lim _{z \rightarrow y} m(z)=r$ means

$$
(\forall \varepsilon>0)\left(\exists z<{ }_{T} y\right)(\forall w \in[z, y))[m(w)>r-\varepsilon] ;
$$

(8) $y<{ }_{T} x \& x \in T^{0} \& q \in \boldsymbol{Q} \rightarrow(\exists z)\left[y \vec{~}_{T} z{ }_{T} x \& m(z)>q\right]$.

Proof. The first seven statements are easily checked. To show the last one, suppose that $y<_{T} x \in T^{0}$ and $q \in \boldsymbol{Q}$. Let w be the least of those elements z that $y<_{T} z \leqq{ }_{T} x$ and $m(z)=0$. By (3), the function m increases monotonously on $[y, w)$, since $(y, w) \cap T^{0}=\emptyset$. Hence w increases monotonously on [ht $h(y)$, $\left.h t(w)\right)$. Hence $\lim _{\xi \rightarrow h t(w)} w(\xi)=\infty$ because of (7) and $w(h t(w))=0$. Pick ζ so that $h t(y)<\zeta<$ $h t(w)$ and $w(\zeta)>q$. Put $z=w i(\zeta+1)$. Then

$$
y \vec{R}_{T} z<_{T} w \leqq_{T} x \quad \& \quad m(z)=z(h t(z))=w(\zeta)>q, \quad \text { q. e.d. }
$$

If a transitive subtree of \mathfrak{I}_{P} is an ω_{1}-tree, we call it a P-tree. Recall that an ω_{1}-tree T is called a non-Souslin tree if every uncountable subset of T contains an uncountable anti-chain. By NS, we denote the class of all non-Souslin trees.

Lemma 6. Let T be an Aronszajn P-tree. If

$$
\left\{\alpha: T_{\alpha} \cap T^{0} \text { is finite }\right\}
$$

is a stationary set, then
(i) if X is an uncountable subset of $T^{0}, \tilde{X}_{\alpha}$ is uncountable for some $\alpha<\omega_{1}$,
(ii) $T \in N S$.

Proof. (i) Let X be an uncountable subset of T^{0} and suppose that \tilde{X}_{α} is countable for all $\alpha<\omega_{1}$. Put:

$$
C=\{\lambda \in \Omega: \tilde{X} \upharpoonright \lambda \subseteq T \upharpoonright \lambda\} .
$$

C is a club set since $\tilde{X} \upharpoonright \alpha$ is countable for all $\alpha<\omega_{1}$. Hence by the assumption of the lemma, the set

$$
E=\left\{\lambda \in C: T_{\lambda} \cap T^{0} \text { is finite }\right\}
$$

is stationary and hence uncountable. Put:

$$
Y=\left\{y \in T: y \leqq_{T} x \text { for some } x \in X\right\} .
$$

Claim. If $\lambda \in E$, then \tilde{Y}_{λ} is a subset of $T^{0} \cap T_{\lambda}$.

Proof of Claim. Since \tilde{Y} is a transitive subtree of $T, \tilde{Y}_{\lambda} \subseteq T_{\lambda}$. Let $y \in \tilde{Y}_{\lambda}$. Let x be a minimal element of $\left\{x \in X: y \leqq{ }_{T} x\right\}$. Then $h t_{X}(x)=\lambda$. (The reason: In general $h t_{X}(z) \leqq h t(z)$. Hence by the minimality of $x, h t_{X}(x) \leqq \lambda$. If $h t_{X}(x)<\lambda$ then $h t(x)<\lambda$ because $\lambda \in C$; this contradicts $\left.y \leqq{ }_{T} x\right)$. Now suppose $y \notin T^{0}$. Then we can pick $w \overrightarrow{<~}_{T} y$ by Lemma 5-(4). Pick β so that $h t(w)<\beta<\lambda$ and pick $z \in X$ so that $h t_{X}(z)=\beta$ and $z<{ }_{T} x$. Then $h t(w)<\beta=h t_{X}(z) \leqq h t(z)<h t(y)=\lambda$ and so $w<_{T} z<_{T} y \leqq_{T} x$. Thus $z \in(w, y] \cap T^{0}$, a contradiction. Claim is thus proved. Thus \tilde{Y}_{λ} is finite for all $\lambda \in E$. By Lemma $4, \tilde{Y}$ has a cofinal branch which is also a cofinal branch of T. This is absurd since $T \in \boldsymbol{A} \boldsymbol{T}$.
(ii) Let X be an uncountable subset of T. For each $z \in T^{0}$, put:

$$
\begin{aligned}
& X_{(z)}=\left\{x \in X: z \vec{S}_{r} x\right\}, \\
& Z=\left\{z \in T^{0}: X_{(z)} \neq \emptyset\right\} .
\end{aligned}
$$

Case 1. Z is uncountable. By (i), we can find an uncountable subset Y (i.e. \widetilde{Z}_{α} for some α) of Z such that Y is an anti-chain of T. With each $y \in Y$ associate an element, say $x(y)$, of $X_{(y)}$. Then the subset $\{x(y): y \in Y\}$ of X is clearly an uncountable anti-chain of T.

Case 2. Z is countable. Since the uncountable set X is the union of $\left\{X_{(z)}: z \in Z\right\}$, we can find $z \in Z$ such that $X_{(z)}$ is uncountable. Note that $\tilde{X}_{(z)}$ is an \boldsymbol{R}-embeddable tree by Lemma 5-(3). By Lemma 3, $\tilde{X}_{(z)}$ contains an uncountable anti-chain which is also an antichain of T and is contained in X. Lemma 6 is thus proved.

Corollary 7. Let T be an Aronszain P-tree. If the set

$$
\left\{\alpha<\omega_{1}: m(x)>0 \text { for all } x \in T_{\alpha}\right\}
$$

is stationary, then $T \in N S$.
Though this corollary assumes a rather strong condition, it suffices for our purpose. In this sense Lemma 6 is redundant. Lemma 6 stands because of its own interest.

Recall that a \diamond_{x}-sequence $\left\langle Z_{\alpha}: \alpha<\omega_{1}\right\rangle$ has the following properties: If T is an ω_{1}-tree and is a transitive subtree of \mathfrak{I}, then
(1) if X is a subset of T, then the set

$$
\left\{\alpha<\omega_{1}: X \cap T \upharpoonright \alpha=Z_{\alpha}\right\} \text { is stationary ; }
$$

(2) if e is a function which embeds T in \boldsymbol{R}, then

$$
\left\{\alpha<\omega_{1}: e\left\lceil(T \upharpoonright \alpha)=Z_{\alpha}\right\}\right. \text { is a stationary set. }
$$

Recall that a \diamond_{2}^{*}-sequence $\left\langle\left\{W_{i}^{\alpha}: i \in \omega\right\}: \alpha<\omega_{1}\right\rangle$ has the following properties: If T is an ω_{1}-tree and is a transitive subtree of \mathfrak{T}, then
(1) if X is a subset of T, then $\left\{\alpha<\omega_{1}: X \cap T \upharpoonright \alpha=W_{i}^{\alpha}\right.$ for some $\left.i<\omega\right\}$ contains a club set.
(2) if e is a function which embeds T in \boldsymbol{R}, then $\left\{\alpha<\omega_{1}: e \upharpoonright(T \mid \alpha)=W_{i}^{\alpha}\right.$ for some $\left.i<\omega\right\}$ contains a club set.

Lemma 8. (1) (\diamond) There exists $a \diamond_{\mathbb{X}}$-sequence.
(2) $\left(\diamond^{*}\right)$ There exists $a \diamond_{3}^{*}$-sequence.

Lemma 9. Let T be a P-tree and $\left\langle Z_{\alpha}: \alpha<\omega_{1}\right\rangle a \diamond_{\mathbb{X}}$-sequence. If for every $\lambda \in \Omega\left(\forall x \in T_{\lambda}\right)\left[Z_{\lambda} \neq \hat{x}\right]$ holds, then $T \in \boldsymbol{A T}$.

Proof. Suppose that X were a cofinal branch of T. Then there is a $\lambda \in \Omega$ such that $Z_{\lambda}=X \cap T \upharpoonright \lambda$. Let x be the unique element of $X \cap T_{\lambda}$. Then $Z_{i}=$ $X \cap T \upharpoonright \lambda=\hat{x}$, a contradiction.

Lemma 10. Let T be a P-tree and $\left\langle Z_{\alpha}: \alpha\left\langle\omega_{1}\right\rangle a \diamond_{\mathfrak{R}}\right.$-sequence. Let T satisfy the following condition:
(1) if $\lambda \in \Omega$ and Z_{λ} is a function which embeds $T \upharpoonright \lambda$ in $[0,1)$, then there is an $x \in T_{\lambda}$ such that

$$
\begin{equation*}
\left(\forall n \exists y<_{T} x\right)\left[Z_{\lambda}^{\text {sup }}(y)-1 / n<Z_{\lambda}(y)\right], \tag{*}
\end{equation*}
$$

where $Z_{\lambda}^{\text {sup }}(y)=\sup \left\{Z_{\lambda}(z): y<{ }_{T} z \in T \upharpoonright \lambda\right\}$.
Then T is not \boldsymbol{R}-embeddable.
Proof. Let e embed T in \boldsymbol{R}. We may assume ran $(e) \subset[0,1)$. Put:

$$
\begin{gathered}
C=\left\{\lambda \in \Omega:(\exists y \in T)\left[x<_{T} y \& q<e(y)\right] \rightarrow(\exists y \in T \upharpoonright \lambda)\left[x<_{T} y \& q<e(y)\right]\right. \\
\text { for every } q \in \boldsymbol{Q} \text { and every } x \in T \upharpoonright \lambda\} .
\end{gathered}
$$

Clearly C is club and hence we can pick $\lambda \in C$ such that $e \upharpoonleft(T \upharpoonright \lambda)=Z_{\lambda}$. Then Z_{λ} embeds $T \upharpoonright \lambda$ in $[0,1)$. So, by the assumption, we can take $x \in T_{\lambda}$ which satisfies ${ }^{(*)}$. Let x^{\prime} be one of the immediate successors of x. Pick n so that $1 / n<e\left(x^{\prime}\right)$ $-e(x)$. Pick $y<{ }_{T} x$ so that $Z_{\lambda}^{\sup }(y)-1 / n<Z_{\lambda}(y)$. Since $\lambda \in C$, $e\left(x^{\prime}\right) \leqq \sup \{e(z)$: $\left.y<_{T} z \in T\right\}=\sup \left\{e(z): y{ }_{{ }_{T}} z \in T \upharpoonright \lambda\right\}=Z_{\lambda}^{\text {sup }}(y)$. It follows that $1 / n<e\left(x^{\prime}\right)-e(x)<$ $Z_{\lambda}^{\text {sup }}(y)-e(y)<1 / n$, a contradiction.

Lemma 11. Let $\left\langle\left\{W_{i}^{\alpha}: i\langle\omega\}: \alpha<\omega_{1}\right\rangle\right.$ be $a \diamond_{\frac{1}{2} \text {-sequence. Let } T \text { be a P-tree }}$ which satisfies the following condition:
(1) whenever $\lambda \in \Omega$ and W_{i}^{λ} is an anti-chain of $T \upharpoonright \lambda$ and $x \in T_{\lambda}$, one of the following conditions holds:
(a)

$$
\left(\exists y<_{T} x\right)(\forall z \in T \upharpoonright \lambda)\left[y<{ }_{T} z \rightarrow z \notin W_{i}^{\lambda}\right],
$$

(b) $\quad\left(\exists y \vec{r}_{T} x \exists q>0\right)\left[m(x) \leqq m(y)+q \&\left(\forall z \in W_{i}^{\hat{i}}\right)\left[y \vec{\gtrless}_{T} z \rightarrow m(z) \geqq m(y)+2 q\right]\right]$.

Then T has property γ.
The proof of this lemma is given separately in a later section, since it is rather long.

Finally we define for two ω_{1}-trees $\left(T,<_{0}\right)$ and $\left(T^{\prime},<_{1}\right)$ an ω_{1}-tree $T \dot{+} T^{\prime}$ as follows: The field of $T+T^{\prime}$ is $T \times\{0\} \cup T^{\prime} \times\{1\} \backslash\left\{\left\langle 0_{1}, 1\right\rangle\right\}$, where $0_{0}, 0_{1}$ are the roots of T, T^{\prime} respectively; The ordering $<_{T}$ of $T \dot{+} T^{\prime}$ is defined by

$$
\begin{array}{ll}
\langle x, 0\rangle{ }_{T}\langle y, 0\rangle & \text { if } x, y \in T \text { and } x<_{0} y, \\
\langle x, 1\rangle{ }_{T}\langle y, 1\rangle & \text { if } x, y \in T^{\prime} \backslash\left\{0_{1}\right\} \text { and } x{ }_{1} y, \\
\left\langle 0_{0}, 0\right\rangle{ }_{T}\langle y, 1\rangle & \text { if } y \in T^{\prime} \backslash\left\{0_{1}\right\} .
\end{array}
$$

§ 3. Theorems.

ThEOREM $12\left(\diamond^{*}\right) .(\boldsymbol{N S} \backslash \boldsymbol{R} \boldsymbol{E}) \cap \gamma \boldsymbol{S} \boldsymbol{T} \neq \emptyset$.
Proof. Let $\left\langle Z_{\alpha}: \alpha<\omega_{1}\right\rangle$ be a \diamond_{x}-sequence and $\left\langle\left\{W_{i}^{\alpha}: i<\omega\right\}: \alpha<\omega_{1}\right\rangle$ a \diamond^{*}-sequence. We define a P-tree T by induction on levels so that T satisfies the following:
(1) if $\alpha<\beta<\omega_{1}$ and $x \in T_{\alpha}$ and $q \in \boldsymbol{Q} \cap(m(x), \infty)$, there is a $y \in T_{\beta}$ such that $x \overrightarrow{<}_{T} y$ and $m(y)<q$.

Set

$$
\begin{aligned}
& T_{0}=\left\{0_{T}\right\} ; \\
& T_{\alpha+1}=\left\{x \cup\{\langle q, \alpha+1\rangle\}: x \in T_{\alpha} \& m(x)<q \in \boldsymbol{Q}\right\} .
\end{aligned}
$$

Let $\lambda \in \Omega$ and suppose $T \upharpoonright \lambda$ has been defined so that (1) holds. Fix an increasing sequence $\left\langle\lambda_{n}: n\langle\omega\rangle\right.$ such that $\lim _{n \in \omega} \lambda_{n}=\lambda$. For each $x \in T \upharpoonright \lambda$ and each positive rational q, we define $t_{\lambda}(x, q)$ as follows: Let $x \in T \upharpoonright \lambda$ and $0<q \in \boldsymbol{Q}$. We pick $x_{n}, x_{n}^{*} \in T \upharpoonright \lambda, q_{n}, q_{n}^{*}>0$ inductively so that:
(a) $x_{0}=x$ and $q_{0}=q$;
(b) if W_{n}^{λ} is an anti-chain of $T \upharpoonright \lambda$ and

$$
(\exists z \in T \upharpoonright \lambda)\left[x_{n} \overrightarrow{<}_{T} z \in W_{n}^{\lambda} \& m(z)<m\left(x_{n}\right)+q_{n}\right] \text {, }
$$

then

$$
\begin{gathered}
x_{n} \overrightarrow{<}_{T} x_{n}^{*} \in W_{n}^{\lambda} \& m\left(x_{n}^{*}\right)<m\left(x_{n}\right)+q_{n} \text { and } q_{n}^{*}=m\left(x_{n}\right)+q_{n}-m\left(x_{n}^{*}\right) ; \\
\text { otherwise, } x_{n}^{*}=x_{n} \text { and } q_{n}^{*}=q_{n} / 2 ;
\end{gathered}
$$

(c) $x_{n}^{*}{ }_{r}{ }_{T} x_{n+1} \& h t\left(x_{n+1}\right)>\lambda_{n} \& m\left(x_{n+1}\right)<m\left(x_{n}^{*}\right)+q_{n}^{*}$ (this is possible by (1));
(d) $q_{n+1}=m\left(x_{n}^{*}\right)+q_{n}^{*}-m\left(x_{n+1}\right)$.

Put:

$$
t_{\lambda}(x, q)=\bigcup_{n<\omega} x_{n} \cup\left\{\left\langle\sup _{n<\omega} m\left(x_{n}\right), \lambda\right\rangle\right\} .
$$

Notice that $x \overrightarrow{<}_{T} t_{\lambda}(x, q)$ and $0<m\left(t_{\lambda}(x, q)\right) \leqq m(x)+q$. Now, we shall define T_{i}.
Case 1. Z_{λ} is a cofinal branch of $T \upharpoonright \lambda$. For each $x \in T \upharpoonright \lambda$ and each positive rational q, pick $x^{*} \in T \upharpoonright \lambda$ and q^{*} so that:
$x<{ }_{T} x^{*} \notin Z_{\lambda}, h t\left(x^{*}\right)=h t(x)+1, m\left(x^{*}\right)<m(x)+q$ and $q^{*}=m(x)+q-m\left(x^{*}\right)$.
And put:

$$
u_{\lambda}(x, q)=t_{\lambda}\left(x^{*}, q^{*}\right) .
$$

We set:

$$
T_{\lambda}=\left\{u_{\lambda}(x, q): x \in T \upharpoonright \lambda, 0<q \in \mathbb{Q}\right\} .
$$

Note that if $u=u_{\lambda}(x, q)$, then $Z_{\lambda} \neq \hat{u}, x \gtrless_{T} u$ and $0<m(u) \leqq m(x)+q$.
Case 2. Z_{λ} is a function which embeds $T \upharpoonright \lambda$ in $[0,1)$. Pick $y_{n}, y_{n}^{*} \in T \upharpoonright \lambda$ inductively as follows:
(a) $y_{0}=0_{T}$;
(b) if W_{n}^{λ} is an anti-chain of $T \upharpoonright \lambda$ and

$$
\left(\exists z \in W_{n}^{\lambda}\right)\left[y_{n}<{ }_{T} z \& Z_{\lambda}^{\text {sup }}\left(y_{n}\right)-1 /(n+1)<Z_{\lambda}(z)\right],
$$

then

$$
y_{n}<T y_{n}^{*} \in W_{n}^{\lambda} \text { and } Z_{\lambda}^{\sup }\left(y_{n}\right)-1 /(n+1)<Z_{\lambda}\left(y_{n}^{*}\right) ;
$$

otherwise, $y_{n}<_{r} y_{n}^{*} \in T \upharpoonright \lambda$ and $Z_{\lambda}^{\text {sup }}\left(y_{n}\right)-1 /(n+1)<Z_{\lambda}\left(y_{n}^{*}\right)$;
(c) $y_{n+1}>{ }_{r} y_{n}^{*} \& h t\left(y_{n+1}\right)>\lambda_{n}$;
(see Lemma 10 for the definition of $Z_{\lambda}^{\text {sup }}\left(y_{n}\right)$).
Put:

$$
s_{\lambda}=\bigcup_{n<\omega} y_{n} \cup\{\langle r, \lambda\rangle\},
$$

where the real r is taken so that $s_{\lambda} \in \mathfrak{I}_{P}$ (such an r is unique).
We set: $\quad T_{\lambda}=\left\{s_{\lambda}\right\} \cup\left\{t_{\lambda}(x, q): x \in T \upharpoonright \lambda, 0<q \in \boldsymbol{Q}\right\}$.
Case 3. Otherwise. We set:

$$
T_{\lambda}=\left\{t_{\lambda}(x, q): x \in T \upharpoonright \lambda, 0<q \in \boldsymbol{Q}\right\} .
$$

T_{2} is thus defined. Now set:

$$
T=\bigcup_{\alpha<\omega_{1}} T_{\alpha} .
$$

T is clearly a P-tree. We can easily check that $T \in \boldsymbol{A} \boldsymbol{T}$ by Lemma $9, T \in \boldsymbol{R E}$ by Lemma $10, T \in N S$ by Corollary $7, T \in \gamma S T$ by Lemma 11, using the following facts:
(a) even when Z_{λ} is a cofinal branch of $T \upharpoonright \lambda, Z_{\lambda} \neq \hat{x}$ for every $x \in T_{\lambda}$;
(b) if Z_{λ} is a function which embeds $T \upharpoonright \lambda$ in $[0,1)$, then for every $n<\omega$, $y_{n}<_{T} s_{\lambda} \in T_{\lambda}$ and $Z_{\lambda}^{\text {sup }}\left(y_{n}\right)-1 / n \leqq Z_{\lambda}^{\text {sup }}\left(y_{n-1}\right)-1 / n<Z_{\lambda}\left(y_{n}\right)$;
(c) stationarily many ordinals $\in \Omega$ are put in Case 3 and for every such ordinal λ it holds that $\left(\forall x \in T_{\lambda}\right)[m(x)>0]$;
(d) if W_{n}^{λ} is an anti-chain of $T \upharpoonright \lambda$ and $t=t_{\lambda}(x, q)$, then the one of the following holds:
$1^{\circ} . \quad x_{n}^{*} \in W_{n}^{\lambda} \cap \hat{t}$ and $(\forall z \in T \upharpoonright \lambda)\left[x_{n}^{*}<_{T} z \rightarrow z \neq W_{n}^{\lambda}\right]$;
$2^{\circ} . \quad m(t) \leqq m\left(x_{n}^{*}\right)+q_{n}^{*} \& \forall z\left[x_{n}^{*}<_{T} z \in W_{n}^{\lambda} \rightarrow m(z) \geqq m\left(x_{n}\right)+2 q_{n}^{*}\right]$;
(e) if W_{n}^{λ} is an anti-chain of $T \upharpoonright \lambda, Z_{\lambda}$ is a function which embeds $T \upharpoonright \lambda$ in $[0,1)$ and $t=s_{\lambda}$, then one of the following holds:
$1^{\circ} . y_{n}^{*} \in W_{n}^{\lambda} \cap \hat{t}$ and hence $(\forall z \in T \upharpoonright \lambda)\left[y_{n}^{*}<_{T} z \rightarrow z \notin W_{n}^{\lambda}\right]$;
2°. $Z_{\lambda}^{\text {sup }}\left(y_{n}\right)-1 /(n+1)<Z_{\lambda}\left(y_{n+1}\right), \forall z\left[y_{n}<_{T} z \& Z_{\lambda}^{\text {sup }}\left(y_{n}\right)-1 /(n+1)<Z_{\lambda}(z) \rightarrow\right.$ $\left.z \notin W_{n}^{\lambda}\right]$ and hence $\forall z\left[y_{n+1}<_{T} z \rightarrow z \notin W_{n}^{\lambda}\right]$.
Theorem 12 is thus proved.
THEOREM $13\left(\diamond^{*}\right) . \quad(\boldsymbol{N S} \backslash \boldsymbol{R E}) \cap(\boldsymbol{A} \boldsymbol{S} \boldsymbol{T} \backslash \gamma \boldsymbol{S} \boldsymbol{T}) \neq 0$.
Proof. Assume \diamond^{*}. We can take $T \in(\boldsymbol{N S} \backslash \boldsymbol{R E} \boldsymbol{E}) \cap \gamma \boldsymbol{S T}$ (Theorem 12) and $T^{\prime} \in \boldsymbol{R} \boldsymbol{E} \cap(\boldsymbol{A S} \boldsymbol{T} \backslash \gamma \boldsymbol{S} \boldsymbol{T})$ (Devlin and Shelah [2, Theorem 4.4]). Then clearly $T+T^{\prime}$ $\in(N S \backslash R E) \cap(A S T \backslash \gamma S T)$.

THEOREM $14(\diamond) .(N S \backslash \boldsymbol{R E}) \cap(N C A \backslash A S T) \neq \emptyset$.

Proof. Let $\left\langle Z_{\alpha}: \alpha<\omega_{1}\right\rangle$ be a $\diamond_{\mathbb{T}}$-sequence. To define a P-tree, we construct each level T_{α} by induction on α ensuring that the following holds:
(1) if $\alpha<\beta<\omega_{1} \& x \in T_{\alpha} \& m(x)<q \in \mathbb{Q}$, there is a $y \in T_{\beta}$ such that $x \overrightarrow{<}_{T} y$ \& $m(y)<q$, and additionally if β is a successor ordinal, there is a $y^{\prime} \in T_{\beta}$ such that $x \overrightarrow{<}_{T} y^{\prime} \& m\left(y^{\prime}\right)=q$.

Set : $\quad T_{0}=\left\{0_{T}\right\}$;

$$
T_{\alpha+1}=\left\{x \cup\{\langle q, \alpha+1\rangle\}: x \in T_{\alpha}, m(x)<q \in \mathbb{Q}\right\}
$$

Let $\lambda \in \Omega$ and suppose that $T \upharpoonright \lambda$ has been defined. Fix an increasing sequence $\left\langle\lambda_{n}: n<\omega\right\rangle$ such that $\sup _{n<\omega} \lambda_{n}=\lambda$. For each $x \in T \upharpoonright \lambda$ and each rational $q<m(x)$, we shall define $t_{\lambda}(x, q)$ as follows: First take an increasing sequence $\left\langle q_{n}: n<\omega\right\rangle$ such that $\lim _{n<\omega} q_{n}=q$ and $m(x)<q_{0}$. Pick x_{n} for every $n<\omega$ by induction so that:

$$
\begin{aligned}
& x_{0}=x \\
& x_{n} \overrightarrow{<}_{T} x_{n+1} \& h t\left(x_{n+1}\right)>\lambda_{n} \& m\left(x_{n+1}\right)=q_{n}
\end{aligned}
$$

(this is possible by (1)). We set:

$$
t_{\lambda}(x, q)=\underset{n<\omega}{\cup} x_{n} \cup\{\langle q, \lambda\rangle\} .
$$

Notice that $x \overrightarrow{<~}_{r} t_{\lambda}(x, q)$ and $m\left(t_{\lambda}(x, q)\right)=q$.
Now we shall define T_{λ}.
Case 1. Z_{λ} is an cofinal branch of $T \upharpoonright \lambda$. For each $x \in T \upharpoonright \lambda$ and each rational $q>m(x)$, pick x^{*} so that $h t\left(x^{*}\right)=h t(x)+1, x<{ }_{T} x^{*}, m\left(x^{*}\right)<q$ and $x^{*} \notin Z_{\lambda}$. Put:

$$
s_{\lambda}(x, q)=t_{\lambda}\left(x^{*}, q\right) .
$$

We set:

$$
T_{\lambda}=\left\{s_{\lambda}(x, q): x \in T \upharpoonright \lambda, m(x)<q \in \boldsymbol{Q}\right\} .
$$

Clearly $Z_{\lambda} \neq\left\{y \in T \upharpoonright \lambda: y<_{T} S_{\lambda}(x, q)\right\}$.
Case 2. Z_{λ} is an anti-chain of $T \upharpoonright \lambda$. For each $x \in T \upharpoonright \lambda$ and each rational $q>m(x)$, pick x^{*} and $q^{*} \in \boldsymbol{Q}$ so that:
(a) if $(\exists w \in T \upharpoonright \lambda)\left[x \vec{S}_{T} w \in Z_{\lambda} \& m(w)<q\right]$, then

$$
x \overleftrightarrow{\leq}_{T} x^{*} \in Z_{\lambda}, m\left(x^{*}\right)<q \text { and } m\left(x^{*}\right)<q^{*}<q ;
$$

(b) otherwise, $x^{*}=x$ and $m(x)<q^{*}<q$.

Put:

$$
u_{\lambda}(x, q)=t_{\lambda}\left(x^{*}, q^{*}\right) .
$$

We set: $\quad T_{\lambda}=\left\{u_{\lambda}(x, q): x \in T \upharpoonright \lambda, m(x)<q \in \boldsymbol{Q}\right\}$.
Case 3. Z_{λ} is a function which embeds $T \upharpoonright \lambda$ in $[0,1)$. Pick y_{n} for each $n<\omega$ by induction so that:

$$
\begin{aligned}
& y_{0}=0_{T} \\
& y_{n+1}>_{T} y_{n} \& h t\left(y_{n+1}\right)>\lambda_{n} \& Z_{\lambda}^{\sup }\left(y_{n}\right)-1 /(n+1)<Z_{\lambda}\left(y_{n+1}\right) .
\end{aligned}
$$

Put:

$$
v_{\lambda}=\bigcup_{n<\omega} y_{n} \cup\{\langle r, \lambda\rangle\},
$$

where $r \in \boldsymbol{R}$ is taken so that $v_{\lambda} \in \mathfrak{T}_{P}$. We set:

$$
T_{\lambda}=\left\{v_{\lambda}\right\} \cup\left\{t_{\lambda}(x, q): x \in T \upharpoonright \lambda, m(x)<q \in \boldsymbol{Q}\right\} .
$$

Case 4. Otherwise. We set:

$$
T_{\lambda}=\left\{t_{\lambda}(x, q): x \in T \upharpoonright \lambda, m(x)<q \in \boldsymbol{Q}\right\} .
$$

T_{λ} is thus defined. Now we set:

$$
T=\bigcup_{\alpha<\omega_{1}} T_{\alpha} .
$$

Clearly T is P-tree. We can easily check that $T \in \boldsymbol{A} \boldsymbol{T}$ by Lemma $9, T \notin \boldsymbol{R} \boldsymbol{E}$ by Lemma 10 and $T \in \boldsymbol{N S}$ by Corollary 7 , using the following:
(a) $Z_{\lambda} \neq \hat{x}$ for every $x \in T_{\lambda}$, even if Z_{λ} is a cofinal branch of $T \upharpoonright \lambda$;
(b) if Z_{λ} embeds $T \upharpoonright \lambda$ in $[0,1)$, then $y_{n}<v_{\lambda}$ and

$$
Z_{\lambda}^{\sup }\left(y_{n}\right)-1 / n \leqq Z_{\lambda}^{\sup }\left(y_{n-1}\right)-1 / n<Z_{\lambda}\left(y_{n}\right) ;
$$

(c) stationarily many limit ordinals are put in Case 4, and for such an ordinal $\lambda m(x)>0$ for all $x \in T_{\lambda}$.

To see that $T \in \boldsymbol{N C A}$, suppose that there were a club anti-chain X of T. Put: $C_{1}=\{\lambda \in \Omega:(\forall x \in T \upharpoonright \lambda \forall q \in \boldsymbol{Q})[(\exists w \in T) R(x, w, X, q) \rightarrow(\exists w \in T \upharpoonright \lambda) R(x, w, X, q)]\}$, where $R(x, w, X, q)$ stands for $x \overrightarrow{<}_{T} w \in X \& m(w)<q$. Clearly C_{1} is a club set. Hence so is $C=C_{1} \cap\{h t(x): x \in X\}$. So we can pick $\lambda \in \Omega$ so that $\lambda \in C \cap\left\{\alpha<\omega_{1}\right.$: $\left.X \cap T \upharpoonright \alpha=Z_{\alpha}\right\}$. Then we can pick $t \in X \cap T_{\lambda}$ since $\lambda \in\{h t(t): t \in X\}$. Since $X \cap T \upharpoonright \lambda=Z_{\lambda}, Z_{\lambda}$ is an anti-chain of $T \upharpoonright \lambda$ and so we can take $x \in T \upharpoonright \lambda$ and $q \in \boldsymbol{Q}$ so that $t=u_{\lambda}(x, q)$. Then $m(t)=q^{*}<q$. Thus $R(x, t, X, q)$ and hence $(\exists w \in T \upharpoonright \lambda) R(x, w, X, q)$ because $\lambda \in C_{1}$. Since $X \cap T \upharpoonright \lambda=Z_{\lambda}$, this implies that $x^{*} \in Z_{\lambda}$. Thus, $x^{*}, t \in X$ and $x^{*}<_{T} t$. This is absurd since X is an anti-chain. $T \in N C A$ is thus shown.

On the other hand, it can be easily checked that the set $\left\{t_{\lambda}\left(0_{r}, 1\right): \lambda\right.$ is a limit ordinal ordinal put in Case 4$\}$ is a stationary anti-chain and hence $T \notin \boldsymbol{A S T}$, q.e.d.

Theorem $15(\diamond) . \quad(\boldsymbol{N S} \backslash \boldsymbol{R E}) \backslash \boldsymbol{N C A} \neq \emptyset$.
Proof. Assume \diamond. We can take $T \in(\boldsymbol{N S} \backslash \boldsymbol{R E}) \cap(\boldsymbol{N C A} \backslash \boldsymbol{A S T})$ (by Theorem 14) and $T^{\prime} \in \boldsymbol{S A T} \backslash \boldsymbol{N C A}\left(\left[3\right.\right.$, Theorem 5]). Then clearly $T \dot{+} T^{\prime} \in(\boldsymbol{N S} \backslash \boldsymbol{R E}) \backslash \boldsymbol{N C A}$.

§4. Proof of Lemma 11.

Let X be an uncountable anti-chain of T. Put:

$$
\begin{gathered}
C_{0}=\left\{\alpha<\omega_{1}: X \cap T \upharpoonright \alpha=W_{i}^{\alpha} \text { for some } i \in \omega\right\}, \\
C_{1}=\left\{\lambda \in \Omega:(\forall y \in T \upharpoonright \lambda)\left[(\exists x \in X)\left[y<_{T} x\right] \rightarrow(\exists z \in X \cap T \upharpoonright \lambda)\left[y<{ }_{T} z\right]\right]\right\}, \\
C_{2}=\left\{\lambda \in \Omega:(\exists x \in X)\left[y \overrightarrow{<}_{T} x \& m(x)<q\right] \rightarrow(\exists z \in X \cap T \upharpoonright \lambda)\left[y \overrightarrow{<}_{T} z \& m(z)<q\right]\right], \\
\text { for every } y \in T \upharpoonright \lambda \text { and every } q \in \boldsymbol{Q}\} .
\end{gathered}
$$

Let C be a club set such that $C \subseteq C_{0} \cap C_{1} \cap C_{2}$.
Claim 1. $X \cap T_{\lambda}=\emptyset$ for every $\lambda \in C$.
Proof. Suppose $\lambda \in C$ and $x \in X \cap T_{\lambda}$. Pick $i \in \omega$ so that $X \cap T \upharpoonright \lambda=W_{\hat{i}}^{\lambda}$. Since X is an anti-chain, W_{i}^{λ} is an anti-chain of $T \upharpoonright \lambda$. Hence by the assumption of the lemma, (a) or (b) must hold.

Case 1. (a) holds. Pick $y<_{T} x$ so that $(\forall z \in T \mid \lambda)\left[y<_{T} z \rightarrow z \notin W_{i}^{\lambda}\right]$. Since $W_{i}^{\lambda}=X \cap T \upharpoonright \lambda$ and $\lambda \in C_{1}, 7(\exists x \in X)\left[y<_{T} x\right]$. This contradicts " $y<_{T} x \in X$ ".

Case 2. (b) holds. Pick $y \overrightarrow{<}_{r} x$ and $q>0$ so that:

$$
m(x) \leqq m(y)+q \quad \text { and } \quad\left(\forall z \subseteq W_{i}\right)\left[y \gtrless_{T} z \rightarrow m(z) \geqq m(y)+2 q\right] .
$$

Since $X \cap T \upharpoonright \lambda=W_{\hat{i}}^{\lambda}$ and $\lambda \in C_{2}, 7(\exists x \in X)\left[y \vec{z}_{T} x \& m(x)<m(y)+2 q\right]$. This contradicts " $x \in X \& y \vec{R}_{r} x \& m(x) \leqq m(y)+q$ ". Claim 1 is thus proved.

Let $\left\langle\lambda_{\xi}: \xi<\omega_{1}\right\rangle$ be the monotone enumeration of $C \cup\{0\}$. Let $\left\langle x_{n}^{\xi}: n<\omega\right\rangle$ be an enumeration of $X \cap T \upharpoonright\left(\lambda_{\xi+1} \backslash \lambda_{\xi}\right)$ such that $x_{n}^{\xi} \neq x_{m}^{\xi}$ if $n \neq m$, for each $\xi<\omega_{1}$.

We shall define w_{n}^{ξ} for each $\xi<\omega_{1}$ and each $n<\omega$.
Case 1. $h t\left(x_{n}^{\hat{\xi}}\right) \neq \Omega . w_{n}^{\frac{\xi}{n}}$ is taken so that $\left(w_{n}^{\hat{\xi}}, x_{n}^{\hat{\xi}}\right]$ is a singleton set, i. e. $w_{n}^{\hat{\xi}}$ is the immediate predecessor of x_{n}^{ξ}.

Case 2. $h t\left(x_{n}^{\hat{\xi}}\right) \in \Omega$. First note that there is a $y<_{T} x_{n}^{\hat{\xi}}$ such that $\left(y, x_{n}^{\hat{\xi}}\right] \cap \cup_{j<n} \hat{x}_{j}^{\hat{\xi}}$ $=0$. (To see this, suppose not. Then $\hat{x}_{n}^{\xi} \subset \bigcup_{j<n} \hat{x}_{j}^{\hat{\xi}}$ and hence $\hat{x}_{n}^{\xi} \subset \hat{x}_{j}^{\xi}$ for some $j<n$, which implies $x_{n}^{\hat{\xi}} \leqq x_{T}^{\hat{\xi}}$ (Lemma $5-(5)$). But it is absurd since $x_{n}^{\hat{\xi}} \neq x_{j}^{\hat{\xi}}$ and X is an anti-chain).

Subcase 2.1. $m\left(x_{n}^{\xi}\right)=0$. Take y_{n}^{ξ} so that:

$$
\lambda_{\hat{\xi}}<h t\left(y_{n}^{\hat{\xi}}\right), \quad y_{n}^{\xi}<{ }_{T} x_{n}^{\hat{\xi}} \quad \text { and }\left(y_{n}^{\hat{\xi}}, x_{n}^{\hat{\xi}}\right] \bigcap_{j<n} \bigcup_{x_{j}^{\hat{\xi}}}=0
$$

$w_{n}^{\hat{s}}$ is taken so that

$$
y_{n}^{\xi} \vec{x}_{T} w_{n}^{\hat{\xi}}<_{T} x_{n}^{\xi} \quad \text { and } \quad m\left(w_{n}^{\xi}\right)>m\left(y_{n}^{\hat{\xi}}\right)+1,
$$

(this is possible by Lemma $5-(8)$).
Subcase 2.2. $m\left(x_{n}^{\xi}\right)>0$. We can take $y_{n}^{\hat{\xi}}$ so that:

$$
h t\left(y_{n}^{\hat{\xi}}\right)>\lambda_{\xi}, \quad\left(y_{n}^{\xi}, x_{n}^{\xi}\right] \cap_{j<n} \bigcup_{j} \hat{x}_{j}^{\xi}=0 \quad \text { and } \quad y_{n}^{\hat{\xi}} \overrightarrow{<}_{T} x_{n}^{\hat{\xi}} .
$$

Then $w_{n}^{\hat{\delta}}$ is taken so that

$$
y_{n}^{\hat{\xi}{ }_{z}{ }_{T} w_{n}^{\hat{\xi}} \vec{T}_{T} x_{n}^{\hat{\xi}} \text { and } m\left(x_{n}^{\hat{\xi}}\right)-m\left(w_{n}^{\hat{\xi}}\right)<m\left(w_{n}^{\hat{\xi}}\right)-m\left(y_{n}^{\hat{\xi}}\right), ~}
$$

(this is possible by Lemma $5-(7)$).
$w_{n}^{\hat{\varepsilon}}$ is thus defined. Now put:

$$
U=\bigcup\left\{\left(\omega_{n}^{\hat{\xi}}, x_{n}^{\xi}\right]: \xi<\omega_{1}, n<\omega\right\} .
$$

This is a nbd of X.
Finally we shall define a nbd V of $T \upharpoonright C$ such that $U \cap V=0$. For this purpose, we shall define v^{*} for every $v \in T \upharpoonright C$. Let $v \in T \upharpoonright C$ and put $\lambda=h t(v)$. Let i be the number such that $W_{i}^{\lambda}=X \cap T \upharpoonright \lambda$. $W_{\hat{i}}^{\lambda}$ is clearly an anti-chain of $T \upharpoonright \lambda$. So by the assumption of the lemma, Condition (a) or (b) must hold for v (substituted for x).

Case 1. (a) holds. Then we can take $v^{*}<_{T} v$ so that

$$
(\forall z \in T \upharpoonright \lambda)\left[v^{*}<_{T} z \rightarrow z \notin W_{i}^{\lambda}\right] .
$$

Case 2. (b) holds. Take $u \in T \upharpoonright \lambda$ and $q>0$ so that $u \overrightarrow{<}_{T} v$ and

$$
m(v) \leqq m(u)+q \quad \text { and } \quad\left(\forall z \in W_{\hat{i}}^{\hat{i}}\right)\left[u \overrightarrow{<}_{r} z \rightarrow m(z) \geqq m(u)+2 q\right] .
$$

We may assume that $m(u)>m(v)-1$. (If not so, by Lemma $5-(7)$, there is u^{\prime} such that $u \overrightarrow{<}_{T} u^{\prime} \overrightarrow{<}_{T} v$ and $m\left(u^{\prime}\right)>m(v)-1$. Then take u^{\prime} and $m(u)+q-m\left(u^{\prime}\right)$ instead of u and q.)

Claim 2. For at most only one pair $\langle\xi, n\rangle,(u, v] \cap\left(w_{n}^{\xi}, x_{n}^{\xi}\right] \neq \emptyset$.
Proof. We show first that $(u, v] \cap\left(w_{n}^{\xi}, x_{n}^{\xi}\right] \neq \emptyset$ implies that (1) $h t\left(x_{n}^{\xi}\right)<\lambda$ and (2) $h t\left(x_{n}^{\xi}\right) \in \Omega$. To show (1), suppose not. Then by choice of $w_{n}^{\xi}, h t\left(x_{n}^{\xi}\right)>$ $h t\left(w_{n}\right) \geqq \lambda_{\xi} \geqq \lambda$. Hence $(u, v] \cap\left(w_{n}^{\xi}, x_{n}^{\xi}\right]=\emptyset$ which contradicts the assumption. To
 Note $x_{\hat{n}}^{\hat{\xi}} \in W_{i}^{\lambda}$. (For, $x_{n}^{\hat{\xi}} \in X \cap T \upharpoonright \lambda$ by (1) and $W_{i}^{\lambda}=X \cap T \upharpoonright \lambda$ by choice of i.) Hence by the property of $q, m\left(x_{n}^{\xi}\right) \geqq m(u)+2 q>m(u)+q \geqq m(v)$. This is absurd since $x_{n}^{\xi} \leqq_{T} v$. Next we show that $(u, v] \cap\left(w_{n}^{\xi}, x_{n}^{\xi}\right] \neq \emptyset$ implies that $u \in\left(y_{n}^{\xi}, x_{n}^{\xi}\right]$, where y_{n}^{ℓ} is as given in the definition of w_{n}^{ξ}. (Note that $h t\left(x_{n}^{\xi}\right) \in \Omega$ by the above.) Suppose that there is $t \in(u, v] \cap\left(w_{n}^{\xi}, x_{n}^{\xi}\right]$. Then $u \overrightarrow{<}_{T} t \vec{z}_{T} v$ and $y_{n}^{\xi} \leqq_{T} w_{n}^{\xi}<_{T} t$. So, u and y_{n}^{ξ} are comparable. It suffices to show that $y_{n}^{\xi}<_{T} u$. If $m\left(x_{n}^{\xi}\right)=0$, then $m\left(y_{n}^{\frac{\xi}{n}}\right)<m\left(w_{n}^{\frac{\xi}{n}}\right)-1<m(t)-1<m(v)-1<m(u)$ and so $y_{n}^{\hat{\xi}}<{ }_{T} u$. If $m\left(x_{n}^{\xi}\right)>0$, then $y_{n}^{\xi} \overrightarrow{<}_{T} w_{n}^{\xi} \overrightarrow{<}_{T} x_{n}^{\xi}$. Hence $u \overrightarrow{<}_{T} x_{n}^{\xi}$, since $u \overrightarrow{<}_{T} t \overrightarrow{<}_{T} v$ and $w_{n}^{\xi} \overrightarrow{<}_{T} t \overrightarrow{\leq}_{T} x_{n}^{\xi}$. So, by the property of q. $m\left(x_{n}^{\hat{\xi}}\right) \geqq m(u)+2 q$ and hence

$$
\begin{gathered}
m(t)-m\left(y_{n}^{\hat{\xi}}\right)>m\left(w_{n}^{\xi}\right)-m\left(y_{n}^{\hat{\xi}}\right)>m\left(x_{n}^{\xi}\right)-m\left(w_{n}^{\xi}\right)>m\left(x_{n}^{\hat{\xi}}\right)-m(v) \\
>(2 q+m(u))-(m(u)+q)=q \geqq m(v)-m(u)>m(t)-m(u),
\end{gathered}
$$

which mean $y_{n}^{\xi}<_{T} u$. In both cases, $y_{n}^{\xi}<_{T} u$. Thus $(u, v] \cap\left(w_{n}^{\xi}, x_{n}^{\xi}\right] \neq \emptyset$ implies $u \in\left(y_{n}^{\xi}, x_{n}^{\ell}\right]$. The claim follows from this immediately. For, there is at most only one pair $\langle\xi, n\rangle$ which satisfies $u \in\left(y_{n}^{\xi}, x_{n}^{\xi}\right]$, since the intervals $\left(y_{n}^{\xi}, x_{n}^{\xi}\right], \xi<\omega_{1}$ and $n<\omega$, have been taken so as to be mutually disjoint. Claim 2 is thus proved.

By this claim we can take v^{*} so that:

$$
v^{*}<_{T} v \quad \text { and } \quad\left(\forall \xi<\omega_{1}, \forall n<\omega\right)\left[\left(v^{*}, v\right] \cap\left(w_{n}^{\xi}, x_{n}^{\xi}\right]=\emptyset\right] .
$$

v^{*} is thus defined for all $v \in T \upharpoonright C$. Clearly $\left(v^{*}, v\right] \cap U=\emptyset$. We set:

$$
V=\cup\left\{\left(v^{*}, v\right]: v \in T \upharpoonright C\right\} .
$$

Then V is a nbd of $T \upharpoonright C$ such that $U \cap V=\emptyset$. This completes the proof of

Lemma 11.

§ 5. Remark on Lemma 6.

First note that every ω_{1}-tree is isomorphic to some P-tree. Concerning Lemma 6 and Corollary 7, it would be natural to ask whether the former is essentially more general than the latter: i.e. whether the following condition (C1) is strictly weaker than (C2) for Aronszajn trees T :
(C1) there is a P-tree T^{\prime} isomorphic to T such that

$$
\left\{\alpha<\omega_{1}: T_{\alpha}^{\prime} \cap\left(T^{\prime}\right)^{0} \text { is finite }\right\} \text { is stationary ; }
$$

(C2) there is a P-tree $T^{\prime \prime}$ isomorphic to T such that

$$
\left\{\alpha<\omega_{1}: T_{\alpha}^{\prime \prime} \cap\left(T^{\prime \prime}\right)^{0}=\emptyset\right\} \text { is stationary. }
$$

The answer is affimative: i.e. the following holds:
Proposition $\left(\diamond^{*}\right)$. There is an Aronszajn tree which satisfies (Cl) but does not (C2).

Proof. Let $\left\langle\left\{W_{i}^{\alpha}: i<\omega\right\}: \alpha<\omega_{1}\right\rangle$ be a \rangle_{x}^{*}-sequence and $\left\langle Z_{\alpha}: \alpha<\omega_{1}\right\rangle$ be a \diamond_{α}-sequence. We construct a P-tree T such that $T_{\lambda} \cap T^{0}$ has at most one element for every $\lambda \in \Omega$ but (C2) does not hold. We define T_{α} for $\alpha<\omega_{1}$ inductively ensuring that:
(1) if $\alpha<\beta<\omega_{1}$ and $x \in T_{\alpha}$ and $m(x)<q \in \boldsymbol{Q}$, then there is a $y \in T_{\beta}$ such that $x \overrightarrow{<}_{r} y$ and $m(y)<q$.

Put $T_{0}=\left\{0_{T}\right\}$ and $T_{\alpha+1}=\left\{x \cup\{\langle q, \alpha+1\rangle\}: x \in T_{\alpha}, m(x)<q \in Q\right\}$. Let $\lambda \in \Omega$ and suppose that $T \upharpoonright \lambda$ has been defined. Let $\left\langle\lambda_{n}: n\langle\omega\rangle\right.$ be a sequence such that $\lim _{n<\omega} \lambda_{n}=\lambda$. For each $x \in T \upharpoonright \lambda$ and each rational $q>m(x)$, we pick x_{n} inductively so that:
(a) if Z_{λ} is a cofinal branch of $T \upharpoonright \lambda$, then $x \overrightarrow{<}_{T} x_{0}$ and $x_{0} \notin Z_{\lambda}$ and $m\left(x_{0}\right)<q$; otherwise, $x_{0}=x$;
(b)

$$
x_{n+1}>_{T} x_{n}, \quad h t\left(x_{n+1}\right)>\lambda_{n} \quad \text { and } \quad m\left(x_{n+1}\right)<q
$$

Put:

$$
t_{\lambda}(x, q)=\bigcup_{n<\omega} x_{n} \cup\left\{\left\langle\sup _{n<\omega} m\left(x_{n}\right), \lambda\right\rangle\right\}
$$

Let $K(n)$ mean the number such that $n=2^{m}(2 \cdot K(n)+1)-1$ for some $m \in \omega$. Now, we shall define y_{n} by induction as follows:
I. if Z_{λ} is a cofinal branch of $T \upharpoonright \lambda$ then y_{0} is taken so that $y_{0} \notin Z_{\lambda}$; other-
wise, $y_{0}=0_{T}$;
II. (a) if $W_{K(n)}^{\lambda}$ is a function from $T \upharpoonright \lambda$ to $[0, \infty)$, then y_{n+1} is taken so that $y_{n+1}>_{T} y_{n}$ and $h t\left(y_{n+1}\right)>\lambda_{n}$ and one of the following holds:
$1^{\circ} . \quad W_{K(n)}^{\lambda}\left(y_{n+1}\right) \geqq n$,
2°. $W_{K(n)}^{\lambda}\left(y_{n+1}\right)>\sup \left\{W_{K(n)}^{\lambda}(y): y_{n}<_{r} y \in T \upharpoonright \lambda, h t(y)>\lambda_{n}\right\}-1 / n$;
(b) otherwise, y_{n+1} is taken so that $y_{n+1}>_{T} y_{n}$ and $\operatorname{ht}\left(y_{n+1}\right)>\lambda_{n}$.

Put:

$$
u_{\lambda}=\bigcup_{n<\omega} y_{n} \cup\{\langle r, \lambda\rangle\}
$$

where r is taken so that $u_{\lambda} \in \mathscr{I}_{P}$. We set:

$$
T_{\lambda}=\left\{u_{\lambda}\right\} \cup\left\{t_{\lambda}(x, q): x \in T \upharpoonright \lambda, m(x)<q \in \boldsymbol{Q}\right\}
$$

Then the tree $T=\bigcup_{\alpha<\omega_{1}} T_{\alpha}$ is as required. To see that (C2) is false, take arbitrarily an isomorphic P-tree T^{\prime} and an isomorphism f from T to T^{\prime}. Define a function $e: T \rightarrow \boldsymbol{R}$ by $e(x)=m(f(x))$. Take club sets $C_{0}=\{\lambda \in \Omega:(\forall x \in T \upharpoonright \lambda \forall q \in \boldsymbol{Q})[(\exists y \in T)$ $\left.\left.\left[x<_{T} y \& e(y)>q\right] \rightarrow(\exists y \in T \upharpoonright \lambda)\left[x<_{T} y \& e(y)>q\right]\right]\right\}$ and $C_{1} \subseteq\left\{\lambda \in \Omega: W_{i}^{\lambda}=e \upharpoonright(T \upharpoonright \lambda)\right.$ for some $i\}$.

Claim. $\quad e\left(u_{\lambda}\right)=0$ for every $\lambda \in C_{0} \cap C_{1}$.
Proof. Suppose $e\left(u_{\lambda}\right)>0$ and $\lambda \in C_{0} \cap C_{1}$. Pick $i \in \omega$ so that $W_{i}^{\lambda}=e \upharpoonright(T \upharpoonright \lambda)$. Then we can take a $v<_{T} u_{\lambda}$ such that $f(v) \overrightarrow{<}_{T^{\prime}} f\left(u_{\lambda}\right)$. Let t be an immediate successor of u_{λ}. Pick $n \in \omega$ so that: $\lambda_{n}>h t(v), n>e\left(u_{\lambda}\right), e(t)-e\left(u_{\lambda}\right)>1 / n$ and $K(n)$ $=i$. Recall y_{n+1} in the definition of u_{λ}. Then 1° or 2° must hold. First notice that $f(v) \overrightarrow{<T}_{T^{\prime}} f\left(y_{n+1}\right) \overrightarrow{<}_{T^{\prime}} f\left(u_{\lambda}\right)$, since $h t(v)<\lambda_{n}<h t\left(y_{n+1}\right), f(v) \overrightarrow{<}_{T^{\prime}} f\left(u_{\lambda}\right)$ and $f\left(y_{n+1}\right)$ $<_{T}, f\left(u_{\lambda}\right)$. And so $e(v)<e\left(y_{n+1}\right)<e\left(u_{\lambda}\right)<n$.

Case 1. 1° holds. Then $e\left(y_{n+1}\right)=W_{K(n)}^{\lambda}\left(y_{n+1}\right) \geqq n$. This is absurd by the above notice.

Case 2. 2° holds. By $\lambda \in C_{0}, e\left(u_{\lambda}\right)>e\left(y_{n+1}\right)>\sup \left\{e(y): y_{n}<y \in T \upharpoonright \lambda\right\}-1 / n$ $=\sup \left\{e(y): y_{n}<y \in T\right\}-1 / n \geqq e(t)-1 / n$. This is absurd since $e(t)-e\left(u_{\lambda}\right)>1 / n$. Claim is thus proved.

It is obvious by the claim that T does not have property (C2). Proposition is thus proved.

References

[1] Baumgartner, J.E., Decompositions and embeddings of trees, Notices A.M.S. 17 (1970), 967.
[2] Devlin, K. J. and Shelah, S., Souslin properties and tree topologies, Proc. London

Math. Soc. 39 (1979), 237-252.
[3] Hanazawa, M., On a classification of Aronszajn trees, to appear.
Department of Mathematics
Faculty of Science
Saitama University
Urawa, Saitama
338 Japan

[^0]: Received May 29, 1980. Revised December 2, 1980.

